
Ernst Denert Software Engineering
Award 2022

Eric Bodden, Michael Felderer, Wilhelm Hasselbring, Paula Herber,
Heiko Koziolek, Carola Lilienthal, Florian Matthes, Lutz Prechelt,
Bernhard Rumpe, and Ina Schaefer

E. Bodden
Secure Software Engineering, Heinz Nixdorf Institut der Universitát Paderborn, Paderborn
University and Fraunhofer IEM, Paderborn, Germany
e-mail: eric.bodden@uni-paderborn.de

M. Felderer
Institute for Software Technology, German Aerospace Center (DLR), University of Cologne,
Cologne, Germany
e-mail: michael.felderer@uni-koeln.de

W. Hasselbring
Software Engineering, Christian-Albrechts-Universität Kiel, Kiel, Germany
e-mail: hasselbring@email.uni-kiel.de

P. Herber
Embedded Systems Group, University of Münster, Münster, Germany
e-mail: paula.herber@uni-muenster.de

H. Koziolek
ABB Corporate Research, Ladenburg, Germany
e-mail: heiko.koziolek@de.abb.com

C. Lilienthal
WPS - Workplace Solutions GmbH, Hamburg, Germany
e-mail: carola.lilienthal@wps.de

F. Matthes
Software Engineering of Business Information Systems, Department of Computer Science (CS),
Technical University of Munich, Garching bei München, Germany
e-mail: matthes@in.tum.de

L. Prechelt
Institut für Informatik, Freie Universität Berlin, Berlin, Germany
e-mail: prechelt@inf.fu-berlin.de

B. Rumpe (�)
Software Engineering, RWTH Aachen, Aachen, Germany
e-mail: rumpe@se-rwth.de

I. Schaefer
Testing, Validation and Analysis of Software-Intensive Systems (TVA), Institute for Information
Security and Dependability (KASTEL), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany
e-mail: ina.schaefer@kit.edu

© The Author(s) 2024
E. Bodden et al. (eds.), Ernst Denert Award for Software Engineering 2022,
https://doi.org/10.1007/978-3-031-44412-8_1

1

[BFH+24b] E. Bodden, M. Felderer, W. Hasselbring, P. Herber,
H. Koziolek, C. Lilienthal, F. Matthes, L. Prechelt, B. Rumpe, I. Schaefer:
Ernst Denert Software Engineering Award 2022.
In: Ernst Denert Award for Software Engineering 2022: Practice Meets Foundations,
pp. 1-8, ISBN 978-3-031-44412-8, Springer Cham, Mar. 2024.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44412-8protect T1	extunderscore 1&domain=pdf

 885 17861 a 885 17861 a

mailto:eric.bodden@uni-paderborn.de
mailto:eric.bodden@uni-paderborn.de
mailto:eric.bodden@uni-paderborn.de
mailto:eric.bodden@uni-paderborn.de

 885 22842 a 885 22842 a

mailto:michael.felderer@uni-koeln.de
mailto:michael.felderer@uni-koeln.de
mailto:michael.felderer@uni-koeln.de
mailto:michael.felderer@uni-koeln.de

 885
26716 a 885 26716 a

mailto:hasselbring@email.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de

 885 30591 a 885 30591 a

mailto:paula.herber@uni-muenster.de
mailto:paula.herber@uni-muenster.de
mailto:paula.herber@uni-muenster.de
mailto:paula.herber@uni-muenster.de

 885 34465
a 885 34465 a

mailto:heiko.koziolek@de.abb.com
mailto:heiko.koziolek@de.abb.com
mailto:heiko.koziolek@de.abb.com
mailto:heiko.koziolek@de.abb.com

 885 38340 a 885 38340
a

mailto:carola.lilienthal@wps.de
mailto:carola.lilienthal@wps.de
mailto:carola.lilienthal@wps.de

 885 43321 a 885 43321 a

mailto:matthes@in.tum.de
mailto:matthes@in.tum.de
mailto:matthes@in.tum.de

 885 47195 a 885 47195 a

mailto:prechelt@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de

 885
51070 a 885 51070 a

mailto:rumpe@se-rwth.de
mailto:rumpe@se-rwth.de
mailto:rumpe@se-rwth.de

 885
57158 a 885 57158 a

mailto:ina.schaefer@kit.edu
mailto:ina.schaefer@kit.edu
mailto:ina.schaefer@kit.edu
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1

2 E. Bodden et al.

Abstract The Ernst Denert Award is already existing since 1992, which does not
only honor the award winners but also the software engineering field in total.
Software engineering is a vivid and intensively extending field that regularly
spawns new subfields such as automotive software engineering, research software
engineering, or quantum software engineering, covering specific needs but also
generalizing solutions, methods, and techniques when they become applicable. This
is the introductory chapter of the book on the Ernst Denert Software Engineering
Award 2022. It provides an overview of the five nominated PhD theses.

1 Introduction

Software-based products, apps, systems, or other services are influencing all areas
of our daily life. They are the basis and central driver for digitization and all kinds
of innovation. This makes software engineering a core discipline to drive technical
and societal innovations in the age of digitization [4].

As of 2023, software engineering operates in many new or significantly changed
application domains, such as the Internet of Things (IoT), smart manufactur-
ing, autonomous systems, machine learning, artificial intelligence (AI), and even
quantum computing. Surveys argue that more than 90% of research projects
use software for gaining new insights, managing their results, understanding the
research topic, controlling the physical gadgets, etc. Researchers of nearly all
domains are significantly developing software within their research. Model-driven
software and systems engineering approaches nowadays support handling the ever-
growing complexity of modern systems. Sophisticated static analysis tools identify
more and more faults in the code and can mitigate the rising cyber-security
challenges by identifying security vulnerabilities early or monitoring the system
during runtime for a safe, reliable, robust, and secure operation.

A rather strong recent trend, which affects software engineering practices, is the
advent of generative AI, thanks to large language models (LLMs) based on the
transformer architecture [10]. These models were popularized in recent months by
publicly available, easy-to-use tools (e.g., GitHub CoPilot, ChatGPT, Bard). Such
tools can generate source code based on natural language queries but can also
interpret, fix, or document existing code. Trained with a vast data set including
many popular libraries, such LLMs can potentially relieve software engineers from
many accidental complexities and focus on the essential complexities of solving
computing problems. Early experiments at Microsoft Research demonstrated a 55%
developer productivity increase from using GitHub CoPilot for web programming,
signifying promising potential for advancing software development practices [7].

While some authors already pro-claim “the end of programming” [9], the
technology is still under development. LLMs sometimes find very helpful sentences
and programs but sometimes only hallucinate. Generated source code thus may
be partially semantically incorrect or doing something completely wrong. We will

Ernst Denert Software Engineering Award 2022 3

have to evaluate the new technology carefully. It will affect software engineering
research to utilize generative AI for the development of programs, models, and the
understanding of requirements to the fullest. It may be that the new approaches will
leverage methods from psychology, where intelligent interrogation allows to reveal
how an AI really works.

We see a forthcoming challenging and very interesting future for software
engineering research, not only for the application of AI models for software
development but also for specific upcoming domains, such as research software
engineering [5] or quantum computing [8].

It is important to recall that the IEEE Standard Glossary of Software Engineering
Terminology [6] defines software engineering as follows:

(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application
of engineering to software.

(2) The study of approaches as in (1).

It defines software engineering as an engineering discipline (“application of
engineering to software”) with its own methodology (“systematic, disciplined, quan-
tifiable approach”) applied to all phases of the software life cycle (“development,
operation, and maintenance of software”). The two-part structure of the definition
of software engineering also makes the tight integration of software engineering (1)
and software engineering research (2) explicit.

Therefore, the Ernst Denert Software Engineering Award specifically rewards
researchers who value the practical impact of their work and aim to improve
current software engineering practices [3]. Creating tighter feedback loops between
professional practitioners and academic researchers is essential to make research
ideas ready for industry adoption. Researchers who demonstrate their proposed
methods and tools on nontrivial systems under real-world conditions in various
phases of the software life cycle shall be supported so that the gap between research
and practice can be decreased.

Overall, five PhD theses that were defended between September 1, 2021, and
October 31, 2022, were nominated and finally presented during the Software
Engineering Conference SE 2023.

All submissions fulfill the ambitious selection criteria of the award defined in
detail in the book for the Ernst Denert Software Engineering Award 2019 [2].
These criteria include, among others, practical applicability, usefulness via tools,
theoretical or empirical insights, currentness, and contribution to the field. In a
nutshell, “The best submissions are those that will be viewed as important steps
forward even 15 years from now.” [3].

In this introductory chapter, we give an overview of the nominated five PhD
theses, present the work of the award winner, and outline the structure of the book.

4 E. Bodden et al.

2 Overview of the Nominated PhD Theses

As previously mentioned, the Ernst Denert Software Engineering Award 2022
committee identified five worthy nominations for PhD theses that were eligible to
receive the Ernst Denert Award. These theses encompass a wide range of research
in the field of software engineering, highlighting its diverse applications across
various domains. They also demonstrate the vibrancy and diversity of the field
through the utilization of different research methods, including formal methods,
design science, and quantitative and qualitative empirical methods. Furthermore,
these theses address various activities in the software life cycle, such as analysis,
design, programming, testing, deployment, operation, and maintenance. This sec-
tion provides a brief overview of the nominated PhD theses. They will be presented
in alphabetical order based on the names of the respective nominees, accompanied
by a concise summary of the chapters contributed by each thesis to this book.

The chapter of Jannik Fischbach and Andreas Vogelsang entitled “Conditional
Statements in Requirements Artifacts: Logical Interpretation, Use Cases for Auto-
mated Software Engineering, and Fine-Grained Extraction” provides readers with
an understanding of (1) the notion of conditionals in RE artifacts, (2) how to extract
them in fine-grained form, and (3) the added value that the extraction of conditionals
can provide to RE. Jannik Fischbach is the winner of the Ernst Denert Software
Engineering Award 2022, and we present his work in more detail in the next section.

The chapter of Jörg Christian Kirchhof entitled “From Design to Reality: An
Overview of the MontiThings Ecosystem for Model-Driven IoT Applications”
proposes a model-driven process for rapid development of IoT applications. The
chapter gives an overview of how to develop, deploy and analyze distributed
IoT applications using MontiThings. MontiThings demonstrates the benefits of a
model-driven development approach not only in the initial conceptualization of the
application but also in later development phases (e.g., deployment), leading to an
app store concept that separates hardware from software development.

The chapter of Sven Peldszus entitled “Security Compliance in Model-Driven
Development of Software Systems in Presence of Long-Term Evolution and
Variants” provides an approach for tracing and verifying security requirements
in the model-driven development of software-intensive systems. Early security
considerations based on the principle of security by design are part of many modern
development processes, but to ensure the security of the final product, which
may even comprise an entire product line, it is essential to check each individual
product for compliance with the planned security design. To this end, the thesis
investigates the systematic traceability of security requirements throughout the
software development life cycle and how this traceability can be used for automated
security compliance checking. The individual solutions were validated against 18
objectives, and the overall approach was demonstrated on two open-source case
studies.

The chapter of Florian Rademacher et al., entitled “Model-Driven Engineering of
Microservice Architectures: The LEMMA Approach”, investigates the application

Ernst Denert Software Engineering Award 2022 5

of model-driven engineering (MDE) to the design, development, and operation of
software systems that are based on microservice architecture (MSA). From a set
of well-known challenges in MSA engineering as well as real-world microservice
architectures and approaches to the modeling of service-oriented architectures,
Rademacher et al. derive a set of integrated, stakeholder-oriented MSA modeling
languages. Furthermore, they accompany these languages with a framework for the
implementation of model processors that is oriented toward technology-savvy MSA
stakeholders without an MDE background. Finally, Rademacher et al. present and
discuss the application of their MSA modeling languages and framework for the
(i) extensible generation of microservice code; (ii) microservice architecture recon-
struction; (iii) quality assessment of microservices; (iv) microservice architecture
defect resolution; and (v) establishment of a common architecture understanding
among distributed MSA teams.

Finally, the chapter of Alexander Trautsch entitled “Usefulness of Automatic
Static Analysis Tools: Evidence from Four Case Studies” presents results from
multiple empirical studies in the context of software engineering research. The
studies explore an automated static analysis tool and its impact on quality in a broad
overview from multiple perspectives. The chapter contains studies that focus on
the evolution of static analysis warnings, static analysis warnings in the context of
software defects, as well as the context of developer intent.

3 The Work of the Award Winner

We congratulate Jannik Fischbach, his advisor Andreas Vogelsang, and his alma
mater, Universität zu Köln, for winning the Ernst Denert Software Engineering
Award 2022 for the PhD thesis “Why and How to Extract Conditional Statements
From Natural Language Requirements.” Dr. Jannik Fischbach focuses on condi-
tionals (e.g., “If the system detects an error, an error message shall be shown”)
in requirements and highlights why and how requirements engineering can benefit
from the automated extraction of conditionals. Specifically, he makes the following
contributions:

1. He presents empirical results on the prevalence and logical interpretation of
conditionals in RE artifacts. Jannik Fischbach found that conditionals in require-
ments mainly occur in explicit, marked form and may include up to three
antecedents and two consequents. Hence, the extraction approach must under-
stand conjunctions, disjunctions, and negations to fully capture the relation
between antecedents and consequents. He also found that conditionals are a
source of ambiguity, and there is not just one way to interpret them formally.
This affects any automated analysis that builds upon formalized requirements
(e.g., inconsistency checking) and may also influence guidelines for writing
requirements.

6 E. Bodden et al.

2. Jannik Fischbach presents his tool-supported approach CiRA capable of detect-
ing conditionals in NL requirements and extracting them in fine-grained form.
For the detection, CiRA uses syntactically enriched BERT embeddings com-
bined with a softmax classifier and outperforms existing methods. His experi-
ments show that a sigmoid classifier built on RoBERTa embeddings is best suited
to extract conditionals in fine-grained form. CiRA is available at http://www.cira.
bth.se/demo/.

3. He highlights how extracting conditionals from requirements can help cre-
ate acceptance tests automatically. Specifically, Jannik Fischbach shows how
extracted conditionals can be mapped to a Cause-Effect-Graph from which
test cases can be derived automatically. He demonstrates the feasibility of his
approach in a case study with three industry partners. In his study, out of 578
manually created test cases, 71.8% can be generated automatically. Furthermore,
his approach discovered 80 relevant test cases missed in manual test case design.

His findings prove that automated conditional extraction can contribute to
implementing automatic acceptance test creation. However, he does not achieve full
automation of acceptance test generation mainly due to (1) incomplete requirements
and (2) errors of his approach in interpreting conditionals that contain three or
more consequents. Hence, Jannik Fischbach suggests using CiRA to supplement
the existing manual creation process to make test designers aware of all test cases
that should be tested from a combinatorial point of view. He hypothesizes that this
will help reduce the risk of missed negative test cases significantly. The work of
Jannik Fischbach is presented in more detail in Chapter “Conditional Statements in
Requirements Artifacts: Logical Interpretation, Use Cases for Automated Software
Engineering, and Fine-Grained Extraction” of this book.

4 Structure of the Book

The remainder of the book is structured into five chapters, one for the work of each
nominee listed above. Each nominee presents in his chapter

• an overview and the key findings of the work,
• its relevance and applicability to practice and industrial software engineering

projects,
• additional information and findings that have only been discovered afterwards,

e.g., when applying the results in industry or when continuing research.

The chapters of the nominees are based on their PhD theses and arranged in
alphabetic order.

As already highlighted in the introductory book chapter of the Ernst Denert
Software Engineering Award 2019 [3] and by Prof. Denert’s reflection on the
field [1], software engineering is teamwork. Outstanding research with high impact

http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/

Ernst Denert Software Engineering Award 2022 7

is also always teamwork, which somewhat conflicts with the requirement that a
doctoral thesis must be the work of a single author.

4.1 Thanks

We again thank Professor Ernst Denert for all his help in making this award a success
and the Gerlind & Ernst Denert-Stiftung for the kind donation of the first price and
the overall support. We thank the team of the Software Engineering Conference
SE 2023, which was organized by Gregor Engels, Stefan Sauer, Regina Hebig and
Matthias Tichy at Paderborn University, to host the presentations of the nominees
and the award ceremony. We also thank the German, Austrian, and Swiss computer
science societies, i.e., the GI, the OCG, and the SI, respectively, for their support
in making the Ernst Denert Software Engineering Award 2022 a success. Finally,
we thank all the people that helped in its organization, including Christian Kirchhof
and Florian Rademacher (both RWTH Aachen University), who supported in the
organization of this book.

References

1. Denert, E.: Software engineering. In: Ernst Denert Award for Software Engineering 2019, pp.
11–17. Springer, Berlin (2020)

2. Felderer, M., Hasselbring, W., Koziolek, H., Matthes, F., Prechelt, L., Reussner, R., Rumpe, B.,
Schaefer, I.: Ernst Denert Award for Software Engineering 2019: Practice Meets Foundations
(2020)

3. Felderer, M., Hasselbring, W., Koziolek, H., Matthes, F., Prechelt, L., Reussner, R., Rumpe,
B., Schaefer, I.: Ernst denert software engineering awards 2019. In: Ernst Denert Award for
Software Engineering 2019, pp. 1–10. Springer, Berlin (2020)

4. Felderer, M., Reussner, R., Rumpe, B.: Software Engineering und Software-Engineering-
Forschung im Zeitalter der Digitalisierung. Informatik Spektrum 44(2), 82–94 (2021)

5. Felderer, M., Goedicke, M., Grunske, L., Hasselbring, W., Lamprecht, A.L., Rumpe, B.:
Toward Research Software Engineering Research (2023). https://doi.org/10.5281/zenodo.
8020525

6. IEEE: IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990
pp. 1–84 (1990)

7. Peng, S., Kalliamvakou, E., Cihon, P., Demirer, M.: The impact of AI on developer productiv-
ity: Evidence from github copilot (2023). Preprint arXiv:2302.06590

8. Schaefer, I.: Quantum software engineering - quo vadis? In: Engels, G., Hebig, R., Tichy,
M. (eds.) Software Engineering 2023, Fachtagung des GI-Fachbereichs Softwaretechnik, 20–
24. Februar 2023, Paderborn, LNI, vol. P-332, pp. 19–20. Gesellschaft für Informatik e.V.,
Luxembourg (2023). https://dl.gi.de/20.500.12116/40069

9. Welsh, M.: The end of programming. Commun. ACM 66(1), 34–35 (2022)
10. Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Zhang, K., Ji, C., Yan, Q., He, L., et al.: A

comprehensive survey on pretrained foundation models: A history from bert to chatgpt (2023).
Preprint arXiv:2302.09419

https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069

8 E. Bodden et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Ernst Denert Software Engineering Award 2022
	1 Introduction
	2 Overview of the Nominated PhD Theses
	3 The Work of the Award Winner
	4 Structure of the Book
	4.1 Thanks

	References

