
Enhancing System Model Quality: Evaluation of the
Systems Modeling Language (SysML)-Driven Approach

in Avionics

Hendrik Kausch,∗ Mathias Pfeiffer,∗ Deni Raco,† and Bernhard Rumpe‡

RWTH Aachen University, Aachen, 52074 North Rhine-Westphalia, Germany

and

Andreas Schweiger§

Airbus Defence and Space GmbH, Manching, 85077 Bavaria, Germany

https://doi.org/10.2514/1.I011476

Quality of software strongly depends on the quality of the models that are used throughout the phases of a

development process. Therefore, ensuring model quality is an important aspect that makes a significant contribution

to product quality. Todetermine its contribution to product quality,model qualitymust be evaluated anddemonstrated

using suitable indicators. In this paper, the influence of a holistic systems development approach on model quality is

evaluated using a use case from the avionics domain. The model artifacts developed in Systems Modeling Language

(SysML) version 2 are evaluated in terms of internal, external, and notation quality. A total of 26 indicators are

considered to determinemodel quality.Whereas internal indicators are defined for individualmodel artifacts, external

indicators are defined over multiple model artifacts. Several of the indicators are positively influenced by the

expressiveness of the modeling language and the underlying mathematical semantics. Other indicators depend on the

methodological guidelines that control the development process. In summary, it can be stated that the application of the

presented development approach contributes to high model quality and thus high product quality.

I. Introduction

A. Models in Computer Science

T HE size [1,2] and the degree of complexity of software are

continuously increasing. These trends make it more and more

difficult for software development engineers to fully understand a

software systemwith the aforementioned properties in order to build,

update, or maintain it. To achieve the neededmanageability of a com-

plex software system (i.e., systems composed of numerous interact-

ing components, hierarchical layers, huge state-spaces, and large

input sets) adequatemechanisms (e.g., divide and conquer or suitable

modeling) are necessary. Modeling is one of the essential tasks of

computer science [3–5]: Real-world elements (e.g., messages) need

to be mapped to an adequate model for rendering it processable by a

computer. To this end, a model is expressed by a particular syntactic

representation (e.g., programming language). The representation

abstracts from the object under consideration to depict the properties

relevant for the intended purpose. Accordingly, the resulting models

can be characterized with the following properties [6]:
1) Image: Models are always related to an original that they

represent.
2) Abbreviation:Models generally do not capture all attributes of

the original they represent, but abstract from them as required for the
respective purpose or use case.
3)Pragmatism:Models are not uniquely assigned to their originals

per se, but fulfill a replacement function for certain subjects under
certain restrictions (purpose and boundary conditions of the model
construction). This means that models are subject to variability with
regard to the aspects mentioned in this bulleted list.

In addition to this differentiation, a distinction can be made

between descriptive and prescriptive models, each of which describe

their purpose:
1) A descriptive model describes an original for easier under-

standing of a fact (e.g., a city map).
2) A prescriptive model describes the way in which an original is

going to be created (e.g., a development plan).
In practice, the graphical representation of models is given a sig-

nificant value, although it can be regarded as syntactic shorthand in

models (i.e., syntactic sugar) only, because the corresponding semantics

is ideally given by the underlying mathematical foundation and the

visualization is only another form of representation of the same proper-

ties. Nevertheless, the importance of graphical representation is under-

pinned by the broad acceptance of semiformal modeling languages

such as Unified Modeling Language (UML) for software [7] or Sys-

temsModeling Language (SysML) for system development in both the

academic and industrial domains. Software development in safety-

critical domains is guidedby standards such asED-12C [8]. The current

version SysML v2¶ [9] is in the beta phase. In addition to the expansion

and updating of the graphical syntax, the main new features compared

to the previous version are a textual representation and more precise

semantics.

A model is the most important artifact of model-driven develop-

ment, so its quality is crucial to the success of a project [10]. For

this reason, quality assurance guidelines such as the IEC 61508 [11]

standard rightly propose an adequate quality of models in the devel-

opment process. In particular, quality requirements for models also

include requirements for the modeling notation in use.

B. Contribution of the Paper

The objective of this paper is to evaluate whether a model-driven

approach can increase model quality in the avionics domain. Model-

driven development is an indispensable means of mastering the

increasing complexity of software. Because product quality is deter-

mined by the quality of themodels, guidancemust be provided on how

this quality can be achieved. In this way, model-driven development

can generate positive effects on product quality. Furthermore, because

somesystemproperties cannot be fully verifiedby tests and canonly be

Received 17 May 2024; accepted for publication 29 October 2024; pub-
lished online Open Access 23 January 2025. Copyright © 2025 by The
Authors. Published by the American Institute of Aeronautics and Astronau-
tics, Inc., with permission. All requests for copying and permission to reprint
should be submitted to CCC at www.copyright.com; employ the eISSN 2327-
3097 to initiate your request. See also AIAA Rights and Permissions www.
aiaa.org/randp.

*Research Fellow, Chair of Software Engineering.
†Research Fellow, Chair of Software Engineering; raco@se-rwth.de (Cor-

responding Author).
‡Professor, Chair of Software Engineering.
§System Architect, Embedded Real-Time Software Development. ¶SysML v2 Official Specification https://github.com/Systems-Modeling.

Article in Advance / 1

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

[KPR+25] H. Kausch, M. Pfeiffer, D. Raco, B. Rumpe, A. Schweiger:
Enhancing System Model Quality: Evaluation of the
Systems Modeling Language (SysML)-Driven Approach in Avionics.
In: Journal of Aerospace Information Systems, Volume 22(2), pp. 1-12,
American Institute of Aeronautics and Astronautics (AIAA),
Reston, VA, USA, Feb. 2025.

https://orcid.org/0000-0002-0988-6149
https://doi.org/10.2514/1.I011476
www.copyright.com
www.aiaa.org/randp
www.aiaa.org/randp
https://github.com/Systems-Modeling
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.I011476&domain=pdf&date_stamp=2025-01-23

verified by using formal methods, the model-driven approach should
also cover the integration of formalmethods.Amodel-driven approach
is defined as the (Modeling-Language, Methodology, Tool).

C. Structure of the Paper

Suitable model-quality attributes are determined from literature and
presented in Sec. II. Our presented approach and its related work will
be detailed in Sec. III. It provides the necessary semantic foundation,
offers a tool, includes a developmentmethodology tomitigate the risks
of formal verification, and increases the success rate of such a verifi-
cation. Our conducted study is presented in Sec. IV. The results in
Sec.V show the extent towhich the identifiedmodel-quality properties
can be addressed. It is examinedwhether a model-driven development
approachcangenerateapositive influenceonmodelquality.SectionVI
then discusses the findings and particularly focuses on indicators not
found to be improved or even found to be diminished. The results are
summarized and an outlook for future work is provided in Sec. VII.

II. Model Quality Attributes

In Table 1, quality characteristics for models are summarized
and explained according to the taxonomy of Fieber/Huhn/Rumpe
[10]. In a European industry collaboration [12], this taxonomy has
already been used to define a process that ensures the quality of
software models. This combines various metrics, unusual constructs
in a model that indicate potential problems, inefficiencies, or issues
with its design, structure, or usage (i.e., smells), and refactorings. Even
tool support is taken into account. In [13], this approach is pursued
further and, among other things, a tool environment for automated
analysis is provided. In contrast to this automated approach, the
authors of [14] take the path of manual reviews, but continue to refer
to the taxonomy and approaches of the previous work. Ref. [15] also
takes up the taxonomy and uses it to adequately create models for
road safety. As an extension of [16], this taxonomy therefore forms
the basis for the evaluation (see Sec. V) of the approach for model-
driven development and formal verification presented in Sec. III. The
quality attributes described in Table 1 can be applied to any model-
driven development approach, for example, the approach introduced
inSec. III. The quality attributes are a compilation and extension from
[10]. All quality attributes presented in [10] were included in Table 1.
Most quality attributes are separated into model-quality properties

that can be defined individually for eachmodel (intramodel properties)
and cross-model-quality properties concerning multiple models (inter-
model properties). Intermodel properties are further refined intomodel-
quality properties applying to models of only one granularity level
(horizontal), or to models over multiple granularity levels (vertical).
Granularity levels are created in the iterative system development
process as soon as the system is described at a different (e.g., deeper)
level of abstraction.Granularity levels of the systemmodeled later have
less underspecification or are further decomposed. Recurring model-
quality properties, for example, consistency, can be relevant for an
intramodel scope as well as for an intermodel scope. Whereas intra-
model consistencymight be checked by ensuring type-correct usage of
variables, intermodel consistency, for example, that the interface of two
relatedmodelsmatch, is a different kind of consistency. Such recurring
quality properties in Table 1 are evaluated separately.

III. Model-Driven Approach

The model-driven approach evaluated in this paper is the triple
(MontiBelleML, MontiBelle, F-IDE [Formal Integrated Develop-
ment Environment]). ThemethodologyMontiBelle is a development
process derived from SPES [19–21]. This provides a framework for
model-driven and formal verification. Its basis is formed by FOCUS

[22,23] as a semantic foundation for the interpretation of system
models. It also includes an automated tool F-IDE using MontiBel-
leML (subset of textual SysML v2¶ models) as an input.

A. Semantic Foundation

In the formal specification language FOCUS, distributed and interac-
tive systems consist of components that exchange messages with each

other via directed channels. The semantics of a component is defined as
a set of stream-processing functions, where each function of the set
represents a potential behavior of the component. The refinement of the
behavior is represented by the subset relation (⊆). Concurrency or
parallelism of the system is covered by a composition operator (⊗)
that connects channels. The most important reason for using FOCUS as
the basis for MontiBelle is the property that the refinement is fully
compositional [23,24]. Thismeans that after decomposing a system, its
components canbe refined separatelyand then reassembled.Bydesign,
the composite system is a correct refinement of the system before the
refinement of its subsystems. This feature significantly reduces the
testing and integration effort. Figure 1 shows a FOCUS architecture of the
alternatingbit communicationprotocol.Messages of theData type are
transmitted from the sender input i to the receiver output o. Internally,
ds and dr messages are tuples ofData andBit. The receiver returns an
acknowledgement bit ar and as over aMedium to the sender. Refine-
ment of a subcomponent, for example, the Medium component, auto-
matically leads to the refinement of the whole system.

B. Methodology

The methodology MontiBelle is a development process derived
from SPES [19–21] and SpesML** that can be used in the context of
the EUROCAE ED-216 [25] standard, which forms the basis for the
use of formal verification in the development of software sys-
tems for avionics. The methodology aims at providing users with
the necessary guidelines to apply formal verification intuitively and
successfully in systems development. The MontiBelle methodology
uses model-driven concepts to enable abstraction, where possible. At
the same time, formal specification techniques enable fine-grained
control over system specifications, where required.
The MontiBelle methodology covers the early phases of develop-

ment and thus generates the positive effects of front-loading [26]. As
such, it provides a means of ensuring conformity, consistency, verifi-
ability, and traceability between system requirements (SRs), high-
level requirements (HLRs), software architecture design [27], and
low-level requirements (LLRs). First of all, informal SRs are typi-
cally formally specified in a declarative way during development
via communication histories in the form of HLRs. For this purpose,
the developer specifies input–output relations in the assumption-
guarantee style.††According toEUROCAEED-216, the further design
of a system is divided into two activities: Deriving an architecture a
nd developing the LLRs. The MontiBelle methodology proposes to
decompose the HLRs into more detailed and specialized architectures
until they are fine-grained enough for developing the software.
During such decompositions of declarative specifications into other

declarative specifications or architectures [27], refinement proofs to
the previous granularity level must be performed to demonstrate that
the refinement is correct. The compositionality of the refinement
in FOCUS enables the correctness of their composition to be derived
automatically from the correctness of individual components.
Finally, architecture and LLRs are combined into a system design.

This step is carried out by refining the most granular HLR layer into a
structurally identical LLR architecture. The correctness of this refine-
ment must be proven. Thanks to the compositionality of FOCUS, how-
ever, this correctness already follows from the individual proofs of the
refined components. These proofs are fully automated in the tool.
In summary,we present amethodology levering generativemodel-

based formal verification. It covers the early development phases and
provides means to guarantee the compliance, consistency, verifiabil-
ity, and traceability among SRs, HLRs, and the design of a software
architecture, as well as LLRs, as shown in Fig. 2.

C. Tool

The proposed tool F-IDE is represented in Fig. 3. Models of a
SysML v2 profile calledMontiBelleML describe systems at different
levels of abstraction. Between the different levels of abstraction,

**SpesML Project Site https://spesml.github.io.
††Aspecification style that guarantees certain properties (guarantee) as long

as the associated preconditions (assumptions) are met.

2 Article in Advance / KAUSCH ETAL.

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

https://spesml.github.io

Table 1 Quality properties for models ([10], pp. 416-420), extended with vertical quality attributes, verifiability and transformability, and a brief
explanation thereof

Intra-model-quality properties

Representation Presentation measures how easily information can be grasped cognitively. Better presentation implies better understanding.
An aesthetic and structured presentation makes it easier to grasp a model’s information.

Precision Precisionmeasures the extent towhich all relevant properties of themodeled system are represented. Precision thus addresses
the reduction or condensation of information as a result of the modeling.

Universality Universality measures the extent to which the models focus on defining the relevant details. Low universality could result
from an unnecessary focus on platform-specific details in early development phases and lead to complex hardware solutions
later on.

Simplicity Simplicitymeasures the extent towhich an issue is not presented in amore complexway than is actually necessary. Simplicity
can be increased without any loss of information, e.g., by using reformulation, restructuring, or abstraction.

Semantic adequacy Semantic adequacy expresses the suitability of a model that appropriately represents the desired information. Entity–
relationship models, for example, are well suited to representing entities and their relationships. However, they are less
suitable for modeling the behavior of software components.

Consistency Consistency measures the degree of absence of errors within a single model element. Typical (internal) consistency checks
include the declaration of variables before their type-correct assignment.

Conceptual integrity
or uniformity

Conceptual integrity or uniformity aims at providing similar solutions to similar problems. This quality indicator measures
the degree of similarity ofmodeled solutionswithin a singlemodel element.Conceptual integrity can be achievedby applying
repeatable rules, patterns, and principles.

Conformity Conformity measures the degree to which standards and norms are applied to models. Conceptual integrity can thus be a
consequence of conformity, provided that the standards and norms set relatively narrow limits. Typically, project-specific
guidelines are required to achieve conceptual integrity based on conformity.

Language-specific, semantic
quality indicators

Language-specific, semantic quality indicators are specific for the respective modeling language. Examples are the
completeness of state transition diagrams or the liveness in Petri nets [17].

Horizontal intermodel-quality properties
Consistency, conceptual integrity,
language-specific, semantic
quality indicators

Consistency, conceptual integrity, language-specific, semanticquality indicators are also relevant across models. In addition,
the definition and visibility of interfaces are examined here, as well as the management and correct cross-model use of
interface elements.

Downward completeness Downward completeness of models is achieved if they contain all the information required to create the model artifacts of the
next development phase in the model chain.

Cohesion Cohesion expresses the extent to which content-related or technically related parts and facts are represented in closely linked
model artifacts.

Modularity Modularity specifies the extent to which model parts only represent individual aspects. Modularity increases the reuse of
model artifacts.

Freedom from redundancy Redundancy can produce a lot of extrawork in an iterative development process. Even if developmentwith complete freedom
from redundancy is neither possible nor desired (see controlled redundancy), redundancy between models should still be
minimized.

Controlled redundancy Controlled redundancy allows targeted redundancy, e.g., for modeling different views of system parts or facts [18].

Vertical intermodel-quality properties

Correctness Correctness defines the degree towhich amodel correctly implements the requirements of earlier artifacts in themodel chain.
This could include that the requirements of earlier development phases are correctly developed against an implementation.

Downward completeness Downward completeness expresses the extent to which all modeled requirements of a coarser element in the model chain are
refined in the current element of the model chain.

Upward completeness Upward completeness measures the extent to which the requirements of a previous development phase have been fully met.
Upward completeness is closely linked to correctness (as a requirement has a significant influence on operational safety),
because only correct derivations result in completeness. However, correctness does not induce completeness. For this
purpose, requirements of an upstream development stage are considered, which are to be developed into a large number of
newmodels.Correctness can bemeasured individually for each newmodel.However, completeness requires considerationof
the entire model set.

Traceability Traceability measures the ability to track information usage from a model, enabling creation of a new model or parts in a
subsequent development phase.

Modifiability Modifiability measures the ability to maintain, extend, or reuse models or model elements (for correction or further
development).

Freedom from vertical
redundancy

Freedom from vertical redundancy determines the extent in models to which redundancies between successively developed
model artifacts are minimized.

Controlled redundancy Controlled redundancy is defined as targeted or advantageous redundancy, e.g., tomodel differently granular views of system
parts or facts. It allows the semantic consistency of requirements between elements of the model chain of successively
developed model artifacts to be checked.

Quality requirements for modeling notation
Degree of formalization Degree of formalization measures the use of formal description, whereby the rules of a formal language are adhered to. An

increased level of formalization increases the ability to analyze, simulate, or generate artifacts from models. Later
development phases generally require a higher degree of formalization.

Adequacy for the application
domain

Adequacy for the application domain measures the extent to which a particular modeling notation can be used in modeling
typical domain concepts. Models should generally be clear and compact while retaining the ability to model even complex,
domain-specific concepts. Inadequate notations typically lead to unnecessarily complexmodels, or even concepts that cannot
be modeled at all.

Further model-quality attributes
Verifiability Verifiability determines the degree by which modeled properties can be verified in relation to their correctness. Verifiability

requires a certain degree of formalization, because models and their properties require defined semantics for carrying out the
verification. A special case of verification is testing, which requires an executable model.

Transformability Transformability measures the extent to which models can be typically, but not necessarily, processed and transformed by a
machine. Transformations can be used to derive simulations or a (formal) analysis.

Article in Advance / KAUSCH ETAL. 3

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

modeled refinement relationships specify the properties to be
checked. A generator translates these models and refinement rela-
tionships into the syntax of a theorem prover (Isabelle [28]). Theorem
provers such as Isabelle enable the machine-supported and auto-
mated search for proofs. In particular, the presented approach uses
the generated theories together with the general theories (FOCUS
encodings) to perform the formal verification of the refinement
relations. The verification can be carried out autonomously with
the help of automation scripts. The results are machine-verifiable
proofs of correctness or, in the case of errors, comprehensible coun-
terexamples.

D. Related Work

Bansiya andDavis [29] developed an approach for the quantitative
evaluation of the design properties of object-oriented designs. They
calculate high-level quality attributes from the corresponding met-
rics. However, the approach only applies to object-oriented systems,
whereas model-driven development is the more general approach
targeted by this paper.
Themodel-driven approachwas applied to use cases fromdomains

such as the automotive and aerospace industries. Advantages for
the practitioners include significant reduction in testing and review
effort. In [30], a synchronous time model was used and evaluated
using a case study from the automotive industry. The synchronous
time model is known to be better suited for the specification of
hardware systems. The Isabelle implementation of FOCUS was con-
nected to a frontend of the domain-specific language MontiArc [31].
MontiArc and a synchronous timemodelwere used again in [24] to

formally prove the properties of a pilot flying system from a NASA
case study [32]. A nondeterministic, underspecified variant of the
same case study was gradually refined in [33] and the refinement was
verified for correctness. MontiArc and a synchronous time model
were used.
In [34], the industry-standard language SysML v2 was used as

the frontend, again in combination with a synchronous time model.
Later, an event-driven time model was introduced in [35], which is
better suited for modeling software systems. The “pilot flying sys-
tem” was again modeled in this context using SysML v2. A data
link case study from the avionics domain was verified in [36] using
the event-driven time model. An in-depth view for the data link case
study is given in [37]. Additionally, the data link case study was
modeled in MontiArc in [38] and the basics of the event-driven time
model were explained in more detail in FOCUS. An extension of
the model-based approach with an artificial intelligence for creating
trustworthy system models was researched in [39].
Similar approaches that use synchronous data-flow modeling

languages such as Lustre [40] have been developed for the specifi-
cation of reactive systems. However, their synchronous timemodel is
more suitable for describing hardware systems. There are also other
prominent approaches for modeling distributed systems, for exam-
ple, the Palladio Component Model [41], AutoFocus [42], Mecha-
tronicUML [43], or the Ptolemy Project [44]. Whereas Ptolemy
deals with the design and simulation of deterministic and continuous
systems, our model-driven approach focuses on discrete and under-
specified systems and themathematical verification of correct behav-
ior. Palladio also uses simulation to analyze distributed systems in
terms of performance and timing properties. AutoFocus concentrates
on discrete systems, but in contrast to the approach presented here,
it only supports a time-slice-driven specification of systems, whereas
MontiBelleML also enables event-driven modeling. Similar to the
approach presented here, MechatronicUML can be used to model
distributed systems using different diagrams and system views in an
iterative development process. Formal verification is also possible by
connecting model checkers and simulations. An integration of theo-
rem provers does not yet exist in MechatronicUML.

IV. Avionics Case Study

In this case study, awireless avionics data link [36,38] is developed
using the presented model-driven approach. The Data Link Uplink
Feed (DLUF) system is used to transmit prioritized data packets via a

Fig. 1 FOCUS architecture of the alternatingbit communication protocol.

Fig. 2 Systematic design of the MontiBelle methodology (adapted from
EUROCAE ED-216).

MontiBelleML

Generator

System
encodings
System

encodings
System

encodings
System

encodings

Proof
obligations

Theorem
proverAutomation

System
models Relations

Formal Proof Counter Example

adheres to

Fig. 3 Overview of the tool.

4 Article in Advance / KAUSCH ETAL.

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

connection, for example, between an unmanned aerial vehicle and a
ground station. This system is representative of software systems in

the avionics domain and is used in this paper to evaluate the model
quality resulting from the application of the approach. The developed
system shall fulfill the provided SRs. For a liveness SR, instead
of only demonstrating the correct functionality based on tests, a
formal proof is provided as an example. This shows that the required
property is valid for the entire system across all scenarios. Com-

plete coverage by tests is not possible here, as this property is
formulated over an infinite time period. Furthermore, the property
cannot be adequately covered by verifying the individual system
parts, but requires the verification of the system property across the
entire system, that is, by integrating all system artifacts.
Along the MontiBelle methodology, the liveness property is

encoded in a descriptive model using the textual notation of SysML

v2. The specification is created in a part definition in SysML notation
and is represented in Fig. 4.
The keywords part def define such a part definition in the

first line. The interface of the system is modeled in Lines 2 and 3
via ports. The keyword port defines ports, followed by any name,
here input or output, which transmits elements of a packet data
type. The direction of the port is controlled via so-called conjugations
(∼). Cardinalities in square brackets, here 4, allow ports to be dupli-

catedwithout considerable effort. TheHLR is formulated descriptively
fromLine 5 in arequirement block. This comprises three assump-
tions, formulated with the keyword assumes, and a resulting guar-
antee, modeled with the keyword requires. The assumptions and
guarantees are formulated using textual expressions that are strongly

based on well-known mathematical expressions. The concrete inter-
pretations correspond to the stream expressions from [23]. The speci-
fication is also parameterized using the constants MAX_CAP to cover
various capacity limits.
Starting from theHLR, fine-grained specificationswere developed

using decomposition. All the resulting subsystems are also described
using descriptivemodels similar to those in Fig. 4. This methodology
of developing HLRs from SRs is compliant with EUROCAE ED-

216. The modeling of traceability is enabled by using the keyword
refines. This is a derivative of the general specialization relation of
SysML (specialization). As soon as a sufficiently granular decom-
position level is reached, the prescriptive (LLR) models are then
defined for each undecomposed (atomic) component. The traceabil-

ity between prescriptive and descriptive models is also indicated via

the relation refines. In the case study, the system modeled with the

LLRs consists of eight atomic components, four buffer components,

and four capacity gates.

A graphical representation of the LLR buffer components in

SysML v2 is depicted in Fig. 5. An automaton is specified with

the keyword state followed by any name. This is followed,

separated by a horizontal line, by the definition of an attribute b,
which corresponds to the type List<Packet>, that is, a list of

packages. The keyword entry allows the definition of an initial

action. Specifically, the internal list b is initialized with the empty

list. This is followed by a diagram that describes the other states and

transitions. The only state S is also the start state, marked by an

incoming transition without an initial state (black dot). Transitions

are represented by arrows from the initial state to the target state.

Transitions consist of a trigger, a guard (represented in square

brackets), and, separated by a slash, an action. The buffer automaton

is triggered by a message event on a channel, recognizable by the

channel name as a stimulus, or time progression, represented by the

stimulusTick. The guards allow the transitions to be activated only

conditionally. The guards are textual, Boolean expressions, com-

parable to those from Fig. 4. Finally, the reactions allow the assign-

ment of new values to internal attributes using the keyword

assign or the sending of messages using expressions of the type

send-to. Similarly, a capacity gate in Fig. 6 is represented as an

automaton.

Capacity gates have the two internal states Send and Block. The

current state shows whether there is still enough capacity to send

messages in the current time slice. This depends on the capacity

attribute cap, which describes the current limit value. If this is

exceeded by the size of an incoming packet, packets are blocked

until the end of the current time slice. In such a case, the control

message Nack informs the buffer component about the blocking. At

the end of a time slice, the capacity is reset to the original value and

messages can continue to be transmitted.

All prescriptive models are assembled into an LLR system by

means of composition. There are a total of four scheduler subsystems,

each consisting of a buffer and a capacity gate. By using parameter-

ization of the maximum capacity as a variable MAX_CAP, the speci-
fication of the capacity gate can be reused. The scheduler subsystems

are also modeled using parameterization. A graphical representation

of the scheduler subsystem is depicted in Fig. 7. The keyword part
defmodels a part definition in analogy to Fig. 4. This part definition

is composed of two subsystems or parts whose ports are connected
using connectors (arrows). For example, the output port o of the

buffer is connected to the inputi of the capacity gate. Themethodical

decomposition and refinement of the models lead to a tree structure

that represents both the development path and the verification arti-

facts (proof obligations). As part of the case study, all these proof

obligations were met in an automated way. Figure 8 visualizes the

refinement relations.

Fig. 4 Listing 1 descriptive liveness HLR, which is formally modeled in
the textual notation of SysML v2.

«state»
Buffer_LLR

attributes
b: List<Packet>

entry assign [] to b

«state»
S

trigger [guard] /action

Fig. 5 Graphical representation of the prescriptive buffer model in
SysML v2.

Article in Advance / KAUSCH ETAL. 5

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

A complete traceability overview for the DLUF case study, its

models, and its refinement relations is given in Fig. 8. The models

are grouped into four granularity levels: HLR1, HLR2, HLR3, and

LLR. The models of the first level (HLR1) are directly derived and

traced to the SR of the case study. The decomposition of the DLUF

system into subcomponents is depicted using the dotted arrow

and refined by a continuous arrow, for example, the DLUF_HLR2

model composes 3 Schedluer_HLR2 models together and refines

DLUF_HLR1.

V. Evaluation

In the following sections, the presented model-driven approach is
evaluated from the perspective of the quality properties for models
described in Sec. II (see Table 1). This determines towhich degree the

approach is supportive to which properties.

A. Internal Quality

1. Representation

The MontiBelle methodology provides a decomposition and an

abstraction concept. Utilizing these concepts, models are less over-
loaded, as the models focus on parts of the system and can achieve a
high degree of abstraction. This is shown in the Scheduler specifi-
cation in Fig. 7. The approach also indirectly increases cognitive
perceptiveness by suggesting a modeling language that is widely
used in the industry, namely SysML v2, instead of relying on pro-
prietary languages. In particular, the textual syntax of SysML v2

allows for adequate structuring through arbitrary formatting. A
graphical representation is also provided.

2. Precision

MontiBelleML’s stream expressions [36] for requirement speci-
fication, together with the decomposition of the system into sub-
systems and aspects, allow for a concise formulation of properties.
In Fig. 4, for example, the first HLR (liveliness) is described in
a few lines in an abstract, yet semantically precise manner. Apart
from the signature, no other model elements are required to describe
the system and its requirements. For implementation-related speci-

fications, MontiBelleML relies on an event-driven, state-oriented
specification technique. This is particularly suitable for software-
intensive, time-critical systems [45,46]. Due to the decomposition,
these specifications are still clear, as the graphical representation of
the bufferLLR in Fig. 5 shows. At the same time, themodel is precise
enough to be able to derive an implementation.

3. Universality

MontiBelle allowspurely history-oriented specification [38] inearly
development phases. Apart from the signature of the system and the

expected inputs andoutputs or their relations, no assumptions aremade
about the implementation of the system. Every implementation that

«state»
Capacity_LLR

attributes
cap: nat

entry assign MAX_CAP to cap

«state»
Block

«state»
Send

trigger [guard] /action

Fig. 6 Graphical representation of the prescriptive capacity gates in
SysML v2.

Fig. 7 Graphical representation of a scheduler subsystemconsistingof a
buffer and a capacity gate in SysML v2.

Fig. 8 Hierarchical decomposition of the case study and traceability of the refinement relations.

6 Article in Advance / KAUSCH ETAL.

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

adheres to this input and output contract is compliant with the system

requirements and the system models. This ensures that no platform
dependencies are introduced. Even in the later development phases,

MontiBelle relies on abstract (platform-independent) state machines.
In the case study, for example, a Buffer andCapacity component were

modeled. The graphical representation of the two specifications is
depicted in Figs. 5 and 6, respectively. Although platform-dependent

code can already be automatically derived from these, suitable gen-
erators can support any platform that calculates new outputs based on

inputs and the current system state.
Furthermore, MontiBelleML offers the option of leaving models

underspecified. This means that several, potentially infinite, valid

realizations can exist that fulfill the history or state-oriented contract.
The evaluated model-driven approach therefore also supports vari-

ability and product line creation and management.

4. Simplicity

MontiBelle suggests simplicity-increasing development of models.
It proposes the semantic preservation of a simpler model to be formally

verified against a more complex model, thus enabling correct reformu-
lations. These can also represent refinements or abstractions, as Mon-

tiBelle is capable of underspecification. One example is the refinement
and decomposition of the scheduler component into a simpler buffer

and capacity component. This decomposition is depicted in Fig. 7.
In addition, MontiBelle is essentially syntax-agnostic [34,38]. If a

domain requires certain assumptions or special forms of representa-

tion for complex issues, MontiBelle allows one to achieve greater
simplicity through domain-specific adaptations or by switching the

modeling language (e.g., by providing a special security keyword to
encrypt the transmission or introducing a timing keyword to limit the

time delay).

5. Semantical Adequacy

MontiBelle is semantically adequate for modern software sys-
tems. Thanks to its meaningful formal verification, MontiBelle is

suitable for safety-critical applications and time-critical systems.
Software systems exchange data over a potentially long period

of time. Time-critical systems require modeling and analysis of
time.MontiBelle uses timed communication histories and an event-

based processing method that is particularly adapted to software-
intensive, time-critical systems (see the explanations on precision in

this paper in Sec. V.A, [45,46]).

6. Consistency

Our F-IDE usesMontiCore [47] to process themodels and analyze
their internal consistency. MontiCore offers the possibility to check

models for syntax correctness and supports the development of
further analyses. These analyses include, for example, checks for

compliance with conventions when naming elements, but also type
checks of the (stream) expressions used or existence checks of

all states used in transitions. The DLUF models are checked using
MontiCore for type-correct use of the interfaces, both when compos-

ing distributed systems and when referencing interfaces within a
component for behavior specification.

7. Conceptual Integrity/Uniformity

MontiBelleML provides internal conceptual integrity/uniformity

through the use of a domain-specific profile for the system modeling
language SysML. The profile restricts the use of model elements to

those that have a semantic basis in FOCUS. For this purpose, Monti-
BelleML currently uses history-oriented, descriptive models as in

Fig. 4, and state- and event-oriented, prescriptive models as in Fig. 5.
However, it is not sufficient to consider only the internal conceptual

integrity/uniformity. If the subsystems and views of these systems
are considered across a complete granularity level, it is all the more

important to achieve this quality feature. The use of the profile is

therefore again relevant in Sec. V.B. Nevertheless, the use of the
profile already lays the foundation for achieving horizontal concep-

tual integrity.

8. Conformity

MontiBelle demands compliance with the concepts from Sec. III.
Thus, models always consist of the signature of the (sub)system and
its behavior, be it descriptive or prescriptive in nature. However,
its particular strength lies in the refinement relationship between
models and the verifiability of these models. For example, Monti-
Belle achieves the conformity of the models, which is to be achieved
according to EUROCAE ED-216, through external, that is, cross-
model, features (see Sec. V.B).

9. Language-Specific, Semantic Quality Requirements

This is the core competence of MontiBelle. Employing a suitable
semantic foundation and mapping the models into a theorem prover,
the approach achieves the semantic analyzability of the models. This
includes the abstract, history-oriented specification style and under-
specification.
As already explained in Sec. III, MontiBelle allows for the

refinement between system specifications to be verified. Through
decomposition and the use of FOCUS, even complex systems can be
developed and verified in this way. This verification of the overall
requirements increases the quality of the models. This is discussed
further in Sec. V.B.

B. External Quality (Horizontal Relationships)

1. Consistency, Conceptual Integrity, Language-Specific, and

Semantic Quality Requirements

Some of the aforementioned internal quality attributes can often
only be considered from a cross-model perspective. The modeling
language developed in MontiCore allows users to describe refine-
ment model dependencies. In DLUF, the necessary refinement rela-
tions were added to traceability and their correctness was proven,
as Fig. 8 shows. The model interfaces, that is, the interfaces of the
modeled subsystems, are well defined and are checked for com-
patibility with each other. Verified systems therefore have correct,
syntactic model relationships, and interfaces of referenced models
must be used correctly. MontiBelle promotes external horizontal
conformity and conceptual integrity through the FOCUS foundation.
The consistency of atomic subcomponents has already been ensured
in the context of inner conformity (see Sec. V.A). The model con-
sistency of an entire granularity level follows directly from the con-
sistency of the subcomponents and can therefore be checked
automatically.

2. Downward Completeness

With the MontiBelle methodology, a granularity level is down-
ward complete, as soon as themodels of the system at this level fulfill
all the required properties of the levels above. There are no further
requirements, as the approach enables underspecification, that is, any
number of details can be omitted to avoid unnecessarily restricting
the solution space. For the coarsest model of a system, downward
completeness is given according to the MontiBelle methodology, if
the correct implementation of the informal requirements has been
validated. This is outside the scope of the approach. At subsequent
granularity levels, downward completeness is given, as soon as the
refinement relation to the previous level is shown. The next granu-
larity level in the model chain can then be developed, that is, finer
granular specifications are modeled. For DLUF, the correctness of
refinement relations was formally proven across four levels of granu-
larity, as Fig. 8 shows. Due to the underlying mathematical theory
FOCUS, the refinement check is also closely related to the upward
completeness (see Sec. V.C). To summarize, the approach requires
downward completeness as part of its methodology and provides a
mechanism to measure this completeness for models.

3. Cohesion

The (de)composition promotes both the cohesion and the modu-
larity of the models. According to the MontiBelle methodology,
closely related aspects of the system are treated as individual and
focused subsystems, as this is advantageous for successful verifi-
cation. In the DLUF models, for example, this is the case in the

Article in Advance / KAUSCH ETAL. 7

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

scheduler elements. There is a strong cohesion between the buffer
model (see Fig. 5) and the capacity model (see Fig. 6), as together
they specify the scheduler (see Fig. 7). Othermodels do not need to be
considered to understand the scheduler. By methodically applying
the language options according to the Montibelle methodology,
cohesive parts of the DLUF system are also modeled cohesively.

4. Modularization

(De)composition (see Figs. 5–7) may be even more important
for the modularity of the models than for cohesion. The decomposi-
tion of a system into several subcomponents creates more and more
modularity, as only individual aspects are dealt with in the models of
the subcomponents. These subcomponents are then modular enough
to be further developed vertically and independently of each other
through refinement and without leading to integration problems at
the same or higher granularity levels. The reason for this is that,
according to FOCUS, the refinement of a subsystem leads directly to the
refinement of the overall system. For example, in DLUF, the HLR
model of the buffer can be further developed into the LLR model of
the buffer without having any influence on the scheduler component
or the entire DLUF system.

5. Freedom from Redundancy

A horizontal granularity level of the system models modeled in
MontiBelleML leads to redundancy-free models by importing and
reusing componentmodels. The scheduler composition in Fig. 7 does
not define any buffer or capacity interfaces nor any behavior. Instead,
onlymodel artifacts are referenced for the composition. Furthermore,
MontiBelleML eliminates additional redundancies by allowing for
parametric models. A single-capacity model is sufficient to map the
four different scheduler components of DLUF [36]. This also further
reduces the scope of the necessary verification. However, completely
redundancy-free modeling is not possible. For example, a model
name is used when referring to other model artifacts. If this model
name is changed, the references to thismodelmust also be changed.‡‡

This means that model names are redundant in several models.
Additional tools that track references via model artifacts alleviate
this problem.

6. Controlled Redundancy

Model redundancies in the referencing of models enable the static
verification of the type and structure correctness of compositions,
as the interface types cannot be compared without references to
corresponding models. The verification coverage is given, because
the approach formally verifies the correctness of a granularity level.
Splitting the system into individual models creates associated con-
trolled redundancy and allows these models to be developed inde-
pendently of each other by different developers. In DLUF, different
development engineers could specify and refine the capacity or buffer
component models.

C. External Quality (Vertical Relationships)

1. Correctness

For correctness, the requirements of the previous level must
have been implemented correctly in the subsequent level. Monti-
Belle enables the modeling and verification of correctness through
the refinement relation and the FOCUS theory. For example, the case
study demonstrates that the architecture and the LLRs represent a
correct subsequent model level for the previous HLR level. At first,
all system specifications of all granularity levels and all refinement
relations between them were automatically translated into the syn-
tax of a theorem prover. Then, all proof obligations are fulfilled
using automatic solvers and checked automatically [36]. In sum-
mary, this proves that the architecture and LLRs are correct in regard
to the top-level HLRs. The approach not only verifies this quality

property, but also supports the development of correct models. Coun-
terexamples for refinement relations can be found and extracted as test
cases, which eases fixing incorrectness in an informed way.

2. Upward Completeness

Orthogonal to correctness, this property requires that all require-
ments from the previous granularity level have been fulfilled. The
argumentation therefore largely follows that of the preceding para-
graph on correctness, and the necessary global verification of requi-
rements overarching model levels is reduced to many small, local
refinement proofs by the compositionality of the refinement of the
FOCUS theory. The global proof obligations are represented in Fig. 8 by
chains of refinement relations. This reduces the complexity of finding
proofs, encourages reusability, and can increase the productivity of
development engineers through parallelization.

3. Traceability

MontiBelle ensures traceability through refinement relation-
ships. Refinement relations can be checked continuously and thus
improve traceability compared to unchecked relations. Continuous
checking of refinement relations is possible on a local computer, for
example, in an environment similar to an IDE. It is also possible
to verify the refinement relations in batch mode, for example,
in GitLab©CI/CD or Github©Actions. This is particularly relevant
when several subsystems are integrated into an overall architecture.
Changing a requirement immediately leads to updated obligations to
provide new evidence. These proof obligations are automatically
encoded in a theoremprover via a codegenerator. The proof obligations
can be checked automatically through the automation of proof seekers
and tactics [48].
Because traceability is a key indicator for upward completeness, the

same rationale, which MontiBelle uses to increase upward complete-
ness, applies here. In particular, the compositionality of refinements
allows one to automatically infer from the complete refinement of
individual subsystems to the refinement of entire systems, as illustrated
in Fig. 8. Simply put, this increases the value and significance of these
individual refinement relationships. Thus, by promoting the methodi-
cal use of refinement relations, theMontiBelle methodology increases
traceability.

4. Modifiability

Three aspects of modifiability can be differentiated: 1) maintain-
ability, 2) extensibility, and 3) reusability [10]. Each of these aspects
is explained individually in the following paragraphs and related to
the presented model-driven approach.
The approach improves maintainability by ensuring the correct-

ness of changes to requirements resulting from maintenance work.
By using MontiBelle, the semantics of the original specification
can be compared to the modified specification. It can thus be
formally verified that the maintenance work had the intended effect
on the system specification. In addition, relationships to other sys-
tem specifications (e.g., refinement to hardware-specific require-
ments) can be continuously verified. It is important to note that the
approach can verify underspecified system specifications, making
even early and relatively vague system specifications testable. The
verification results can be used to guide the maintenancework. This
enables semantically oriented maintenance with formally validated
results.
Extensibility is improved by analogous reasoning. With the pre-

sented model-driven approach, extended system specifications can
be semantically checked for old and new requirements or compared
to the original system specification. The use of underspecification
in early development phases enables the model-driven approach to
provide proof of correctness or to automate the delivery of counter-
examples. For example, let us assume that a system specification
was developed from safety requirements. Let us also assume that the
system specification is extended in such a way that resources are
saved, for example, subsystems could be merged to deliver multiple
functions and thus safe costs, or communication channels could
be reduced to safe physical connections. Such optimizations may

‡‡Name changes can be handled automatically by renaming all references.
MontiCore [47] provides a symbol infrastructure for this purpose, which
makes it possible to track named references across all model artifacts.

8 Article in Advance / KAUSCH ETAL.

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

be unsafe, as combining multiple systems could lead to unwanted

behavior or the cable paths could reduce fault tolerance. For safe

systems, the approach can provide assurances in the form of formal

safety proofs. If the extended system specification is not safe, F-IDE
can be used to check potential counterexamples. Utilizing under-

specification, system optimizations such as those described earlier

can thus be modeled and verified at early stages of development.
MontiBelle promotes the reusability of models by allowing for the

models to be categorized in a refinement hierarchy. More abstract
requirements can serve as a starting point for a tree of system speci-

fications developed from them. Each developed system specification

can be an independent subset of the specification. This enables the

creation (and maintenance; see the aforementioned in the second

paragraph of this section) of product families. The hierarchical tree

structure enables the reuse of verification artifacts. Suppose a specifi-
cation for a data transmission system in avionics has been developed

(and verified by the presented model-driven approach) from a set of

requirements. An overview of the potential development artifacts

is depicted in Fig. 9. The requirements specify a fixed maximum

tolerance for the transmission delay. The developed specification

must adhere to these tolerances, but is still underspecified in terms
of the exact delay. Let us assume that a high-end system has been

developed based on these specifications, which guarantees a delay

of nomore than 1ms. For a less critical application, a less expensive

systemwith a higher delay tolerance could now be developed, based

on the same specification. With MontiBelle, it is sufficient to show

the correct development of this less expensive system from the
intermediate specification, for example, the refinement relation

between them. This can reduce the overall costs for the certification

of product families.

5. Freedom from Redundancy

The case study DLUF includes an HLRmodel of a buffer [36] (more

abstract than the lower-level requirement) and an LLR model of the

buffer. These twomodels implement the behavior of a buffer in different

ways. Changing the behavior or interface of one of the models can
lead to the model that depends on it also having to be changed. The

MontiBelle methodology is therefore not free of redundancies. How-

ever, this problem is dealt with by the specification of the refinement

relationship. If redundant information is syntactically inconsistent, F-

IDE provides model analysis tools to identify these inconsistencies. If

inconsistencies are semantic in nature, the approach allows for auto-
mated verification. If this check is successful, the change is classified as

verified (seemodifiability). If it fails, the approach can be used to search

for counterexamples regarding the refinement relation. The redundancy

in the behavior description is desired and is therefore not a shortcoming

of the approach.

6. Controlled Redundancy

Controlled redundancies in the MontiBelle methodology offer
the possibility to specify the behavior both descriptively and pre-
scriptively [38]. Descriptive specifications, in the form of HLRs,
are represented by so-called history-oriented specifications. The
prescriptive specifications, in the form of LLRs, are represented as
state-based specifications by automata [49]. These redundancies
enable correctness and consistency checks between the specifica-
tions, which ultimately increase the correctness of the developed
system.Models can also be provided in a reader-specificway through
(de)composition. A requirements manager may need a more abstract
view of the system and therefore may consider a descriptive speci-
fication of a composed system, for example, theHLRmodel ofDLUF
in Fig. 4. A software developer for a subsystem, on the other hand,
is more interested in the prescriptive, state-based behavior of the
respective subsystem, for example, the LLR model of the buffer in
Fig. 5.

D. Quality Requirements for a Modeling Notation

Some model-quality indicators go beyond the measurement of
individual models and instead evaluate the modeling notation itself.
These are described next.

1. Degree of Formalization

The use of the approach increases the degree of formalization in
two ways. First, MontiBelleML requires a minimum level of for-
malization. The interfaces of the systems and subsystems and their
interconnections must therefore be specified. It is permitted to adapt
the interfaces and structures in further steps. However, a development
step is only complete when the structure of the system specification
has been defined at this level. Furthermore, behavioral specifications
cannot be described informally at will, but must be created in one of
three ways. These are the following: history oriented (abstract), state
oriented (implementation oriented), and decomposing (structural).
Second, beyond this minimum level, MontiBelleML allows arbi-

trarily underspecified behavior, which remains the same or is refined
with each development step. This increases the specificity, and the
solution space becomes smaller.

2. Adequacy for the Application Domain

MontiBelle is language agnostic, at least as far as the concrete
syntax is concerned. As shown in [34,35], an intermediate represen-
tation of the models is formed, which captures the semantic domain
of architectural description languages and behavioral specifications.
In the next step, this representation is mapped to FOCUS. A domain
with a corresponding domain-specific language (DSL) can therefore
be easily supported, provided that the semantic domain is compatible

Fig. 9 An overview of the potential development artifacts of an exemplary development of a data transmission system for avionics.

Article in Advance / KAUSCH ETAL. 9

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

with FOCUS or can be extended by language composition [50]. By
adhering to the guidelines for DSLs [51], the adequacy for the
application domain can be further increased.
As one of the concrete modeling languages implemented by

MontiBelle, MontiBelleML is a profile of SysML v2, the successor
to the de facto standard language of systems engineering, SysML v1.
SysML v1 is widely used, generally known, and understood. Com-
pared to v1, SysML v2 offers many enhancements and improve-
ments, thanks to a textual representation with the same graphical
visualization. SysML v1will no longer be developed.§§ Accordingly,
we selected SysML v2 as a future-proof modeling language basis.
The suitability of MontiBelleML was further demonstrated in the
case study, in which HLRs, architecture, and LLRs were modeled.

E. Further Quality Features

The aforementioned set of indicators presented here is not exhaus-
tive. Different domains may require specific quality indicators. In
the area of avionics, we consider the following two indicators to be
particularly relevant due to the pronounced safety requirements of the
domain.

1. Verifiability

The approach requires a certain degree of formalization of the
models, as described in the corresponding paragraph in Sec. V.D.
This ensures verifiability, as machine support is possible. Specifi-
cally, the model-driven approach maps the model to its FOCUS seman-
tics via a language-agnostic intermediate model. For this purpose,
definitions and theorems are coded in Isabelle and linked to the core
definitions of FOCUS. These core definitions of FOCUS were also coded
in the theorem prover. This allows for reasoning to be performed on
the semantics of the models to handle underspecification and arbi-
trary runtimes.
The model-driven approach not only achieves verifiability, but

also improves it through its development methodology. The use of
hierarchies in modeling not only decomposes system requirements
(which increases reusability), but also the obligations to provide
evidence. This leads to smaller and therefore more automatable proof
obligations. The verification of the overall system is ensured by the
compositionality of the refinement in FOCUS by design and can be
checked automatically.

2. Transformability

Themodel-driven approach achievesmodel transformability in the
following way: First, any data flow and structure modeling language
is mapped to a semantically sound foundation. Here, this is achieved
by using the SysML v2 profile MontiBelleML. This profile ensures
that allmodels that correspond to the profile are transformable, that is,
semantically sound. The transformability then allows for the auto-
mated and therefore less error-prone translation of the models into a
theorem prover, as explained in the preceding paragraph on verifi-
ability of Sec. V.E. The use of the textual representation of SysML v2
also ensures that this transformability holds for all models of the
SysML v2 language and is independent of a vendor-specific data
structure of the models.

VI. Discussion

Although it can be argued that the presented model-driven approach
improves many of the quality indicators, it must be conceded that the
main contributions are focused on eight indicators: correctness, consis-
tency, traceability, precision, verifiability, transformability, modulariza-
tion, and adequacy for the application domain. Some more indicators
are beneficially addressed as a result. These indicators are the degree of
formalization, semantic adequacy, conceptual integrity, uniformity, con-
formity, upward completeness, controlled redundancy, and universality.
Representation is not influenced by the MontiBelle, but instead

by the chosen modeling language and the associated editor. As

MontiBelle is, in general, language agnostic in its core, improving
this indicator is left to language designers and tool vendors.
Simplicity is also not at the core ofMontiBelle, but is dependent on

the domain. Given the highly complex and safety-critical domain of
avionics, models are required to be more formal and may appear less
simple. It is important, however, to remind oneself of the definition
of simplicity, which defines it w.r.t. the additional complexity com-
pared to the required amount due to the problem at hand. This means
that seemingly more complex models in an equally complex domain
might be simple as a result of this definition. Although the presented
approach itself cannot improve simplicity, its ability to modularize
and reuse could be leveraged by creating a verified model library.
This model library carries additional verification artifacts for the
included models. Reuse of avionics-specific building blocks could
then simplify existing models.
Language-specific, semantic quality requirements, both internal and

horizontal, are hard to quantify absolutely. This is because they largely
depend on the capabilities of the modeling language and domain-
specific requirements. As MontiBelle is language agnostic at its core,
there is no objective case to be made. The presented approach could,
however, adapt to domain specificities and languages in the future,
precisely because of its language agnosticity.
Consistency and conceptual integrity are another topic highly

related to underlyingmodeling languages, domain-specific concepts,
and potentially a library or reusable partial solutions. Again, Mon-
tiBelle’s contributions here are currently none, but could be increased
through the creation of a verified model-library.
Downward completeness is, contrary to upward completeness, not

specifically addressed by MontiBelle. The presented approach can
formally assure upward completeness as a result of key contributions
in correctness, traceability, and verifiability. However, the presented
approach passively obtains downward completenesswhen an execut-
able model is reached. MontiBelle neither requires nor promotes the
creation of these executablemodels and instead leaves it to the user to
make that decision. To increase downward completeness,MontiBelle
could promote the use of executable models further, for example, by
promoting the use of model-based testing, a technique requiring the
creation of executable models.
Cohesion as a general quality indicator is largely influenced

by modeling language capabilities and domain-specific guidelines.
Modern methodologies such as SPES heavily build on concepts such
as viewpoints, modeling abstraction layers, and tracing between them.
This enables the modeling of tightly related functions at an abstract
level, while distributing technical implementations of those related
functions at a more concrete level, for example, hardware. The latest
release of SysML, SysML v2, brings the necessary capabilities for
modeling these concepts.As such,MontiBelleML iswell-equipped for
future advancements inmodelingmethodologies and could increase its
contributions to cohesion by further developing its own methodology
based on SPES and similar methodologies.
Achieving freedom from redundancies, both horizontal and verti-

cal, is not always compatiblewith compliancew.r.t. specific domains,
especially not in the avionics domain. Products as well as processes
in avionics are required by certification authorities to be redundant
and have failsafes. This is also reflected in the treatment of the DLUF
case study,where subcomponents are redundantly described at differ-
ent abstraction levels to ultimately automatically showcorrectness. In
this regard, the presented approach is always limited by its applica-
tion domain and driven by the goal of automation, ultimately assist-
ing instead of burdening the engineer.
Finally, modifiability is largely outside the scope of the presented

approach. A weak case could be made, where MontiBelle might
even hamper modifiability, as already certified systems might not be
easily modifiable, because of sunk cost fallacy. Formal verification is
inherently costly and hard to automate in the general case. Again, a
verified model library could be beneficial to further decrease costs
and improve automation. This could gain modifiability of models,
ultimately also improving agility.
The taxonomy has been proven useful in a European industrial

collaboration [12], although, according to [10], the completeness and
full coverage of the quality attributes is not assumed.§§https://www.omgsysml.org/news-articles.htm.

10 Article in Advance / KAUSCH ETAL.

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

https://www.omgsysml.org/news-articles.htm

VII. Conclusion

In summary, it can be stated that a model-driven approach with
a formal foundation (FOCUS) has positive effects for the development
of high-qualitymodels, according to severalmodel-quality indicators
listed in Table 1. To this end, the development of a wireless avionics
data link using the presented model-driven approach was examined.
This showed that a formally sound approach can make a significant
contribution to model quality. As mentioned in Sec. I, higher model
quality can also improve product quality. Accordingly, the approach
is a good candidate for systems engineering, as its positive impact on
model-quality attributes (e.g., verifiability) enables the verification
and validation of safety according to EUROCAE ED-216, as shown
in Fig. 2, especially in early development phases. This is particularly
important for the development of mission- and safety-critical avion-
ics systems. To this end, the MontiBelle tool also offers comprehen-
sive automation to support development engineers. Compared to
alternative approaches based on different foundations, the mode-
driven approach leverages the compositionality of FOCUS to reduce
verification complexity, the current version of Systems Modeling
Language (SysML) to allow simple usage by system engineers, and a
methodology based on EUROCAE ED-216 for certification.
Although this article has shown that the presented mode-driven

approach is suitable for increasing model quality and thus product
quality, this section presents future work, which is needed before the
approach could be applied in practice: To further reduce modeling
redundancy, it is conceivable to make further use of the extensive
parameterization options of SysMLv2. In particular, SysMLoffers the
possibility to refer tomodel elements by references instead of repeating
them. The extent towhich building blocks can be reused in the form of
constraints needs to be evaluated. In connection with the preceding
aspect, it is planned to further increase the degree of automation. A
possible next step would be to use the aforementioned references,
making it easier to check the correctness of decomposed systems.
Crucially, references to the sameconstraints could simplify the proof of
equivalence or implication between constraints. As mentioned earlier,
such an approach can further manage or lower redundancy, which
further increases model quality. Additionally, building a library of
standard model elements with associated certification artifacts seems
to be a relevant aspect. MontiBelle benefits from the fact that the
underlying formalism FOCUS already pursues precisely this idea and
was, among other reasons, selected for this reason. The reuse of
development artifacts in an avionics development process could
offer opportunities for more economical development. The integra-
tion of the continuous verification technique presented in this article
into a continuous tool chain in the avionics development processes
could be a step toward this goal and increase efficiency. Finally, it is
planned to evaluate the approach on models of systems in produc-
tive development. This will determine the suitability of the model-
driven approach for very extensive systemmodels and may result in
the need for further adaptations of the presented approach.

Acknowledgment

The authors wish to thank the German Federal Ministry for
Economic Affairs and Climate Action, AMoBaCoD-Project (Grant
No. 20X2201C).

References

[1] Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., and Turski,
W.M., “Metrics and Laws of Software Evolution—The Nineties View,”
ProceedingsFourth International SoftwareMetrics Symposium, Inst. of
Electrical and Electronics Engineers, New York, 1997, pp. 20–32.
https://doi.org/10.1109/METRIC.1997.637156

[2] Galster,M., Zdun, U.,Weyns, D., Rabiser, R., Zhang, B., Goedicke,M.,
and Perrouin, G., “Variability and Complexity in Software Design:
Towards a Research Agenda,” ACM SIGSOFT Software Engineering

Notes, Vol. 41, No. 6, 2017, pp. 27–30.
https://doi.org/10.1145/3011286.3011291

[3] Broy, M., and Steinbrüggen, R., Modellbildung in der Informatik,
Springer-Verlag, Berlin, 2004.

[4] Broy, M., Logische und Methodische Grundlagen der Programm- und

Systementwicklung, Springer Fachmedien Wiesbaden GmbH, Wiesba-
den, Germany, 2019.
https://doi.org/10.1007/978-3-658-26302-7

[5] Broy, M., Logische und Methodische Grundlagen der Entwicklung

verteilter Systeme, Springer-Verlag GmbH, Berlin, 2023.
https://doi.org/10.1007/978-3-662-67317-1

[6] Stachowiak, H., Allgemeine Modelltheorie, Springer, Berlin, 1973.
[7] Rumpe, B., Schoenmakers, M., Radermacher, A., and Schürr, A., “UML

+ ROOM as a Standard ADL?” Proceedings Fifth IEEE International

Conference on Engineering of Complex Computer Systems (ICECCS'99)

(Cat. No. PR00434), Inst. of Electrical and Electronics Engineers, New
York, 1999, pp. 43–53.

[8] Torens, C., “Safety Versus Security in Aviation, Comparing DO-178C
with Security Standards,”AIAAScitech 2020Forum, AIAAPaper 2020-
0242, 2020.
https://doi.org/10.2514/6.2020-0242

[9] Friedenthal, S., and Seidewitz, E., “A Preview of the Next Generation
System Modeling Language (SysML v2),” Project Performance Inter-
national’s Systems Engineering News Journal, Vol. 95, Nov. 2020.

[10] Fieber, F., Huhn, M., and Rumpe, B., “Modellqualität Als Indikator
für Softwarequalität: Eine Taxonomie,” Informatik-Spektrum, Vol. 31,
No. 5, 2008, pp. 408–424.
https://doi.org/10.1007/s00287-008-0279-4

[11] “Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems,” International Electrotechnical Commission
TR XXXX, Geneva, 2010.

[12] Arendt, T., Kranz, S., Mantz, F., Regnat, N., and Taentzer, G., “Towards
SyntacticalModelQualityAssurance in Industrial SoftwareDevelopment:
Process Definition and Tool Support,” Software Engineering 2011—

Fachtagung desGI-Fachbereichs Softwaretechnik, Gesellschaft für Infor-
matik e.V, Bonn, Germany, 2011, pp. 63–74.

[13] Arendt, T., “Qualitätssicherung von Softwaremodellen—Ein struktur-
ierter Qualitätssicherungsprozess unterstützt durch eine flexible Werk-
zeugumgebung innerhalb des Eclipse Modeling Project,” Ph.D. Thesis,
Philipps-Universität Marburg, Marburg, Germany, Jan. 2014.
https://doi.org/10.17192/z2014.0357

[14] Schmedding, D., andVasileva, A., “Reviews—ein Instrument zur Qual-
itätsverbesserung von UML-Diagrammen,” Tagungsband des 15.

Workshops “Software Engineering im Unterricht der Hochschulen”,
Vol. 1790,CEURWorkshopProceedings,Aachen,Germany, Feb. 2017,
pp. 8–19.

[15] Schnieder, E., and Schnieder, L., Verkehrssicherheit: Maße und Mod-

elle, Methoden undMaßnahmen für den Straßen- und Schienenverkehr,

VDI-Buch, Springer, Berlin, 2013.
https://doi.org/10.1007/978-3-540-71033-2

[16] Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B., and Schweiger, A.,
“Enhancing System-Model Quality: Evaluation of the MontiBelle
Approach with the Avionics Case Study on a Data Link Uplink Feed
System,” SE2024—Companion, Gesellschaft für Informatik e.V.,Bonn,
Germany, 2024, pp. 119–138.
https://doi.org/10.18420/sw2024-ws_09

[17] Reisig, W., Petri Nets: An Introduction, Springer, Berlin, 1985.
https://doi.org/10.1007/978-3-642-69968-9

[18] Grönniger, H., Krahn, H., Pinkernell, C., and Rumpe, B., “Modeling
Variants of Automotive Systems Using Views,” Modellbasierte

Entwicklung von eingebetteten Fahrzeugfunktionen, Technische Uni-
versität Braunschweig, Braunschweig, Germany, 2008, pp. 76–89.

[19] Pohl, K., Hönninger, H., Achatz, R., and Broy, M., Model-Based

Engineering of Embedded Systems, Springer, Berlin, 2012.
https://doi.org/10.1007/978-3-642-34614-9

[20] Pohl, K., Hönninger, H., Daembkes, H., and Broy, M. (eds.), Advanced
Model-Based Engineering of Embedded Systems, Springer, Cham, 2016.
https://doi.org/10.1007/978-3-319-48003-9

[21] Böhm, W., Broy, M., Klein, C., Pohl, K., Rumpe, B., and Schröck, S.,
Model-Based Engineering of Collaborative Embedded Systems,
Springer, Berlin, 2021.

[22] Broy, M., and Stølen, K., Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement, Springer, New
York. 2001.

[23] Broy, M., and Rumpe, B., “Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung,” Informatik-Spek-

trum, Vol. 30, No. 1, 2007, pp. 3–18.
https://doi.org/10.1007/s00287-006-0124-6

[24] Kausch, H., Pfeiffer, M., Raco, D., and Rumpe, B., “MontiBelle—
Toolbox for a Model-Based Development and Verification of Distrib-
uted Critical Systems for Compliance with Functional Safety,” AIAA

Scitech 2020 Forum, AIAA Paper 2020-0671, 2020.
https://doi.org/10.2514/6.2020-0671

Article in Advance / KAUSCH ETAL. 11

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

https://doi.org/10.1109/METRIC.1997.637156
https://doi.org/10.1145/3011286.3011291
https://doi.org/10.1007/978-3-658-26302-7
https://doi.org/10.1007/978-3-662-67317-1
https://doi.org/10.2514/6.2020-0242
https://doi.org/10.1007/s00287-008-0279-4
https://doi.org/10.17192/z2014.0357
https://doi.org/10.1007/978-3-540-71033-2
https://doi.org/10.18420/sw2024-ws_09
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-34614-9
https://doi.org/10.1007/978-3-319-48003-9
https://doi.org/10.1007/s00287-006-0124-6
https://doi.org/10.2514/6.2020-0671

[25] “ED-216—Formal Methods supplement to ED-12C and ED-109A,”
European Organization for Civil Aviation Equipment TR ED-216,
Saint-Denis, France, Jan. 2012.

[26] Thomke, S., and Fujimoto, T., “TheEffect of “Front-Loading”Problem-
Solving on Product Development Performance,” Journal of Product

Innovation Management, Vol. 17, No. 2, 2000, pp. 128–142.
https://doi.org/10.1111/1540-5885.1720128

[27] Philipps, J., and Rumpe, B., “Refinement of Information Flow Archi-
tectures,” International Conference on Formal Engineering Methods

Proceedings, edited by M. Hinchey, IEEE CS Press, Hiroshima, Japan,
1997, pp. 203–212.
https://doi.org/10.1109/ICFEM.1997.630427

[28] Nipkow, T., Paulson, L. C., and Wenzel, M., Isabelle/HOL:A Proof

Assistant for Higher-Order Logic, Lecture Notes in Artificial Intelli-

gence, Springer, Berlin, 2002.
https://doi.org/10.1007/3-540-45949-9

[29] Bansiya, J., and Davis, C., “A Hierarchical Model for Object-Oriented
Design Quality Assessment,” IEEE Transactions on Software Engi-

neering, Vol. 28, No. 1, 2002, pp. 4–17.
https://doi.org/10.1109/32.979986

[30] Kriebel, S., Raco, D., Rumpe, B., and Stüber, S., “Model-Based Engi-
neering for Avionics: Will Specification and Formal Verification e.g.
Based on Broy’s Streams Become Feasible?” Proceedings of the Work-

shops of the Software Engineering Conference. Workshop on Avionics

Systems and Software Engineering (AvioSE’19), CEUR Workshop

Proceedings, edited by S. Krusche, K. Schneider, M. Kuhrmann, R.
Heinrich, R. Jung, M. Konersmann, E. Schmieders, S. Helke, I.
Schaefer, and A. Vogelsang, et al., Vol. 2308, CEUR Workshop Pro-
ceedings, van Hoorn, 2019, pp. 87–94.

[31] Haber, A., Ringert, J. O., and Rumpe, B., “MontiArc—Architectural
Modeling of Interactive Distributed and Cyber-Physical Systems,”
RWTH Aachen Univ. TR AIB-2012-03, Aachen, Germany, Feb. 2012.

[32] Cofer, D., and Miller, S. P., “ Formal Methods Case Studies for DO-
333,” NASA CR 2014-218244, 2014.

[33] Kausch, H., Pfeiffer, M., Raco, D., and Rumpe, B., “An Approach for
Logic-Based Knowledge Representation and Automated Reasoning
over Underspecification and Refinement in Safety-Critical Cyber-
Physical Systems,” Combined Proceedings of the Workshops at Soft-

ware Engineering, edited by R. Hebig, and R. Heinrich, Vol. 2581,
CEURWorkshop Proceedings, Aachen, Germany, 2020, p. 8.

[34] Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B., Götz, L. Linsbauer,
Schaefer, I., and Wortmann, A., “Model-Based Design of Correct
Safety-Critical Systems Using Dataflow Languages on the Example
of SysML Architecture and Behavior Diagrams,” Proceedings of the

Software Engineering 2021 Satellite Events, edited by S. Götz, L.
Linsbauer, I. Schaefer, and A. Wortmann, Vol. 2814, CEURWorkshop
Proceedings, Aachen, Germany, 2021, p. 22.

[35] Kausch, H., Michael, J., Pfeiffer, M., Raco, D., Rumpe, B., and
Schweiger, A., “Model-Based Development and Logical AI for Secure
and Safe Avionics Systems: A Verification Framework for SysML
Behavior Specifications,” Aerospace Europe Conference 2021 (AEC

2021),Council of EuropeanAerospace Societies (CEAS),WarsawUniv.
of Technology, Warsaw, Poland, 2021, p. 9.

[36] Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B., and Schweiger, A.,
“Correct and Sustainable Development Using Model-Based Engineer-
ing and Formal Methods,” 2022 IEEE/AIAA 41st Digital Avionics Sys-

tems Conference (DASC), Inst. of Electrical and Electronics Engineers,
New York, 2022, pp. 1–8.
https://doi.org/10.1109/DASC55683.2022.9925819

[37] Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B., and Schweiger, A.,
“Model-Driven Development for Functional Correctness of Avionics
Systems: AVerification Framework for SysML Specifications,” CEAS
Aeronautical Journal, Vol. 15, No. 4, 2024.
https://doi.org/10.1007/s13272-024-00762-6

[38] Kausch, H., Pfeiffer,M., Raco, D., Rath, A., Rumpe, B., and Schweiger,
A., A Theory for Event-Driven Specifications Using Focus and Mon-
tiArc on the Example of a Data Link Uplink Feed System,” Software

Engineering 2023 Workshops, edited by I. Groher, and T. Vogel,
Gesellschaft für Informatik e.V, Bonn, Germany, 2023, pp. 169–188.

[39] Kausch, H., Koppes, K., Netz, L., O’Brien, P., Pfeiffer, M., Raco, D.,
Radny, M., Rath, A., Richstein, R., and Rumpe, B., “Applied Model-
Based Co-Development For Zero-Emisson Flight Systems Based on
SysML,” Proceedings of the Deutscher Luft und Raumfahrt Kongress,
Die Deutsche Gesellschaft für Luft- und Raumfahrt (DGLR) e. V.,
Lilienthal-Oberth, Germany, 2024, p. 10.

[40] Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J., “Lustre: A Declar-
ative Language for Programming Synchronous Systems,” Proceedings
of the 14th Annual ACM Symposium on Principles of Programming

Languages (POPL), Assoc. for Computing Machinery (ACM), New
York, 1987, pp. 178–013.
https://doi.org/10.1145/41625.41641

[41] Becker, S., Koziolek, H., and Reussner, R., “The Palladio Component
Model for Model-Driven Performance Prediction,” Journal of Systems
and Software, Vol. 82, No. 1, 2009, pp. 3–22.
https://doi.org/10.1016/j.jss.2008.03.066

[42] Voss, S., and Zverlov, S., “Design Space Exploration in AutoFOCUS
3—AnOverview,” IFIP First International Workshop on Design Space

Exploration of Cyber-Physical Systems, edited by V. Mařík, J. M.
Lastra, and P. Skobelev, Springer, Berlin, 2014.

[43] Becker, S., Dziwok, S., Gerking, C., Heinzemann, C., Thiele, S.,
Schäfer, W., Meyer, M., Pohlmann, U., Priesterjahn, C., and Tichy,
M., “The MechatronicUML Design Method: Process and Language
for Platform-Independent Modeling,” Software Engineering Dept.,
Fraunhofer IEM TR RI-14-337, Paderborn, Germany, March 2014.

[44] Lee, E., “Fundamental Limits of Cyber-Physical Systems Modeling,”
ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, 2016,
pp. 1–26.
https://doi.org/10.1145/2912149

[45] Kounev, S., Rathfelder, C., and Klatt, B., “Modeling of Event-Based
Communication in Component-Based Architectures: State-of-the-Art
and Future Directions,” Proceedings the 9th International Workshop

on Formal Engineering approaches to Software Components and

Architectures (FESCA), Elsevier, Amsterdam, The Netherlands,
2012, pp. 3–9.

[46] Kounev, S., Rathfelder, C., and Klatt, B., “Modeling of Event-Based
Communication in Component-Based Architectures: State-of-the-Art
and Future Directions,” Electronic Notes in Theoretical Computer

Science, Vol. 295, May 2013, pp. 3–9.
https://doi.org/10.1016/j.entcs.2013.04.002

[47] Hölldobler, K., Kautz, O., and Rumpe, B., MontiCore Language

Workbench and Library Handbook: Edition 2021. Aachener
Informatik-Berichte, Software Engineering, Shaker Verlag, Band
48, Düren, Germany, 2021.

[48] Bürger, J. C.,Kausch,H., Raco,D.,Ringert, J. O., Rumpe,B., Stüber, S.,
and Wiartalla, M., Towards an Isabelle Theory for Distributed, Inter-

active Systems—The Untimed Case, Aachener Informatik Berichte,
Software Engineering, Shaker Verlag, Band 45, Düren, Germany, 2020.

[49] Paech, B., and Rumpe, B., “A New Concept of Refinement Used for
Behaviour Modelling with Automata,” Proceedings of the Industrial Ben-
efit of Formal Methods (FME’94), Springer, Berlin, 1994, pp. 154–174.
https://doi.org/10.1007/3-540-58555-9_94

[50] Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez, A., Rumpe,
B., Völkel, S., and Wortmann, A., “Composition of Heterogeneous
Modeling Languages,”Model-Driven Engineering and SoftwareDevel-

opment, Communications in Computer and Information Science,
Vol. 580, Springer, Berlin, 2015, pp. 45–66.
https://doi.org/10.1007/978-3-319-27869-8_3

[51] Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., and
Völkel, S., “Design Guidelines for Domain Specific Languages,”
Domain-Specific Modeling Workshop (DSM’09), Helsinki School of
Economics, Espoo, Finland, 2009, pp. 7–13.

E. Atkins
Editor-in-Chief

12 Article in Advance / KAUSCH ETAL.

D
ow

nl
oa

de
d

by
 R

W
T

H
 A

ac
he

n
on

 J
an

ua
ry

 2
3,

 2
02

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
14

76

https://doi.org/10.1111/1540-5885.1720128
https://doi.org/10.1109/ICFEM.1997.630427
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1109/32.979986
https://doi.org/10.1109/DASC55683.2022.9925819
https://doi.org/10.1007/s13272-024-00762-6
https://doi.org/10.1145/41625.41641
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1145/2912149
https://doi.org/10.1016/j.entcs.2013.04.002
https://doi.org/10.1007/3-540-58555-9_94
https://doi.org/10.1007/978-3-319-27869-8_3

