
Component-based Integration of Interconnected Vehicle Architectures*

Alexander David Hellwig1, Stefan Kriebel2, Evgeny Kusmenko1, Bernhard Rumpe1

Abstract— Mapping the logical software architecture of a
vehicle to a technical solution is not a straightforward task.
A particular challenge is communication: software components
developed by different teams and deployed across the E/E
architecture need to be able to exchange data. Middleware
solutions have been developed to enable low coupling of
distributed logical software components. Building a distributed
architecture on a middleware solution is mostly accomplished
by encapsulating logical components into middleware wrappers.
This is not only time-consuming, but also requires platform-
specific understanding, and results in a multitude of archi-
tectural variants tailored for particular set-ups. For instance,
lengthy validation processes ensuring functional correctness
and safety require simulations of intelligent vehicle systems in
different simulators, environments, and on different abstraction
levels. This leads to the necessity of individual integration
schemes for both simulation and deployment. We propose
a component-based modeling approach separating platform-
agnostic logical models from middleware aspects. Therefore, the
model compiler is instrumented with middleware tags related
to the elements of the logical model. Generating the required
middleware code automatically, we aim at better component
re-usability minimizing the need for hand-crafted glue-code for
interprocess and simulator integration.

I. INTRODUCTION

The integration of automotive E/E architectures is a chal-
lenging process. Software components are often developed
by different teams or suppliers and need to be integrated
afterwards. Thereby, they are likely to be distributed across
different Electronic Control Units (ECUs) of the vehicle and
need to communicate over a network. In V2X communica-
tion this challenge is further intensified as traffic participants
need to be able to talk to peers they have never seen before.

To maintain low coupling between logically independent
components, middleware solutions such as Robot Operating
System (ROS) provide common protocols and implementa-
tions for different platforms [1]. Two parties communicating
via a middleware neither need to know each other, nor do
they have to run on the same platform. Technical aspects of
the communication as well as data conversion are handled
by the middleware.

Usually, logical components are enriched with middle-
ware code by encapsulating them into middleware wrappers.
The architect then assembles the wrapped components into
a system architecture. Although, the logical components
remain untouched, the composed architecture is polluted

*This work was supported by the Grant SPP1835 from DFG, the German
Research Foundation.

1Department of Software Engineering, Faculty of Computer Science,
RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany
alexander.hellwig@rwth-aachen.de,
{kusmenko,rumpe}@se-rwth.de

2BMW Group, Munich, Germany, stefan.kriebel@bmw.de

by middleware-specific details. Changing the middleware
requires re-writing the middleware code and leads to new
architectural variants although the logical model remained
the same.

Since interconnected vehicles are not isolated software
entities, but rather complex Cyber-Physical Systems (CPSs),
tests are usually supported by simulators. Integrating a
software component under test into a simulator is often
realized using middleware solutions, as well. Simulators such
as Gazebo [2], MontiSim [3], [4], and CoinCar [5] pro-
vide middleware interfaces to exchange sensor and actuator
commands with external processes. However, through the
course of development tests might require different simulator
environments. Adapting the architecture under test to another
simulator interface at every development stage leads to a
multitude of test variants requiring a lot of maintenance, but
without providing additional functional value.

We propose a component-based modeling approach sep-
arating platform-agnostic logical models from middleware
aspects. Therefore, the model compiler is instrumented with
middleware tags related to logical model elements such
as ports. The tags contain a minimum set of information
required to generate the middleware code automatically. If
another middleware scheme is required, e.g. if ROS needs
to be replaced with ROS2, all we need to do is to exchange
the middleware model. Tag-based compiler instrumentation
enhances component re-usability while minimizing the need
for variant management and hand-crafted glue-code for in-
terprocess and simulator integration.

In section II we give a brief overview of the component-
based engineering concepts this work is based on. Section III
presents a running example to illustrate the problems we
want to tackle. The core of this work covering code gen-
eration is given in section IV. In section V we present
an evaluation project to demonstrate the proposed approach
in action. Section VI provides a comparison of related ap-
proaches to distributed systems modeling. We conclude our
work in section VII. More examples are provided on the pa-
per website http://www.se-rwth.de/materials/
middleware/.

II. BACKGROUND

While in mechanical engineering it is common to decom-
pose a system in its physical parts, the software engineering
approach is to find appropriate levels of abstraction and to
refine them until a state is reached where the final system
can be assembled. The Component & Connector (C&C)
modeling paradigm known from tools such as Simulink has
been widely used in engineering domains to tackle system

146

[HKKR19] A. Hellwig, S. Kriebel, E. Kusmenko, B. Rumpe:
Component-based Integration of Interconnected Vehicle Architectures.
In: 30th Intelligent Vehicles Symposium (IV'19). Workshop on Cooperative Interactive Vehicles, 2019.
www.se-rwth.de/publications/

architecture design in a divide and conquer manner. The
system under development is broken down into components
which in turn can be hierarchically subdivided into further
subcomponents. A component is a functional block fulfilling
a self-contained task. A component’s interface is given by
a set of typed data entry and exit points called ports.
Components only exchange data if their ports are connected
by a connector. The question to be answered in this work
is how communication schemes for C&C architectures
can be modeled without adapting the functional models.
The presented concepts are not bound to a specific language,
but can be transferred to any textual or graphical C&C
language.

We will build our middleware modeling framework on top
of EmbeddedMontiArc (EMA), a family of textual Domain
Specific Modeling Languages (DSMLs) developed for CPS
and embedded systems design [6], [7]. As is inherent to
the C&C paradigm, components are first-level citizens in
EMA and can be defined using the component keyword
followed by a name and optionally a set of parameters as
depicted in our example model in fig. 1. The body of a
component contains a type-safe interface defined by a set
of named input and output ports, c.f. lines 2-5. To define
the component’s behavior, it is decomposed into smaller
subcomponents, which are instantiated using the instance
keyword followed by the component type to instantiate,
c.f. lines 6-8. Finally the ports of the subcomponents are
reconnected using the connect operator, thereby defining
the data flow of the system, c.f. lines 9-12.

EMA provides an abstract math oriented type system with
the primitive types Z, Q, and C denoting integers, rational,
and complex numbers, respectively. A primitive type can be
enriched by a range, a resolution, and a corresponding SI unit
which facilitates modeling physical processes and imperfect
devices’ properties: Q(-2.7V : 100mV : +2.7V) de-
notes a voltage variable taking values from -2.7 V to 2.7 V
in 0.1 V steps. Since many CPS tasks rely on matrix calculus,
a primitive type can be extended to a matrix by specifying
its dimensions, e.g. Qˆ{2,3}. The dimensions are fixed at
compile-time and cannot be changed at runtime, facilitating
verification, contributing to system robustness, and enabling
the EMA code generator to produce high performance code.

To demonstrate the generation of distributed architectures,
we will use ROS [8]. ROS is a platform independent middle-
ware designed for the development of robotics applications.
In particular, it enables asynchronous communication of
distributed components using the publisher/subscriber pat-
tern: ROS nodes can share data by publishing it to named
and typed topics. Other nodes can receive this data by
subscribing to the topics of interest.

III. RUNNING EXAMPLE AND PROBLEM STATEMENT

Consider the collision-preventing cooperative intersection
controller modeled as a C&C architecture depicted in fig. 5.
It analyzes trajectories of vehicles approaching an intersec-
tion and warns those heading towards a collision. Such a
system might be deployed in a Roadside Unit (RSU), a

master vehicle of a local traffic system (LTS) [9], or in a
testbed receiving data from a simulator.

The corresponding textual EMA syntax is given in fig. 1.
For simplicity of notation we keep the types abstract and

1component IntersectionController{

2

ports in Time timeCutoff,

3 in Trajectory trajectory[n],

4 in Boolean isActive,

5 out Boolean stop[n];

6

instance SingleSetCompare compare;

7 instance TrajectoryCollision trajCollision[x];

8 instance CollisionToStop collisionToStop;

9

connect trajectory[:] -> compare.trajectoryIn[:];

10 connect timeCutoff -> trajCollision[:].timeCutoff;

11 connect collisionToStop.stop[:] -> stop[:];

12 /* other connections */ }

instances of subcomponents defined in other artifacts

direction type name

source port(s) target port

Fig. 1: IntersectionController in written in EMA

leave out details irrelevant for the problem statement. The
system receives the planned trajectories of nearby vehicles
(trajectory[n]), a minimum safety time interval be-
tween two vehicles passing the intersection (timeCutoff),
as well as the isActive signal to activate or deactivate
the controller (lines 2-4). Furthermore it is expected to
output stop signals to vehicles that currently drive on
a dangerous trajectory (line 5) forcing these vehicles to
decelerate. Following the divide-and-conquer principle we
decompose our system into multiple subcomponents (lines
6-8): a SingleSetCompare component will create all
possible pairs of trajectories which are then supplied to a
proportional number of TrajectoryCollision compo-
nents. The latter will check each trajectory pair for dangerous
overlaps. Based on these overlaps, the CollisionToStop
component determines a subset of vehicles that need to be
stopped and informs them by sending a stop signal. The data
flow is defined by reconnecting the ports of the system in
lines 9-12.

An E/E modeling methodology for such a system should
fulfill the following requirements: R1 Middleware agnostic
(models): Domain models must remain middleware-agnostic
to ensure re-usability in different environments as well as
independence of the technical realizations. R2 Middleware
agnostic (generator): The C&C and behavior code generator
must remain middleware-agnostic and must not generate any
middleware-related code. R3 Minimization: As middleware
communication is expensive, it must not be used unless
required (explicitly or implicitly) by the modeler. For all
other data flows in the model the standard tight-coupling
communication pattern as offered by the core generator must
be used. R4 Semantics invariance: The semantics of the
code generated by the core generator must remain untouched,
i.e. preserving the scheduling and synchronization concepts.
R5 Build infrastructure: The generated target code must
include a build configuration providing the required depen-

147

dencies and linking the artifacts. R6 Middleware coupling:
The combination of different middleware in one single model
must be possible.

In the following sections we are going to present a model-
based solution for middleware component communication
living up to the aforementioned requirements.

IV. TAG-BASED MULTI-PLATFORM CODE GENERATION

EMA was developed for modeling embedded systems,
i.e. systems often having a limited amount of resources
but expected to deliver fast response rates or even real-
time behavior. Based on the supplied Abstract Syntax Tree
(AST) and the Symbol Management Infrastructure (SMI) of
the model, the EMA code generator produces plain C++
code for the architecture and component communication. In
contrast to some other component-based languages, EMA
refrains from the use of a runtime scheduler. Instead, the
scheduling is based on the sorted order algorithm known
from Simulink. The data flow is analyzed at compile time
and each component is tagged with an execution order ID.
The execution order list is then used by the generator to
create a static synchronous execution model.

To tackle the requirements introduced in section III we
are going to present a tagging-based approach for generator
instrumentation. Tagging provides a non-invasive way to
enrich models with additional information such as extra-
functional properties. In this paper we will use tags to
declare middleware-specific information, thereby preserving
the agnostic requirement (R1): the C&C model itself does not
contain any middleware-specific elements, the tagging model
is defined as a separate artifact. A tagging model is a list of
tags, each declaring the name of the model element in the
referenced C&C model (which can be either a component
or a port in a C&C language), the tag type carrying the
semantic information, as well as some data refining the tag
type. For our middleware tagging scheme we only allow
attaching tags to ports. By adding a tag of a middleware
type to a port (e.g. a ROS tag), we specify that the message
exchange with its counterpart should be realized using the
communication pattern of the indicated middleware, e.g. the
ROS publisher/subscriber pattern. Furthermore, the tag can
carry ROS specific configuration data including the data type
and the topic name.

To ensure that the existing EMA-to-C++ code generator
remains free of middleware-specific code, as required in
R2, we maintain a loose coupling between the middleware
generation process and the core C++ generator. Therefore,
we decide to use the core generator as a black box and to
develop a separate generator for each supported middleware.
This requires coordination of the generation workflow and
extension points for middleware generators. A well-suited
design pattern for this problem is the star-bridge which
extends the abstraction of the standard bridge [10] by ar-
bitrarily many variation points for the implementation. The
resulting architecture for our generator coupling mechanism
is depicted in fig. 2.

MainGenerator

generate(ECIS comp)

add(GeneratorImpl genImpl)

remove(GeneratorImpl genImpl)

CoordinatingGenerator

generateCoordination()

...

«interface»

GeneratorImpl

generate(ECIS comp)

GeneratorCpp

generate(ECIS comp)

GeneratorRosCpp

generate(ECIS comp)

GeneratorMqttCpp

generate(ECIS comp)

...

*
1

ECIS ≙ ExpandedComponentInstanceSymbol

for each g in genImpls:

g.generate(comp);

genImpls

Fig. 2: Overview of the generator coupling architecture

The MainGenerator is an abstraction of
the generation workflow. The concrete coupling
mechanisms of the generated code are provided in the
generateCoordination() method of its subclass
CoordinatingGenerator. The coordinating generator
produces an infrastructure to initialize, couple and call
all the other generated system parts. Furthermore, the
MainGenerator manages the set of needed code
generators, the implementation parts of the star-bridge.
Note that the list of concrete generators implementing
GeneratorImpl includes both the EMA generator to
generate the actual application logic as well as all the
middleware generators.

All of these generators are unaware of each other’s exis-
tence producing completely independent artifacts controlled
only by the coordinating generator. The presented generator
coupling approach is tailored to our specific problem and
therefore extremely efficient: under the assumption that the
core EMA generator produces code exhibiting a well-defined
interface for accessing the ports of the C&C model, all mid-
dleware generators can create compliant middleware adapters
without knowing more about other generators involved.

Note that the C&C model and the middleware model
reside in two separate files, c.f. fig. 1 and fig. 4. However, the
parser composes an intermediate representation of the two
models, thereby creating a common AST and symbol table
making it possible for the generators to navigate from the
ports of the C&C model directly to the corresponding tags of
the middleware model. Based on the composed intermediate
model, all necessary artifacts including architecture, behav-
ior, and middleware code are produced by the respective
generators.

The architecture of the generated C++ code for the running
example can be seen in fig. 3. Each middleware generator
outputs a middleware adapter for the ports specified in the
tag model of fig. 4 implementing the IAdapter interface.
This interface contains an init(...) and a publish()
method both to be used by the coordinator to control the
communication. The former receives the component instance
to be adapted as argument thereby creating the link between
adapter and adaptee. Furthermore, it registers the adapter in
the middleware system, e.g. by subscribing for a certain ROS

148

InControllerCoordinator

tick()

InController

init()

execute()

Time cutoffTime

Boolean isActive

...

1

1

1 *

«interface»

IAdapter

init(InController* comp)

publish()

InControllerRosAdapter

controller
stopPublisher

...

isActiveSubscriber

...

init(InController* comp)

publish()

isActiveCallback(Boolean msg)

...

InControllerMqttAdapter

inController.execute();

for each a in adapters:

a.publish();

adapters

...

inController.isActive = msg;

inController

CoordinatingGenerator

GeneratorCpp

GeneratorMqttCpp

GeneratorRosCpp

InController ≙ IntersectionController

Fig. 3: Overview of the generated C++ code

topic. The latter is invoked periodically at the end of each
execution cycle to publish the data at the adaptee’s output
ports. Moreover, an adapter obtains a middleware-specific
callback function which is triggered by the middleware
whenever new data becomes available and forwards this data
to the corresponding input port of the EMA component.
Since the coordinator can manage multiple adapters for one
component, combinations of different middleware inside one
model and even for the same port are possible satisfying R6.

To keep the semantics of the original C++ code, as re-
quired by R4, there is no synchronization between the system
execution and middleware communication. A component is
executed by the coordinator periodically without waiting for
new inputs to arrive. If the middleware has not provided new
data until the beginning of an execution cycle, the component
will be executed using old data at the respective input ports.

Hence, leaving the original EMA-to-C++ generator un-
touched by the middleware generation process ensures that
the previously discussed efficient synchronous execution
model of EMA is not influenced by middleware. Genera-
tion of the technical communication infrastructure is also
separated from the generation of the logic.

Now let’s go back to our running example presented in
fig. 1. To ensure that the tag model for the intersection

1tags RosTags{

2

tag intersectionController.timeCutoff with RosConnection =

{topic= (name=/timeCutoff, type=struct_msgs/Time)};

3

tag intersectionController.isActive with RosConnection =

{topic= (name=/isActive, type=struct_msgs/Boolean)};

4
tag intersectionController.collisionToStop.activeIn with

RosConnection;

5tag intersectionController.compare.outA[1] with RosConnection;

6[...]}

tag value

RosConnection with incomplete information()

RosConnection with complete information()

tagged symbol tag type

Fig. 4: Tag model for the running example

controller given in fig. 4 is valid, it is first checked against
the corresponding tag scheme. The scheme we use here
allows one to tag ports of component instances with all
the necessary information needed to generate the desired
middleware code. The middleware to use is specified using
the tag port with type syntax. In the given model,
ROS is the only middleware used, and hence all the ports
are tagged with a RosConnection tag type.

The middleware-specific message description such as a
ROS message type is generated automatically based on
the port type information of the EMA model, e.g. for the
outA[1] port of the SingleSetCompare component in
line 5 of fig. 4. This automation however is not applicable
if the generated code needs to be compliant with third-party
systems, e.g. a simulator having predefined message types
and topic names for its sensors and actuators. For ports at
system boundaries the user can instruct the generator to use
a predefined type and topic name, c.f. lines 2 and 3 in fig. 4.

Note that the underspecified activeIn port receives its
data directly from the isActive port of the parent com-
ponent which has explicit ROS type and topic information.
In this case, the middleware tag of the parent component
overrides the underspecified tag of the child component as
depicted in fig. 5.

Now that the composed intermediate model has been
enriched with all the necessary middleware meta-data, par-
ticularly by appending full middleware information to the
tagged PortSymbols in the common symbol table, we
use so called context conditions to verify that the user
has defined a meaningful communication scheme. First,
two ports can only be connected if they have either no
or corresponding middleware tag types. Second, ports with
middleware tags need to have compatible middleware meta-
data, e.g. compatible message types and equal topic names
for ROS. An overview of the files generated by the toolchain
and the source code of the generated adapters can be found
on the paper website.

The generated project hierarchy comes with all build
files required to compile and link the projects, fulfill-
ing requirement R5. The resulting architecture exhibit-
ing the coupling between the coordinator, the adapters,
and the actual application logic is depicted in fig. 3.
Note once again, how the system is governed by the
IntersectionControllerCoordinator. In the ini-
tialization phase the coordinator creates an instance of
the IntersectionController and hands over its
pointer to the adapter objects. In the operation phase,
the coordinator triggers the execute() method of the
IntersectionController and the publish methods
of the adapters within a predefined frequency.

Now consider the CollisionToStop and the
multiple TrajectoryCollision components in our
IntersectionController example. The question
arises why a developer would want to let subcomponents
inside a self-contained system communicate via an
expensive middleware connection instead of simple C++
calls as produced by the EMA core generator for systems

149

normal EMAM-Port

EMAM-Port with incomplete ros connection(no topic name or type)

EMAM-Port with complete ros connection

. . .

IntersectionController

SingleSetComparetrajectory[1]

outA[1]

..
.

trajectory[n]

. . .

outB[1]

TrajectoryCollision[1]

CollisionToStop

outA[x] outB[x]

isActive

. . .

. . .

stop[1] stop[n]

collision

creates all x = n(n-1)/2 pairs of trajectories
without repetition and without order

TrajectoryCollision[x]

collision

timeCutoff . . .

copy RosConnection
from super component . . .

generate RosConnection

activeIn

Fig. 5: Propagation of ros connections

run in a single process. The intention here is to model a
distributed system architecture and to deploy it on different
ECUs of a CPS.

This is achieved by assuming that our C&C model is an
undirected graph where each component is represented by a
node. Two nodes are connected with each other if and only if
there is at least one non-middleware connector between the
corresponding components in the C&C model. The resulting
graph can now be clustered into disjoint partitions such that
two nodes belong to the same partition if and only if there is a
path between them. The obtained partitions are equivalent to
clusters containing the components which need to be gener-
ated as plain C++ code. By performing the graph partitioning
on our running example we can conclude that the specified
ROS connections split the system into two clusters. Since the
SingleSetCompare component only has ROS ports, it
needs to reside in its own cluster. The CollisionToStop
and TrajectoryCollision components end up in the
second cluster, as they are connected by non-middleware
connectors.

For each cluster we run the generator workflow separately
to obtain an independently executable component for each
ECU. The intermediate model is split up accordingly and
each generation process receives only the part corresponding
to the components of its cluster.

The described procedure enables a compact description
of a distributed yet loosely coupled system architecture in
a single model while the generator ensures that there is no
middleware communication inside a partition, fulfilling the
minimization requirement R3.

V. EVALUATION

To test our system, we employ the ROS-based CoInCar
simulator [5]. TC1: in a series of simulations, we want to
verify that our intersection controller can prevent vehicle

collisions on a 4-way intersection under non-optimal commu-
nication conditions between the controller and the vehicles.

In the test scenario two vehicles drive towards an intersec-
tion with randomized starting positions and velocities. To test
the robustness of the controller a network delay between 0
and 1.5 s and a message drop chance of 0 to 100% is added.
The vehicles have no intelligence and only stop upon a signal
from the intersection controller. The crash rate is recorded
to evaluate the system performance.

To integrate our cooperative intersection system with Co-
InCar’s sensor and actuator system we enrich our model
with ROS tags. As CoInCar prescribes the topics and data
types, we adopt this information in the port tags instead of
generating new message types for the respective ports. The
only glue code we have to write addresses a fundamental
difference between the used technologies: the simulator relies
on dynamically sized arrays for the desired trajectories and
EMA only supports fixed size arrays. Therefore, we have to
write a converter cutting or padding these messages to a fixed
size. The whole system, including the ROS code and build
files, is then generated automatically while the driving model
itself does not contain any middleware related information
and could be re-used in other contexts.

020406080100

0

10

20

40

drop rate[%]
delay[s]

cr
as

h
ra

te
[%

]

Fig. 6: Crash rate in relation to network delay and drop rate

From the simulation results, depicted in fig. 6, we can
confirm that TC1 is successful. For network delays of
up to 250 ms and package drop rates of up to 80% the
controller prevents collisions. Using a middleware model
reduces the time to integrate the controller into the simulator
significantly. The developer neither has to understand the im-
plementation of the functional EMA model, nor to write ROS
code. Whenever the functional model needs to be integrated
into another simulator or a real system, all the developer
needs to do is adapting the middleware tags. We observed
that using EMA coupled with middleware tags to describe
ROS-based communication eliminates several error sources
and design pitfalls. Since the generated architecture is based
on EMA semantics it forbids the following communication
anti-patterns which are possible when writing ROS code

150

in C++ or Python (as long as all ROS components are
situated inside a single model): first, in contrast to hand-
written ROS code the type compatibility of publisher and
subscriber is checked at compile time; second, it is not
possible to publish to a topic nobody listens to and vice
versa as an EMA model explicitly specifies a communication
scheme by its connectors. Hence, misspelled topic names are
identified at compile-time. Third, since EMA allows only one
incoming connector per input port, it is not possible to let
two publishers publish to the same topic. We observed that
this eliminates overhead, e.g. adding sender information to
each message. Hence, our generative modeling approach is
an example, where the abstraction brought by model-based
software engineering controls the usage of the underlying
platform in a restrictive way reducing potential error sources.

VI. RELATED WORK

In Simulink [11] middleware communication is modeled
using predefined components. The Robotics System Toolbox
provides the Blank Message to create empty messages which
can be modified using bus assignments, the Publish compo-
nent to publish data to a specific topic, as well as a Subscribe
component to receive data from another ROS publisher.
The logical architecture is polluted with middleware-related
components; the user needs to use Simulink’s variability
modeling functionality in order to keep track of different
model variants emerging throughout the development cycle.
Aspect-oriented programming (AOP) can be used to add
additional functionality as Advices to Pointcuts in a model
[12]. Our tagging-based approach is specialized to extend
the original behavior of a port with a middleware adapter.
Thereby, the compiler combines the original logical model
and the tags into a final consistent model guaranteeing
type-safety. This is typically not possible with AOP, but
indispensable for safety-critical systems.

Interface Description Languages (IDLs) can be used to
describe communication between the components of a sys-
tem in a platform independent way. Since EMA already
describes the interface between components with ports and
connectors, no additional IDL is needed. The tagging-based
approach also allows us to create a single consistent model
that contains all middleware-specific information, which can
therefore be included in the static analysis of the model.
Support for specific IDLs, such as CORBA IDL [13], can
be added to our framework in the same way as ROS.

Platform-based design (PBD) is a model-based approach
focused on orthogonalization of concerns [14]. The modeler
splits the system into different levels of abstraction, called
platforms, and describes their relationships using mappings.
Each platform contains a number of components, which ei-
ther contain a behavior or a communication model (including
middleware). In contrast, our tag-based approach stores all
middleware-specific information outside of components and
ensures that maintainability and testablilty of the core model
are not affected by the communication paradigm.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a self-contained component-
based engineering methodology for the development and
integration of distributed cooperative systems. It enables the
system designer to concentrate on the system’s functionality
while abstracting away from the technical realization. Mid-
dleware information can be specified in a dedicated tagging
model, thereby separating the logical components from the
integration scheme in a clean way while maintaining type-
safety between the models. The toolchain enables the gener-
ation of loosely coupled distributed architectures as well as
a seamless integration into existing simulators straight out of
the C&C models.

REFERENCES

[1] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an Open-Source
Robot Operating System. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[2] Nathan Koenig and Andrew Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In Intelligent
Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on, volume 3, pages 2149–2154. IEEE, 2004.

[3] Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard
Rumpe, and Michael von Wenckstern. Simulation Framework for
Executing Component and Connector Models of Self-Driving Vehi-
cles. In Proceedings of MODELS 2017. Workshop EXE, CEUR 2019,
September 2017.

[4] Christian Frohn, Petyo Ilov, Stefan Kriebel, Evgeny Kusmenko, Bern-
hard Rumpe, and Alexander Ryndin. Distributed Simulation of
Cooperatively Interacting Vehicles. In International Conference on
Intelligent Transportation Systems (ITSC’18), pages 596–601. IEEE,
2018.

[5] Maximilian Naumann, Fabian Poggenhans, Martin Lauer, and
Christoph Stiller. Coincar-sim: An open-source simulation framework
for cooperatively interacting automobiles. In IEEE Intl. Conf. Intelli-
gent Vehicles, 2018.

[6] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael
von Wenckstern. Modeling Architectures of Cyber-Physical Systems.
In ECMFA, 2017.

[7] Evgeny Kusmenko, , Bernhard Rumpe, Sascha Schneiders, and
Michael von Wenckstern. Highly-Optimizing and Multi-Target Com-
piler for Embedded System Models. In Conference on Model Driven
Engineering Languages and Systems (MODELS’18). IEEE, October
2018.

[8] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS:
an open-source Robot Operating System. In Proc. of the IEEE Intl.
Conf. on Robotics and Automation (ICRA) Workshop on Open Source
Robotics, May 2009.

[9] Jens Dankert, Christian Dernehl, Lutz Eckstein, Stefan Kowalewski,
Evgeny Kusmenko, and Bernhard Rumpe. RapidCoop - Robuste
Architektur durch geeignete Paradigmen für Kooperativ Interagierende
Automobile. In Automatisiertes und Vernetztes Fahren (AAET’17),
February 2017.

[10] Erich Gamma. Design patterns: elements of reusable object-oriented
software. Pearson Education India, 1995.

[11] Mathworks Inc. Simulink User’s Guide. Technical Report R2016b,
MATLAB & SIMULINK, 2016.

[12] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In European conference on object-oriented program-
ming, pages 220–242. Springer, 1997.

[13] Jon Siegel and Dan Frantz. CORBA 3 fundamentals and programming,
volume 2. John Wiley & Sons New York, NY, USA:, 2000.

[14] Kurt Keutzer, A Richard Newton, Jan M Rabaey, and Alberto
Sangiovanni-Vincentelli. System-level design: orthogonalization of
concerns and platform-based design. IEEE transactions on computer-
aided design of integrated circuits and systems, 19(12):1523–1543,
2000.

151

