E . E [NMR24] L. Netz, J. Michael, B. Rumpe:

-~ From Natural Language to Web Applications: Using Large Language

. Models for Model-Driven Software Engineering.

In: Modellierung 2024, M. Weske, J. Michael (Eds.), pp. 179-195, LNI, GI, Mar. 2024.

Mathias Weske, Judith Michael (Hrsg.): Modellierung 2024,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2024 179

From Natural Language to Web Applications:
Using Large Language Models for Model-Driven Software
Engineering

Lukas Netz! Judith Michael 2 Bernhard Rumpe 3

Abstract: We evaluate the usage of Large Language Models (LLMs) to transform natural language
into models of a predefined domain-specific language within the context of model-driven software
engineering. In this work we test systematically the reliability and correctness of the developed tooling,
to ensure its usability in an automated model-driven engineering context. Up to now, LLMs such as
ChatGPT were not sophisticated enough to yield promising results. The new API-Access and the
release of GPT-4, enabled us to develop improved tooling that can be evaluated systematically. This
paper introduces an approach that can produce a running web application based on simple informal
specifications, that is provided by a domain expert with no prior knowledge of any DSL. We extended
our toolchain to include ChatGPT and provided the Al with additional DSL-specific contexts in
order to receive models that can be further processed. We performed tests to ensure the semantic and
syntactic correctness of the created models. This approach shows the potential of LLMs to successfully
bridge the gap between domain experts and developers and discusses its current limitations.

Keywords: ChatGPT, GPT-4, Model-Driven Engineering, Code Generation, MontiGem, DSL

1 Introduction

Domain-Specific Languages (DSLs) aim to reduce the gap between the domain expert and
the Software Engineer [FRO7,FL10] by raising the level of abstraction, while at the same
time reducing the design space to match the needs of the targeted problem domain [KTOS].
The usability of any DSL is a key factor in its acceptance by the domain expert. However,
there are many challenges in designing a highly usable DSL [Bal4]. Among the challenges
the domain expert has to learn when creating a new model in a new DSL are: (1) syntax
and semantics of the language, (2) how to compose the syntax to perform a function, (3)
comprehension of syntax written by others, (4) debugging of syntax, and (5) modification
of a model.

With the increasing sophistication of Large Language Models (LLMs) [Ch21,Li22] such as
ChatGPT [Br20, Op23b], the question arises as to whether these can be used to perform
the model definition for the domain expert, similar to [Ar16] and [Sa20b]. The domain

I RWTH Aachen University, Software Engineering, Ahornstrafie 55, 52074 Aachen, Germany netz@se-rwth.de
2 RWTH Aachen University, Software Engineering, Ahornstrae 55, 52074 Aachen, Germany michael @se-rwth.de
3 RWTH Aachen University, Software Engineering, AhornstraBe 55, 52074 Aachen, Germany rumpe @se-rwth.de

ClOC)

https://creativecommons.org/licenses/by-sa/4.0/
mailto:netz@se-rwth.de
mailto:michael@se-rwth.de
mailto:rumpe@se-rwth.de

180 Lukas Netz, Judith Michael, Bernhard Rumpe

expert only would have to specify the desired use case, leaving the LLM to generate the
semantically and syntactically correct model. Within this work, we want to evaluate fo what
extent generative pre-trained transformers can be used, to reliably produce data structure
models of a given DSL. We limit ourselves to data structure models in this approach, as they
serve as input for a generator framework (MontiGem [Bu24, Ge20b]), which transforms
class diagrams into a running web application.

In order to narrow down our evaluation, we will proceed under the following assumptions:

1. The input is provided in natural language as informal requirements by a domain expert
(e.g. a subject matter expert on finance or healthcare).

2. The domain expert might have no prior knowledge about the used DSL, thus he might
not be able to validate any response directly from the LLM.

3. The domain expert can validate if a resulting artifact, such as a generated application,
based on the GPT output, fits his requirements or not.

As we rely on multiple language models, we have to take several perils into account,
that come with using a LLM-based system [Bo21,Ja23]: (1) Non-determinism poses a
challenge when depending on a tool to produce valid models consistently. The language
model may generate varied output for the same request, resulting in instances where it
provides a textual model at one time and only the model description at another. Even when
fine-tuning responses with a low-temperature setting, the outcomes remain unpredictable.
(2) correctness of the output is questionable, as it can not be guaranteed that the training
data the language model is trained on is correct. Data might be outdated, not present, or
simply wrong, resulting in similarly faulty output by an LLM. Further aspects to discuss are
(3) the amount to which the choice of the target DSLs impacts the likeliness to synthesize
a valid model, (4) if an approach to transform informal specifications into a DSL is feasible,
compared to alternatives such as the direct transformation into a GPL (e.g. using ChatGPT
to create Java code directly), and (5) limitations that are introduced by using LLMs.

In this work, we explore the effectiveness of Language Models (LLMs) in producing
data structure models for web application development. To achieve this, we introduce a
transformer that takes informal specifications from a domain expert as input and constructs a
prompt. This prompt is then fed to an LLM, which in turn produces a model. The toolchain
can subsequently utilize this model to generate a web application.

The paper is structured as follows: We introduce fundamentals such as the tools and DSLs
we use in section 2. We follow up with a description of the proposed approach (section 3),
before listing the results in section 4, which are discussed in section 5. After presenting the
related work in section 6, the last section concludes.

From Natural Language to Web Applications:
Using Large Language Models for Model-Driven Software Engineering 181

2 Used Technology and Languages

The DSL CD4A presented in this work is developed with MontiCore. MontiCore [KRV0S,
HKR21] is a language workbench for the efficient development of DSLs. Language engineers
define a context-free grammar to describe the abstract syntax of the language (i.e. what
constructs are valid models in the DSL). The concrete syntax has a textual representation.

Context Conditions (CoCos) are used to further specify the model, as the context-free
grammar does not support such conditions. Based on these artifacts, MontiCore generates
mainly three infrastructures: A parser for models, a traverse/visitor infrastructure, and a
symbol table. The parser generates an abstract syntax tree (AST) based on the information
in the model. During this process, the input models’ consistency with the grammar is also
validated. The resulting AST can then be traversed using the provided traverser/visitor
infrastructure. The symbol table is used to find symbols in the model and in the scope of
the model. This is useful in order to check whether a reference in one model to another
model is valid and whether the referenced symbol exists, thus providing the means to easily
validate many contextual conditions. This infrastructure supports the language developer to
create a DSL and generate code from its models. Within this work, we use the generated
infrastructure (especially the parser and cocos) to evaluate any models that are synthesized
for a MontiCore-based DSL.

: Class Diagrams for Analysis (CD4A) is a
1| classdiagram CD { ’ .
2| class Person { textual DSL developed with MontiCore. It
3 String name; is based on UML [Ob17] to define class di-
4 Date birthday; agrams (CDs) in a Java-like syntax [Rul6].
3 }1 stud cends P In addition to attribute- and class definitions,
o| crass Student ex,en s Persont CD4A supports all common elements of
7 long studentId; T) :
s 3 CDs, e.g., associations, inheritance, and
o| class Animal { enumerations (see [Ch23]).
10 String name;
|} Listing 1 shows an example of a class dia-
12| association [1]Person -> Animal[*]; gram consisting of the class Person with two
i3} attributes name and age. The class Student

List. 1: CD4A Class Diagram Defining Person inherits from Person. Additionally, there is
Student and Animal Class and their relations. an association between Person and Animal,
modeling optional Pets for each Person.

2.1 MontiCore-Based Generator for Enterprise Management (MontiGem)

MontiGem [Ge20b, Ad18, Ge20a, Mi22] is a generator-framework based on the MontiCore
language workbench. It meets enterprise information system needs, which are inherently
data-centric [JWMO6]. It uses models from UML/P [Ob17] as input artifacts, such as class
diagrams and OCL as well as GUI models to generate the target code in a server-client

182 Lukas Netz, Judith Michael, Bernhard Rumpe

architecture (similar to [HMMM18]). The code generation mainly handles the creation
of boilerplate code and provides basic infrastructure, allowing the developers to focus
on the business logic. The configuration of MontiGem used in this work only requires a
class diagram, to generate the web application. An internal model-to-model transformation
(CD2GUI) derives GUI models for each data class defined in the input class diagram,
leaving the definition of GUI models and OCL constraints optional.

The framework has been used in a variety of real-world projects and teaching activities.
MontiGem has been extended to generate, e.g., low-code development platforms for digital
twins [Da22], process-aware digital twin cockpits [Ba22], assistive systems [MRZ21], or
IoT App stores [Bu22].

3 Methodology

o (8 &

-IL{I

‘ Natural Model o O Generates
—7 Language > | Transformer ‘
"’0 MontiGem J
Domain
Expert Validates

Fig. 1: Domain-Expert defining an application without knowledge of any DSL used.

The following experimental setup (c.f.Figure 1) is used to systematically evaluate both
versions of the LLM (GPT-3.5 and GPT-4). A domain expert (A) states informal requirements
as written input to the transformer. The transformer uses a configuration that is tailored
to the targeted DSL and uses LLM, to provide the language model (B) both with the user
request as well as additional instructions on how to transform it into the correct DSL. The
transformer extracts and validates the model from the response with a corresponding parser
and either requests a new one or provides the model to a generator that can process the
model further. We use (C) MontiGem as a generator for the web application. The running
application can easily be evaluated by the domain expert, as only domain knowledge (instead
of expertise in modeling) is needed for the evaluation. Note that instead of MontiGem other
generator frameworks could be used, e.g., M3D [Bel2]. Once the application is created, the
user inspects the outcome and if needed has the option to try again or to adapt the model
with natural language. As we intend to run a large number of tests and the generation and
inspection of an entire application is relatively time-consuming, we focus on the creation
and validation of models. We proceed under the assumption that MontiGem (C) produces
an application for every valid CD4A model it is provided [Mi22].

The prompts we transmit to the LLM must exhibit a high level of fine-tuning to obtain
answers that fulfill two key criteria: a) accurate formatting and syntax (such as including a
textual model), and b) relevance to the specific use case addressed by the question. In the
following example (compare with Figure 2), we use an API to instruct the Language Model

From Natural Language to Web Applications:
Using Large Language Models for Model-Driven Software Engineering 183

to generate a Class Diagram. However, while the response is semantically accurate, it bears
no resemblance to the specified DSL CD4A, rendering it unsuitable for further processing
within a CD4A-based toolchain.

User: Create a CD4A model for a Ping Pong

game.
GPT-4: Sure! Here’s a simple CD4A class
diagram for a Ping Pong game:
1| +==mmmm e +
2| | Ball | User: Please generate a Monticore CD4A
3| oo ¥ model describing a Ping Pong game
4| | + move(Q) |
5| | + bounce() | (GPT-4: How does the model start?)
e e e e +
: User: A Monticore CD4A model starts with
g 4o + classdiagram Name { where 'Name' should
o| | Paddle | be the name of the model.
i? T_;_I;;;;I_J'I;E; _____ Jlr GPT-4: Understood. How are public and
2| | + moveDown() | private variables declared?
ii T " User: Public and private variables are de-
5| Paddle *-- Ball clared using the 'public' and 'private’
keywords, respectively, rather than with '+’
Is there anything else you would like to know? or '-" symbols.

Fig. 2: An unconfigured interaction with GPT, Fig. 3: Providing additional specifications and
can yield CDs in the wrong syntax. context is necessary to yield parsable results.

As GPT-3.5 [Br20] and GPT-4 [Br20] are LLMs that consider the context of the current
conversation, we can use the API to provide a fictive conversation that already established
key rules of the CD4A grammar (c.f. Figure 3).

By iterating on the key elements of the target DSL, we can increase the chance of getting
the correct response in the correct syntax. Note that we do not need to explain every rule
or production of the corresponding DSL grammar to get a valid answer. Using the API
provided by OpenAl [Op23a], we can provide a fictive predefined conversation to LLM with
both versions of the LLM before asking any domain-specific questions, thus priming the
language model to more likely return a valid model (c.f. Figure 3). We can reuse previous
conversations that yielded a high rate of valid models or alternatively compose a set of
prompts in which we define the correct information, in order to create a model with the
correct syntax. Similar success can be reached by providing examples of the given DSL.
Few-Shot Learning (FSL) [Br20, Oh22] distinguishes between three training modes. (1)
Few-Shot: The LLM is given a task with a few demonstrations of possible solutions for the
task. (2) One-Shot: The LLM is provided with a single demonstration. (3) Zero-Shot: No
demonstration is given, the answer only relies on the pre-trained data of the LLM. As FSL

184 Lukas Netz, Judith Michael, Bernhard Rumpe

purely relies on the context provided with the task, we can provide it in a similar fashion as
with prompts without the need to costly retrain the LLM.

The toolchain (c.f. Figure 1) is configured to set up a conversation in which we pass on the
informal specifications from a domain expert to get a correct textual model as a response.
The model is used for subsequent generator steps, creating an information system. Providing
LLM with a predefined context improves the consistency of the response: As the system is
configured to be non-deterministic, there is a high chance that follow-up questions by LLM
would differ from previous iterations resulting in a slightly different setup of the LLM each
time. Providing context increases the chance of getting a model with the correct syntax.
Since a parser is part of the tools we get generated by MontiCore for each DSL, we can use
it to systematically evaluate the success rate of the LLMs responses.

4 Evaluation
User: Please generate a Monticore CD4A

To evaluate the success rate of the LLM’s
responses, we have evaluated it with the
following tasks and several cases:

1. Creating a CD4A model: Following
the setup shown in Figure 1, we will
iteratively produce models and count
the rate of valid models.

2. Creating a PlantUML Model: We
evaluate the performance again.

3. Evaluating semantic correctness:
We provide LLM with a task from an
exam and assess the results based on
a grading schema.

4. Adapting existing models: We eval-
uate the success rate of modification
of a textual model, based on a natural
language input.

4.1 Creation of a CD4A model

To assess the reliability of generating a
semantically meaningful and syntactically
correct model, we conducted multiple it-
erations of the same query (results can be

model of a simple user interface.

Predefined context: A Monticore CD4A
model starts with 'classdiagram’ Name {
where ’Name’ should be the name of the
model. |...]

GPT-4: [...]*

1| classdiagram SimpleUserInterface {
2| class Button {
3 public char symbol;
4}

5 class Label {
6 public char text;
71}

s| class TextField {

9 private int maxLength;

10 public char inputText;

11 }

12 class Window {

13 public Button button;

14 public Label label;

15 public TextField textField;
16 public void openWindow();
17 public void closeWindow();
18 }

|}

@ Additional ’chat’-text is omitted to increase readi-
bility.

Fig. 4: Creating a CD4A model with GPT-4

From Natural Language to Web Applications:
Using Large Language Models for Model-Driven Software Engineering 185

found in Table 1). It’s important to note that the use cases were intentionally underspecified,
allowing the Language Model to generate ’creative’ solutions. When tasked with creating a
Class Diagram for a basic user interface using GPT-4 (as shown in Table 2), the models
generated exhibited significant variability in terms of both size (ranging from 60 to 20 lines
of code) and the type of graphical user interface (GUI) modeled, spanning from a collection
of GUI elements to user management or data validation interfaces. The average cosine
similarity of all models is 0.52. One example run is shown in Figure 4. GPT-4 delivers
almost always a parsable model. In a few cases in which models could not be parsed by the
CDA4A parser contained the symbol ArrayList. The LLM failed to define this additional
type and therefore produced an invalid Model. To reduce the systematic error based on
specific use cases, we ran multiple use cases (Table 1).

Both GPT-3.5 and GPT-4 have a high chance of delivering a valid CD4A model. The
LLM GPT-4 performs better than its predecessor, as it uses a more sophisticated language
model [Op23b]. The success rate does not seem to be affected by the choice of use case, as
long as they are comparable in their complexity (See a use case with higher complexity in
subsection 4.3).

OpenAl notes that it might perform worse on knowledge on which it has little or no
training [Op23b]. It has a high chance of providing a correct model for a generic product but
could return semantically incorrect models of a specific product with a specific configuration.
To test this, we provide the LLMs with a narrow target domain:

User: Please generate a data structure model of Lego Set 75192.

Out of 20 requests, 19 provided a valid model. Only 4 described the specific Lego set stated
(Millennium Falcon). The remaining models described generic Lego sets.

Model Use Case Valid N Rate
GPT-3.5 Ping Pong game 15 20 75%
GPT-4 Ping Pong game 99 100 99%
GPT-3.5 Simple User Interfaces 76 100 76%
GPT-4 Simple User Interfaces 97 100 97%
GPT-4 Digital Twin of a Hydraulic Press 19 20 95%
GPT-4 Lego Set 75192 19 20 95%

Tab. 1: Success rate of different use cases evaluated over N iterations

Our initial tests provided the LLM with instructions on how to write a CD4A model.
According to [Br20,0h22] we should be able to reach similar results by providing examples
instead of instructions. As shown in Table 2, both LLMs are very unlikely to produce correct
syntax if not given any examples. The likelihood increases for both GPT-3.5 and GPT-4 if
an example is given. However, GPT-3.5 returned fewer valid models when given more than
one example. The performance of GPT-4 improved with further models.

The LLM is very unlikely to produce the correct syntax if only provided with the task to
transform the specification to a specific DSLs, assuming that the DSL is not widely used

186 Lukas Netz, Judith Michael, Bernhard Rumpe

Language Model Kind of Context Valid N Rate Similarity

GPT-3.5 Zero-Shot 0 100 0% 0.08
GPT-3.5 One-Shot 51 100 51% 0.20
GPT-3.5 Few-Shot 26 100 26% 0.22
GPT-4 Zero-Shot 0 20 0% 0.12
GPT-4 One-Shot 73 100 73% 0.25
GPT-4 Few-Shot 88 100 88% 0.32

Tab. 2: Success rate of the same task (Creating a CD4A model) using different contexts, evaluated
over N iterations

and, thus, the LLM is less likely to be trained on that DSL. We can teach the LLM by
either giving examples of the DSL (FSL) or by providing it with a few instructions on how
to adhere to the syntax. We have achieved a success rate of up to 99% for CD4A models
using GPT-4 (Table 1), despite the lack of training data on the internet for this specific DSL.
CD4A is tailored for developers and closely resembles the Java syntax. We hypothesize that
this success rate can be attributed to the language model’s training on Java code and UML
models. This familiarity with Java syntax likely simplifies the generation of code with a
similar structure, contributing to the high success rate observed.

4.2 Creating a PlantUML Class Diagrams

Another DSL that defines UML Class Diagrams in PlantUML. Assuming that GPT-4 is
already trained on Class Diagrams, we expect similarly high success rates as for CD4A.
The PlantUML language covers multiple diagram formats, e.g., CDs, state charts, activity
diagrams, BPMN, and component diagrams. As described in section 3, we use a parser to
validate the syntactic correctness of any returned model.

Model Use Case Valid N Rate Similarity
GPT-4 Ping Pong game 20 20 100% 0.33
GPT-4 Simple User Interface 18 20 90% 0.24
GPT-4 Exam Task 18 20 90% 0.63

Tab. 3: Success rate of different use cases evaluated of N iterations. Cosine Similarity of models
increases with more restrictive use-case descriptions.

As we can see in Table 3, the change in DSL does not have much effect on the success
rate of the approach. We reach success rates (90%-100%) that are comparable to the ones
measured with CD4A.

4.3 Evaluating Semantic Correctness

Semantic correctness of a data structure model is hard to measure [Ve20], and often a point
of discussion. In the following, we will provide the LLM with a task from an exam. We

From Natural Language to Web Applications:
Using Large Language Models for Model-Driven Software Engineering 187

can use the grading schema of the exam to evaluate the produced models and compare the
performance of the transformer with the results of students who took the same exam. The
assessment for this task has a maximum score of 13.5 points. The grading criteria assess
the diagram’s correctness, considering various elements like compositions, inheritance,
association cardinalities, and common mistakes in model design. The task reads as follows:

User: Generate a class diagram of an EBike according to these specifications:

The EBike is composed of a frame (made out of steel), a drive system, and a controller.
Two wheels are inserted into each frame. The drive system is composed of a motor.
Each EBike can be connected to a removable battery. The battery has a stored energy
measured in Watt-hours (Wh). The controller can be in one of three states: On, Off, and
Charging. It also controls the battery, if one is connected, and commands the drive
system. The company plans two different variants of the controller, a basic controller,
and an advanced controller. The advanced controller should be able to estimate the
next Date the bike should be inspected for maintenance.

© eBike (@ state
Oon

©wheel o frame : Frame
o driveSystem : DriveSystem

Off
o controller : Controller Rarain
o battery : Battery ging
/ o-wheel-> Wheel |o-battery-> Battery
© Controller
Frame DriveSystem
@ O currentState : State @ &
o steel o battery : Battery o motor: Motor
o commandDriveSystem() [}
@BasicCcntrcIIer

AdvancedController @Motcr

o hextinspection() : Date

(© Battery

o storedEnergy : float

Fig. 5: Visualization of the Textual Model extracted from a GTP-4 response. This model was graded
with 8.5/13.5 Points according to the grading schema of the exam. Some semantic errors are a missing
relation from Frame to Wheel and a wrong data type for storedEnergy

188 Lukas Netz, Judith Michael, Bernhard Rumpe

We graded 20 models produced by GPT-4. On average 7.5/13.5 points were reached. The
lowest score was 5 points, and the highest was 10.5. Three models failed the task as they
scored below 50%. A group of 40 students who had written the exam scored an average of
10.0 points. This task is an entry-level assignment for the students, thus almost all students
scored more than 50%. Nevertheless, it shows that the LLM is likely to produce accurate
models for precise requirements.

4.4 Adapting Existing Models

We must assess the feasibility of extending and altering specific aspects of a model, based
on the informal specifications of a domain expert. Thus far, our evaluation has centered on
the efficiency and reliability of an LLM-based approach in generating new models. Our next
step is to examine whether this approach can facilitate iterative editing of existing models.

We test as follows: We use a CD from one of our research projects containing about 30
classes (for a model excerpt see [Mi19]) as input. Next, we instruct our tool to add a specific
class. Additionally, we define a new context, setting up theLLM to extend the model in the
correct syntax.

Out of 20 iterations, we succeeded with 19
correct PlantUML models, each containing
a user class. Using CD4A, we succeeded
with all 20 models.

User: Add a user class and an association
between the user class and Person to this

model: [...]

An interesting side effect we noted was the GPT-4: [...]

adaptation of model-specific properties by]
the LLM. Within the model, we used the ,
uncommon ZonedDateTime type to define 7
time-based attributes. In cases where the 4
LLM also modeled a time-based attribute, 5| class User {
6
7
8
9

[...]

it would adopt this type (e.g. dateOfBirth). 2:223 2:2:;.
Similar effects could be seen with comment- String role; ’
ing styles (c.f. Figure 6): In cases where

the input CD is divided into sections that | 1o
are marked with large comment blocks (e.g. | ''| Association User <-> Person [*];
Jrrexsws) the LLM showed a tendency 2| [

to reuse this style, but customized it to its
change: The introduction of commentary gjg 6: GPT-4 adapting provided CD4A models
into the model can prove to be a problem

when iterating over the same model multiple times. A refinement of the provided context to
ban the LLM from adding comments could reduce this problem.

}

From Natural Language to Web Applications:
Using Large Language Models for Model-Driven Software Engineering 189

5 Discussion

We have shown, that it is possible to synthesize models of a given DSL via a LLM and
discuss the challenges and limitations of this approach.

Problems with non-determinsim. Almost all problems with non-determinism arise from
underspecification of the task provided to the transformer. By configuring the API to reuse
the same context for each request, and by restricting the LLM to a specific target-DSL,
we consistently get positive results. An indicator of the impact of non-determinism is
the average difference between all generated models measured with cosine similarity. By
providing a more restrictive use-case description we can reduce this impact as shown in
Table 3. A more precise task will lead to the generation of models that are more similar
to each other. Note that we used the same temperature configuration of 0.8 for the API
throughout all measurements.

Problems with correctness. As stated in the introduction, a common peril with LLM is the
uncertainty of getting a correct answer. In our case, we only consider the validity of the
model syntax and leave the semantic correctness to be checked by the domain expert. We
are able to check every response with a parser removing any uncertainty about the syntax of
the returned model. Regarding semantic correctness, we ran several tests showing that LLM
is very likely to provide a fitting response, but we are unable to guarantee a correct model
for every iteration. Further research has to be done to validate semantic correctness.

Problems with unknown DSLs and generalizability. We tested this approach with two
DSLs describing a rather common UML-Diagram type: the class diagram. Some of the
success of this approach is certainly due to LLM being trained on the concepts of UML
and the availability of lots of class diagram models on the internet to train from. It is to be
expected that models other DSLs such as Ul-description languages are harder to produce,
although we also noted that LLM is able to adapt on given input (subsection 4.4) and can be
supported with a fitting context. This needs to be tested further.

Using multiple chained generative approaches. Existing solutions, like CoPilot [BJP22]
and Codex [SVD21], can generate source code directly from natural language input.
However, it’s important to note that these solutions, as of the time of writing, are not
suitable alternatives to the approach described here. Their primary focus is on assisting
developers in extending pre-existing code rather than generating complete applications. In
addition to using a model as an artifact to systematically define software, this approach also
provides a level of consistency a language model cannot provide due to its non-determinism,
and limited context size. Producing several thousand lines of code is very unlikely to be
reproducible, in contrast to reproducing two very similar models as shown in subsection 4.3.
Direct code generation is yet very limited and is ideally used for smaller coding tasks for
example in education [Fi22].

Limitations of this approach. Although we try to reduce the required knowledge of the
domain expert to a minimum, we still can not prevent faulty usage of the tool. As we pass on

190 Lukas Netz, Judith Michael, Bernhard Rumpe

the requirements defined by the domain expert, we can not validate the user input and, thus,
can not guarantee correct results. E.g., we assume that the user does not specify the syntax.
We will most likely get bad results, should the user provide input asking for a different DSL
than the one the tool is currently configured for. As this tooling is in its early stages, we will
look for mechanisms to simplify its usage.

Secondly, we are limited by the current context size of the used LLM. The current version
of the ChatGPT-API only supports a context consisting of up to 8.000 tokens. The class
diagram used in subsection 4.4 consisted of 30 classes and is represented by 1.647 tokens.
Another larger class diagram consisting of 100 classes would be represented by 12.031
tokens and could not be processed. Future releases will support 32.000 tokens leaving more
room for larger models.

Finally, the approach is limited by the training data the LLM was trained on. Information
that is newer than 2021 is yet unknown to the Al. Similarly, it will not be able to provide
information on data that is not publicly available. It is most likely that the training data will
be updated at some point, but as of the time of writing, we are working with the data set
as of 2021. OpenAl announced the introduction of plugins, allowing ChatGPT to access
current data from the internet.

Up to now, we see three main threads to validity:

A) Using a Beta version of ChatGPT: ChatGPT is constantly under development. Thus, it
might yield different results in future iterations. The access we used were both beta and
early access versions that are likely to change over time.

B) Choice of context and DSLs: Another thread is the choice of a predefined context for each
used DSL and the choice of the DSLs itself. A context was chosen that yielded promising
results. Further evaluation might yield a better-suited context configuration that improves
upon the results shown above. We tested the approach with multiple DSLs to mitigate DSL
specific biases.

C) Non-Determinism: Due to the non-determinism of ChatGPT results vary over multiple
iterations. To reduce this effect, we ran tests at least 20 and up to 100 times.

6 Related work

The concept of utilizing natural language for generating code or models has been investigated
in several studies, highlighting its potential in bridging the gap between domain experts and
developers. Fill, Fettke and Kopke perform in [FFK23] a series of experiments in which
ChatGPT is used to synthesize UML Models. Rather than focusing on statistics of one type
of model, their work gives a broad overview of the options as a modeling tool that ChatGPT
can provide to a modeler. Desai et al. [Del6] proposed a general framework for creating
synthesizers that translate natural languages into specific DSLs. Although the approach

From Natural Language to Web Applications:
Using Large Language Models for Model-Driven Software Engineering 191

is narrow and relies on available training data, the synthesizers exhibit high accuracy in
their translations. Ibrahim and Ahmad [IA10] developed a method for extracting CDs from
textual requirements by employing natural language processing techniques and domain
ontology. The Requirements Analysis and CD Extraction (RACE) tool aims to streamline
the requirements analysis process, improving the efficiency of software engineers. Pang et
al. [Pa20] introduced a method for converting UI sketches or images into DSL code and
subsequently into executable code using an attention-based deep neural network, similar to
GPT. They proposed two novel models, HGui2Code and SGui2Code, to address various
challenges. HGui2Code focuses on the meaning and context of the GUI and DSL code, while
SGui2Code emphasizes adherence to the DSL grammar. Interestingly, the mixed attention
model demonstrated higher accuracy. Ernst [Er17] delved into the notion of using natural
language as a programming language. By demonstrating the code generation capabilities
of an Al model, he shows the potential to bridge the gap between domain experts and
developers. Thomas et al. [Th22] conducted a comprehensive survey on programming with
natural language. The study traces the development of natural language as a programming
language. Early approaches that worked with context-free grammars culminated in more
modern approaches using large language models such as GPT. This progression underscores
the increasing role of natural language in the field of software engineering and its potential
for bridging the communication gap between domain experts and developers. The presented
approach could be seen as a low-code or no-code approach. Low-code development platforms
target similar challenges to enable domain experts to create applications with little to no
expertise in software development [Sa20a, RR16].

Future Work. As the LLMs are still under development, the performance of the approach
is likely to improve. Further improvements to the input modes of the API are planned
by OpenAl such as the support of image and document processing. An extension of the
approach to also support this input mode could be followed up on. Another interesting
approach would be to construct sets of models that relate to each other. For example, a CD
that is constrained by a set of OCL models. Finally, as MontiCore grammars themselves are
also defined in a DSL, it would be interesting to evaluate the creation of new grammars
with LLMs. A language engineer could provide the LLM with a set of requirements, and
use it to create a corresponding DSL.

7 Conclusion

We were able to demonstrate a methodology that uses LLMs to produce semantically correct
and syntactically valid models with a high success rate. Once created, models can be passed
directly to other frameworks. In our case, a generator framework is used to create a complete
web application. We also could show that this approach is not limited to one specific DSL
and can be applied to others.

GPT-4 delivers a higher performance throughout all tested DSLs. We often reached better
results using custom prompts instructing GPT to key aspects of the target DSL, using up

192 Lukas Netz, Judith Michael, Bernhard Rumpe

less context and, thus, being more cost-efficient and leaving more room for more complex
models. We also showed that few-shot learning is a valid and more systematic approach to
teaching an LLM on how to transform natural language into a DSL. However, factors such
as overfitting the provided models have to be taken into account.

Although there are still some issues with the presented approach, the results are very
promising. One key issue, the validation of semantic correctness, remains to be done by
hand. Although all syntactic valid models seem to be semantically valid as well, the final
check has still to be performed by a domain expert. Enabling the domain expert directly to
define domain-specific models with informal descriptions, improves the usability of the
model-driven approach tremendously. It gives the domain expert more time to focus on
the requirements regarding his domain, than investing time and effort into figuring out the
intricacies of the used DSL-syntax.

Bibliography

[Ad18] Adam, Kai; Netz, Lukas; Varga, Simon; Michael, Judith; Rumpe, Bernhard; Heuser,
Patricia; Letmathe, Peter: Model-Based Generation of Enterprise Information Systems.
In: Enterprise Modeling and Information Systems Architectures (EMISA’18). volume
2097 of CEUR Workshop Proceedings. CEUR-WS.org, pp. 75-79, 2018.

[Ar16] Arora, Chetan; Sabetzadeh, Mehrdad; Briand, Lionel; Zimmer, Frank: Extracting
Domain Models from Natural-Language Requirements: Approach and Industrial Evalu-
ation. In: ACM/IEEE 19th Int. Conf. on Model Driven Engineering Languages and
Systems. MODELS ’16, ACM, NY, USA, p. 250-260, 2016.

[Bal4] BariSic, Ankica; Amaral, Vasco; Gouldo, Miguel; Barroca, Bruno: Evaluating the
usability of domain-specific languages. In: Software Design and Development: Concepts,
Methodologies, Tools, and Applications, pp. 2120-2141. IGI Global, 2014.

[Ba22] Bano, Dorina; Michael, Judith; Rumpe, Bernhard; Varga, Simon; Weske, Matthias:
Process-Aware Digital Twin Cockpit Synthesis from Event Logs. Journal of Computer
Languages (COLA), 70, June 2022.

[Bel2] Bernardi, Mario Luca; Cimitile, Marta; Di Lucca, Giuseppe Antonio; Maggi, Fabrizio M:
M3D: a tool for the model driven development of web applications. In: 12th Int. WS on
Web information and data management. pp. 73-80, 2012.

[BIP22] Barke, Shraddha; James, Michael B; Polikarpova, Nadia: Grounded copilot: How
programmers interact with code-generating models. arXiv preprint arXiv:2206.15000,
2022.

[Bo21] Bommasani, Rishi; Hudson, Drew A; Adeli, Ehsan; Altman, Russ; Arora, Simran; von
Arx, Sydney; Bernstein, Michael S; Bohg, Jeannette; Bosselut, Antoine; Brunskill,
Emma et al.: On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

[Br20] Brown, Tom; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared D;
Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, Pranav; Sastry, Girish; Askell, Amanda
etal.: Language models are few-shot learners. Advances in neural information processing
systems, 33:1877-1901, 2020.

From Natural Language to Web Applications:
Using Large Language Models for Model-Driven Software Engineering 193

(Bu22]

[Bu24]

[Ch21]

[Ch23]
[Da22]

[Del6]

(Erl7]

[FFK23]

[Fi22]

[FL10]
[FRO7]

[Ge20a]

[Ge20b]

Butting, Arvid; Kirchhof, Jorg Christian; Kleiss, Anno; Michael, Judith; Orlov, Radoslav;
Rumpe, Bernhard: Model-Driven IoT App Stores: Deploying Customizable Software
Products to Heterogeneous Devices. In: ACM SIGPLAN Int. Conf. on Generative
Programming: Concepts and Experiences (GPCE 22). ACM, pp. 108-121, 2022.

Buschhaus, Constantin; Gerasimov, Arkadii; Kirchhof, Jorg Christian; Michael, Judith;
Netz, Lukas; Rumpe, Bernhard; Stiiber, Sebastian: Lessons Learned from Applying
Model-Driven Engineering in 5 Domains: The Success Story of the MontiGem Generator
Framework. Science of Computer Programming, 232:103033, 2024.

Chen, Mark; Tworek, Jerry; Jun, Heewoo; Yuan, Qiming; Pinto, Henrique Ponde
de Oliveira; Kaplan, Jared; Edwards, Harri; Burda, Yuri; Joseph, Nicholas; Brock-
man, Greg et al.: Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

Class Diagram For Analysis. https://github.com/MontiCore/cd4analysis.

Dalibor, Manuela; Heithoff, Malte; Michael, Judith; Netz, Lukas; Pfeiffer, Jérome;
Rumpe, Bernhard; Varga, Simon; Wortmann, Andreas: Generating Customized Low-

Code Development Platforms for Digital Twins. Journal of Computer Languages
(COLA), 70, June 2022.

Desai, Aditya; Gulwani, Sumit; Hingorani, Vineet; Jain, Nidhi; Karkare, Amey; Marron,
Mark; R, Sailesh; Roy, Subhajit: Program synthesis using natural language. In: 38th Int.
Conf. on Software Engineering. ICSE *16, ACM, NY, USA, pp. 345-356, May 2016.

Ernst, Michael D.: Natural Language is a Programming Language: Applying Natural
Language Processing to Software Development. In: 2nd Summit on Advances in
Programming Languages (SNAPL 2017). Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik GmbH, 2017.

Fill, Hans-Georg; Fettke, Peter; Kopke, Julius: Conceptual modeling and large language
models: impressions from first experiments with ChatGPT. Enterprise Modelling and
Information Systems Architectures (EMISAJ), 18:1-15, 2023.

Finnie-Ansley, James; Denny, Paul; Becker, Brett A; Luxton-Reilly, Andrew; Prather,
James: The robots are coming: Exploring the implications of openai codex on in-
troductory programming. In: Australasian Computing Education Conf. pp. 10-19,
2022.

Fowler, Martin; Languages, Domain-Specific: , Addison-Wesley Professional, 2010.

France, Robert; Rumpe, Bernhard: Model-driven Development of Complex Software:
A Research Roadmap. Future of Software Engineering (FOSE °07), pp. 37-54, 2007.

Gerasimov, Arkadii; Heuser, Patricia; Ketteni3, Holger; Letmathe, Peter; Michael,
Judith; Netz, Lukas; Rumpe, Bernhard; Varga, Simon: Generated Enterprise Information
Systems: MDSE for Maintainable Co-Development of Frontend and Backend. In: Comp.
Proc. of Modellierung 2020 Short, Workshop and Tools & Demo Papers. CEUR
Workshop Proceedings, pp. 22-30, 2020.

Gerasimov, Arkadii; Michael, Judith; Netz, Lukas; Rumpe, Bernhard; Varga, Simon:
Continuous Transition from Model-Driven Prototype to Full-Size Real-World Enterprise
Information Systems. In: 25th Am. Conf. on Information Systems (AMCIS 2020).
AlSeL. AIS, pp. 1-10, 2020.

https://github.com/MontiCore/cd4analysis

194 Lukas Netz, Judith Michael, Bernhard Rumpe

[HKR21]

[HMMM18]

[IA10]

[Ja23]

[JWMO6]

[KRVO08]

[KTO8]

[Li22]

[Mi19]

[Mi22]

[MRZ21]

[Ob17]

[Oh22]

[Op23a]
[Op23b]

Holldobler, Katrin; Kautz, Oliver; Rumpe, Bernhard: MontiCore Language Work-
bench and Library Handbook: Edition 2021. Aachener Informatik-Berichte, Software
Engineering, Band 48. Shaker Verlag, May 2021.

Hernandez-Mendez, Adrian; Michel, Felix; Matthes, Florian: A practice-proven ref-
erence architecture for model-based collaborative information systems. Enterprise
Modelling and Information Systems Architectures (EMISAJ), 13:262-273, 2018.

Ibrahim, Mohd; Ahmad, Rodina: Class Diagram Extraction from Textual Requirements
Using Natural Language Processing (NLP) Techniques. In: 2010 Second International
Conference on Computer Research and Development. pp. 200-204, May 2010.

Jalil, Sajed; Rafi, Suzzana; LaToza, Thomas D; Moran, Kevin; Lam, Wing: Chatgpt and
software testing education: Promises & perils. arXiv preprint arXiv:2302.03287, 2023.

John, Santhosh; Wi-Mei, Maisie Han: A proposed framework for an effective integra-
tion of supporting environments for smart client application development. In: 2006
International Conference on Computing & Informatics. IEEE, pp. 1-6, 2006.

Krahn, Holger; Rumpe, Bernhard; Vélkel, Steven: Monticore: Modular development of
textual domain specific languages. In: International Conference on Objects, Components,
Models and Patterns. Springer, pp. 297-315, 2008.

Kelly, Steven; Tolvanen, Juha-Pekka: Domain-specific modeling: enabling full code
generation. John Wiley & Sons, 2008.

Li, Yujia; Choi, David; Chung, Junyoung; Kushman, Nate; Schrittwieser, Julian;
Leblond, Rémi; Eccles, Tom; Keeling, James; Gimeno, Felix; Dal Lago, Agustin et al.:
Competition-level code generation with alphacode. Science, 378(6624):1092—-1097,
2022.

Michael, Judith; Netz, Lukas; Rumpe, Bernhard; Varga, Simon: Towards Privacy-
Preserving IoT Systems Using Model Driven Engineering. In: MODELS 2019.
Workshop MDE4IoT. CEUR-WS, pp. 595-614, 2019.

Michael, Judith; Nachmann, Imke; Netz, Lukas; Rumpe, Bernhard; Stiiber, Sebastian:
Generating Digital Twin Cockpits for Parameter Management in the Engineering of
Wind Turbines. In: Modellierung 2022. Gesellschaft fiir Informatik, pp. 33-48, 2022.

Michael, Judith; Rumpe, Bernhard; Zimmermann, Lukas Tim: Goal Modeling and
MDSE for Behavior Assistance. In: Int. Conf. on Model Driven Engineering Languages
and Systems Companion (MODELS-C). ACM/IEEE, pp. 370-379, 2021.

OMG Unified Modeling Language (OMG UML). https://www.omg.org/spec/UML/2.
5.1/PDF.

Oh, Jaehoon; Kim, Sungnyun; Ho, Namgyu; Kim, Jin-Hwa; Song, Hwanjun; Yun, Se-
Young: Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity
and Few-Shot Difficulty. In: Advances in Neural Information Processing Systems. 2022.
OpenAl APL https://platform.openai.com/docs/introduction.

OpenAl: , GPT-4 Technical Report, 2023.

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://platform.openai.com/docs/introduction

From Natural Language to Web Applications:
Using Large Language Models for Model-Driven Software Engineering 195

[Pa20]

[RR16]

[Rul6]

[Sa20a]

[Sa20b]

[SVD21]

[Th22]

[Ve20]

Pang, Xiongwen; Zhou, Yangiang; Li, Pengcheng; Lin, Weiwei; Wu, Wentai; Wang,
James Z.: A novel syntax-aware automatic graphics code generation with attention-based
deep neural network. Journal of Network and Computer Applications, 161:102636,
July 2020.

Richardson, Clay; Rymer, John R: The Forrester Wave™: low-code development
platforms, Q2 2016. Forrester, Washington DC, 2016.

Rumpe, Bernhard: Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016.

Sahay, Apurvanand; Indamutsa, Arsene; Di Ruscio, Davide; Pierantonio, Alfonso:
Supporting the understanding and comparison of low-code development platforms. In:
46th Euromicro Conf. on Software Engineering and Advanced Applications (SEAA).
IEEE, pp. 171-178, 2020.

Saini, Rijul: Artificial Intelligence Empowered Domain Modelling Bot. In: 23rd
ACM/IEEE Int. Conf. on Model Driven Engineering Languages and Systems: Compan-
ion. MODELS 20, ACM, NY, USA, 2020.

Shin, Richard; Van Durme, Benjamin: Few-shot semantic parsing with language models
trained on code. arXiv preprint arXiv:2112.08696, 2021.

Thomas, Julien Joseph; Suresh, Vishnu; Anas, Muhammed; Sajeev, Sayu; Sunil, K. S.:
Programming with Natural Languages: A Survey. In: Computer Networks and Inventive
Communication Technologies. Lecture Notes on Data Engineering and Communications
Technologies, Springer, Singapore, pp. 767-779, 2022.

Veizaga, Alvaro; Alferez, Mauricio; Torre, Damiano; Sabetzadeh, Mehrdad; Briand,
Lionel; Pitskhelauri, Elene: Leveraging Natural-Language Requirements for Deriving
Better Acceptance Criteria from Models. In: ACM/IEEE Int.Conf. on Model Driven
Engineering Languages and Systems. MODELS °20. ACM, p. 218-228, 2020.

