'," frontiers

in Neuroinformatics

ORIGINAL RESEARCH
published: 08 October 2018
doi: 10.3389/fninf.2018.00050

OPEN ACCESS

Edited by:
Arjen van Ooyen,
VU University Amsterdam,
Netherlands

Reviewed by:
Michael Hines,
Yale University, United States
Marcel Stimberg,
INSERM U968 Institut de la Vision,
France

*Correspondence:
Inga Blundell
i.blundell@fz-juelich.de

Received: 19 October 2017
Accepted: 23 July 2018
Published: 08 October 2018

Citation:

Blundell I, Plotnikov D, Eppler JM and
Morrison A (2018) Automatically
Selecting a Suitable Integration
Scheme for Systems of Differential
Equations in Neuron Models.

Front. Neuroinform. 12:50.

doi: 10.3389/fninf.2018.00050

Check for
updates

Automatically Selecting a Suitable
Integration Scheme for Systems of
Differential Equations in Neuron
Models

Inga Blundell *, Dimitri Plotnikov 23, Jochen M. Eppler 2 and Abigail Morrison 124

! Institute of Neuroscience and Medicine (INM-6), Institute fokdvanced Simulation (IAS-6), Jilich Aachen Research Allice
BRAIN Institute I, Forschungszentrum Julich, Julich, Germany/Simulation Lab Neuroscience, Institute for Advanced
Simulation, Julich Aachen Research Alliance, Jilich Supssmputing Centre (JSC), Forschungszentrum Julich, Julich
Germany,® Chair of Software Engineering, Jilich Aachen Research Altice, RWTH Aachen University, Aachen, Germany,
4Faculty of Psychology, Institute of Cognitive NeurosciengeRuhr-University Bochum, Bochum, Germany

On the level of the spiking activity, the integrate-and- reneuron is one of the most

commonly used descriptions of neural activity. A multitudef variants has been proposed
to cope with the huge diversity of behaviors observed in biolgical nerve cells. The
main appeal of this class of model is that it can be de ned in tems of a hybrid

model, where a set of mathematical equations describes the ub-threshold dynamics

of the membrane potential and the generation of action potetials is often only added

algorithmically without the shape of spikes being part of th equations. In contrast to

more detailed biophysical models, this simple descriptioof neuron models allows the

routine simulation of large biological neuronal networksrostandard hardware widely
available in most laboratories these days. The time evoloti of the relevant state variables
is usually de ned by a small set of ordinary differential ecqations (ODES). A small number
of evolution schemes for the corresponding systems of ODEsra commonly used for

many neuron models, and form the basis of the neuron model impmentations built

into commonly used simulators like Brian, NEST and NEURON. dwever, an often

neglected problem is that the implemented evolution scheme are only rarely selected
through a structured process based on numerical criteria. fiis practice cannot guarantee

accurate and stable solutions for the equations and the actal quality of the solution

depends largely on the parametrization of the model. In thiarticle, we give an overview
of typical equations and state descriptions for the dynamig of the relevant variables in
integrate-and- re models. We then describe a formal mathenatical process to automate

the design or selection of a suitable evolution scheme for th large class of models.

Finally, we present the reference implementation of our sybolic analysis toolbox for

ODEs that can guide modelers during the implementation of atom neuron models.

Keywords: integrate-and- re neuron, model dynamics, numeric s, integration schemes, ODE, symbolic analysis

Frontiers in Neuroinformatics | www.frontiersin.org 1

October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00050
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00050&domain=pdf&date_stamp=2018-10-08
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:i.blundell@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00050
https://www.frontiersin.org/articles/10.3389/fninf.2018.00050/full
http://loop.frontiersin.org/people/489478/overview
http://loop.frontiersin.org/people/348808/overview
http://loop.frontiersin.org/people/2466/overview
http://loop.frontiersin.org/people/13504/overview

Blundell et al. Automatical Solver Selection

1. INTRODUCTION spikes are constrained to a xed temporal gridt) represents

the sum of the currents elicited by all incoming spikes at all
In- common with all body cells, nerve cellswuron$ are grid points for times smaller that, plus a piece-wise constant
delimited by a bi-lipid layer (theell membranewhich is largely function lex that models additional external inpu, in contrast
impermeable for ions and bigger molecules. Active ion pumpso the rst part of the right-hand-side of equation 2, is some
and passive channels embedded into the membrane allow th@n-linear function ofV that may also be zero.

selective passage of certain ions. Through these transporter For the conductance-based integrate-and- re model we have
molecules, neurons maintain a gradient of di erent ion types

across the membrane, which leads to thembrane potential d 1
(Kandel et al., 2023 aV(t) D—(E. V()
In the absence of input, the membrane potential uctuates
around theresting potential E (typically at around 70 mV). 1
Excitatory input depolarizes the membrane, driving the ¢ CG(t)(V(t) B € VD). 3

membrane potential closer to zero, while inhibitory input

hyperpolarizes the neuron, driving the membrane potential® has the same form ak but models a conductance rather
away from zero. If the membrane potential crossesgpiking than a current.E is thereversal potentiaht which there is no
threshold (typically at around 55mV), the neuron res an Net ow of ions from one side of the membrane to the other
action potential pikg, which is transmitted to all downstream (for details see<andel et al., 2033 Equation 3 will usually
(ostsynaptimeurons, where itin turn elicits excursions of their Contain several summandsGi(t)(V(t) &) for di ering G and
membrane potentials. correspondingE;, e.g., for inhibitory and excitatory synaptic

The basic integrate-and- re model describes the dynamics g-onductance. For simplicity we assume only one summand. The

the membrane potential in the following way: the time evauti di erential equations for both the current- and conductance

of the membrane potentiaV is governed by a dierential based models are linear wheh 0. For the current-based
equation of the type model this means that equation 2 is a line@mstant coe cient

di erential equation.

An example of a neuron model described by a system of
di erential equations, wherd=6 0 is theadaptive exponential
integrate-and- re model

d
G/ODRV(),) 1)

whereR can be a function of other variables alongsitiewhose
time evolution is described by another ordinary di erential d 1
D —(E. V()

equation which can again contain the membrane potential: av
0.1 0 1 1
Ro(X) C GOV B
50 8 B o [0S T
dt dt : ® : Cg exp L w(t)
Xn Ra(X)

d c
—w(t) D —(V(t
Once the membrane potential reaches its threshqld spike is dt © W(© &)

red and the membrane potential is set backEp for a certain

amount of time called theefractory periodAfter this time the For the biophysical meaning of the variablés, ,g,c, 1+ andw
evolution of equation 1 starts again. An important simpli éan €€ the original publication byrette and Gerstner (2005)

in most models compared to biology is that the exact course of Current-based neuron models wittF6 0 are unusual
the membrane potential during the spike is either completelypecause models from this category are chosen primarily for
neglected or only considered partially. Threshold detecii their simplicity, while conductance-based neuron models ar
typically added algorithmically on top of the sub-thresholdbelieved to describe neuronal activity in the brain more

dynamics. accurately, albeit at the cost of more complex dierential
The two most common variants of this type of model are€quations.
the current-basednd the conductance-basedtegrate-and- re It should be noted here that although some neuron models
model. For the current-based model we have the followingire not explicitly referred to or described asirrent-based
general form of the equation: or conductance-basethodels in the literature their time
evolution can still be expressed by di erential equations o t
EV(t) D }(EL V() mathematical forms shown in equations 2 and 3.
dt The choice of an appropriate solver for a given equation

1 is a non-trivial task, as it requires deep knowledge of

C EI(t)CF(V(t)). (2) ordinary dierential equations and numerics to assess the

type of dierential equation and construct an appropriate

Here C is the membrane capacitance the membrane time numeric solver. This choice depends not only on the form
constantand| the input currentto the neuron. If we assume that of the di erential equation but also on the magnitude of the

Frontiers in Neuroinformatics | www.frontiersin.org 2 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

occurring parameters. For examplptter and Diesmann (1999) 2.1. Solving Linear Constant Coef cient
demonstrated that for neuron models that can be expressedDESs Analytically

as time-invariant linear systems, the analytical solutiortite For simplicity we will assum&_ in equation 2 to be zero or to
evolution of the dynamics from one time step to the next came included in one of the other terms of the right hand side. As
be achieved by a matrix multiplication. If applicable, thiskiof shown byRotter and Diesmann (1999 VR ! R satis es the

solutionis to be preferred, as itis both exact and computatityn (st order constant coe cient linear di erential equation
e cient.

However, this approach leaves two key steps up to the
modeler: rstly, analyzing the dynamics to discern whategairy
of dynamical system it is; secondly, having performed this
analysis, to construct the appropriate solver, e.g., the tesins With initial value V(0)D Vo, for a function | ‘R®! R and
the propagator matrix for such neurons that can be solve@onstantsC (the capacitance of the membrane) and(the
in this way Qotter and Diesmann, 199®r the con guration ~Membrane time constant), andlisatis es
of an implicit or explicit numeric solver for all other neuron

d 1 1
GVOD SV e I 4)

d n X 1 d i

models. As these steps can be quite challenging to many 2 a — |)
modelers, it would be of great use to have a framework dt Do dt

capable of automatically performing this analysis and solver

construction. for somen 2 N and a sequenceizn R, an analytical solver

In section 2 we therefore rst derive compact canonicalcan be constructed in the form of a propagator matrix.
representations of the equations and their parts that allow Here, we show how to evaluate the dynamics to discern
an e cient implementation on a computer system, and then whetherV and| do indeed satisfy the conditions stated above,
show that the distinction between current- and conductanceand how to derive the evolution scheme féraccordingly. First,
based, linear and non-linear, sti and non-sti systems we verify that the rst order di erential equationgV D r(V),
of dierential equations is important for automatizing for a right hand sider:R RC! R, is indeed linear with a
the construction or selection of an optimal evolution constant coe cient, i.e., that < 2r(V) Doand & fV)(0)
scheme. av av

Our reference implementation follows the mathematicallS constant. Second we methodically determine wheltisetis es
observations and is described in section 3. Section 4 detrates & linear di erential equation of some orden, i.e., we check
our application of the framework to some commonly usedWhether
models in computational neuroscience and explains the d
integration of the framework into the NEST Modeling Language &' D aol (6)
(NESTML;Plotnikov et al., 201)6 We close with a presentation

of related work in section 5 and a discussion and outlook infor someap 2 R by solving forao. If no suchap exists we check

section 6, where we summarize possible extensions and furth%'hether
applications of our system. d 2 d
— I Dal Ca—I 7
dt & aldt 7
2. MATERIALS AND METHODS for someag,a; 2 R using the following procedure: we assume

that ap, a1 exist such that (7) is satis ed. Then we have for some

As already pointed out in the previous section, systemé. t22 R (forexamplets D 1,t; D 2):
of dierential equations describing the dynamics in neuron

|
models can be divided intaurrent-basedand conductance- X(t1,t) D I(t)) §(ta)
basedsystems. Additional distinguishing properties are whether ' I(t2) %I(tz) '
the systems arénear or non-linear sti or non-sti . We will
now describe how these properties in uence the choice of an 0) 1
appropriate solver. 4 Tt
For the current-based integrate-and- re neuron with O, X(t1,t2) ZO D@ Zt 2 (l)A
we have a rst order constant coe cient linear dierential ! @ 1(t2)
equation wherel typically satises a homogeneous linear
di erential equation of some orden2 N. Any such ODE or T det(X(t1,t2)) 600 we therefore know that
system of ODEs can be solved analytically and e ciently as we
will show in section 2.1. 0 d 2I(t)1
When evolving systems of ODEs for conductance-based linear @ px Yty tp) @ dt 5 Y .
or non-linear ODEs, it is necessary to use a numeric integnat ar % I(t2)

scheme. Depending on the system at hand, it is advisable
to choose either an implicit or an explicit stepping function Under the assumption that (7) is satised and that
(section 2.2). det(X(ty,t2)) 6 this gives usap and a;. If our second

Frontiers in Neuroinformatics | www.frontiersin.org 3 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al.

Automatical Solver Selection

dnl

dn2

assumption is not satis ed we can easily chsendt, so thatit with initial valuesy(0) D Yo,y D (gwt!, gm=!,:::,1, V) and
is. We can now determine whether the rstassumption is cotrec 0 1
by inserting the calculated values fag and a; and checking if ah 1 an 2 a O
the following equation is true: 1 0 0 0O
d 2 d 0
— | | a—IDO 8 AD 13
dt ol A ® 00 0 49
Now, if suchag and a; exist, they are unique, dsand %I are 0 o -1 ? 01
linearly independent, since there wasap2 R such that (6) was 0 0 0¢ =
satis ed. Ifag and a; do not satisfy (8), we check methodically
if constants &)ion R exist, for which (5) is satised for Thus forn D 1 we have
nD 3,4, ::. Again we assume thab, :::,an 2 R exist such that a O
(5) is satis ed. Then we have foD (t,:::,t,) 2 R" (for example AD 1
t1D1,:::,tp D n): ¢
0 1 and forn D 2 we have
g N 1I . 0 1
I(t) a@ (t) a a O
X(t): D : , 9) AD@1 0 O0A
g "1 0 é 1
It &)
As it can be both more convenient and computationally more
e cientwhen A is alower triangulammatrix we give an alternative
0 1 0 da " I(t1)1 choice ofA andy, whereA is a triangular matrix:
=) dt 0 1
X(t) %) . XD : (10) aCx 0 0
' g n AD@ 1 x 0A (14)
& 1 at I(tn) 0 % L
If det(X(t)) 600 we get where
s
0 n 1 2
a a
0 &t $ It xD Elc TcCa (15)
B - EDxl(t)% § (11)
) § n and
an 1 dt |(tn) d
yD aICxI,I,V (16)

Again, if detX(t)) D0 we simply use anothet, for example
tD (t1C 1,:::,ty C 1). Then we obtain the values aj,: ::, a,
under the assumption that (5) is satis ed for order We check
whether the assumption in (5) is true by symbolically evahgt
whether
da " Xt oog
dt Do dt

If (5) is not satis ed we go on to check

nC1l xn i
d I D a,g I

dt Do dt

for someay,:::,anc1, and so on. This way, for evelythat
satis es (5) for ordem we can determine the factog,:::,an.
Then we can rephrase (4) as themogeneousli erential
equation

d
YO DAY 12)

Then we can determine the solutigratt 2 R® using the matrix
exponential:

y(t) D My, (17)

We can rephrase this to obtain an incremental formulation ethi
allows the evolution of the system by a single calculatioe*Bf
for a xed step sizér 2 RC:

y(tCh)D \CN y DNy,

It is important to note here that the exact integration of (2)
depends on the exact calculation&f'. LetI(t) be the sum of
currents elicited by all incoming spikes at all grid points fiones
ot

I(t) D (1),
2Nt tk2s;

wherel,(t) D b (t t), fort 2 RC.by is thesynaptic weight
of synapsek and satis es the di erential equation 5 oiR®

Frontiers in Neuroinformatics | www.frontiersin.org

October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

for some constantsa()ipn R and somen2 N. Thenl satises where ,Candlg are constants. Byariation of constant@/Valter,
the di erential equation 5 orR® nfty,:::,t,g Therefore we can 2000 we have a solution of (19):
considerl as the solution of the di erential equation 5 on the

intervals (0t1), (t1,t2),::: with suitable initial values. For 2
(ti 1,t;) we can calculate

y(t) D At iy,

At time t;, for i2 N, the di erential equation 5 is not satis ed
becausedoes not satisfy the equationtalD 0, but we get(t;) by
continuous continuation to the boundary of the interval).
The derivatives of contained iny must be updated by initial
values of additional spikes at tinte meaning forP(h) D €l

y(ti) D P(h)y(ti 1) C Xy,

where
0 n 1
40
: X
X; DT d. by.
= (0
dté) k2S;ch
0
HereT 2 R"¢1 RnCljs sych that
0 1
4" 1I
dt
yD T% : g
|
Vv

T is the identity matrix wheny is chosen as the vector of

e o }
Va(t) D %é— CVy e

|E t=
D — CVgye 7,
C 2

| .
Vz(tCh)D%CVZOe =g M=

le

D Vo(t)e = C <@ e h=).

Now we know solutiond/; and V; of (18) and (19). Therefore
V :D V1 C Vs solves

EVD

d
—(V1CV
ai dt(1C Vo)

D M C %(I(I)C Ig)

V() 1 Ie

and forP:D P(h) D é\" the following holds
V(tCh) D Ppc1ays(t) C
C PncincaVa(t) C Va(t)e ™
lE h=
CcC—=-(1 .
C(e’)

As the IastPcqumra in A has only one entrnanc1D 1 and
PD D ﬁDo ‘(Akl?)k’

derivatives as in equations 12 and 13 but it may well be non- ® (Ah)k!
trivial, e.g., whely is chosen as in equation 16. Pncinc1 D m
Now we know an analytical and e cient way to evolve any kDO ncinci
linear constant coe cient ODE containing the convolutionfo N3 (-
the solution of a linear homogeneous ODE and a weighted spike D m De ™.
train. kDo
2.1.1. Adding a Constant External Input Current We get:
A common requirement in neuroscienti c modeling is to add
a bias current to neurons. We will now show how to solve V(tCh) D Prc1ayy(t) C
the di erential equation when we have an additional constant CPnc1nyy(t)
external input currentg: cve = © %(1 e).

V(@) 1

d
FVOD == CZ1MCIe, V(O)D Vo

As shown above, we can solve

d Va(t) L 1)
—ViD —=C —,V1(0)D Vq,. 18
GV c 1(0) D Vg, (18)
Consider the following di erential equation,
\% |
%Vz o va®) - €. V2(0) D Va, (19)

This method is also applicable when we have a piece-wise
constant functioryg instead of a constanit:

o

d Vzi(t)CE,Vz(O)DVZO.

2v,D
dt 2

where for alli 2 N there is ag 2 R such thatyy(t) D g for all
t 2 [t;,t; C h). We rephrase the problem as:

d V(1)

SV, D
dt 2

hl

C
C

, Vo O)D V2io

Frontiers in Neuroinformatics | www.frontiersin.org 5

October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al.

Automatical Solver Selection

ont 2 [tj,ti C h)foralli 2 N and get
G h=
Va(ti) D <© Vao(ti 1)e

and

81 e)

V(t)D V(G e ™ C c

2.2. Choice of a Suitable Numeric

Integration Scheme

Explicit methodsor solving di erential equations are methods
that only use already known values of the function at eadiéu
points to determine the value at the next grid point. The e cign
and accuracy of explicit methods is typically su cient for sgs

of ODEs used to model neuronal behavior. Popular examples
of such methods are the explicit 4th order classical Runge-

Now we have an exact description for how to handle the evatutio Kutta or the explicit embedded Runge-Kutta-Fehlberg method

of linear constant coe cient ODEs containing the convolati

(Dahmen and Reusken, 200for the approximative solution

of the solution of a linear homogeneous ODE and a weighte@ ODEs. Most neuron model implementations currently use

spike train with an additional constant external input, thatsitill
analytical and e cient.

2.1.2. Handling Sums

explicit stepping algorithms and still achieve satisfactogults
in terms of accuracy and simulation timeViprrison et al.,
2007; Hanuschkin et al., 20L&However, some published models
involve possiblysti di erential equations (e.g.Brette and

The approximation of postsynaptic currents observed in reatserstner, 200% which potentially require a di erent class of
brain experiments is sometimes best modeled by dierensolvers.
functions for di erent synapses. We can handle the case when Lambert (1992}e nes sti ness as follows:

| is the sum of functiond1,l> which satisfy a homogeneous

di erential equation of arbitrary ordem andn in the following
way. As seen above\ff; is a solution of

d Vi(t) . 1

—Vi(t) D —=C =4t

" 1(t) c 1(t)
andV2 is a solution of

d Vo(t) . 1

—Vo(t) D —=—2C =ly(t

i 2(t) c 2(t)

thenV D V1 C V3 is a solution of

V() 1

d
&V(t) D —cC E(Il(t) C 12(1)).

If, furthermore, |1 satis es (5) fom 2 N
Vit Ch) D Prey vy, (t) C
C Piciny, () C Va(te ™ .

whereP! is the corresponding propagator matrix ahgsatis es
(5) forsomem 2 N
Va(tCh) D Prcyayz () C
C Prcimya, () C Va(t)e ™

whereP? is the corresponding propagator matrix, then

V({tCh) D Picyqy(t) C
C PrcinYa(t)
C Pr2n01,1)/21(t) C
CPicimya, () C V(e ™ .

If a numerical method [...] applied to a system
with any initial conditions, is forced to use in a
certain interval of integration a steplength which is
excessively small in relation to the smoothness of the
exact solution in that interval, then the system is said
to be sti in that interval.

A typical case of sti ness is for example, when di erent parts of
the solution of a system of equations decays on di erent time
scales.

This usually comes from very di erent scales inherent to the
ODE. These scales will re ect in the parameters of the equation
i.e., the range of constants occurring in the equations @& th
systems. Therefore the sti ness of a system always depends not
only on the mathematical form of the equations but heavily on
the magnitude of the constants occurring in them.

In principle it is possible to solve sti equations with explicit
methods, but this comes at the expense of a very small step size
when using an adaptive step size algorithm and trying to achie
a certain accuracy. This in turn leads to high computational
costs. For non-adaptive step size algorithms it leads to plain
wrong results without the user knowing, since the algorithm
still terminates, but with large error. Moreover, as the lied
machine precision on a digital computer constitutes a lower
bound for the step size, explicit methods usually become ursstabl
when applied to sti problems.

Implicit methods on the other hand, do not use previous
values to calculate the solution at the next grid point, butyon
employ them implicitly in the form of the solution of a system of
equations. This makes implicit methods computationally much
more costly, but usually allows a larger step size to be chosen
thus avoiding stability problemsS(renmel and Weiner, 1995

In order to detect whether an explicit or implicit method is
better suited for a given ODE we devise the following testing
strategy.

Therefore we just need to compute two propagator matrices to First, we choose representative spike trains (drawn from a

handle the sum.

Poisson distribution) and compute approximate solutions foe t

Frontiers in Neuroinformatics | www.frontiersin.org

October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

given system of ODEs using an explicit and implicit method ofand uses SymPyMeurer et al., 201)7to carry out symbolic

the same order: mathematical tests and transformations. To achieve a highese

of portability and re-usability, the input to the algorithm ggven

2. an implicit Bulirsch-Stoer method of Bader and Deu hard eithe_r in the f_orm of JSON les or Pyth_o_n dictionarie;, which
(Strehmel and Weiner, 1995 specify equatlons,_ parameters and additional properues (fior a

example, see section 3.4). These two means of input allow gn eas

both with adaptive step size. We can then compare them witkkmbedding of the toolkit into third-party tool chains and dsla

respect to the requiredverage step siaadminimal step sizedn us to leverage the Python and SymPy parsers, which delegates al

cases where the implicit method performs better than the eitplicsyntax checking and exception handling to well established and

method, we have reason to believe that the ODE is sti and thatested tools.

the use of an implicit method is advisable. The algorithm expects three components in the input: (i) an
Although ODEs may be sti only for very specic initial ODE describing the time evolution of a state variable (&/9,,

conditions, usually sti ness should be observable for a wéghgge (i) a list of postsynaptic shapes (e..,used within this ODE

of initial values, or in this case for a number of incoming spik and speci ed either as functions of time or as ODEs with iditia

trains (Strehmel and Weiner, 1995By choosing many spike conditions and (i) a set of parameters with default values fo

trains, evaluating the required step sizes for the implicitta the equations. Fundamentally, the analysis algorithm k&i¢ice

explicit method for each of them, and comparing that to thegiven system of ODEs for membership of the following two

machine precisior', it is thus possible to detect whether the major categories and generates or selects an appropriate solve

problem at hand is sti or not. We propose the following rules accordingly:

for choosing an implicit algorithm:

1. an explicit 4th order Runge-Kutta method

1. First order linear constant coe cient ODEs for the dynacsi

if the minimal step size of runs using the explicit method is of a state variable (see equation 4) whose inhomogeneous part
close to machine precision (i.e., less than ‘10and this is not is a postsynaptic shape (i.e., satis es equation 5) can bedsolve
the case for the minimal step size of runs using the implicit exactly using an analytical stepping scheme (section 2.1).
method (i.e., greater than or equal to 10) this is a hintthat 2. All other systems of ODEs have to be solved by a
the system of ODEs is possibly sti. In this case an explicit numerical solver. ODEs in this category are, for example,
stepping function could become unstable or even abort, so we non-linear ODEs describing the time evolution of a state

suggest the use of an implicit algorithm. variables, or linear ODEs with an inhomogeneous part
if the minimal step size of runs using the explicit method is which is not a postsynaptic shape, i.e., not satisfying
reasonably large (i.e., greater than or equal t0")@ve have to equation 5.

testtwo cases: The implementation of the analysis toolbox consists of di erent

— if the minimal step size of runs of the implicit method is Python components which are introduced in the activity dimgr
very small (i.e., less than 10), we suggest using an explicit in Figure 1 The main script orchestrates the execution of the
method. analysis and uses the functions and classes of the dierent

— if the minimal step size of runs of the implicit method is submodules:
large (i.e., greater than or equal to 10, we go on to check shapes.py contains classes and functions for analyzing and
if the average step size of runs using the implicit algorithm storing postsynaptic shapes either given as functions of time
is much larger than the average step size of runs using the or ODEs with initial values (blue parts iRigure 1). The
explicit algorithm. If this is the case, this again indicates main algorithm in this module is explained in section 3.1.
that the system of ODEs is sti and therefore choosing ananalytic.py provides the functionality to generate
implicit evolution method is advisable. propagator matrices and compute a speci cation for the

For a non-sti system of ODEs, the computation time of update step (_red pa_rts IRigure 1). A detailed description
an explicit algorithm should be lower, as it does not require can be found m_sectlon 3:2. . -

the solution of a system of equationSghmen and Reusken, numeric.py contains the code for f:reatlng adgscrlptlon of the
2009. Therefore the choice of an explicit evolution method update step for further processing by the sti ness tester ora

is sensible in cases where none of the above conditions are numerical stepper function (upper yellow boxfigure 1).

met. The algorithm that follows from these rules is depicted i suffness.py . |mplemepts the sti ness te_ster (lower yellow
Figure 2 box in Figure 1). This module can either be used as

a module within the analysis toolbox or a third-party
tool, or run in a stand-alone fashion. It is explained in
3. REFERENCE IMPLEMENTATION section 3.3 together with the preparatory steps carried out
in numeric.py
In order to automate the process of nding the most appropriateThe main script starts by reading and validating the input from
solver for a given system of ODEs on a computer, we havae JSON le or a Python dictionary. It expects the kepspes ,
designed and implemented an analysis toolbox in Pythomdes and parameters to be present in the input. For each
(http://github.com/nest/ode-toolbox). It builds on the foral postsynaptic shape in ttehapes section, it runs the algorithm
mathematical foundations introduced in the previous sewio described in section 3.1, which checks if the given postsymapti

Frontiers in Neuroinformatics | www.frontiersin.org 7 October 2018 | Volume 12 | Article 50

http://github.com/nest/ode-toolbox
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

, If one of them fails, a numerical stepper has to be chosen
Read input: ‘ (section 3.3). The output of the main script is again a Python

.—> shapes S, ODE F, dictionary or a JSON le, which contains a speci cation of the
parameters P
most appropriate solver for the given inpug(in Figure 1). The
remainder of this section explains the di erent algorithmstire
shapes.py submodules of the analysis toolbox.

Check if all S;€ Sobey a
linear homogeneous ODE

3.1. Analysis of Postsynaptic Shapes

In the neuroscience literature, postsynaptic shapes are theskri

either as functions of time or as ODEs with initial values.

ne C To provide users with maximum exibility, both speci cations
are supported by our toolbox. Regardless of the form of the

speci cation, each of the given postsynaptic shapes has toysatisf

a linear, homogeneous ODE (equation 5) to be solved either

Abortion of the algorithm
with a fatal error

P - analytically or numerically.
Ll In case the postsynaptic shape is given as an ODE with
initial values, the check for linearity and homogeneity is
numeric.py straightforward. For each occurring derivative of the postgptic
Create description for shape in the shape's de nition, we simply have to iteratively
numerical solver subtract the product of the derivative and its factor from the
original de nition of the postsynaptic shape and check if the Ina
analytic.py di erence s zero. This check fails if the postsynaptic shapetis no
e AR linear (i.e., at least one of the derivatives occurs as a ptamt)
matrix for each S; or not homogeneous (i.e., not all terms of the postsynaptic shape

de nition are products containing a derivative of the shapB)is

check is implemented in the functioshape_from_ode() in

v stiffness.py theshape module of the toolbox.

Compute propagation BBt et In case the postsynaptic shape is given as a function of time,
sigp we check whether the function obeys a linear homogeneous ODE

by trying to construct such an equation together with thetiai

values of all relevant derivatives. This procedure is impleaecd

in the function shape_from_function() of the shape

module. We start the evaluation by checking if the postsynaptic

shape function obeys a linear homogeneous ODE of order 1.

analytic.py

Successful termination
of the algorithm
1 t_value =None

FIGURE 1 | Activity diagram summarizing all steps of the ODE analysis 2 ds = [shape diff(shape t)]
algorithm. Steps executed in the main script of the toolbox ge shown in 3 for t_ in range (1, max_t):
green. The analysis of postsynaptic shapes (blue box) is daited in 4 if ds[0].subs(t t_) != O:
section 3.1. Parts shown in red represent the generation of manalytical solver, 5 t_value = t_

which is described in section 3.2. The selection of a numera stepper 6 break

function is carried out by the yellow actions and explainechisection 3.3. ;

found_ode =False
9 if t_valueis not None:
10 a0 = (1/ds[0] ds[1]) .subs(t t_value)
11 diff _lhs_rhs = ds[] a0 ds[0]
found_ode = diff_rhs_lhs ==0

shape obeys a linear homogeneous ODE and transforms it intlg
a canonical representation suitable for further processifig. In line 10 we calculate the factag from equation 6 by dividing
one of the postsynaptic shapes fails the test for linearity anthe rst derivative of the postsynaptic shape by the shape at an
homogeneity, the script terminates with an errar (n Figure 1), arbitrary pointt. To avoid a division by zero, we have to nda
because this class of ODEs cannot be solved easily withiorgali so that the postsynaptic shape function is not zero at tifi;mes
methods as explained in section 6. 3-6). Line 11 calculates the di erence between the left arel th
After processing the postsynaptic shapes, the script checkight hand side of equation 6. If this di erence is zero (line &
whether all equations in thedes section of the input are linear know that the postsynaptic shape satis es a linear homogeneous
constant coe cient ODEs: the ODE is linear if the right hand ODE of order 1. We also know the ODE itself by calculating its
side of the ODE di erentiated twice by its symbol is zero, theinitial value in line 40 below.
coe cient of the symbol is constant if the right hand side dfe If the postsynaptic shape does not obey a linear homogeneous
ODE di erentiated by its symbol is constant. If these two sest ODE of order 1, we check if the postsynaptic shape function
succeed, the system can be solved analytically (see s8jon satis es a linear homogeneous ODE of a higher order. Thidses

Frontiers in Neuroinformatics | www.frontiersin.org 8 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

runin aloop (line 15) thatincrements the order to check fack which encapsulates all attributes of the postsynaptic shape
time equation 5 is not satis ed. The loop terminates if eitla® required for further processing.
ODE is found ormax_order iterations are exceeded. The latter

check prevents expensive tests of unlikely high orders.

13 order =1
14 factors = [&]
15 while not found_ode and order < max_order:

16 order += 1

17 ds.append(diff(ds[1], t))
18 X zeros (order)

19 Y zeros (order 1)

We start the loop by setting the next potent@ider

the list of derivatives (line 17) and initializing the matiX with
sizeorder order (equation 9, line 18) and the vect¥rwith
lengthorder (right hand side of equation 10, line 19).

20 invertible = False
21 for t_ in range (max_t):

22 for i in range (order):

23 substitute = i + t_ +1

24 Y[i] = ds[order].subs(t substitute)
25 for j in range (order):

26 X[i, j] = ds[j] .subs(t substitute)
27

28 if det(X) != 0:

29 invertible = True

30 break

X andY are assigned values according to equations 9 and 10 (li
24 and 26) for varying D (t1,:::,t,) (line 21) in order to nd
at such that the matrixX is invertible, i.e., de) 600 (line 28).
In the inner loop (lines 22-26}; is substituted so that we rsttry ode shape_factor

tD (1,:::,n),second D (2,:::,nC 1) and so on (line 23).

If we nd an invertible X, we calculate the potential factaas

(line 16),
appending the next higher derivative of postsynaptic shape to The

3.2. Generation of an Analytical Evolution

Scheme

If the ODE describing the update of a state variable was found
to be a constant coe cient ODE and all postsynaptic shapes
obey linear homogeneous ODEs, we can solve the system of
ODEs analytically according to section 2.1. To this end, the
moduleanalytic ~ provides a clasBropagator , which has

two member functions corresponding to the two steps required
for the generation of an analytical evolution scheme.

function compute_propagator_matrices()

takes an ODE and a list ofhape objects and computes a
propagator matrix (equation 17) for each postsynaptic shape.
These matrices can be used to evolve the system from one
point to the next. The basic idea here is to populate the matrix
A using the factors of the derivativegators , computed

in lines 12 and 31 of the code in section 3.1), the factor of
the postsynaptic shape used in the ODE for the state variable
(ode_shape_factor) and the factor of the symbol of the
ODE (ode_sym_factor). For the equation

d 1 1

1
—VD- VC— 1C— |
dt Ct ! Co 2

ode _sym factor would thus bel. It is calculated using the

r?c(?llowing line of code:

1 ode_sym_factor = diff (ode_def ode_symbol)

would beci1 for postsynaptic shapk

in the example equation ant& for I,. As these factors and
other parameters depend on the postsynaptic shape, we run the

from equation 5 according to equation 11 for the current arde following code in a loop (omitted for better readability), aba

we are checking foffgctors , line 32). iteration assigning the currenBhape object to the variable
31 if invertible: shape :
32 = Xi
33 Le;fcft_orrhss_”z(slnzv(()) v 2 ode_shape_factor = diff (ode_defshape symbol)
.) 3
34 for 'k in range (order): 4 if h d = 1
35 diff_rhs_Ihs = factors[k] ds[k] 5' As_a,\‘;e‘o_r er ==L
36 diff_rhs_lhs += ds[order] = Matrix ([
37 it diff_rhs_lhs ==0: o [shape factors [0], 0],
38 found__ode_:True 7 _ [ode_shape_factqr ode_sym_factor]])
39 break 8 elif shape order == 2:
9 pg = shape factors[l] / 2 +

Lines 33-36 calculate the di erence between the left anditjig r ! sqrt(shape factors[l] 2/ 4 +
hand side of equation 5. If this di erence is zero (line 37) iew i B ,\jg?r"ii'(—[faCtors (S}
that the postsynaptic shape satis esanlmearhomogeneousO[ﬁ% [shape factors[i] + pg, 0, 0 I,
of orderorder . 12 [1, pg O],

If we do not nd an ODE during the execution of the 13 [0, shape_factor ode_sym_factor]])
while loop, we terminate the algorithm with an errori(in 14 else :

Figure 1). If we do, we can go on to calculate the initial vaIues;lL5
of the postsynaptic shape equation by substitutingy O for
all derivatives of the postsynaptic shape, which fully de nes thig

found ODE.
40 iv = [x.subs(t 0) for x in ds[: 1]]

In the case of
shape_from_ode()

successful termination,
and shape_from_function()

the functions22

order = shapeorder
A = zeros(order +1)

17 Alorder, order] = ode_sym_factor
A[order, order 1] = shape_factor
19 for j in range (O, order):
20 A[O, j] = shape factors[order | 1]
21 for i in range (1, order):
Ali, i 11 =1

Line 2 computes thende_shape_factor for the current

both return aShape object to the main script of the toolbox, postsynaptic shape. In order to make the calculation of the

Frontiers in Neuroinformatics | www.frontiersin.org

October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

solution more e cient (i.e., using fewer arithmetic operatis on To determine an appropriate factor, we developed a testing
a computer) compute_propagator_matrices() creates strategy using a well known example of a set of sti ODEs: with
a lower triangular matrix for postsynaptic shapes of order 1 and D 100 and initial valueg;(0) D y»(0) D 1,

2 (lines 5-7 and 9-13, respectively) as explained in equatébn 1

and a generic matrix for all higher orders according to % D ay (20)
equation 13 (lines 15-22). The varialgg in line 9 corresponds dt
to equation 15. dy»
; ; — D 2»Cy

The propagator matrix for each postsynaptic shape can now dt
be computed by taking the matrix exponential of the mathix) _
multiplied by the update step site is a typical sti ODE system (example taken frabmhmen and

Reusken, 2005The solutiony(t) D e 192 decays very quickly,

23 propagator_matricesappend(exp (A h)) whereas the solutiopp(t) D e 1% C Fe 2 decreases a lot

) more slowly, which causes the sti ness of this system.
The second function of the Propagator class, y1 is already reduced by four decimal places @ 0.1 and
compute_propag_atlon_step() ' _takes the list of yi1 is practically negligible for even largemNevertheless, it plays
propagator matrices and postsynaptic shapes and COmMpUtESyaior role in the calculation of, when using an explicit
a calculation speci cation that can be executed t0 actuallyeqration method. Using a simple explicit Euler method and a

perform the system update. A,S this function merely runs Fesolutionh for the approximationf of y;, we have the following
loop over all propagator matrices and generates the update, . sive speci cation:

instructions as a list of strings, the code is omitted here.
NRECh DAE) 10h@(t) D (1 10t)wA(t).

3.3. Finding an Appropriate Numerical
Solver ForhD s5,andt D 7 we get

In case the di erential equation describing the dynamics sfate 20 6
variable was not found to be a linear constant coe cient ODE, R(1=10)D 2 “7< 10 °.

the system must be evolved using a numerical stepping schemeFas ional e ci Id lik h |
explained in section 2. Instead of a full calculation speciaa, or computational e ciency, we would like to choose a larger

as produced for the analytical solution in section 3.2, the'tep size foy since the solution decays a lot slower thanf

1 .
numeric module of the toolbox just passes the speci cation'Ve therefore chooseD 3 to integrateyz, we get

of ODEs from the input and theShape objects created by
the algorithm in section 3.1 on to the sti ness tester, whish i REICHD 492,

|mplemer_1ted In thestiffness module. Fgausing an explosive growth in the course of the calculations
The sti ness tester uses the standard Python modules SymPy A sti set of ODEs will always result in the average step

and NumPy for symbolic and numeric calculations. For evadvi . S .

. : size of an implicit method exceeding by far the average step
the ODEs during the test procedure, it currently uses PyGSITs’ize of a comparable explicit method. Hence the runtime of
a Python wrapper around the GNU Scientic Library (GSL; P P :

. " the implicit method should be less than the explicit method's
Gough, 200 This library was chosen over more pythonlc_ runtime. However, runtime is not solely a ected by the grade o

?et:zr(r:lt?(:lr\:i? ;g;hso?jeicpy due fo its more comprehensné% ness, so the sti ness of a given set of ODEs is evaluatedcemor
The stiness tester éxecutes the algorithm described ir?ccura}tely by comparing average step sizes. .
section 2.2 and gives a recommendation as to whether thefuse TO |s_olat_e .St' ness from oth_er factors, we chose _equat|on 20
S T . . . fBr its simplicity. This problem is clearly sti, as describecah,
an explicit or an implicit evolution scheme is appropriate. Theand the grade of sti ness relates directly to the size of tictofiea.

steps performed by the algorlthm. are shown figure 2 The Therefore it can be used as a controlled sti problem whereeoth
choice of the factor 6 for comparing average step sizes of theeec,[S comina from the complexity of the svstem do not plav a
explicit and the implicit schemes is motivated in section B.3. 9 plexity Y play

. . . role.
For the evo.lutlon .Of the §ystem of ODEs, the .equatlo.ns TECEV' \We measure the runtimes of the implicit and the explicit
representative spike trains drawn from a Poisson distributio . .
. 1 . Lo o methods (using the corresponding GSL-solvers) for ve runsrov
with a rate of D 0.1s - and inter-spike intervals distributed - : . .
1) 20 milliseconds each, whilst systematically varying thaests
around = (Connors and Gutnick, 1990 . : .
controlling parameters and the resolutiorh. The quotient of
the average implicit and explicit runtimes is showrFigure 3.

X For each measurement series, we can determinthe value
When comparing average step sizes of the implicit and expllcg]c

. ; a for which the runtimes of the explicit and the implicit
method applied to a certain set of ODEs, we assume that thevolution scheme are the same. We then calculate the ratio of

set of ODEs is sti when the average step size of the implici . L -
. . : he st | h | I h
method is considerably larger than the average step sizleeof t © step 5|zes§ prQ ?yed by the implicit and explicit schemes
D mplicit -

exp“C't method, see section 22, |e, Whﬁ{ﬁlicit > SBXp“Cit ata:r W Because in this problem the runtime,
for some . sti ness and step size are solely in uenced by the facpwe

3.3.1. Comparison of Average Step Sizes

Frontiers in Neuroinformatics | www.frontiersin.org 10 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

Read input:
ODEs, parameters

J

Recommend
impllicit

Recommend
explicit
Simplicit > 6Sexplicit T

Compare average step sizes of
implicit scheme (Simpiicit) and
explicit scheme (Sexpiicit)

Evolve ODEs with
implicit solver bsimp

l

Evolve ODEs with
explicit solver rk4

l

else

[

Mexplicit = 10€

]

Mexplicit = 10

Recommend
explicit

<
<€

®

Compare minimal
step sizes Mgcheme 10

machine precision &

No
recommendation

Mexpiicit < 108 Mimplicit < 10€

<

Recommend
impllicit

Mimplicit = 10€ Mexpiicit < 10€

3.

<€

®

recommendation, but terminates with a warning instead.

FIGURE 2 | Activity diagram summarizing the steps taken to recommend mappropriate numerical stepping scheme. The input to the glrithm are the ODEs and
their parameters. After evolving the system of ODEs in patel with an implicit and an explicit solver, it compares the mimal step sizes fngcheme) Of €ach scheme
with the machine precision (). Depending on the outcome of the comparison, it recommendsn appropriate stepping scheme (explicit or implicit) or ampares the
average step sizes $scheme) Of the tested schemes. In the case that both the step size of #explicit and implicit solver are close td, the algorithm does not give a

> P

®

5 T h=0.1 :
— h=0.2
— h=0.5

4 h=1.0 |

et

Mot orl

runtime implicit / runtime explicit

TR VI

0 Y
-500 —400 -300 —200

a

—100

FIGURE 3 | Comparison of implicit and explicit methods for a stiff ODERatio
of runtimes for the implicit and explicit method as a functio of the factora in
equation 20, for varying resolutionsh and a desired accuracy of 10 3. Curves
averaged over 5 runs of 20 ms each. The red bar indicates wherhe explicit
and implicit methods require the same amount of time to evokrthe ODE
system. Where a curve is below the red bar, the implicit methiis faster than
the corresponding explicit method.

can consider to be the borderline factor, i.e., problems wi
Smplicit > ' Sexplicit @ré su ciently sti to make the implicit
method faster.

representative spike train chosen in the sti ness tester, ve@sé
D 6 conservatively on the low side of the range ofto ensure
that the implicit scheme is used in all sti cases.

3.4. Example

The use of the toolbox as a Python module is explained in detail
inthe README.mdle of the git repository at http://github.com/
nest/ode-toolbox. Here, we demonstrate the use of the asalysi
toolbox by executing the script lede_analyzer.py in a
stand-alone fashion for generating a solver speci cationdo
conductance-based integrate-and- re neuron with alphajséd
postsynaptic conductances. The script expects the name of a
JSON le as its only command line argument:

python ode_analyzerpy iaf_cond_alphajson

The le iaf_cond_alpha.json is shown inListing 1. It
contains the speci cation of one di erential equation for the
membrane potential/_min the odes section in lines 3-7. This
section is a list and can potentially contain multiple ODEs. The
shapes section de nes two postsynaptic shapes, one of which is
speci ed as a function of timey(_in , lines 10-14), the other as an
ODE with initial conditions @_ex , lines 15-20). The parameters
and their default values are given in tharameters dictionary
in lines 22-33. This dictionary maps default values to paramete
names and has to contain an entry for each free variable oiccur

th in the equations given in thedes or shapes sections.
Depending on the complexity of the ODEs and postsynaptic
shapes contained in the input, the analysis may take some time.

For all the curves inFigure 3 we determine a value for During its execution, the analysis tool prints diagnostic sages

r between 6 and 7. As some input scenarios may resu

It inbout the current processing steps. If all steps succeed, éswrit

a somewhat stier system than that brought about by thethe result againtoa JSON le, which can be read by the next tool

Frontiers in Neuroinformatics | www.frontiersin.org

11 October 2018 | Volume 12 | Article 50

http://github.com/nest/ode-toolbox
http://github.com/nest/ode-toolbox
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

1q
2 "odes"™ [

3 {

4 "symbol": "V_m",

5 "definition": "((g_L (V.m E_L)) (g_ex (V_m E_ex)) (g_in (V_m E_in))+Il_stim+l_e)/C_m}
6 "initial_values™ ["E_L"]

7 }

8 1

9 "shapes? [

10 {

11 "type": "function",

12 "symbol™ "g_in",

13 "definition": "(e/tau_syn_in)t exp((1)/tau_syn_in t)"
14 1,

15 {

16 "type": "ode",

17 "symbol™: "g_ex"

18 "definition": "(1)/(tau_syn_ex) (2) g_ex+(2)/tau_syn_exg_ex"'"
19 "initial_values™ ["0", "e [/ tau_syn_ex]

20 }

211,

22 "parameters? {

23 "V_th": 55.0,

24 "g_L": 16.6667

25 "C_m": 250.0,

26 "E_ex™ 0O,

27 "E_in": 85.0,

28 "E_L": 70.0,

29 "tau_syn_ex"? 0.2,

30 "tau_syn_in" 2.0,

31 "l_e": 0,

32 "l_stim": 0

33}

34}

LISTING 1: Example JSON le as input to the analysis toolbox. The le cargtdhree entriesodes describing the ODEs of the
systemshapes containing the postsynaptic shapes used in the ODEs@ardmeters specifying the parameters and default
values for the di erential equations in trghapes andodes sections.

in the model generation pipeline to create the complete modeThe meaning of the elds is explained in detail in the
implementation. README.mabf the toolbox.

For the input shown inListing 1, the analysis toolbox
produces the following output:

> 4. RESULTS

2 "solver® "numeric explicit” To evaluate the proposed framework for the semantic analysis

3 shape_ode_definitions:" [. .

4 " 1/tau_syn_in 2 g in + 2/tau_syn_in of a system of ODEs and assessment of its stiness we have
1 g_in_d" chosen two approaches. One was to apply the stiness tester

5 " 1/tau_syn_ex 2 g_ex + 2/tau_syn_ex to the neuron models currently implemented in the NEST

. boogoex_d” Modeling Language (NESTMPJotnikov et al., 2015 the other

7] . . was to compare runtimes of explicit and implicit evolution
shape_state_variables"[. . . .

8 "g_in_d" schemes applied to two commonly used simpli ed versions of the

9 "g_in", Hodgkin-Huxley model.

10 "g_ex_d; The sti ness tester was integrated and successfully used in

1 9_&x the tooling for NESTML, a domain specic language for the

2o de nition of dels for th | simulator NEST

13 "'shape_initial_values® [e nition of neuron models for the neuronal simulator NE

14 "o, (Gewaltig and Diesmann, 2007; Kunkel et al., JONESTML is

15 "e/tau_syn_in} built using MontiCore (e.gGronniger et al., 2008; Krahn, 2010

16 nor . MontiCore is a language workbencki@dweg et al., 20)3hat

1;] e/tau_syn_ex enables an agile and incremental implementation of lightiweig

19 } ' DSLs including the symbol table functionalityl{r Seyed Nazari,

2017, code generation facilities (e.g¢hindler, 2012; Rumpe,

Frontiers in Neuroinformatics | www.frontiersin.org 12 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

2017 and support for editors in Eclipse IDE (e.¢crahn et al.,
2007; Volkel, 2001 NEST's focus is on the simulation of the
dynamics of large networks of spiking neurons (eknkel
et al., 2010; Potjans and Diesmann, 2012; van Albada et al.,
2015. Neuron models in NEST are usually rather simple point
neurons or models with a few electrical compartments instafad
rich compartmental neurons built from morphologically dde&ad
reconstructions. The simulator is capable of running on aéar
range of computer architectures ranging from laptops over
standard workstations to the largest supercomputers availab
today (Kunkel et al., 201y

Within NESTML, the analysis toolbox developed in sections 2
and 3 is used for the numerical analysis of neuron models dé ne
as systems of ODEs and provides either the implementatio
of an e cient and accurate analytical integration scheme or
recommends a good numerical solver. Therefore it allows the
simulation of a large variety of biological neuron models in ,)

NEST. FIGU_RE_ 4 | Results of the stiffness test for six neuron quels from NESRed
. . X . . bars indicate the default value of the selected parameter iINEST, blue

As a S|mple yet meanmgfu' validation of the Stab”'ty checks indicates the value range in which the system of ODEs evaluzg as non-stiff,
introduced in section 2.2, we applied the sti ness tester to all green indicates the range in which it evaluates as stiffeif_cond_alpha is
neuron models currently implemented in NESTML (see https:/[& conductance-based adaptive exponential integrate-andre model with
github.com/nest/nestml/tree/master/models). The resflthis ﬂggal;is:ﬁ’jjepossé’”nisgzlcv‘\’li‘:sicltir;czaghe—gsf)—sip:z -
evaluation is that with default parametriz_ation, the Syssem iaf_cgond_alphay pa conductance—?)ased ir?tegr';te—aﬁd—irje neuron v;/ith
of ODEs of all neuron models are non-sti and can thus be| ajpha-shaped postsynaptic conductances,iaf_cond_alpha_mc a
safely integrated using an explicit numerical integraticheme conductance-based integrate-and- re neuron with alpha-staped postsynaptic
without any detrimental e ects on e ciency and accuracy. Ehi | conductances and multiple compartments,iaf_psc_alpha a current-based
is a reassuring nding, as it indicates that previous studisig | Mtedrate-and-re neuron with alpha-shaped postsynaptic airrents and
these neuron models are unIiker to contain distorted resdiie |zh|keV|ch the model dynamics propqsed bylzhikevich (2003) The test

was applied to the ODE systems for varying values of the paraater tau_syn
to numeric instabilities in the integration, for a Countexample of the rst ve models and for the parameter a of the last model.
seePauli et al. (2018)

However, when the default parametrization is slightly alter
the stiness test nds that some systems of ODEs are now
evaluated as being sti, which suggests that the choice of an
implicit evolution scheme would be more advisable than the
default choice.Figure 4 summarizes these observations for a
selection of six commonly used neuron models and shows how
a systematic change of one parameter in these models results in
an evaluation as sti or non-sti .

As a second test, we apply the sti ness tester to the Fitzhugk
Nagumo and Morris-Lecar models=i{izHugh, 1961; Nagumo
et al., 1962; Morris and Lecar, 198fon-linear oscillators that
include the generation of an action potential as part of the
dynamics, rather than applying an arti cial threshold as many
point neuron models do. To assess the comparative performance
of the two approaches, we vary both the sti ness controlling
parameter of the model equations and the resolutignas a
parameter of the sti ness testest(ffness.py ;seesection3). | FIGURE 5 | Application of the stiffness tester to the Fitzhugh-Nagumanodel.
For small values oh, the explicit approach is expected to| Ratio of runtimes for the implicit and explicit method as a fuction of the factor
exhibit a better performance, as it is relatively easy to ngd inequation 21, for varying resolutiorh and a desired accuracy of 10 5,
the solution, and the explicit approach is computationally lesg CUVes averaged over 5 runs of 20 ms each. Red bar as iigure 3.
expensive. Ash increases, it becomes harder to determine
the correct solution, so that the more expensive, but morénodel comprises two variables, one for the membrane potential
reliable, implicit method becomes advantageous. Altevedyj v and arecovery variabl®. The dynamics are given by:

a systematic variation of the desired accuracy yields theesa

>

=
T

insight (data not shown). VDV v wco2s
Figure 5 demonstrates a comparison of the implicit and 0 3
explicit methods applied to the FitzHugh-Nagumo model. The W'D (VCO0.7 0.8N). (21)

Frontiers in Neuroinformatics | www.frontiersin.org 13 October 2018 | Volume 12 | Article 50

https://github.com/nest/nestml/tree/master/models
https://github.com/nest/nestml/tree/master/models

Blundell et al. Automatical Solver Selection

Accordingly, our toolbox recommends explicit for the former
and implicit for the latter. Note also that the explicit solvedits
with an over ow error forh D 1.5 with values of above 1.4.
Again, the toolbox catches this risk of numerical instapiind
recommends the implicit scheme.

These results show that the toolbox can correctly assesgwhe
it is safe and e cient to use an explicit scheme, and where an
implicit scheme would be appropriate, either for reasons of speed
or for numerical stability.

5. RELATED WORK

In this section we compare our proposed framework for choosing
evolution schemes for systems of ODEs in neural models \Wwéh t
corresponding approaches implemented in the simulators Brian
(Goodman and Brette, 2009; Stimberg et al., 2@hd NEURON
FIGURE 6 | Application of the stiffness tester to the Morris-Lecar modl. Ratio (Hlne.s and Carnevale, 2000; Camevale_ anq Hmes,)ZO‘%sg

of runtimes for the implicit and explicit method as a functio of the factor" in two simulators were chosen as they arein Wlde-spread use in the
equation 22, for varying resolutiorh and a desired accuracy of 10 5. Curves community. We will further consider the application of software
averaged over 5 runs of 20 ms each. Red bar as ifrigure 3. for symbolic computation (foexactmathematical calculations)

or scienti c computing (for numerical calculations) to oueing

in language modeling for neural simulators.

The gure shows the quotient of the time that the corresporglin 5.1. Brian
GSL-solvers for the explicit and implicit methods spent on_ ™

integrating the ODE system for 20 milliseconds with a dekire ™. R
accuracy of 10°. For all resolutions shown ifFigure 5, the simulator also makes a distinction between systems of Obds t

explicit scheme is faster, and is also the approach recommend&g" be solved analytically and systems that can only be solved

. 8 iently in a numeric manner. In ition imple integr
by our toolbox. As the resolution becomes coarser (|ncrldzaseece tly In a numeric manne addition to simple integrat

values ofh), the curves shift down toward the point at which and-re neudrons, Bnag alspb sdu;;por;s Ln ul;[!-cc())n;péartn;en:ﬁ !
the implicit method would be faster. Fér> 0.185, our toolbox neurons and heurons described by stochastc S AAS ese

recommends an implicit approach, and indeed in such cases ﬂ,%pes of models cannot be currently analyzed by our ODE

explicit scheme, as implemented by the GSL, exits with an .erro\"ljlvr"aflysIS tozlbci)r?, Iwe W:ql nortt?kﬁttk}edmtln:%;?c;)u:t h(:r(;. :gd‘tje |
This is due to the variabl® becoming so large in one of the € Tocus on singie-compartmenta’ dete stic neuron mede

internal steps that it can no longer be represented bipable . as we can only draw a meaningful comparison for this group of

For a higher required accuracy of 139, all curves shift to below neuron models.

the red line (data not shown), and the toolbox recommends ar& orllnisEt)irr:an’ fngJ[r)cl)Ens iﬁndart?rlrfs ((j:an 23 (:lfsgr:bzdnts)y '?hzysfrren
implicit solver for all tested resolutions. S 90 e-depende ctions. y

We apply the same approach to the Morris-Lecar modef;ither clas_si ed aﬁnea_r, meaning they can be solved an'_alytically,
(Morris and Lecar, 1991 or asnon-linear meaning they cannot be solved analytically and
' must be solved numerically using tlierward Euler methodif
not stated otherwise by the author of the model). In theory,
VoD IC2W(0.7 V)CO0.5(0.5 V) linear constant coe cient ODEs can be solved analytically b
CLIMV)1 V) Brian. However, if the_ dynam_lcs of a neuron are descnbengsm
) a non-constant function of time rather than an ODE de ning

Similar to our framework, the implementation of the Brian

woD (V)(w(V) W) (22) this function they are always solved numerically. This cdugd
1 VvV C0.01 improved by using our proposed framework, which allows an
mv)D 5 1Ctanh —-—— analytical solver to be generated even for a system consisting
1 V C0.12 of time-dependent functions that satisfy a linear homogerseo
w(V)D - 1Ctanh ———— ODE and feed into a linear constant coe cient ODE. Our
2 03 framework thus allows an analytical evolution for a largass of
(V) D cosh vV 022 , neuron dynamics. In particular, our framework seems to be enor
2 03 robust with respect to the use of several di erent postsynaptic

shapes, as they are treated seperately in contrast to Brian's

approach, where the system is analyzed by SymPy as a whole.
where | represents injected currentigure 6 shows that for All systems of ODEs in Brian that are not evolved by an
a resolution ofh D 0.2, the explicit solver is faster, but for analytical evolution scheme are by default evolved using the
larger values oh the implicit solver becomes more e cient. simple Euler method. To circumvent this, it is possible to cb®o

Frontiers in Neuroinformatics | www.frontiersin.org 14 October 2018 | Volume 12 | Article 50

Blundell et al. Automatical Solver Selection

a numerical evolution scheme from a list of other methodsisTh general, exact solution for each integration step, that takes-
approach works well for users who are aware of the numericéime generated varying input into account. The next two points
consequences of their choice of solver but can be problematare related to the size of neural systems commonly investigat
for scientists who lack the ability to weigh up the advantageSpiking neuronal network models often contain of the order
and disadvantages of di erent numerical evolution schenues f of 1P—~1(P neurons, and sometimes substantially mokeikel
their particular system of ODEs. Moreover, as demonstrated iet al., 201 Calling external software for symbolic computation
Figure 3, the choice of an appropriate evolution scheme mighof ordinary di erential equations during run time for each
depend on the exact parameters for the ODEs and thus not beeuron is therefore often too costly. Moreover, for large mede

obvious even for an advanced user. the simulation software is likely to be deployed on a large elust
or supercomputer. The aforementioned applications are typically
5.2. NMODL not installed on such architectures, whereas Python isradstal

NMODL is the model speci cation language of the NEURON installation, providing the package SymPy, which is su cieat f
simulator. NEURON was created for describing large multi-symbolic computation in this context.
compartmental neuron models and thus also supports a wider
range of models than our proposed framework currently does?.3.2. Numerical Integrators
We will again only contrast those types of models for which arhere are a number of approaches to automatically select
comparison is meaningful. numeric integrators depending on whether the problem is
For linear systems of ODEs, NMODL chooses an evolutioti or non-sti (Petzold, 1983; Shampine, 1983,)9These
method that propagates the system by evolving each variabd®proaches are typically designed to switch integration selsem
under the assumption that all other variables are constaningu ~ during runtime when the problem changes its properties. All
one time step. In many cases this approach approximates the tr@é them rely in one way or another on the behavior of the
solution well, but it is still less accurate than an actuailgtical —Jacobian matrix evaluated at the point of integration. Tyltyca
solution. For all other systems of ODEs, i.e., all non-lin@&Es, the methods try to approximate the dominant eigenvalue of
an implicit method is chosen, regardless of the exact properti¢he Jacobian with a low cost compared to that of the stepping
of the equations to guarantee an evolution of sti ODEs witlho algorithm. However, for a spiking neural network simulatjdhe
causing numeric instabilities. This is a robust solutiort may determination of the sti ness of the system, and thus the eplv
lead to excessively large simulation run times in casesenfier Should occur before the simulation starts, as to minimizetine
choice of an explicit evolution scheme for non-sti ODE syste COStS.

would be su cient. Thus the question remains whether it would be possible to
carry out these kind of tests during generation of the neuron

5.3. Software for Symbolic Computation model. Applying the test to a large number of randomly selected

and Scienti c Computing values of the state variables, or carrying out a number oftets

There are a number of high quality and widely used applicationé‘smg representative spike trains would allow to work around

available for symbolic computation, most notablyolfram the fact that the solution up to a given.p.oint is no.t yet known.
Mathematica (Benker, 2015 Modelica (Tiller, 200), and However, as these tests rely on determining the sti nessugho

Maple (Westermann, 2070 All three provide frameworks for the properties of the Jacobian, they would §ti|l not be complgtely
solving ordinary di erential equations both symbolicallné ~ Precise. As we have the advantage of e ectively no computdtiona

numerically. Here, we will brie y describe their capabiisiand ~COnStraints during generation of the neuron model, theréhiss
limitations for both symbolic and numeric integration ofsigms ~N© advantage by using such a low-cost strategy. In our approach

of ODEs. we compute the solution using both explicit and implicit scheme
and compare their behaviors a posteriori, thus obtaining an
5.3.1. Symbolic Integrators accurate assessment of the appropriate solver for a given set of

At rst appearance the integration schemes provided by théarameters.

programming languages (or in the case of Modelica, modeling In addition, as for symbolic integration, the packages that
language) seem appropriate for the task addressed in our studyfovide such sti ness testing capability for numeric integoat

As discussed in section 1, the ordinary di erential equation do not provide a framework for handling a run-time determined
used to de ne neuron models and to describe their dynamicavariable input due to incoming spikes. Thus we conclude that th
behavior are typically linear (though not homogeneous antl nosPeci ¢ problem addressed by our toolbox lies outside the scope
linear with a constant coe cient) and can in several cases b@f general purpose symbolic and numeric integration packages.
solved analytically by any of the programs above. However, fo

the speci c requirements related to neural simulationsréhare 6. DISCUSSION

several reasons why they are not entirely well suited.

Firstly, neurons receive input that generally changes inyeveilWe have presented a novel simulator-independent framework
integration step due to the arrival of incoming spikes, thusfor the analysis of systems of ODEs in the context of neuronal
changing the di erential equations to be solved. Althougitlea modeling and provided a reference implementation for the
of these di erential equations can be integrated easily gisin selection and generation of appropriate integration schenses a
e.g., Wolfram Mathematica, none of these frameworks progide open source software.

Frontiers in Neuroinformatics | www.frontiersin.org 15 October 2018 | Volume 12 | Article 50

Blundell et al. Automatical Solver Selection

In this section we will summarize the restrictions of ourtest for varying parameters during the generation phase of the
framework, discuss alternative ideas for the implementaéind model. This way the analysis toolbox could create a lookup table
describe possible future additions. mapping parameter values to the most appropriate integration

The framework we propose is currently limited to the scheme.
analysis of equations for non-stochastic single-compartislen Another possible extension of the current framework could
integrate-and- re neuron models. The reason for this is ttha be to implement implicit and explicit integration schemes for
the analysis toolbox was developed in the context of thevolving the systems of ODEs during the sti ness analysid, an
NESTML project, in which we put our main focus on the thereby gain independence of PyGSL, which can be challenging
class of neurons presently available in the NEST simulatoto install. These custom implementations could be tailored to
The extension of the framework to other classes of neuronsur specic requirements and give us more control over the
is one of our current research objectives. In particularsthi integration scheme and the exact methodology for adaptive ste
work includes support for systems of stochastic ODEs. Theize control.
symbolic analysis of neuron ODEs enables generation of The current implementation of the framework only supports
the sophisticated C++ neuron implementation that switchesxed thresholds for the detection of spikes and evaluates the
between implicit and explicit solvers at run-time of the nemso spiking criterion on a xed temporal grid. A part of our current
depending on the runtime performance of the particular solverwork is to evaluate more realistic scenarios, such as adaptive
This functionality will be integrated in upcoming releasefs o thresholds or precise detection of spike times in between tite g
NESTML. points. For a general discussion on the topic, seguschkin

Another restriction of the framework is that it can only etal. (2010)
analyze systems of ODEs with postsynaptic shapes that obeyOur presented framework is re-usable independently of
a linear homogeneous ODE. This is due to the fact thaNESTML and NEST. The source code is available under the terms
evolving a system including postsynaptic shapes as functioms$ the GNU General Public License version 2 or later on GitHub
of time rather than functions de ned as ODEs would resultat https://github.com/nest/ode-toolbox/ and we hope thaeth
in a very long sum of multiple linear combinations of shifts code can serve both as a useful tool for neuroscientists today,
of this function for each incoming spike. Evaluating suchand as a basis for a future community e ort in developing a
a sum would make the evolution of the system containingsimulator-independent system for the analysis of neuronadied
it computationally very costly. Finding a more e cient equations.
solution for this problem is of high priority in our current
work. AUTHOR CONTRIBUTIONS

As noted in section 2, the calculation efh may become
di cult to compute analytically rather than numerically ifte IB developed the mathematical derivations of the solver
matrix A becomes very large. In this case, i.e., wiedhis selection system and devised the algorithms. The reference
computed as a numerical approximation, the integration schemanplementation was conceived and created by IB and DP. DP
is, strictly speaking, not analytical. Here it might be sblesto integrated the framework into the NESTML system. JE and AM
look into other numerical methods, e.g., integrating theteyn supervised and guided the work. The article was written Jgint
of ODEs using a quadrature formula of order 5 and therebyby all authors.
obtaining an accuracy of 18 despite the use of a numerical
scheme. FUNDING

When comparing implicit and explicit integration schemes,
we compare theaverage step sizand theminimal step sizef This work was supported by the JARA-HPC Seed FNESTML
the respective schemes. An alternative possibility wouldbisé¢ - A modeling language for spiking neuron and synapse models for
xed step sizes instead and compare the results of the explicNESTand thelnitiative and Networking Funadf the Helmholtz
and implicit schemes using the results of the implicit schesie aAssociation and the Hemholtz Portfolio Then8mulation and
a reference. This could be implemented alongside our currem¥lodeling for the Human BrairiThe current work on NESTML
sti ness tester to provide a higher degree of certainty. is partly funded by the European Union's Horizon 2020 research

As pointed out in section 4, the stiness of a system ofand innovation programme under grant agreement No. 720270.
ODEs depends greatly on its parametrization. Therefore ithig
be a useful extension to run the sti ness test not only duringACKNOWLEDGMENTS
the generation of the model code, but also when instantgtin
the model in a simulator, and when model parameters ardVe gratefully acknowledge the fruitful discussions with the
changed. This would, however, require a call to the analysissers of NESTML, who provided use cases and guided the
toolbox at run time, which might not be easily possible on allwork through their critical questions and thoughts. We would
machines a particular simulator may run on. For example, inespecially like to thank Arnold Reusken, Markus Diesmann, Hans
a supercomputer environment, job allocations are usuallyd,xe Ekkehard Plesser, Guido Trensch, Bernhard Rumpe, and Tanguy
and not all libraries required by the toolbox may be avagatin Fardet for their ongoing support and interest in the NESTML
alternative solution to the problem could be to run the sti rees project.

Frontiers in Neuroinformatics | www.frontiersin.org 16 October 2018 | Volume 12 | Article 50

Blundell et al.

Automatical Solver Selection

REFERENCES

Benker, H. (2016)MATHEMATICA kompakt: Mathematische Problemldsungen fr

Ingenieure, Mathematiker und Naturwissenschafléesbaden: Springer.

Brette, R., and Gerstner, W. (2005). Adaptive exponentiagiiatie-and- re model
as an e ective description of neuronal activit).Neurophysio®4, 3637-3642.
doi: 10.1152/jn.00686.2005

Carnevale, N. T., and Hines, M. L. (20068)h)e NEURON BookNew York, NY:
Cambridge University Press.

Connors, B. W., and Gutnick, M. J. (1990). Intrinsic
of diverse neocortical neurons.Trends Neurosci. 13,
doi: 10.1016/0166-2236(90)90185-D

Dahmen, W., and Reusken, A. (2008)umerik fr NaturwissenschaftleBerlin:
Springer.

Erdweg, S., van der Storm, T., Vélter, M., Boersma, M., BosmanpBk, @/. R.,
et al. (2013). “The state of the art in language workbenches3aftware

ring patts
99-104.

Language Engineeriregls M. Erwig, R. F. Paige, and E. Van Wyk (Cham:

Springer International Publishing), 197-217.
FitzZHugh, R. (1961). Impulses and physiological states in theadethodels

of nerve membraneBiophys. J1, 445-466. doi: 10.1016/S0006-3495(61)

86902-6

Gewaltig, M.-O., and Diesmann, M. (2007). NEST Neural Simulaflaol.
Scholarpedi@:1430. doi: 10.4249/scholarpedia.1430

Goodman, D., and Brette, R. (2009). The brian simulafnont. Neurosci3,
192-197. doi: 10.3389/neuro.01.026.2009

Gough, B. (2009)GNU Scienti ¢ Library Reference Manu&odalming, UK:
Network Theory Ltd.

Gronniger, H., Krahn, H., Rumpe, B., Schindler, M., and Vdlkel, S. §200

“Monticore: a framework for the development of textual domain specic

Mir Seyed Nazari, P. (2017MontiCore: E cient Development of Composed
Modeling Language Essentialdachener Informatik-Berichte, Software
Engineering, Band 29, Herzogenrath: Shaker Verlag.

Morris, C., and Lecar, H. (1981). Voltage oscillations in the badmgiant muscle
ber. Biophys. B85, 193-213. doi: 10.1016/S0006-3495(81)84782-0

Morrison, A., Straube, S., Plesser, H. P., and Diesmann, M. (2007).
Exact subthreshold integration with continuous spike times in
discrete-time neural network simulationsNeural Comput. 19, 47-79.
doi: 10.1162/neco.2007.19.1.47

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse
transmission line simulating nerve axorProc. IRE.50, 2061-2070.
doi: 10.1109/JRPROC.1962.288235

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Repiiaduc
polychronization: a guide to maximizing the reproducibility of spiginetwork
models Front. Neuroinformatl2:46. doi: 10.3389/fninf.2018.00046

Petzold, L. (1983). Automatic selection of methods for solvimgasid nonsti
systems of ordinary di erential equationSIAM J. Sci. Statist. Comput,
136-148. doi: 10.1137/0904010

Plotnikov, D., Blundell, 1., Ippen, T., Eppler, J. M., Morrison, A., anghipe, B.
(2016). “NESTML: a modeling language for spiking neuronsiodellierung
2016 Conferenc¥ol 254 ofLNI, (Bonn: Bonner Kéllen Verlag), 93-108.

Potjans, T., and Diesmann, M. (2012). The cell-type speci c calrtiticrocircuit:
relating structure and activity in a full-scale spiking network modeéreb.
Cortex24, 785-806. doi: 10.1093/cercor/bhs358

Rotter, S., and Diesmann, M. (1999). Exact digital simulatibtiroe-invariant
linear systems with applications to neuronal modeliBpl. Cyber81, 381-402.
doi: 10.1007/s004220050570

Rumpe, B. (2017Agile Modeling with UML: Code Generation, Testing, Refagto
Berlin; Heidelberg: Springer International.

languages,” inCompanion of the 30th International Conference on Softwar&chindler, M. (2012)Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der

EngineerindLeipzig: ACM), 925-926.
Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmaivh

UML/P. Aachener Informatik-Berichte, Software Engineering, Ban&haker
Verlag.

(2010). A general and e cient method for incorporating precise spike Shampine, L. (1983). Type-insensitive ode codes based on dztiapanethods.

times in globally time-driven simulationsFront. Neuroinform. 4:113.
doi: 10.3389/fninf.2010.00113

SIAM J. Sci. Statist. Compdt.635-644. doi: 10.1137/0904044
Shampine, L. (1991). Diagnosing sti ness for RungeKutta mash8IAM J. Sci.

Hines, M., and Carnevale, N. (2000). Expanding NEURON's repertoire Statist. Computl2, 260-272. doi: 10.1137/0912015

of mechanisms with NMODL. Neural 995-1007.
doi: 10.1162/089976600300015475

Izhikevich, E. M. (2003). Simple model of spiking neurof2EE Trans. Neural
Netw.14, 1569-1572. doi: 10.1109/TNN.2003.820440

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. Aludsigeth,
A. (2013).Principles of Neural Science, 5th Bdaw York, NY: McGraw-Hill
Education.

Krahn, H. (2010)MontiCore: Agile Entwicklung von doméanenspezi schen [Sgmac
im Software-Engineering Aachener Informatik-Berichtiw&®@ Engineering
Herzogenrath: Shaker Verlag.

Krahn, H., Rumpe, B., and Vdlkel, S. (2007). “E cient Editor Genarat
for Compositional DSLs in Eclipse,” iBomain-Speci ¢ Modeling Workshop
(DSM'07) (Jyvaskyla: Jyvaskyla University).

Kunkel, S., Diesmann, M., and Morrison, A. (2010). Limits to theelepment of
feed-forward structures in large recurrent neuronal netwofk®nt. Comput.
Neurosci4:160. doi: 10.3389/fncom.2010.00160

Kunkel, S., Morrison, A., Weidel, P., Eppler, J. M., Sinha, A., SithéN., et al.
(2017). NEST 2.12.0. Available online at: zenodo.org/reco@d2%/export/hx

Comput. 12,

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, ®RL42 Equation-
oriented speci cation of neural models for simulatiof&ont. Neuroinformat.
8:6. doi: 10.3389/fninf.2014.00006

Strehmel, K., and Weiner, R. (1998umerik gewdhnlicher Di erentialgleichungen
Wiesbaden: B.G. Teubner.

Tiller, M. (2001).Introduction to Physical Modeling With Modelidaordrecht:
Kluwer Academic Publishers.

van Albada, S. J., Helias, M., and Diesmann, M. (2015). Scalalbility
asynchronous networks is limited by one-to-one mapping between
e ective connectivity and correlationsPLoS Comput. Biol11:21004490.
doi: 10.1371/journal.pcbi.1004490

Volkel, S. (2011)Kompositionale Entwicklung doméanenspezi scher Sprachen
Aachener Informatik-Berichte, Software Engineering, Band @8k&hVerlag.

Walter, W. (2000)Gewdhnliche Di erentialgleichungeserlin: Springer.

Westermann, T. (2010Mathematische Probleme [6sen mit MaBerlin: Springer.

Conict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or nancial relatimps that could

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, Gbe construed as a potential con ict of interest.

Igarashi, J., et al. (2014).
petascale computersiront. Neuroinform. 8:78. doi: 10.3389/fninf.2014.
00078

Lambert, J. D. (1992Numerical Methods for Ordinary Di erential SysterNew
York, NY: Wiley.

Meurer, A., Smith, C. P., Paprocki, MCertik, O., Kirpichev, S. B., Rocklin, M.,
etal. (2017). SymPy: symbolic computing in PythBaerJ Comput. S8ie103.
doi: 10.7717/peerj-cs.103

Spiking network simulation code for

Copyright © 2018 Blundell, Plotnikov, Eppler and Morrison. iEhas open-access
article distributed under the terms of the Creative CommAtribution License (CC
BY). The use, distribution or reproduction in other forumseisnitted, provided
the original author(s) and the copyright owner(s) are @ddind that the original
publication in this journal is cited, in accordance withegoted academic practice.
No use, distribution or reproduction is permitted whichsdus comply with these
terms.

Frontiers in Neuroinformatics | www.frontiersin.org

17

October 2018 | Volume 12 | Article 50

