
ORIGINAL RESEARCH
published: 08 October 2018

doi: 10.3389/fninf.2018.00050

Frontiers in Neuroinformatics | www.frontiersin.org 1 October 2018 | Volume 12 | Article 50

Edited by:
Arjen van Ooyen,

VU University Amsterdam,
Netherlands

Reviewed by:
Michael Hines,

Yale University, United States
Marcel Stimberg,

INSERM U968 Institut de la Vision,
France

*Correspondence:
Inga Blundell

i.blundell@fz-juelich.de

Received: 19 October 2017
Accepted: 23 July 2018

Published: 08 October 2018

Citation:
Blundell I, Plotnikov D, Eppler JM and

Morrison A (2018) Automatically
Selecting a Suitable Integration

Scheme for Systems of Differential
Equations in Neuron Models.

Front. Neuroinform. 12:50.
doi: 10.3389/fninf.2018.00050

Automatically Selecting a Suitable
Integration Scheme for Systems of
Differential Equations in Neuron
Models
Inga Blundell 1*, Dimitri Plotnikov 2,3, Jochen M. Eppler 2 and Abigail Morrison 1,2,4

1 Institute of Neuroscience and Medicine (INM-6), Institute forAdvanced Simulation (IAS-6), Jülich Aachen Research Alliance
BRAIN Institute I, Forschungszentrum Jülich, Jülich, Germany, 2 Simulation Lab Neuroscience, Institute for Advanced
Simulation, Jülich Aachen Research Alliance, Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich,
Germany,3 Chair of Software Engineering, Jülich Aachen Research Alliance, RWTH Aachen University, Aachen, Germany,
4 Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany

On the level of the spiking activity, the integrate-and-�reneuron is one of the most
commonly used descriptions of neural activity. A multitudeof variants has been proposed
to cope with the huge diversity of behaviors observed in biological nerve cells. The
main appeal of this class of model is that it can be de�ned in terms of a hybrid
model, where a set of mathematical equations describes the sub-threshold dynamics
of the membrane potential and the generation of action potentials is often only added
algorithmically without the shape of spikes being part of the equations. In contrast to
more detailed biophysical models, this simple descriptionof neuron models allows the
routine simulation of large biological neuronal networks on standard hardware widely
available in most laboratories these days. The time evolution of the relevant state variables
is usually de�ned by a small set of ordinary differential equations (ODEs). A small number
of evolution schemes for the corresponding systems of ODEs are commonly used for
many neuron models, and form the basis of the neuron model implementations built
into commonly used simulators like Brian, NEST and NEURON. However, an often
neglected problem is that the implemented evolution schemes are only rarely selected
through a structured process based on numerical criteria. This practice cannot guarantee
accurate and stable solutions for the equations and the actual quality of the solution
depends largely on the parametrization of the model. In thisarticle, we give an overview
of typical equations and state descriptions for the dynamics of the relevant variables in
integrate-and-�re models. We then describe a formal mathematical process to automate
the design or selection of a suitable evolution scheme for this large class of models.
Finally, we present the reference implementation of our symbolic analysis toolbox for
ODEs that can guide modelers during the implementation of custom neuron models.

Keywords: integrate-and-�re neuron, model dynamics, numeric s, integration schemes, ODE, symbolic analysis

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00050
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00050&domain=pdf&date_stamp=2018-10-08
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:i.blundell@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00050
https://www.frontiersin.org/articles/10.3389/fninf.2018.00050/full
http://loop.frontiersin.org/people/489478/overview
http://loop.frontiersin.org/people/348808/overview
http://loop.frontiersin.org/people/2466/overview
http://loop.frontiersin.org/people/13504/overview

Blundell et al. Automatical Solver Selection

1. INTRODUCTION

In common with all body cells, nerve cells (neurons) are
delimited by a bi-lipid layer (thecell membrane) which is largely
impermeable for ions and bigger molecules. Active ion pumps
and passive channels embedded into the membrane allow the
selective passage of certain ions. Through these transporter
molecules, neurons maintain a gradient of di�erent ion types
across the membrane, which leads to themembrane potential
(Kandel et al., 2013).

In the absence of input, the membrane potential �uctuates
around theresting potential EL (typically at around� 70 mV).
Excitatory input depolarizes the membrane, driving the
membrane potential closer to zero, while inhibitory input
hyperpolarizes the neuron, driving the membrane potential
away from zero. If the membrane potential crosses thespiking
threshold� (typically at around� 55 mV), the neuron �res an
action potential (spike), which is transmitted to all downstream
(postsynaptic) neurons, where it in turn elicits excursions of their
membrane potentials.

The basic integrate-and-�re model describes the dynamics of
the membrane potential in the following way: the time evolution
of the membrane potentialV is governed by a di�erential
equation of the type

d
dt

V(t) D R(V(t), �) (1)

whereR can be a function of other variables alongsideV, whose
time evolution is described by another ordinary di�erential
equation which can again contain the membrane potential:

d
dt

X D
d
dt

0

B
B
B
@

V
x1
...

xn

1

C
C
C
A

(t) D

0

B
B
B
@

R0(X)
R1(X)

...
Rn(X)

1

C
C
C
A

Once the membrane potential reaches its threshold� , a spike is
�red and the membrane potential is set back toEL for a certain
amount of time called therefractory period. After this time the
evolution of equation 1 starts again. An important simpli�cation
in most models compared to biology is that the exact course of
the membrane potential during the spike is either completely
neglected or only considered partially. Threshold detection is
typically added algorithmically on top of the sub-threshold
dynamics.

The two most common variants of this type of model are
the current-basedand theconductance-basedintegrate-and-�re
model. For the current-based model we have the following
general form of the equation:

d
dt

V(t) D
1
�

(EL � V(t))

C
1
C

I(t) C F(V(t)). (2)

Here C is the membrane capacitance, � the membrane time
constantandI the input currentto the neuron. If we assume that

spikes are constrained to a �xed temporal grid,I (t) represents
the sum of the currents elicited by all incoming spikes at all
grid points for times smaller thant, plus a piece-wise constant
function Iext that models additional external input.F, in contrast
to the �rst part of the right-hand-side of equation 2, is some
non-linear function ofV that may also be zero.

For the conductance-based integrate-and-�re model we have:

d
dt

V(t) D
1
�

(EL � V(t))

C
1
C

G(t)(V(t) � E) C F(V(t)). (3)

G has the same form asI but models a conductance rather
than a current.E is the reversal potentialat which there is no
net �ow of ions from one side of the membrane to the other
(for details seeKandel et al., 2013). Equation 3 will usually
contain several summands1CGi(t)(V(t) � Ei) for di�ering Gi and
correspondingEi , e.g., for inhibitory and excitatory synaptic
conductance. For simplicity we assume only one summand. The
di�erential equations for both the current- and conductance-
based models are linear whenF� 0. For the current-based
model this means that equation 2 is a linearconstant coe�cient
di�erential equation.

An example of a neuron model described by a system of
di�erential equations, whereF6� 0 is theadaptive exponential
integrate-and-�re model:

d
dt

V(t) D
1
�

(EL � V(t))

C
1
C

G(t)(V(t) � E)

C g � � � exp
�

V(t) � VT

�

�
� w(t)

d
dt

w(t) D
c

� w
(V(t) � EL)

For the biophysical meaning of the variablesVT, � , g, c, � ! andw
see the original publication byBrette and Gerstner (2005).

Current-based neuron models withF6� 0 are unusual
because models from this category are chosen primarily for
their simplicity, while conductance-based neuron models are
believed to describe neuronal activity in the brain more
accurately, albeit at the cost of more complex di�erential
equations.

It should be noted here that although some neuron models
are not explicitly referred to or described ascurrent-based
or conductance-basedmodels in the literature their time
evolution can still be expressed by di�erential equations of the
mathematical forms shown in equations 2 and 3.

The choice of an appropriate solver for a given equation
is a non-trivial task, as it requires deep knowledge of
ordinary di�erential equations and numerics to assess the
type of di�erential equation and construct an appropriate
numeric solver. This choice depends not only on the form
of the di�erential equation but also on the magnitude of the

Frontiers in Neuroinformatics | www.frontiersin.org 2 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

occurring parameters. For example,Rotter and Diesmann (1999)
demonstrated that for neuron models that can be expressed
as time-invariant linear systems, the analytical solution to the
evolution of the dynamics from one time step to the next can
be achieved by a matrix multiplication. If applicable, this kind of
solution is to be preferred, as it is both exact and computationally
e�cient.

However, this approach leaves two key steps up to the
modeler: �rstly, analyzing the dynamics to discern what category
of dynamical system it is; secondly, having performed this
analysis, to construct the appropriate solver, e.g., the termsof
the propagator matrix for such neurons that can be solved
in this way (Rotter and Diesmann, 1999) or the con�guration
of an implicit or explicit numeric solver for all other neuron
models. As these steps can be quite challenging to many
modelers, it would be of great use to have a framework
capable of automatically performing this analysis and solver
construction.

In section 2 we therefore �rst derive compact canonical
representations of the equations and their parts that allow
an e�cient implementation on a computer system, and then
show that the distinction between current- and conductance-
based, linear and non-linear, sti� and non-sti� systems
of di�erential equations is important for automatizing
the construction or selection of an optimal evolution
scheme.

Our reference implementation follows the mathematical
observations and is described in section 3. Section 4 demonstrates
our application of the framework to some commonly used
models in computational neuroscience and explains the
integration of the framework into the NEST Modeling Language
(NESTML;Plotnikov et al., 2016). We close with a presentation
of related work in section 5 and a discussion and outlook in
section 6, where we summarize possible extensions and further
applications of our system.

2. MATERIALS AND METHODS

As already pointed out in the previous section, systems
of di�erential equations describing the dynamics in neuron
models can be divided intocurrent-basedand conductance-
basedsystems. Additional distinguishing properties are whether
the systems arelinear or non-linear, sti� or non-sti�. We will
now describe how these properties in�uence the choice of an
appropriate solver.

For the current-based integrate-and-�re neuron withF � 0,
we have a �rst order constant coe�cient linear di�erential
equation whereI typically satis�es a homogeneous linear
di�erential equation of some ordern 2 N. Any such ODE or
system of ODEs can be solved analytically and e�ciently as we
will show in section 2.1.

When evolving systems of ODEs for conductance-based linear
or non-linear ODEs, it is necessary to use a numeric integration
scheme. Depending on the system at hand, it is advisable
to choose either an implicit or an explicit stepping function
(section 2.2).

2.1. Solving Linear Constant Coef�cient
ODEs Analytically
For simplicity we will assumeEL in equation 2 to be zero or to
be included in one of the other terms of the right hand side. As
shown byRotter and Diesmann (1999), if V : R ! R satis�es the
�rst order constant coe�cient linear di�erential equation

d
dt

V(t) D �
1
�

V(t) C
1
C

I(t) (4)

with initial value V(0)D V0, for a function I : RC ! R and
constantsC (the capacitance of the membrane) and� (the
membrane time constant), and ifI satis�es

�
d
dt

� n

I D
n� 1X

i D 0

ai

�
d
dt

� i

I (5)

for somen 2 N and a sequence (ai)i2N � R, an analytical solver
can be constructed in the form of a propagator matrix.

Here, we show how to evaluate the dynamics to discern
whetherV and I do indeed satisfy the conditions stated above,
and how to derive the evolution scheme forV accordingly. First,
we verify that the �rst order di�erential equation,ddt V D r(V),
for a right hand sider : R � RC ! R, is indeed linear with a

constant coe�cient, i.e., that
�

d
dV

� 2
r(V) D 0 and

�
d

dV

�
r(V)(t)

is constant. Second we methodically determine whetherI satis�es
a linear di�erential equation of some ordern, i.e., we check
whether

d
dt

I D a0I (6)

for somea0 2 R by solving fora0. If no sucha0 exists we check
whether

�
d
dt

� 2

I D a0I C a1
d
dt

I (7)

for somea0,a1 2 R using the following procedure: we assume
that a0,a1 exist such that (7) is satis�ed. Then we have for some
t1, t2 2 R (for examplet1 D 1,t2 D 2):

X(t1, t2) :D

I(t1) d

dt I (t1)
I (t2) d

dt I (t2)

!

,

X(t1, t2) �
�

a0
a1

�
D

0

@

�
d
dt

� 2
I (t1)

�
d
dt

� 2
I (t2)

1

A

If det(X(t1, t2)) 6D0 we therefore know that

�
a0
a1

�
D X� 1(t1, t2) �

0

@

�
d
dt

� 2
I (t1)

�
d
dt

� 2
I (t2)

1

A .

Under the assumption that (7) is satis�ed and that
det(X(t1, t2)) 6D0 this gives usa0 and a1. If our second

Frontiers in Neuroinformatics | www.frontiersin.org 3 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

assumption is not satis�ed we can easily choset1 andt2 so that it
is. We can now determine whether the �rst assumption is correct
by inserting the calculated values fora0 and a1 and checking if
the following equation is true:

�
d
dt

� 2

I � a0I � a1
d
dt

I D 0 (8)

Now, if sucha0 and a1 exist, they are unique, asI and d
dt I are

linearly independent, since there was noa0 2 R such that (6) was
satis�ed. If a0 and a1 do not satisfy (8), we check methodically
if constants (ai)i2N � R exist, for which (5) is satis�ed for
n D 3, 4,: : : . Again we assume thata0, : : : ,an 2 R exist such that
(5) is satis�ed. Then we have fort D (t1, : : : , tn) 2 Rn (for example
t1 D 1,: : : , tn D n):

X(t) : D

0

B
B
B
B
@

I(t1) � � �
�

d
dt

� n� 1
I (t1)

...
...

...

I (tn) � � �
�

d
dt

� n� 1
I (tn)

1

C
C
C
C
A

, (9)

X(t) �

0

B
@

a0
...

an� 1

1

C
A D

0

B
B
B
@

�
d
dt

� n
I (t1)

...�
d
dt

� n
I (tn)

1

C
C
C
A

. (10)

If det(X(t)) 6D0 we get

0

B
@

a0
...

an� 1

1

C
A D X� 1(t) �

0

B
B
B
@

�
d
dt

� n
I (t1)

...�
d
dt

� n
I (tn)

1

C
C
C
A

. (11)

Again, if det(X(t)) D 0 we simply use anothert, for example
t D (t1 C 1,: : : , tn C 1). Then we obtain the values ofa0, : : : ,an
under the assumption that (5) is satis�ed for ordern. We check
whether the assumption in (5) is true by symbolically evaluating
whether

�
d
dt

� n

I �
n� 1X

i D 0

ai

�
d
dt

� i

I D 0.

If (5) is not satis�ed we go on to check

�
d
dt

� nC1

I D
nX

i D 0

ai

�
d
dt

� i

I

for somea0, : : : ,anC1, and so on. This way, for everyI that
satis�es (5) for ordern we can determine the factorsa0, : : : ,an.
Then we can rephrase (4) as thehomogeneousdi�erential
equation

d
dt

y(t) D Ay(t) (12)

with initial valuesy(0) D y0, y D (dn� 1

dtn� 1 I , dn� 2

dtn� 2 I , : : : , I ,V) and

A D

0

B
B
B
B
B
B
B
B
B
B
@

an� 1 an� 2 � � � � � � a0 0
1 0 � � � 0 0 0

0
...

...
...

...
...

...
...

... 0 0 0

0 0
... 1 0 0

0 0 � � � 0 1
C � 1

�

1

C
C
C
C
C
C
C
C
C
C
A

(13)

Thus forn D 1 we have

A D
�

a0 0
1
C � 1

�

�

and forn D 2 we have

A D

0

@
a1 a0 0
1 0 0
0 1

C � 1
�

1

A

As it can be both more convenient and computationally more
e�cient when A is alower triangularmatrix we give an alternative
choice ofA andy, whereA is a triangular matrix:

A D

0

@
a1 C x 0 0

1 � x 0
0 1

C � 1
�

1

A (14)

where

x D �
a1

2
C

s
a2

1

4
C a0 (15)

and

y D
�

d
dt

I C xI, I ,V
�

. (16)

Then we can determine the solutiony at t 2 RC using the matrix
exponential:

y(t) D eAty0 (17)

We can rephrase this to obtain an incremental formulation which
allows the evolution of the system by a single calculation ofeAh

for a �xed step sizeh 2 RC :

y(t C h) D eA(tCh) � y0 D eAh � yt .

It is important to note here that the exact integration of (2)
depends on the exact calculation ofeAh. Let I (t) be the sum of
currents elicited by all incoming spikes at all grid points fortimes
ti � t,

I (t) D
X

i2N,ti � t

X

k2Sti

Ik(t),

whereIk(t) D b�k�(t � ti), for t 2 RC .b�k is thesynaptic weight
of synapsek and � satis�es the di�erential equation 5 onRC

Frontiers in Neuroinformatics | www.frontiersin.org 4 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

for some constants (ai)i2N � R and somen 2 N. ThenI satis�es
the di�erential equation 5 onRC n ft1, : : : , tkg. Therefore we can
considerI as the solution of the di�erential equation 5 on the
intervals (0,t1), (t1, t2), : : : with suitable initial values. Fort 2
(ti� 1, ti) we can calculate

y(t) D eA(t� ti� 1)yti� 1
.

At time ti , for i 2 N, the di�erential equation 5 is not satis�ed
because� does not satisfy the equation att D 0, but we getI(ti) by
continuous continuation to the boundary of the interval (t, ti).
The derivatives ofI contained iny must be updated by initial
values of additional spikes at timeti , meaning forP(h) D eAh

y(ti) D P(h)y(ti� 1) C xt i ,

where

xt i D T

0

B
B
B
B
B
B
@

�
d
dt

� n
�(0)

...
d
dt �(0)

0
0

1

C
C
C
C
C
C
A

X

k2StiCh

b�k.

HereT 2 RnC1 � RnC1 is such that

y D T

0

B
B
B
B
@

�
d
dt

� n� 1
I

...
I
V

1

C
C
C
C
A

.

T is the identity matrix wheny is chosen as the vector of
derivatives as in equations 12 and 13 but it may well be non-
trivial, e.g., wheny is chosen as in equation 16.

Now we know an analytical and e�cient way to evolve any
linear constant coe�cient ODE containing the convolution of
the solution of a linear homogeneous ODE and a weighted spike
train.

2.1.1. Adding a Constant External Input Current
A common requirement in neuroscienti�c modeling is to add
a bias current to neurons. We will now show how to solve
the di�erential equation when we have an additional constant
external input currentIE:

d
dt

V(t) D �
V(t)

�
C

1
C

(I(t) C IE), V(0) D V0

As shown above, we can solve

d
dt

V1 D �
V1(t)

�
C

I(t)
C

, V1(0) D V10. (18)

Consider the following di�erential equation,

d
dt

V2 D �
V2(t)

�
C

IE

C
, V2(0) D V20, (19)

where� ,CandIE are constants. Byvariation of constants(Walter,
2000) we have a solution of (19):

V2(t) D
�

IE�
C

et=� C V20

�
e� t=�

D
IE�
C

C V20e� t=� ,

V2(t C h) D
IE�
C

C V20e� t=� e� h=�

D V2(t)e� h=� C
IE�
C

(1 � e� h=�).

Now we know solutionsV1 and V2 of (18) and (19). Therefore
V :D V1 C V2 solves

d
dt

V D
d
dt

(V1 C V2)

D �
V1(t) C V2(t)

�
C

1
C

(I(t) C IE)

D
V(t)

�
C

1
C

I(t) C
IE

C
.

and forP :D P(h) D eAh the following holds

V(t C h) D PnC1,1y1(t) C � � �

C PnC1,nC1V1(t) C V2(t)e� h=�

C
IE

C
(1 � e� h=�).

As the last columna in A has only one entryanC1 D � 1
� and

P D eAh D
P 1

kD 0
(Ah)k

k! ,

PnC1,nC1 D

1X

kD 0

(Ah)k

k!

!

nC1,nC1

D
1X

kD 0

(� h
�)k

k!
D e� h=� .

We get:

V(t C h) D PnC1,1y1(t) C � � �

CPnC1,nyn(t)

CV(t)e� h=� C
IE�
C

(1 � e� h=�).

This method is also applicable when we have a piece-wise
constant functionby0 instead of a constantIE:

d
dt

V2 D �
V2(t)

�
C

by0

C
, V2(0) D V20.

where for alli 2 N there is aci 2 R such thatby0(t) D ci for all
t 2 [ti , ti C h). We rephrase the problem as:

d
dt

V2i D �
V2i (t)

�
C

ci

C
, V2i (0) D V2i 0

Frontiers in Neuroinformatics | www.frontiersin.org 5 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

on t 2 [ti , ti C h) for all i 2 N and get

V2(ti) D
ci �
C

C V2(ti� 1)e� h=�

and

V(ti) D V(ti� 1)e� h=� C
ci �
C

(1 � e� h=�).

Now we have an exact description for how to handle the evolution
of linear constant coe�cient ODEs containing the convolution
of the solution of a linear homogeneous ODE and a weighted
spike train with an additional constant external input, that is still
analytical and e�cient.

2.1.2. Handling Sums
The approximation of postsynaptic currents observed in real
brain experiments is sometimes best modeled by di�erent
functions for di�erent synapses. We can handle the case when
I is the sum of functionsI1, I2 which satisfy a homogeneous
di�erential equation of arbitrary orderm andn in the following
way. As seen above ifV1 is a solution of

d
dt

V1(t) D �
V1(t)

�
C

1
C

I1(t)

andV2 is a solution of

d
dt

V2(t) D �
V2(t)

�
C

1
C

I2(t)

thenV D V1 C V2 is a solution of

d
dt

V(t) D �
V(t)

�
C

1
C

(I1(t) C I2(t)).

If, furthermore,I1 satis�es (5) forn 2 N

V1(t C h) D P1
nC1,1y11

(t) C � � �

C P1
nC1,ny1n

(t) C V1(t)e� h=� .

whereP1 is the corresponding propagator matrix andI2 satis�es
(5) for somem 2 N

V2(t C h) D P2
mC1,1y21

(t) C � � �

C P2
mC1,my2m

(t) C V2(t)e� h=�

whereP2 is the corresponding propagator matrix, then

V(t C h) D P1
nC1,1y1(t) C � � �

C P1
nC1,ny1(t)

C P2
mC1,1y21

(t) C � � �

C P2
mC1,my2m

(t) C V(t)e� h=� .

Therefore we just need to compute two propagator matrices to
handle the sum.

2.2. Choice of a Suitable Numeric
Integration Scheme
Explicit methodsfor solving di�erential equations are methods
that only use already known values of the function at earliergrid
points to determine the value at the next grid point. The e�ciency
and accuracy of explicit methods is typically su�cient for systems
of ODEs used to model neuronal behavior. Popular examples
of such methods are the explicit 4th order classical Runge-
Kutta or the explicit embedded Runge-Kutta-Fehlberg method
(Dahmen and Reusken, 2005) for the approximative solution
of ODEs. Most neuron model implementations currently use
explicit stepping algorithms and still achieve satisfactory results
in terms of accuracy and simulation time (Morrison et al.,
2007; Hanuschkin et al., 2010). However, some published models
involve possiblysti� di�erential equations (e.g.,Brette and
Gerstner, 2005), which potentially require a di�erent class of
solvers.

Lambert (1992)de�nes sti�ness as follows:

If a numerical method [. . .] applied to a system
with any initial conditions, is forced to use in a
certain interval of integration a steplength which is
excessively small in relation to the smoothness of the
exact solution in that interval, then the system is said
to be sti� in that interval.

A typical case of sti�ness is for example, when di�erent parts of
the solution of a system of equations decays on di�erent time
scales.

This usually comes from very di�erent scales inherent to the
ODE. These scales will re�ect in the parameters of the equations,
i.e., the range of constants occurring in the equations of the
systems. Therefore the sti�ness of a system always depends not
only on the mathematical form of the equations but heavily on
the magnitude of the constants occurring in them.

In principle it is possible to solve sti� equations with explicit
methods, but this comes at the expense of a very small step size
when using an adaptive step size algorithm and trying to achieve
a certain accuracy. This in turn leads to high computational
costs. For non-adaptive step size algorithms it leads to plain
wrong results without the user knowing, since the algorithm
still terminates, but with large error. Moreover, as the limited
machine precision on a digital computer constitutes a lower
bound for the step size, explicit methods usually become unstable
when applied to sti� problems.

Implicit methods, on the other hand, do not use previous
values to calculate the solution at the next grid point, but only
employ them implicitly in the form of the solution of a system of
equations. This makes implicit methods computationally much
more costly, but usually allows a larger step size to be chosen,
thus avoiding stability problems (Strehmel and Weiner, 1995).

In order to detect whether an explicit or implicit method is
better suited for a given ODE we devise the following testing
strategy.

First, we choose representative spike trains (drawn from a
Poisson distribution) and compute approximate solutions for the

Frontiers in Neuroinformatics | www.frontiersin.org 6 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

given system of ODEs using an explicit and implicit method of
the same order:

1. an explicit 4th order Runge-Kutta method
2. an implicit Bulirsch-Stoer method of Bader and Deu�hard

(Strehmel and Weiner, 1995)

both with adaptive step size. We can then compare them with
respect to the requiredaverage step sizeandminimal step size. In
cases where the implicit method performs better than the explicit
method, we have reason to believe that the ODE is sti� and that
the use of an implicit method is advisable.

Although ODEs may be sti� only for very speci�c initial
conditions, usually sti�ness should be observable for a widerange
of initial values, or in this case for a number of incoming spike
trains (Strehmel and Weiner, 1995). By choosing many spike
trains, evaluating the required step sizes for the implicit and
explicit method for each of them, and comparing that to the
machine precision" , it is thus possible to detect whether the
problem at hand is sti� or not. We propose the following rules
for choosing an implicit algorithm:

� if the minimal step size of runs using the explicit method is
close to machine precision (i.e., less than 10� ") and this is not
the case for the minimal step size of runs using the implicit
method (i.e., greater than or equal to 10� ") this is a hint that
the system of ODEs is possibly sti�. In this case an explicit
stepping function could become unstable or even abort, so we
suggest the use of an implicit algorithm.

� if the minimal step size of runs using the explicit method is
reasonably large (i.e., greater than or equal to 10� ") we have to
test two cases:

– if the minimal step size of runs of the implicit method is
very small (i.e., less than 10� "), we suggest using an explicit
method.

– if the minimal step size of runs of the implicit method is
large (i.e., greater than or equal to 10� "), we go on to check
if the average step size of runs using the implicit algorithm
is much larger than the average step size of runs using the
explicit algorithm. If this is the case, this again indicates
that the system of ODEs is sti� and therefore choosing an
implicit evolution method is advisable.

For a non-sti� system of ODEs, the computation time of
an explicit algorithm should be lower, as it does not require
the solution of a system of equations (Dahmen and Reusken,
2005). Therefore the choice of an explicit evolution method
is sensible in cases where none of the above conditions are
met. The algorithm that follows from these rules is depicted in
Figure 2.

3. REFERENCE IMPLEMENTATION

In order to automate the process of �nding the most appropriate
solver for a given system of ODEs on a computer, we have
designed and implemented an analysis toolbox in Python
(http://github.com/nest/ode-toolbox). It builds on the formal
mathematical foundations introduced in the previous sections

and uses SymPy (Meurer et al., 2017) to carry out symbolic
mathematical tests and transformations. To achieve a high degree
of portability and re-usability, the input to the algorithm isgiven
either in the form of JSON �les or Python dictionaries, which
specify equations, parameters and additional properties (for an
example, see section 3.4). These two means of input allow an easy
embedding of the toolkit into third-party tool chains and enable
us to leverage the Python and SymPy parsers, which delegates all
syntax checking and exception handling to well established and
tested tools.

The algorithm expects three components in the input: (i) an
ODE describing the time evolution of a state variable (e.g.,V),
(ii) a list of postsynaptic shapes (e.g.,I) used within this ODE
and speci�ed either as functions of time or as ODEs with initial
conditions and (iii) a set of parameters with default values for
the equations. Fundamentally, the analysis algorithm checks the
given system of ODEs for membership of the following two
major categories and generates or selects an appropriate solver
accordingly:

1. First order linear constant coe�cient ODEs for the dynamics
of a state variable (see equation 4) whose inhomogeneous part
is a postsynaptic shape (i.e., satis�es equation 5) can be solved
exactly using an analytical stepping scheme (section 2.1).

2. All other systems of ODEs have to be solved by a
numerical solver. ODEs in this category are, for example,
non-linear ODEs describing the time evolution of a state
variables, or linear ODEs with an inhomogeneous part
which is not a postsynaptic shape, i.e., not satisfying
equation 5.

The implementation of the analysis toolbox consists of di�erent
Python components which are introduced in the activity diagram
in Figure 1. The main script orchestrates the execution of the
analysis and uses the functions and classes of the di�erent
submodules:
shapes.py contains classes and functions for analyzing and

storing postsynaptic shapes either given as functions of time
or ODEs with initial values (blue parts inFigure 1). The
main algorithm in this module is explained in section 3.1.

analytic.py provides the functionality to generate
propagator matrices and compute a speci�cation for the
update step (red parts inFigure 1). A detailed description
can be found in section 3.2.

numeric.py contains the code for creating a description of the
update step for further processing by the sti�ness tester or a
numerical stepper function (upper yellow box inFigure 1).

stiffness.py implements the sti�ness tester (lower yellow
box in Figure 1). This module can either be used as
a module within the analysis toolbox or a third-party
tool, or run in a stand-alone fashion. It is explained in
section 3.3 together with the preparatory steps carried out
in numeric.py .

The main script starts by reading and validating the input from
a JSON �le or a Python dictionary. It expects the keysshapes ,
odes and parameters to be present in the input. For each
postsynaptic shape in theshapes section, it runs the algorithm
described in section 3.1, which checks if the given postsynaptic

Frontiers in Neuroinformatics | www.frontiersin.org 7 October 2018 | Volume 12 | Article 50

http://github.com/nest/ode-toolbox
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

FIGURE 1 | Activity diagram summarizing all steps of the ODE analysis
algorithm. Steps executed in the main script of the toolbox are shown in
green. The analysis of postsynaptic shapes (blue box) is detailed in
section 3.1. Parts shown in red represent the generation of an analytical solver,
which is described in section 3.2. The selection of a numerical stepper
function is carried out by the yellow actions and explained in section 3.3.

shape obeys a linear homogeneous ODE and transforms it into
a canonical representation suitable for further processing.If
one of the postsynaptic shapes fails the test for linearity and
homogeneity, the script terminates with an error (1 in Figure 1),
because this class of ODEs cannot be solved easily with traditional
methods as explained in section 6.

After processing the postsynaptic shapes, the script checks
whether all equations in theodes section of the input are linear
constant coe�cient ODEs: the ODE is linear if the right hand
side of the ODE di�erentiated twice by its symbol is zero, the
coe�cient of the symbol is constant if the right hand side of the
ODE di�erentiated by its symbol is constant. If these two tests
succeed, the system can be solved analytically (see section3.2).

If one of them fails, a numerical stepper has to be chosen
(section 3.3). The output of the main script is again a Python
dictionary or a JSON �le, which contains a speci�cation of the
most appropriate solver for the given input (2 in Figure 1). The
remainder of this section explains the di�erent algorithms inthe
submodules of the analysis toolbox.

3.1. Analysis of Postsynaptic Shapes
In the neuroscience literature, postsynaptic shapes are described
either as functions of time or as ODEs with initial values.
To provide users with maximum �exibility, both speci�cations
are supported by our toolbox. Regardless of the form of the
speci�cation, each of the given postsynaptic shapes has to satisfy
a linear, homogeneous ODE (equation 5) to be solved either
analytically or numerically.

In case the postsynaptic shape is given as an ODE with
initial values, the check for linearity and homogeneity is
straightforward. For each occurring derivative of the postsynaptic
shape in the shape's de�nition, we simply have to iteratively
subtract the product of the derivative and its factor from the
original de�nition of the postsynaptic shape and check if the �nal
di�erence is zero. This check fails if the postsynaptic shape is non-
linear (i.e., at least one of the derivatives occurs as a powerterm)
or not homogeneous (i.e., not all terms of the postsynaptic shape
de�nition are products containing a derivative of the shape).This
check is implemented in the functionshape_from_ode() in
theshape module of the toolbox.

In case the postsynaptic shape is given as a function of time,
we check whether the function obeys a linear homogeneous ODE
by trying to construct such an equation together with the initial
values of all relevant derivatives. This procedure is implemented
in the function shape_from_function() of the shape
module. We start the evaluation by checking if the postsynaptic
shape function obeys a linear homogeneous ODE of order 1.

1 t _ v a l u e = None
2 ds = [shape, d i f f (shape, t)]
3 for t_ in range (1, max_t) :
4 if ds [0] . subs (t, t _) != 0 :
5 t _ v a l u e = t_
6 break
7
8 found_ode = False
9 if t _ v a l u e is not None :

10 a0 = (1 / ds [0] � ds [1]) . subs (t, t _ v a l u e)
11 d i f f _ l h s _ r h s = ds [1] � a0 � ds [0]
12 found_ode = d i f f _ r h s _ l h s ==0

In line 10 we calculate the factora0 from equation 6 by dividing
the �rst derivative of the postsynaptic shape by the shape at an
arbitrary point t. To avoid a division by zero, we have to �nd at
so that the postsynaptic shape function is not zero at thist (lines
3-6). Line 11 calculates the di�erence between the left and the
right hand side of equation 6. If this di�erence is zero (line 12) we
know that the postsynaptic shape satis�es a linear homogeneous
ODE of order 1. We also know the ODE itself by calculating its
initial value in line 40 below.

If the postsynaptic shape does not obey a linear homogeneous
ODE of order 1, we check if the postsynaptic shape function
satis�es a linear homogeneous ODE of a higher order. This test is

Frontiers in Neuroinformatics | www.frontiersin.org 8 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

run in a loop (line 15) that increments the order to check for each
time equation 5 is not satis�ed. The loop terminates if either an
ODE is found ormax_order iterations are exceeded. The latter
check prevents expensive tests of unlikely high orders.

13 orde r = 1
14 f a c t o r s = [a0]
15 while not found_ode and orde r < max_order :
16 orde r += 1
17 ds . append (d i f f (ds [� 1] , t))
18 X = z e r o s (o rde r)
19 Y = z e r o s (o rde r, 1)

We start the loop by setting the next potentialorder (line 16),
appending the next higher derivative of postsynaptic shape to
the list of derivatives (line 17) and initializing the matrix X with
sizeorder � order (equation 9, line 18) and the vectorY with
lengthorder (right hand side of equation 10, line 19).

20 i n v e r t i b l e = False
21 for t_ in range (max_t) :
22 for i in range (o rde r) :
23 s u b s t i t u t e = i + t_ + 1
24 Y[i] = ds [o rde r] . subs (t, s u b s t i t u t e)
25 for j in range (o rde r) :
26 X[i , j] = ds [j] . subs (t, s u b s t i t u t e)
27
28 if de t (X) != 0 :
29 i n v e r t i b l e = True
30 break

X andY are assigned values according to equations 9 and 10 (line
24 and 26) for varyingt D (t1, : : : , tn) (line 21) in order to �nd
a t such that the matrixX is invertible, i.e., det(X) 6D0 (line 28).
In the inner loop (lines 22-26),ti is substituted so that we �rst try
t D (1,: : : ,n), secondt D (2,: : : ,n C 1) and so on (line 23).

If we �nd an invertibleX, we calculate the potential factorsai
from equation 5 according to equation 11 for the current order
we are checking for (factors , line 32).

31 if i n v e r t i b l e :
32 f a c t o r s = X. inv () � Y
33 d i f f _ r h s _ l h s = 0
34 for k in range (o rde r) :
35 d i f f _ r h s _ l h s � = f a c t o r s [k] � ds [k]
36 d i f f _ r h s _ l h s += ds [o rde r]
37 if d i f f _ r h s _ l h s == 0 :
38 found_ode = True
39 break

Lines 33-36 calculate the di�erence between the left and the right
hand side of equation 5. If this di�erence is zero (line 37) we know
that the postsynaptic shape satis�es an linear homogeneous ODE
of orderorder .

If we do not �nd an ODE during the execution of the
while loop, we terminate the algorithm with an error (1 in
Figure 1). If we do, we can go on to calculate the initial values
of the postsynaptic shape equation by substitutingt by 0 for
all derivatives of the postsynaptic shape, which fully de�nes the
found ODE.

40 i v = [x . subs (t, 0) for x in ds [:� 1]]

In the case of successful termination, the functions
shape_from_ode() and shape_from_function()
both return aShape object to the main script of the toolbox,

which encapsulates all attributes of the postsynaptic shape
required for further processing.

3.2. Generation of an Analytical Evolution
Scheme
If the ODE describing the update of a state variable was found
to be a constant coe�cient ODE and all postsynaptic shapes
obey linear homogeneous ODEs, we can solve the system of
ODEs analytically according to section 2.1. To this end, the
moduleanalytic provides a classPropagator , which has
two member functions corresponding to the two steps required
for the generation of an analytical evolution scheme.

The function compute_propagator_matrices()
takes an ODE and a list ofShape objects and computes a
propagator matrix (equation 17) for each postsynaptic shape.
These matrices can be used to evolve the system from one
point to the next. The basic idea here is to populate the matrix
A using the factors of the derivatives (factors , computed
in lines 12 and 31 of the code in section 3.1), the factor of
the postsynaptic shape used in the ODE for the state variable
(ode_shape_factor) and the factor of the symbol of the
ODE (ode_sym_factor). For the equation

d
dt

V D
1
�

� V C
1

C1
� I1 C

1
C2

� I2

ode_sym_factor would thus be1
� . It is calculated using the

following line of code:

1 ode_sym_fac to r = d i f f (ode_def, ode_symbol)

ode_shape_factor would be 1
C1

for postsynaptic shapeI1

in the example equation and1
C2

for I2. As these factors and
other parameters depend on the postsynaptic shape, we run the
following code in a loop (omitted for better readability), each
iteration assigning the currentShape object to the variable
shape :

2 o d e _ s h a p e _ f a c t o r = d i f f (ode_def, shape. symbol)
3
4 if shape. o rde r == 1 :
5 A = Mat r ix ([
6 [shape. f a c t o r s [0] , 0] ,
7 [o d e _ s h a p e _ f a c t o r, ode_sym_fac to r]])
8 elif shape. o rde r == 2 :
9 pq = � shape. f a c t o r s [1] / 2 +

,! s q r t (shape. f a c t o r s [1] �� 2 / 4 +
,! shape. _ f a c t o r s [0])

10 A = Mat r ix ([
11 [shape. f a c t o r s [1] + pq, 0, 0] ,
12 [1, � pq, 0] ,
13 [0, s h a p e _ f a c t o r, ode_sym_fac to r]])
14 else :
15 orde r = shape. o rde r
16 A = z e r o s (o rde r + 1)
17 A[o rde r, o rde r] = ode_sym_fac to r
18 A[o rde r, o rde r � 1] = s h a p e _ f a c t o r
19 for j in range (0, o rde r) :
20 A[0, j] = shape. f a c t o r s [o rde r � j � 1]
21 for i in range (1, o rde r) :
22 A[i , i � 1] = 1

Line 2 computes theode_shape_factor for the current
postsynaptic shape. In order to make the calculation of the

Frontiers in Neuroinformatics | www.frontiersin.org 9 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

solution more e�cient (i.e., using fewer arithmetic operations on
a computer),compute_propagator_matrices() creates
a lower triangular matrix for postsynaptic shapes of order 1 and
2 (lines 5-7 and 9-13, respectively) as explained in equation 14
and a generic matrix for all higher orders according to
equation 13 (lines 15-22). The variablepq in line 9 corresponds
to equation 15.

The propagator matrix for each postsynaptic shape can now
be computed by taking the matrix exponential of the matrixA
multiplied by the update step sizeh:

23 p r o p a g a t o r _ m a t r i c e s. append (exp (A� h))

The second function of the Propagator class,
compute_propagation_step() , takes the list of
propagator matrices and postsynaptic shapes and computes
a calculation speci�cation that can be executed to actually
perform the system update. As this function merely runs a
loop over all propagator matrices and generates the update
instructions as a list of strings, the code is omitted here.

3.3. Finding an Appropriate Numerical
Solver
In case the di�erential equation describing the dynamics of astate
variable was not found to be a linear constant coe�cient ODE,
the system must be evolved using a numerical stepping scheme as
explained in section 2. Instead of a full calculation speci�cation,
as produced for the analytical solution in section 3.2, the
numeric module of the toolbox just passes the speci�cation
of ODEs from the input and theShape objects created by
the algorithm in section 3.1 on to the sti�ness tester, which is
implemented in thestiffness module.

The sti�ness tester uses the standard Python modules SymPy
and NumPy for symbolic and numeric calculations. For evolving
the ODEs during the test procedure, it currently uses PyGSL,
a Python wrapper around the GNU Scienti�c Library (GSL;
Gough, 2009). This library was chosen over more pythonic
alternatives such as SciPy due to its more comprehensive
selection of ODE solvers.

The sti�ness tester executes the algorithm described in
section 2.2 and gives a recommendation as to whether the use of
an explicit or an implicit evolution scheme is appropriate. The
steps performed by the algorithm are shown inFigure 2. The
choice of the factor 6 for comparing average step sizes of the
explicit and the implicit schemes is motivated in section 3.3.1.
For the evolution of the system of ODEs, the equations receive
representative spike trains drawn from a Poisson distribution
with a rate of� D 0.1 s� 1 and inter-spike intervals distributed
around 1

� (Connors and Gutnick, 1990).

3.3.1. Comparison of Average Step Sizes
When comparing average step sizes of the implicit and explicit
method applied to a certain set of ODEs, we assume that the
set of ODEs is sti� when the average step size of the implicit
method is considerably larger than the average step size of the
explicit method, see section 2.2, i.e., whensimplicit > � � sexplicit
for some� .

To determine an appropriate factor� , we developed a testing
strategy using a well known example of a set of sti� ODEs: with
a D � 100 and initial valuesy1(0) D y2(0) D 1,

dy1

dt
D ay1 (20)

dy2

dt
D � 2y2 C y1

is a typical sti� ODE system (example taken fromDahmen and
Reusken, 2005). The solutiony1(t) D e� 100t decays very quickly,
whereas the solutiony2(t) D � 1

98e� 100t C 99
98e� 2t decreases a lot

more slowly, which causes the sti�ness of this system.
y1 is already reduced by four decimal places att D 0.1 and

y1 is practically negligible for even largert. Nevertheless, it plays
a major role in the calculation ofy2 when using an explicit
integration method. Using a simple explicit Euler method and a
resolutionh for the approximationQy1 of y1, we have the following
recursive speci�cation:

Qy1(t C h) D Qy1(t) � 100hQy1(t) D (1 � 100h)Qy1(t).

Forh D 1
200 andt D 1

10 we get

Qy1(1=10)D 2� 20 < 10� 6.

For computational e�ciency, we would like to choose a larger
step size fory2 since the solution decays a lot slower thany1. If
we therefore chooseh D 1

2 to integratey2, we get

Qy1(t C h) D � 49Qy1(t),

causing an explosive growth in the course of the calculations.
A sti� set of ODEs will always result in the average step

size of an implicit method exceeding by far the average step
size of a comparable explicit method. Hence the runtime of
the implicit method should be less than the explicit method's
runtime. However, runtime is not solely a�ected by the grade of
sti�ness, so the sti�ness of a given set of ODEs is evaluated more
accurately by comparing average step sizes.

To isolate sti�ness from other factors, we chose equation 20
for its simplicity. This problem is clearly sti�, as described above,
and the grade of sti�ness relates directly to the size of the factor a.
Therefore it can be used as a controlled sti� problem where other
e�ects coming from the complexity of the system do not play a
role.

We measure the runtimes of the implicit and the explicit
methods (using the corresponding GSL-solvers) for �ve runs over
20 milliseconds each, whilst systematically varying the sti�ness
controlling parametersa and the resolutionh. The quotient of
the average implicit and explicit runtimes is shown inFigure 3.

For each measurement series, we can determinea� , the value
of a for which the runtimes of the explicit and the implicit
evolution scheme are the same. We then calculate the ratio of
the step sizes employed by the implicit and explicit schemes

at a� : r � D
simplicit .a� /
sexplicit.a� / . Because in this problem the runtime,

sti�ness and step size are solely in�uenced by the factora, we

Frontiers in Neuroinformatics | www.frontiersin.org 10 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

FIGURE 2 | Activity diagram summarizing the steps taken to recommend an appropriate numerical stepping scheme. The input to the algorithm are the ODEs and
their parameters. After evolving the system of ODEs in parallel with an implicit and an explicit solver, it compares the minimal step sizes (mscheme) of each scheme
with the machine precision ("). Depending on the outcome of the comparison, it recommendsan appropriate stepping scheme (explicit or implicit) or compares the
average step sizes (sscheme) of the tested schemes. In the case that both the step size of the explicit and implicit solver are close to" , the algorithm does not give a
recommendation, but terminates with a warning instead.

FIGURE 3 | Comparison of implicit and explicit methods for a stiff ODE.Ratio
of runtimes for the implicit and explicit method as a function of the factor a in
equation 20, for varying resolutionsh and a desired accuracy of 10� 3. Curves
averaged over 5 runs of 20 ms each. The red bar indicates when the explicit
and implicit methods require the same amount of time to evolve the ODE
system. Where a curve is below the red bar, the implicit method is faster than
the corresponding explicit method.

can considerr to be the borderline factor, i.e., problems with
simplicit > r � � sexplicit are su�ciently sti� to make the implicit
method faster.

For all the curves inFigure 3, we determine a value for
r � between 6 and 7. As some input scenarios may result in
a somewhat sti�er system than that brought about by the

representative spike train chosen in the sti�ness tester, we choose
� D 6 conservatively on the low side of the range ofr � , to ensure
that the implicit scheme is used in all sti� cases.

3.4. Example
The use of the toolbox as a Python module is explained in detail
in theREADME.md�le of the git repository at http://github.com/
nest/ode-toolbox. Here, we demonstrate the use of the analysis
toolbox by executing the script �leode_analyzer.py in a
stand-alone fashion for generating a solver speci�cation for a
conductance-based integrate-and-�re neuron with alpha-shaped
postsynaptic conductances. The script expects the name of a
JSON �le as its only command line argument:

python o d e _ a n a l y z e r. py i a f _ c o n d _ a l p h a. j s o n

The �le iaf_cond_alpha.json is shown inListing 1. It
contains the speci�cation of one di�erential equation for the
membrane potentialV_min the odes section in lines 3-7. This
section is a list and can potentially contain multiple ODEs. The
shapes section de�nes two postsynaptic shapes, one of which is
speci�ed as a function of time (g_in , lines 10-14), the other as an
ODE with initial conditions (g_ex , lines 15-20). The parameters
and their default values are given in theparameters dictionary
in lines 22-33. This dictionary maps default values to parameter
names and has to contain an entry for each free variable occurring
in the equations given in theodes or shapes sections.
Depending on the complexity of the ODEs and postsynaptic
shapes contained in the input, the analysis may take some time.
During its execution, the analysis tool prints diagnostic messages
about the current processing steps. If all steps succeed, it writes
the result again to a JSON �le, which can be read by the next tool

Frontiers in Neuroinformatics | www.frontiersin.org 11 October 2018 | Volume 12 | Article 50

http://github.com/nest/ode-toolbox
http://github.com/nest/ode-toolbox
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

1 {
2 " odes ": [
3 {
4 " symbol ": "V_m",
5 " d e f i n i t i o n " : " (� (g_L� (V_m� E_L))� (g_ex� (V_m� E_ex))� (g_ in� (V_m� E_in))+ I _ s t i m + I_e) /C_m",
6 " i n i t i a l _ v a l u e s ": [" E_L "]
7 }
8] ,
9 " shapes ": [

10 {
11 " t ype ": " f u n c t i o n ",
12 " symbol ": " g_ in ",
13 " d e f i n i t i o n " : " (e / t a u _ s y n _ i n)� t � exp ((� 1) / t a u _ s y n _ i n� t) "
14 } ,
15 {
16 " t ype ": " ode ",
17 " symbol ": " g_ex ",
18 " d e f i n i t i o n " : " (� 1) / (t au_syn_ex)�� (2) � g_ex+(� 2) / t au_syn_ex� g_ex ' ",
19 " i n i t i a l _ v a l u e s ": [" 0 " , " e / t au_syn_ex "]
20 }
21] ,
22 " pa rame te rs ": {
23 " V_th " : � 55 .0,
24 " g_L ": 16 .6 667,
25 "C_m" : 250 .0,
26 " E_ex ": 0,
27 " E_in " : � 85 .0,
28 " E_L ": � 70 .0,
29 " t au_syn_ex ": 0 .2,
30 " t a u _ s y n _ i n ": 2 .0,
31 " I _e " : 0,
32 " I _ s t i m " : 0
33 }
34 }

LISTING 1: Example JSON �le as input to the analysis toolbox. The �le contains three entries:odes describing the ODEs of the
system,shapes containing the postsynaptic shapes used in the ODEs andparameters specifying the parameters and default
values for the di�erential equations in theshapes andodes sections.

in the model generation pipeline to create the complete model
implementation.

For the input shown in Listing 1, the analysis toolbox
produces the following output:

1 {
2 " s o l v e r ": " numeric� e x p l i c i t "
3 " s h a p e _ o d e _ d e f i n i t i o n s ": [
4 "� 1 / t a u _ s y n _ i n�� 2 � g_ in + � 2 / t a u _ s y n _ i n �

,! g_ in__d ",
5 "� 1 / t au_syn_ex�� 2 � g_ex + � 2 / tau_syn_ex �

,! g_ex__d "
6] ,
7 " s h a p e _ s t a t e _ v a r i a b l e s ": [
8 " g_ in__d ",
9 " g_ in ",

10 " g_ex__d ",
11 " g_ex "
12] ,
13 " s h a p e _ i n i t i a l _ v a l u e s ": [
14 " 0 " ,
15 " e / t a u _ s y n _ i n ",
16 " 0 " ,
17 " e / t au_syn_ex "
18] ,
19 }

The meaning of the �elds is explained in detail in the
README.mdof the toolbox.

4. RESULTS

To evaluate the proposed framework for the semantic analysis
of a system of ODEs and assessment of its sti�ness we have
chosen two approaches. One was to apply the sti�ness tester
to the neuron models currently implemented in the NEST
Modeling Language (NESTML;Plotnikov et al., 2016), the other
was to compare runtimes of explicit and implicit evolution
schemes applied to two commonly used simpli�ed versions of the
Hodgkin-Huxley model.

The sti�ness tester was integrated and successfully used in
the tooling for NESTML, a domain speci�c language for the
de�nition of neuron models for the neuronal simulator NEST
(Gewaltig and Diesmann, 2007; Kunkel et al., 2017). NESTML is
built using MontiCore (e.g.,Grönniger et al., 2008; Krahn, 2010).
MontiCore is a language workbench (Erdweg et al., 2013) that
enables an agile and incremental implementation of lightweight
DSLs including the symbol table functionality (Mir Seyed Nazari,
2017), code generation facilities (e.g.,Schindler, 2012; Rumpe,

Frontiers in Neuroinformatics | www.frontiersin.org 12 October 2018 | Volume 12 | Article 50

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Automatical Solver Selection

2017) and support for editors in Eclipse IDE (e.g.,Krahn et al.,
2007; Völkel, 2011). NEST's focus is on the simulation of the
dynamics of large networks of spiking neurons (e.g.,Kunkel
et al., 2010; Potjans and Diesmann, 2012; van Albada et al.,
2015). Neuron models in NEST are usually rather simple point
neurons or models with a few electrical compartments insteadof
rich compartmental neurons built from morphologically detailed
reconstructions. The simulator is capable of running on a large
range of computer architectures ranging from laptops over
standard workstations to the largest supercomputers available
today (Kunkel et al., 2014).

Within NESTML, the analysis toolbox developed in sections 2
and 3 is used for the numerical analysis of neuron models de�ned
as systems of ODEs and provides either the implementation
of an e�cient and accurate analytical integration scheme or
recommends a good numerical solver. Therefore it allows the
simulation of a large variety of biological neuron models in
NEST.

As a simple yet meaningful validation of the stability checks
introduced in section 2.2, we applied the sti�ness tester to all
neuron models currently implemented in NESTML (see https://
github.com/nest/nestml/tree/master/models). The resultof this
evaluation is that with default parametrization, the systems
of ODEs of all neuron models are non-sti� and can thus be
safely integrated using an explicit numerical integration scheme
without any detrimental e�ects on e�ciency and accuracy. This
is a reassuring �nding, as it indicates that previous studiesusing
these neuron models are unlikely to contain distorted results due
to numeric instabilities in the integration, for a counter-example
seePauli et al. (2018).

However, when the default parametrization is slightly altered,
the sti�ness test �nds that some systems of ODEs are now
evaluated as being sti�, which suggests that the choice of an
implicit evolution scheme would be more advisable than the
default choice.Figure 4 summarizes these observations for a
selection of six commonly used neuron models and shows how
a systematic change of one parameter in these models results in
an evaluation as sti� or non-sti�.

As a second test, we apply the sti�ness tester to the Fitzhugh-
Nagumo and Morris-Lecar models (FitzHugh, 1961; Nagumo
et al., 1962; Morris and Lecar, 1981), non-linear oscillators that
include the generation of an action potential as part of the
dynamics, rather than applying an arti�cial threshold as many
point neuron models do. To assess the comparative performance
of the two approaches, we vary both the sti�ness controlling
parameter of the model equations and the resolutionh, as a
parameter of the sti�ness tester (stiffness.py ; see section 3).
For small values ofh, the explicit approach is expected to
exhibit a better performance, as it is relatively easy to �nd
the solution, and the explicit approach is computationally less
expensive. Ash increases, it becomes harder to determine
the correct solution, so that the more expensive, but more
reliable, implicit method becomes advantageous. Alternatively,
a systematic variation of the desired accuracy yields the same
insight (data not shown).

Figure 5 demonstrates a comparison of the implicit and
explicit methods applied to the FitzHugh-Nagumo model. The

FIGURE 4 | Results of the stiffness test for six neuron models from NEST. Red
bars indicate the default value of the selected parameter inNEST, blue
indicates the value range in which the system of ODEs evaluates as non-stiff,
green indicates the range in which it evaluates as stiff.aeif_cond_alpha is
a conductance-based adaptive exponential integrate-and-�re model with
alpha-shaped postsynaptic conductances,hh_psc_alpha a
Hodgkin-Huxley type model with alpha-shaped postsynapticcurrents,
iaf_cond_alpha a conductance-based integrate-and-�re neuron with
alpha-shaped postsynaptic conductances,iaf_cond_alpha_mc a
conductance-based integrate-and-�re neuron with alpha-shaped postsynaptic
conductances and multiple compartments,iaf_psc_alpha a current-based
integrate-and-�re neuron with alpha-shaped postsynaptic currents and
izhikevich the model dynamics proposed byIzhikevich (2003). The test
was applied to the ODE systems for varying values of the parameter tau_syn
of the �rst �ve models and for the parameter a of the last model.

FIGURE 5 | Application of the stiffness tester to the Fitzhugh-Nagumomodel.
Ratio of runtimes for the implicit and explicit method as a function of the factor
� in equation 21, for varying resolutionh and a desired accuracy of 10� 5.
Curves averaged over 5 runs of 20 ms each. Red bar as inFigure 3 .

model comprises two variables, one for the membrane potential
V and a recovery variableW. The dynamics are given by:

V0D V �
1
3

V3 � W C 0.25

W0D � (V C 0.7� 0.8W). (21)

Frontiers in Neuroinformatics | www.frontiersin.org 13 October 2018 | Volume 12 | Article 50

https://github.com/nest/nestml/tree/master/models
https://github.com/nest/nestml/tree/master/models

Blundell et al. Automatical Solver Selection

FIGURE 6 | Application of the stiffness tester to the Morris-Lecar model. Ratio
of runtimes for the implicit and explicit method as a function of the factor " in
equation 22, for varying resolutionh and a desired accuracy of 10� 5. Curves
averaged over 5 runs of 20 ms each. Red bar as inFigure 3 .

The �gure shows the quotient of the time that the corresponding
GSL-solvers for the explicit and implicit methods spent on
integrating the ODE system for 20 milliseconds with a desired
accuracy of 10� 5. For all resolutions shown inFigure 5, the
explicit scheme is faster, and is also the approach recommended
by our toolbox. As the resolution becomes coarser (increased
values ofh), the curves shift down toward the point at which
the implicit method would be faster. Forh > 0.185, our toolbox
recommends an implicit approach, and indeed in such cases the
explicit scheme, as implemented by the GSL, exits with an error.
This is due to the variableV becoming so large in one of the
internal steps that it can no longer be represented by adouble .
For a higher required accuracy of 10� 10, all curves shift to below
the red line (data not shown), and the toolbox recommends an
implicit solver for all tested resolutions.

We apply the same approach to the Morris-Lecar model
(Morris and Lecar, 1981):

V0D I C 2W(� 0.7� V) C 0.5(� 0.5� V)

C 1.1m(V)(1 � V)

W0D �� (V)(w(V) � W) (22)

m(V) D
1
2

�
1 C tanh

�
V C 0.01

0.15

��

w(V) D
1
2

�
1 C tanh

�
V C 0.12

0.3

��

� (V) D cosh
�

V � 0.22
2 � 0.3

�
,

where I represents injected current.Figure 6 shows that for
a resolution ofh D 0.2, the explicit solver is faster, but for
larger values ofh the implicit solver becomes more e�cient.

Accordingly, our toolbox recommends explicit for the former
and implicit for the latter. Note also that the explicit solver exits
with an over�ow error for h D 1.5 with values of� above 1.4.
Again, the toolbox catches this risk of numerical instability and
recommends the implicit scheme.

These results show that the toolbox can correctly assess where
it is safe and e�cient to use an explicit scheme, and where an
implicit scheme would be appropriate, either for reasons of speed
or for numerical stability.

5. RELATED WORK

In this section we compare our proposed framework for choosing
evolution schemes for systems of ODEs in neural models with the
corresponding approaches implemented in the simulators Brian
(Goodman and Brette, 2009; Stimberg et al., 2014) and NEURON
(Hines and Carnevale, 2000; Carnevale and Hines, 2006). These
two simulators were chosen as they are in wide-spread use in the
community. We will further consider the application of software
for symbolic computation (forexactmathematical calculations)
or scienti�c computing (for numerical calculations) to our setting
in language modeling for neural simulators.

5.1. Brian
Similar to our framework, the implementation of the Brian
simulator also makes a distinction between systems of ODEs that
can be solved analytically and systems that can only be solved
e�ciently in a numeric manner. In addition to simple integrate-
and-�re neurons, Brian also supports multi-compartmental
neurons and neurons described by stochastic ODEs. As these
types of models cannot be currently analyzed by our ODE
analysis toolbox, we will not take them into account here. Instead
we focus on single-compartmental deterministic neuron models
as we can only draw a meaningful comparison for this group of
neuron models.

In Brian, neuron dynamics can be described by a system
consisting of ODEs and time-dependent functions. They are
either classi�ed aslinear, meaning they can be solved analytically,
or asnon-linear, meaning they cannot be solved analytically and
must be solved numerically using theforward Euler method(if
not stated otherwise by the author of the model). In theory,
linear constant coe�cient ODEs can be solved analytically by
Brian. However, if the dynamics of a neuron are described using
a non-constant function of time rather than an ODE de�ning
this function they are always solved numerically. This couldbe
improved by using our proposed framework, which allows an
analytical solver to be generated even for a system consisting
of time-dependent functions that satisfy a linear homogeneous
ODE and feed into a linear constant coe�cient ODE. Our
framework thus allows an analytical evolution for a larger class of
neuron dynamics. In particular, our framework seems to be more
robust with respect to the use of several di�erent postsynaptic
shapes, as they are treated seperately in contrast to Brian's
approach, where the system is analyzed by SymPy as a whole.

All systems of ODEs in Brian that are not evolved by an
analytical evolution scheme are by default evolved using the
simple Euler method. To circumvent this, it is possible to choose

Frontiers in Neuroinformatics | www.frontiersin.org 14 October 2018 | Volume 12 | Article 50

Blundell et al. Automatical Solver Selection

a numerical evolution scheme from a list of other methods. This
approach works well for users who are aware of the numerical
consequences of their choice of solver but can be problematic
for scientists who lack the ability to weigh up the advantages
and disadvantages of di�erent numerical evolution schemes for
their particular system of ODEs. Moreover, as demonstrated in
Figure 3, the choice of an appropriate evolution scheme might
depend on the exact parameters for the ODEs and thus not be
obvious even for an advanced user.

5.2. NMODL
NMODL is the model speci�cation language of the NEURON
simulator. NEURON was created for describing large multi-
compartmental neuron models and thus also supports a wider
range of models than our proposed framework currently does.
We will again only contrast those types of models for which a
comparison is meaningful.

For linear systems of ODEs, NMODL chooses an evolution
method that propagates the system by evolving each variable
under the assumption that all other variables are constant during
one time step. In many cases this approach approximates the true
solution well, but it is still less accurate than an actual analytical
solution. For all other systems of ODEs, i.e., all non-linearODEs,
an implicit method is chosen, regardless of the exact properties
of the equations to guarantee an evolution of sti� ODEs without
causing numeric instabilities. This is a robust solution but may
lead to excessively large simulation run times in cases where the
choice of an explicit evolution scheme for non-sti� ODE systems
would be su�cient.

5.3. Software for Symbolic Computation
and Scienti�c Computing
There are a number of high quality and widely used applications
available for symbolic computation, most notablyWolfram
Mathematica (Benker, 2016), Modelica (Tiller, 2001), and
Maple (Westermann, 2010). All three provide frameworks for
solving ordinary di�erential equations both symbolically and
numerically. Here, we will brie�y describe their capabilities and
limitations for both symbolic and numeric integration of systems
of ODEs.

5.3.1. Symbolic Integrators
At �rst appearance the integration schemes provided by the
programming languages (or in the case of Modelica, modeling
language) seem appropriate for the task addressed in our study.
As discussed in section 1, the ordinary di�erential equations
used to de�ne neuron models and to describe their dynamical
behavior are typically linear (though not homogeneous and not
linear with a constant coe�cient) and can in several cases be
solved analytically by any of the programs above. However, for
the speci�c requirements related to neural simulations, there are
several reasons why they are not entirely well suited.

Firstly, neurons receive input that generally changes in every
integration step due to the arrival of incoming spikes, thus
changing the di�erential equations to be solved. Although each
of these di�erential equations can be integrated easily using,
e.g., Wolfram Mathematica, none of these frameworks providea

general, exact solution for each integration step, that takesa run-
time generated varying input into account. The next two points
are related to the size of neural systems commonly investigated.
Spiking neuronal network models often contain of the order
of 103–105 neurons, and sometimes substantially more (Kunkel
et al., 2014). Calling external software for symbolic computation
of ordinary di�erential equations during run time for each
neuron is therefore often too costly. Moreover, for large models,
the simulation software is likely to be deployed on a large cluster
or supercomputer. The aforementioned applications are typically
not installed on such architectures, whereas Python is a standard
installation, providing the package SymPy, which is su�cient for
symbolic computation in this context.

5.3.2. Numerical Integrators
There are a number of approaches to automatically select
numeric integrators depending on whether the problem is
sti� or non-sti� (Petzold, 1983; Shampine, 1983, 1991). These
approaches are typically designed to switch integration schemes
during runtime when the problem changes its properties. All
of them rely in one way or another on the behavior of the
Jacobian matrix evaluated at the point of integration. Typically,
the methods try to approximate the dominant eigenvalue of
the Jacobian with a low cost compared to that of the stepping
algorithm. However, for a spiking neural network simulation, the
determination of the sti�ness of the system, and thus the solver,
should occur before the simulation starts, as to minimize runtime
costs.

Thus the question remains whether it would be possible to
carry out these kind of tests during generation of the neuron
model. Applying the test to a large number of randomly selected
values of the state variables, or carrying out a number of test runs
using representative spike trains would allow to work around
the fact that the solution up to a given point is not yet known.
However, as these tests rely on determining the sti�ness through
the properties of the Jacobian, they would still not be completely
precise. As we have the advantage of e�ectively no computational
constraints during generation of the neuron model, there isthus
no advantage by using such a low-cost strategy. In our approach
we compute the solution using both explicit and implicit schemes
and compare their behaviors a posteriori, thus obtaining an
accurate assessment of the appropriate solver for a given set of
parameters.

In addition, as for symbolic integration, the packages that
provide such sti�ness testing capability for numeric integration
do not provide a framework for handling a run-time determined
variable input due to incoming spikes. Thus we conclude that the
speci�c problem addressed by our toolbox lies outside the scope
of general purpose symbolic and numeric integration packages.

6. DISCUSSION

We have presented a novel simulator-independent framework
for the analysis of systems of ODEs in the context of neuronal
modeling and provided a reference implementation for the
selection and generation of appropriate integration schemes as
open source software.

Frontiers in Neuroinformatics | www.frontiersin.org 15 October 2018 | Volume 12 | Article 50

Blundell et al. Automatical Solver Selection

In this section we will summarize the restrictions of our
framework, discuss alternative ideas for the implementation and
describe possible future additions.

The framework we propose is currently limited to the
analysis of equations for non-stochastic single-compartmental
integrate-and-�re neuron models. The reason for this is that
the analysis toolbox was developed in the context of the
NESTML project, in which we put our main focus on the
class of neurons presently available in the NEST simulator.
The extension of the framework to other classes of neurons
is one of our current research objectives. In particular, this
work includes support for systems of stochastic ODEs. The
symbolic analysis of neuron ODEs enables generation of
the sophisticated C++ neuron implementation that switches
between implicit and explicit solvers at run-time of the neurons
depending on the runtime performance of the particular solver.
This functionality will be integrated in upcoming releases of
NESTML.

Another restriction of the framework is that it can only
analyze systems of ODEs with postsynaptic shapes that obey
a linear homogeneous ODE. This is due to the fact that
evolving a system including postsynaptic shapes as functions
of time rather than functions de�ned as ODEs would result
in a very long sum of multiple linear combinations of shifts
of this function for each incoming spike. Evaluating such
a sum would make the evolution of the system containing
it computationally very costly. Finding a more e�cient
solution for this problem is of high priority in our current
work.

As noted in section 2, the calculation ofeAh may become
di�cult to compute analytically rather than numerically if the
matrix A becomes very large. In this case, i.e., wheneAh is
computed as a numerical approximation, the integration scheme
is, strictly speaking, not analytical. Here it might be sensible to
look into other numerical methods, e.g., integrating the system
of ODEs using a quadrature formula of order 5 and thereby
obtaining an accuracy of 10� 8 despite the use of a numerical
scheme.

When comparing implicit and explicit integration schemes,
we compare theaverage step sizeand theminimal step sizeof
the respective schemes. An alternative possibility would be to use
�xed step sizes instead and compare the results of the explicit
and implicit schemes using the results of the implicit scheme as
a reference. This could be implemented alongside our current
sti�ness tester to provide a higher degree of certainty.

As pointed out in section 4, the sti�ness of a system of
ODEs depends greatly on its parametrization. Therefore it might
be a useful extension to run the sti�ness test not only during
the generation of the model code, but also when instantiating
the model in a simulator, and when model parameters are
changed. This would, however, require a call to the analysis
toolbox at run time, which might not be easily possible on all
machines a particular simulator may run on. For example, in
a supercomputer environment, job allocations are usually �xed,
and not all libraries required by the toolbox may be available. An
alternative solution to the problem could be to run the sti�ness

test for varying parameters during the generation phase of the
model. This way the analysis toolbox could create a lookup table,
mapping parameter values to the most appropriate integration
scheme.

Another possible extension of the current framework could
be to implement implicit and explicit integration schemes for
evolving the systems of ODEs during the sti�ness analysis, and
thereby gain independence of PyGSL, which can be challenging
to install. These custom implementations could be tailored to
our speci�c requirements and give us more control over the
integration scheme and the exact methodology for adaptive step
size control.

The current implementation of the framework only supports
�xed thresholds for the detection of spikes and evaluates the
spiking criterion on a �xed temporal grid. A part of our current
work is to evaluate more realistic scenarios, such as adaptive
thresholds or precise detection of spike times in between the grid
points. For a general discussion on the topic, seeHanuschkin
et al. (2010).

Our presented framework is re-usable independently of
NESTML and NEST. The source code is available under the terms
of the GNU General Public License version 2 or later on GitHub
at https://github.com/nest/ode-toolbox/ and we hope that the
code can serve both as a useful tool for neuroscientists today,
and as a basis for a future community e�ort in developing a
simulator-independent system for the analysis of neuronal model
equations.

AUTHOR CONTRIBUTIONS

IB developed the mathematical derivations of the solver
selection system and devised the algorithms. The reference
implementation was conceived and created by IB and DP. DP
integrated the framework into the NESTML system. JE and AM
supervised and guided the work. The article was written jointly
by all authors.

FUNDING

This work was supported by the JARA-HPC Seed FundNESTML
- A modeling language for spiking neuron and synapse models for
NESTand theInitiative and Networking Fundof the Helmholtz
Association and the Hemholtz Portfolio ThemeSimulation and
Modeling for the Human Brain. The current work on NESTML
is partly funded by the European Union's Horizon 2020 research
and innovation programme under grant agreement No. 720270.

ACKNOWLEDGMENTS

We gratefully acknowledge the fruitful discussions with the
users of NESTML, who provided use cases and guided the
work through their critical questions and thoughts. We would
especially like to thank Arnold Reusken, Markus Diesmann, Hans
Ekkehard Plesser, Guido Trensch, Bernhard Rumpe, and Tanguy
Fardet for their ongoing support and interest in the NESTML
project.

Frontiers in Neuroinformatics | www.frontiersin.org 16 October 2018 | Volume 12 | Article 50

Blundell et al. Automatical Solver Selection

REFERENCES

Benker, H. (2016).MATHEMATICA kompakt: Mathematische Problemlösungen fr
Ingenieure, Mathematiker und Naturwissenschaftler. Wiesbaden: Springer.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-�re model
as an e�ective description of neuronal activity.J. Neurophysiol.94, 3637–3642.
doi: 10.1152/jn.00686.2005

Carnevale, N. T., and Hines, M. L. (2006).The NEURON Book. New York, NY:
Cambridge University Press.

Connors, B. W., and Gutnick, M. J. (1990). Intrinsic �ring patterns
of diverse neocortical neurons. Trends Neurosci. 13, 99–104.
doi: 10.1016/0166-2236(90)90185-D

Dahmen, W., and Reusken, A. (2005).Numerik fr Naturwissenschaftler. Berlin:
Springer.

Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook, W. R.,
et al. (2013). “The state of the art in language workbenches,” inSoftware
Language Engineeringeds M. Erwig, R. F. Paige, and E. Van Wyk (Cham:
Springer International Publishing), 197–217.

FitzHugh, R. (1961). Impulses and physiological states in theoretical models
of nerve membrane.Biophys. J.1, 445–466. doi: 10.1016/S0006-3495(61)
86902-6

Gewaltig, M.-O., and Diesmann, M. (2007). NEST Neural SimulationTool.
Scholarpedia2:1430. doi: 10.4249/scholarpedia.1430

Goodman, D., and Brette, R. (2009). The brian simulator.Front. Neurosci.3,
192–197. doi: 10.3389/neuro.01.026.2009

Gough, B. (2009).GNU Scienti�c Library Reference Manual. Godalming, UK:
Network Theory Ltd.

Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., and Völkel, S. (2008).
“Monticore: a framework for the development of textual domain speci�c
languages,” inCompanion of the 30th International Conference on Software
Engineering(Leipzig: ACM), 925–926.

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M.
(2010). A general and e�cient method for incorporating precise spike
times in globally time-driven simulations.Front. Neuroinform. 4:113.
doi: 10.3389/fninf.2010.00113

Hines, M., and Carnevale, N. (2000). Expanding NEURON's repertoire
of mechanisms with NMODL. Neural Comput. 12, 995–1007.
doi: 10.1162/089976600300015475

Izhikevich, E. M. (2003). Simple model of spiking neurons.IEEE Trans. Neural
Netw.14, 1569–1572. doi: 10.1109/TNN.2003.820440

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., andHudspeth,
A. (2013).Principles of Neural Science, 5th Edn.New York, NY: McGraw-Hill
Education.

Krahn, H. (2010).MontiCore: Agile Entwicklung von domänenspezi�schen Sprachen
im Software-Engineering Aachener Informatik-Berichte, Software Engineering.
Herzogenrath: Shaker Verlag.

Krahn, H., Rumpe, B., and Völkel, S. (2007). “E�cient Editor Generation
for Compositional DSLs in Eclipse,” inDomain-Speci�c Modeling Workshop
(DSM'07). (Jyväskyla: Jyväskylä University).

Kunkel, S., Diesmann, M., and Morrison, A. (2010). Limits to the development of
feed-forward structures in large recurrent neuronal networks.Front. Comput.
Neurosci.4:160. doi: 10.3389/fncom.2010.00160

Kunkel, S., Morrison, A., Weidel, P., Eppler, J. M., Sinha, A., Schenck, W., et al.
(2017). NEST 2.12.0. Available online at: zenodo.org/record/259534/export/hx

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G.,
Igarashi, J., et al. (2014). Spiking network simulation code for
petascale computers.Front. Neuroinform. 8:78. doi: 10.3389/fninf.2014.
00078

Lambert, J. D. (1992).Numerical Methods for Ordinary Di�erential Systems. New
York, NY: Wiley.

Meurer, A., Smith, C. P., Paprocki, M.,�Certík, O., Kirpichev, S. B., Rocklin, M.,
et al. (2017). SymPy: symbolic computing in Python.PeerJ Comput. Sci.3:e103.
doi: 10.7717/peerj-cs.103

Mir Seyed Nazari, P. (2017).MontiCore: E�cient Development of Composed
Modeling Language Essentials. Aachener Informatik-Berichte, Software
Engineering, Band 29, Herzogenrath: Shaker Verlag.

Morris, C., and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle
�ber. Biophys. J.35, 193–213. doi: 10.1016/S0006-3495(81)84782-0

Morrison, A., Straube, S., Plesser, H. P., and Diesmann, M. (2007).
Exact subthreshold integration with continuous spike times in
discrete-time neural network simulations.Neural Comput. 19, 47–79.
doi: 10.1162/neco.2007.19.1.47

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse
transmission line simulating nerve axon.Proc. IRE. 50, 2061–2070.
doi: 10.1109/JRPROC.1962.288235

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing
polychronization: a guide to maximizing the reproducibility of spiking network
models.Front. Neuroinformat.12:46. doi: 10.3389/fninf.2018.00046

Petzold, L. (1983). Automatic selection of methods for solving sti� and nonsti�
systems of ordinary di�erential equations.SIAM J. Sci. Statist. Comput.4,
136–148. doi: 10.1137/0904010

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Morrison, A., and Rumpe, B.
(2016). “NESTML: a modeling language for spiking neurons,” inModellierung
2016 Conference, Vol 254 ofLNI, (Bonn: Bonner Köllen Verlag), 93–108.

Potjans, T., and Diesmann, M. (2012). The cell-type speci�c cortical microcircuit:
relating structure and activity in a full-scale spiking network model.Cereb.
Cortex24, 785–806. doi: 10.1093/cercor/bhs358

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling.Biol. Cyber.81, 381–402.
doi: 10.1007/s004220050570

Rumpe, B. (2017).Agile Modeling with UML: Code Generation, Testing, Refactoring.
Berlin; Heidelberg: Springer International.

Schindler, M. (2012).Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der
UML/P. Aachener Informatik-Berichte, Software Engineering, Band 11,Shaker
Verlag.

Shampine, L. (1983). Type-insensitive ode codes based on extrapolation methods.
SIAM J. Sci. Statist. Comput.4, 635–644. doi: 10.1137/0904044

Shampine, L. (1991). Diagnosing sti�ness for RungeKutta methods.SIAM J. Sci.
Statist. Comput.12, 260–272. doi: 10.1137/0912015

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-
oriented speci�cation of neural models for simulations.Front. Neuroinformat.
8:6. doi: 10.3389/fninf.2014.00006

Strehmel, K., and Weiner, R. (1995).Numerik gewöhnlicher Di�erentialgleichungen.
Wiesbaden: B.G. Teubner.

Tiller, M. (2001).Introduction to Physical Modeling With Modelica. Dordrecht:
Kluwer Academic Publishers.

van Albada, S. J., Helias, M., and Diesmann, M. (2015). Scalabilityof
asynchronous networks is limited by one-to-one mapping between
e�ective connectivity and correlations.PLoS Comput. Biol.11:e1004490.
doi: 10.1371/journal.pcbi.1004490

Völkel, S. (2011).Kompositionale Entwicklung domänenspezi�scher Sprachen.
Aachener Informatik-Berichte, Software Engineering, Band 9, Shaker Verlag.

Walter, W. (2000).Gewöhnliche Di�erentialgleichungen. Berlin: Springer.
Westermann, T. (2010).Mathematische Probleme lösen mit Maple. Berlin: Springer.

Con�ict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or �nancial relationships that could
be construed as a potential con�ict of interest.

Copyright © 2018 Blundell, Plotnikov, Eppler and Morrison. Thisis an open-access
article distributed under the terms of the Creative CommonsAttribution License (CC
BY). The use, distribution or reproduction in other forums ispermitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neuroinformatics | www.frontiersin.org 17 October 2018 | Volume 12 | Article 50

