
Learning Error Patterns from Diagnosis Trouble Codes*

Stefan Kriebel2, Evgeny Kusmenko1, Bernhard Rumpe1, Igor Shumeiko1

Abstract— Diagnostic trouble codes (DTCs) are steadily pro-
duced by a vehicle’s control units to support the diagnosis
process when the vehicle is maintained or to initiate predictive
maintenance. Although, DTCs carry a lot of information,
possibly including environmental data such as the engine
temperature, the velocity, etc., they are of little help to an
automotive engineer if seen without a context. In fact, a concrete
problem can mostly be diagnosed if an already known pattern of
DTCs is present. However, detecting new patterns in masses of
vehicle data gathered each day from thousands of vehicles and
recognizing known patterns accurately cannot be performed
manually by automotive engineers. We propose an unsupervised
DTC pattern learning framework supporting the daily field data
analysis of original equipment manufacturers (OEMs).

I. INTRODUCTION

Vehicle maintenance heavily relies on field data a vehicle
has gathered using its On-board diagnosis (OBD) equipment.
Whenever an abnormal state is detected by the vehicle’s
electronics, a corresponding Diagnostic Trouble Code (DTC)
is saved as a hexadecimal identifier together with the en-
vironmental conditions if applicable for later readouts. For
instance, the charging electronics of an electrical vehicle
measuring an under-voltage while charging would save the
DTC related to under-voltage as well as the actually mea-
sured voltage value.

Although, DTCs capture information describing the symp-
toms as precisely as possible, they fail to reveal the un-
derlying reason. Observing under-voltage during the charg-
ing process can be caused by a multitude of problems.
Experienced automotive engineers rather learn and detect
recurrent DTC patterns. However, detecting new patterns in
masses of vehicle data gathered each day from thousands of
vehicles and recognizing known patterns accurately during
maintenance cannot be performed manually. Growing fleets
sending their OBD data to the manufacturer on a regular
basis require automated techniques learning new patterns
and recognizing them precisely. The main contribution
of this work is an unsupervised error pattern learning
framework supporting the daily field data analysis of
original equipment manufacturers and ensuring that
pattern knowledge is not bound to a small set of experts,
but is made explicit and reusable for further analyses. The
learned patterns can be used not only during maintenance,
but also by other vehicles for a better self-diagnosis. This
way, an intelligent vehicle can pro-actively recommend a

*This work was supported by the Grant SPP1835 from DFG, the German
Research Foundation.

1Department of Software Engineering, Faculty of Computer Science,
RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany
{kusmenko,rumpe,shumeiko}@se-rwth.de

2BMW Group, Munich, Germany, stefan.kriebel@bmw.de

maintenance or, in easily solvable cases, advise the owner
how to fix a problem.

II. PRELIMINARIES

During its lifetime, a vehicle produces a whole lot of OBD
data which can turn out to be important or irrelevant during
diagnosis. The DTCs gathered by a vehicle are either sent to
the OEM via a mobile connection or are read in a repair shop
using a compatible diagnosis tool. The thereby obtained data
set is then saved in a central database for further analysis as
a so called readout. We define a readout as

R = (v,D, date, distance) (1)

where v is the vehicle the readout comes from, D is a set of
DTC instances, date is the date of the readout up to some
required resolution and distance is the total distance traveled
by v. We furthermore define D as the set of all DTC classes
predefined by the manufacturer. Each element δ ∈ D is an
abstract representation of a DTC including an identifier as
well as a set of environment variables inherent for this DTC.
For instance, if δ1 ∈ D represents the under-voltage DTC,
it obviously should have the measured voltage in the set
of its environment variables. Furthermore, most DTCs also
contain the occurrence date as well as traveled distance at
occurrence. We define a function class : D → D mapping
a given DTC instance to its DTC class.

Without loss of generality, we can assume for simplicity of
notation that a DTC instance is never contained by more than
one readout, i.e. ∀R1 = (v,E1, date1, distance1) , R2 =
(v,E2, date2, distance2) : E1 ∩ E2 6= ∅ ⇔ R1 = R2. This
can easily be ensured technically, e.g. by deleting the saved
instances from the vehicle’s memory after a readout, or by
setting a flag variable for already read DTC instances.

We define a pattern class PC as a first-order logic formula
where atoms are DTC classes. Using DTC classes as atoms
in a logical expression is informal but leads to a very compact
and convenient notation. A DTC class atom is evaluated to
true in such a formula if an instance of this class is present in
a reference set of DTC instances D, e.g. the DTC instances
of a readout. We call a set of DTC instances D a pattern
instance of PC if PC can be evaluated to true with respect
to D. For instance, a pattern class PC1 = {δ1 ∧ δ2 ∧ ¬δ3}
describes a pattern which is present in a vehicle if it has a
DTC instance of δ1 and of δ2, but no instance of δ3, or:

∀d ∈ D.∃d1, d2 ∈ D : (2)
class(d1) = δ1, class(d2) = δ2, class(d) 6= δ3). (3)

Assume Rt is a set of readouts, e.g. all readouts of a
fleet until a point in time t. Our analysis goal is to learn

246

[KKRS19] S. Kriebel, E. Kusmenko, B. Rumpe, I. Shumeiko:
Learning Error Patterns from Diagnosis Trouble Codes.
In: 30th Intelligent Vehicles Symposium (IV'19). Workshop on Unsupervised Learning for Automated Driving, 2019.
www.se-rwth.de/publications/

systematically reoccurring patterns from Rt which might
describe problems better than isolated DTCs.

III. CASE CLUSTERING

To learn DTC pattern classes from DTC instance sets we
need to agree on which DTC instances belong to a single
set or when a DTC instance set needs to be split up in
multiple independent sets. For instance, we can consider all
DTC instances produced by a car during its lifetime as a
self-contained set. In this scenario the number of data points
we would use for our analysis equals the number of vehicles
in the field. However, we know from experience that DTC
instances from different readouts are rarely connected to each
other. So, another option is to only consider DTC instances
coming from the same readout as a self-contained data point.
This not only increases the amount of data, but also ensures
that the data points are more concise and less information
related to different underlying causes is mixed in a single
data point.

However, we may still argue that building data points
based on whole readouts might still be too coarse-grained.
Usually, we can assume that only DTC instances produced
during a short period of time and distance of travel share a
common cause. Given a set of DTC instances D we need
to be able to subdivide it into partitions so that each of the
resulting subsets only contains DTC instances featuring a
temporal and/or spatial similarity. Thereby, similarity should
be transitive: If a pattern is produced by a chain of events,
the chain should not be ripped apart because the first and the
last event have a too little similarity. What matters is that the
(temporal) distance between neighbor events is small enough.

Therefore, we employ the single linkage clustering tech-
nique known for its chaining property [1] to split up the
DTC instances of a vehicle into groups of related events.
Consider a series of DTC events depicted in fig. 1. A
flash denotes an occurrence of a DTC, i.e. a creation of a
DTC instance. The corresponding DTC class is given by a
hexadecimal identifier above the flash. The small red houses
denote readouts at which the previous DTC instances up to
the preceding readout are read. In this example we assume
that two DTC instances are grouped together only if they lie
not more than one week and 50 km apart. However, these
two parameters highly depend on the use case and should be
chosen carefully based on the engineers’ experience: some
patterns arise during a timespan of a few seconds while some
evolve much slower throughout an extended period of time.

As we can see, the DTCs 0x5 and 0x7 end up in the
same cluster denoted by a blue ellipse as they lie only two
days apart and occurred within a travel distance of 50 km.
The same holds for the cluster containing the DTCs 0x3,
0xA, and 0x8. Note that this second cluster is kept together
by the chaining effect of average linkage clustering: being
ten days apart, the DTCs 0x3 and 0x8 are not similar as
they violate the temporal similarity constraint. However, they
are held together by the DTC 0xA.

Assuming there are no more readouts and DTC instances
available for this vehicle this means that we subdivided

its data into two separate self-contained entities which can
be regarded as data points in our analysis later on. In the
following we refer to such an entity carrying the information
of one data point as a case.

As we have discussed, we have three ways to create
cases. First, a case can contain all DTC instances of one
car. Second, a case can contain all instances of a readout.
Third, the DTC instances are clustered based on a similarity
measure, most often the distance traveled and time. Of
course, arbitrary further strategies are possible, e.g. taking
into account software updates, but are not in the scope
of this paper. Furthermore, case creation strategies can be
combined. For instance, we assume that both the separation
of DTCs based on readouts as well as on the distance is
important. Therefore, in our work we achieved the best
results by combining these two strategies. In our example the
combination leads to three cases since the cluster containing
0x5 and 0x7 is now separated by the readout RO1. Finally,
cases can be filtered according to some criteria, e.g. cases
containing erroneous readouts or specific undesired DTCs
should be removed from the data set, before we proceed
with the actual analysis phase.

RO1 RO2
…

ROn
t [s]

x [km]

29
.0

5.
17

31
.0

5.
17

01
.0

6.
17

06
.0

6.
17

26
.0

3.
18

01
.0

4.
18

05
.0

4.
18

06
.0

4.
18

0x5 0x7 0x3 0xA 0x8

< 50km > 1week or 50km …
Distance (temporal or spatial)

Fig. 1: Clustering in-vehicle DTC instances

IV. LEARNING PATTERNS

Now, having obtained a large set of cases from the fleet
of consideration, i.e. from a set of readouts Rt, we want to
find similarities and learn pattern classes from these cases.
Unsupervised learning provides us with clustering techniques
to group similar data samples into clusters. However, we
first need to transform our cases to a convenient feature
space with some appropriate distance metric in order to
make them accessible for machine learning algorithms. A
possible solution is to create a categorical vector to describe
which DTCs are present in the case. Since there is an
extremely large number of possible DTCs, we would get
very high-dimensional but sparse vectors, since each vehicle
only experiences a small number of DTCs. In order to cover
the environmental conditions for each DTC, we would also
need to extend the vector representation to a matrix. Each
row in this matrix stands for a possible DTC while each
column represents an environmental condition. Furthermore,
there is one categorical column determining if the DTC is
present at all. Having a Rn×m dimensional feature space,
where n is the number of DTC classes for the analyzed fleet
and m is the number of environmental conditions, we can

247

choose from a series of matrix norms to define a distance
(or similarity) measure for clustering.

However, handling this explicit feature space with mostly
extremely sparse samples is inefficient and also unnecessary.
Instead we define a proximity measure on the concept of
cases directly. Since a case is just a set of DTC instances,
we can use set theoretic tools to obtain a proximity matrix,
omitting a high-dimensional embedding of our data. We
obtain the similarity a1,2 of two given cases C1 and C2 using
the Jaccard metric as

a1,2 =
|D1 ∩ D2|
|D1 ∪ D2|

(4)

where D1 and D2 are the sets of DTC classes represented
by the DTC instances of C1 and C2, respectively, i.e.
Di = class (Ci) if the class function is applied element-
wise. In other words, the similarity of two cases is the
number of coinciding DTCs normalized by the total number
of DTCs contained in these two cases. We thereby ignore
the environmental conditions which turns out to not change
the results much since the occurrence of a combination of
particular DTCs carries much more information than the
attached environmental parameters (however, environmental
conditions can play an important role in pattern-based diag-
nosis; their integration into a pattern learning framework is
subject of future work). Alternatively, each match in eq. (4)
can be weighted by the similarity se of the corresponding
environment vectors e1 and e2. The similarity should thereby
be between 0 and 1, e.g. se = e−||e1−e2|| in order to keep
the Jaccard index between 0 and 1 as well. The resulting
similarity matrix is square symmetric as depicted in fig. 2.
Values near to one denote a high similarity of the cases
corresponding to the entry’s row and column, respectively.
Such cases are likely to end up in the same cluster.

1 0,9 0,8

0,9 1 0,6

0,8 0,6 1

0 0 0

0 0,2 0

0 0 0

0 0 0

0 0,2 0

0 0 0

1 0,5 0,5

0,5 1 0,8

0,5 0,8 1

Fig. 2: Similarity matrix produced by the Jaccard similarity
metric for a set of six cases.

Further proximity metrics for categorical data can be
found in [2]. However, we have learned from experiments
that the recognized patterns barely depend on the choice of
the similarity metric. Therefore, we omit a discussion on
similarity metrics in this paper.

Unfortunately, many clustering algorithms cannot be fed
with a proximity matrix directly. For instance, the popular k-
means algorithm and its variations such as k-means++ create

new data points (the cluster means) in the feature space
during the clustering procedure [3]. This is not possible with
our approach, as we do not have an explicit feature space
and thus cannot provide a data matrix. However, algorithms
such as spectral clustering and affinity propagation operate
on similarity matrices directly and do not need an explicit
high dimensional embedding [4], [5], [6]. Such algorithms
are well-suited for our problem.

Although, unsupervised learning comes with the great
advantage that we do not need any labels to learn a clustering,
most algorithms require a small but important set of hyper-
parameters directly or indirectly controlling the number of
clusters to find. In our case the number of clusters is also
the number of DTC patterns we want to find in our fleet.
Of course, we cannot know this parameter in advance.
However, we can estimate a reasonable value for the num-
ber of cluster by applying appropriate clustering evaluation
measures. Since we want to keep the process completely
automated, we are constrained to internal clustering indices
such as Silhouette [7] and Calinski-Harabasz [8], i.e. indices
not requiring labels to evaluate the quality of a clustering
[9]. To obtain the optimal number of clusters with respect
to an internal index, we re-compute the clustering for all
possible cluster numbers from 2 to the number of cases
under consideration. We then keep the clustering for which
the internal index was optimal (maximal in most cases).

Such an exhaustive parameter search can take hours or
days for fleets of a few thousands of vehicles on an ordi-
nary computer. On the other hand, parallelization can be
implemented easily, as all we need to do is distributing
the clustering procedure to multiple computing nodes with
different hyper-parameters. If computational resources are an
issue, empirically supported heuristics can help. In our data
sets, the optimal number of clusters was about two orders of
magnitude smaller than the number of samples, e.g. having
10.000 cases, a good estimate is to extract 100 clusters.

V. EXTRACTING PATTERNS

Having clustered similar cases into groups we are not yet
finished. We now have to look into each cluster to find out
what the core pattern of this cluster is. Again, each case is a
set of DTC instances, but in order to use set theoretic tools
we map the DTC instances to their corresponding classes,
as was done for eq. (4). Figure 3 depicts two clusters as
Venn diagrams with cluster 1 containing the cases 1-4 and
cluster 2 containing cases 5 and 6. Mostly, the cases of one
cluster are not completely overlapping, but tend to have large
intersections. These intersections are re-occurring patterns
and hence exactly what we are looking for. Non-overlapping
areas on the other hand can be regarded as noise and probably
have causes non-related to the main pattern of the cluster.

To find the main pattern in a given cluster, it is however
not sufficient to compute the intersection of all cases of this
cluster. Consider cluster 1 in fig. 3. The intersection of the
four contained cases is a narrow stripe (filled blue area).
However, if we remove case 4 from this cluster, we obtain the
much larger striped intersection area (including the blue filled

248

area). In this example, case 4 seems to be attached to cluster
1 rather by chance. This can happen if there is no better
match for a case (like case 4) in the clustering phase. To get
rid of such noisy candidates we define our pattern extraction
procedure as follows: for each cluster find the largest set
of DTCs present in at least x% of the cases related to this
cluster. Thereby, x is another hyper-parameter which needs
to be chosen carefully. Assume I is a set containing all case
indices of a given cluster, e.g. for cluster 1 in our example
I = {1, 2, 3, 4}. Then the pattern extraction is defined as the
maximization problem

PC =
⋂
i∈S

Di, (5)

with

S = argmax
S∈P(I)
|S|≥|I|·x%

∣∣∣∣∣⋂
i∈S

Di

∣∣∣∣∣ (6)

where P is the power set operator.
Setting x = 100 means the pattern DTCs need to be

present in all cases of the cluster. The extraction is then
simplified to

PC =
⋂
i∈I

Di. (7)

Finally, for each cluster, where the eq. (5) results in a non-
empty set, we create a new pattern class. As discussed in
section II, we interpret such a pattern class as a logical
conjunction of DTC classes which is more convenient for
further processing. According to this agreement the set
notation PC = {δ1, δ2, δ3} is semantically equivalent to
the logical formula PC = δ1 ∧ δ2 ∧ δ3. For convenience
of notation, we do not introduce two different notations to
distinguish between the set theoretic and the Boolean logic
syntax. The current interpretation should be clear from the
algebraic context.

Cluster 1 Cluster 2

Common DTCs
Common DTCs

��

��

��

��

��

��

Fig. 3: Venn diagram depicting two clusters and their respec-
tive cases.

VI. POST-PROCESSING OF ERROR PATTERNS

It turns out that many problems do not have a concrete set
of symptoms, similar to medicine: if a patient has the flu,

he is likely to have a fever. Additionally, he can experience
nausea and/or limb pain. The possible pattern instances
representing the flu then are
{fever},
{fever, nausea},
{fever, pain},
{fever, nausea, pain}.

However, each patient can only have one of these four
realizations (or pattern instances) of the flu at the same
time. If we clustered patient data, we most likely would
end up with four pattern classes for the flu, each describing
one of the aforementioned pattern instances. However, these
classes obviously share several commonalities and can be
reduced to the two pattern classes PCflu1 = fever and
PCflu2 = fever∧(nausea∨pain). From the point of view
of mathematical logic, PCflu1 implies PCflu2, thus PCflu2
can be dropped. However, for diagnostics it is valuable to
keep both patterns since, first, PCflu2 might increase the
confidence of the diagnosis and, second, PCflu1∧¬(pain∨
nausea) might turn out to be a symptom for another disease.

In the following we show how we combine pattern classes
obtained in section V, which are exclusively conjunctions, to
more complex patterns such as PCflu2. We organize the
remaining classes in a graph which helps an engineer to
explore the pattern classes and their relationships.

First we order the pattern classes by the number of
their atoms. Next, for each pattern class, starting with the
shortest, we check whether it is a subset of another, longer
pattern class. Thereby, we create an edge in an inclusion
graph capturing the subset-of relationship for the two pattern
classes. Consider the graph in fig. 4. Each box in the graph
is a conjunctive pattern class as obtained from the pattern
extraction step in section V. For the single-atom class a we
find that there are two pattern classes implying a, namely
a ∧ b and a ∧ c. Therefore, these two pattern classes are
connected with a. In turn, a ∧ b is implied by a ∧ b ∧ r and
a ∧ b ∧ v and so on.

Once the graph is complete we can compose nodes of the
graph implying the same parent node. Thereby, the term of
the parent remains a conjunction while the alternating end
of the implying nodes is composed into a disjunction. In our
example a∧ b, a∧ c, and a∧d∧ l all imply a. Hence, in the
newly created composite we keep expression a as is (even
if it is a more complex formula) and add a disjunction of
the respective rests of the other three boxes, namely b, c,
and d∧ l. After this operation we always obtain two pattern
classes: the parent pattern class and the newly composed
pattern class, in this example a and a∧ (b∨ c∨ (d∧ l)). The
parent class needs to be kept due to the reasons explained
above.

Having applied the merging step to all nodes of the graph,
we end up with a much more compact and expressive ordered
list of pattern classes than the pure results of section V. The
resulting pattern classes for the example are listed below
the graph in fig. 4. Note that each line contains both the
parent and the newly created child expression separated by
a comma.

249

a
g f v

a,b a,c

a,b,r a,b,v

a,b,r,z a,b,r,x a,b,v,y

g,d g,c

a,d,l

a,c,p,d

g,r,b

g,c,b,n g,c,m,p

a, a AND (b OR c OR (d AND l))

2:

3:

4:

a AND b AND r, a AND b AND r AND (z OR x)

a AND c, a AND c AND p AND d

a AND b, a AND b AND (r OR v)

a AND b AND v, a AND b AND v AND y

1:

g AND c, g AND c AND

((b AND n) OR (m AND P))

g, g AND (d OR c)

g, g AND r AND b

Fig. 4: Organized error pattern tree

1 (declare-const x1 Bool)
2 (declare-const x2 Bool)
3 (define-fun patterneq () Bool
4 (= (not (and x1 x2)) (or (not x1) (not x2))))
5 (assert (not patterneq))
6 (check-sat)

Fig. 5: Generated z3 SMT solver code to semantically
compare two error patterns.

VII. STORING AND EXTENDING THE RESULTS

Note that semantically equal Boolean expressions may
be written in completely different ways. Imagine, we have
found two syntactically different DTC pattern classes PC1 =
¬ (x1 ∧ x2) and PC2 = ¬x1 ∨ ¬x2 from two independent
clusters. From De Morgan’ laws we know that these two
expressions are equal for all Boolean assignments of x1 and
x2. It is crucial to find such duplicates in order to keep the
pattern database clean and avoid confusions.

This can be done automatically by employing the z3 SMT
solver [10]. For each pair of pattern classes we generate a z3
script containing a definition of a Boolean variable for each
DTC class contained by the two pattern classes, c.f. lines 1-
2 in fig. 5. Next we define a function equating the Boolean
expressions of the two pattern classes in lines 3-4. Finally
we declare the assertion that the above defined function is
evaluated to false in line 5. The model is checked in line 6.
As there is no variable assignment satisfying the assertion,
z3 reports that the model is not satisfiable. Thus, we know
that the two patterns are equal. Consequently we remove one
of these patterns from the list.

This procedure not only helps to remove duplicates from
the analysis results, but also ensures that no redundant
information is persisted in the pattern database. As described
in section V, the analysis process takes place on a regular
basis. Analysis results obtained on a dataset at t0 are stored
in the pattern database. The following analysis at a later point
in time t1 might find some of the previously found patterns
again. Therefore, in the z3-based reduction step described
above we include not only the currently found pattern classes,
but also all previously found and manually created ones.

To provide an up-to-date predictive maintenance or to be
able to analyze new DTC patterns as soon as they start
emerging in customer vehicles, our analysis process needs
to be run on a regular basis. Thereby, two questions arise:

what data should be included in an analysis and how should
the analysis frequency be chosen? It is practically a tautology
in machine learning that the more data we have, the better
the results. This means we should include all available data
to detect the most relevant patterns with high probability.
However, this is a fallacy in our problem setting. Including
all historical readouts in the analysis dataset would lead
to favoring old and therefore already known patterns as
they have most probably occurred in far more vehicles
than new DTC patterns caused by a recent software update.
Consequently, the detection of new patterns is delayed to
a point in time when they outweigh older patterns (which
might never occur). Therefore, we recommend using only
readouts recorded since the last analysis, i.e. instead of using
the set of readout Rt at time t we only consider the set
difference Rt \Rτ where τ is the last known analysis time.

This brings us to the second question concerning the
analysis frequency which turns out to be an important hyper-
parameter. Similar to signal processing and spectral analysis,
we have to cope with the so called uncertainty principle,
also referred to as the Gabor limit [11]. The more often
we run our analysis, the more up-to-date and topical the
DTCs our analysis sees are. However, the higher the analysis
frequency, the less representative the sample becomes of the
underlying distribution. On the other hand, a low analysis
frequency leads to the aforementioned blurring of patterns
from different time periods and long recognition latencies.
In practice, the analysis frequency highly depends on the fleet
size: the larger the fleet, the more DTCs are recorded and the
less time is needed to gather a representative amount of data.
Another important factor is the technology used to collect
readouts: in the past, OEMs only obtained DTC data read
by themselves or by maintenance shops using a diagnosis
device. Today, DTC data can be sent using the vehicle’s
radio to the OEM as soon as it is produced. This ensures
that all DTCs data arrives at the database of the OEM while
the delay of waiting for the vehicle to be checked at the shop
is removed, allowing a higher analysis frequency.

VIII. EVALUATION

The proposed approach was evaluated on DTC data cov-
ering approximately a one year period and a fleet size of
the magnitude of 10.000 vehicles with at least one readout.
The obtained patterns were compared with the internal
database of the corresponding OEM. Unfortunately, neither
the datasets, nor the patterns can be made public due to
confidentiality. However, our main findings were that most
DTC pattern classes present in the internal pattern database
created by human engineers where found by our approach
as long as these patterns affected some critical number of
vehicles. The algorithm even managed to find single DTC
patterns which we had assumed to be difficult to detect.
Furthermore, the algorithm was able to find patterns which
were not present in the database, but which, according to
domain experts, were definitely important and should be
captured for future use.

250

IX. CONCLUSION

In this paper we have presented an approach to fully
automated and unsupervised error pattern learning from DTC
data using clustering techniques combined with Boolean
logic and set algebraic tools. The approach reduces human
effort and time needed to find and formalize patterns, but
also ensures that domain knowledge is always made explicit.
Furthermore, re-occurring patterns are easily detected and
duplicates are eliminated using satisfiability solvers. The
extracted patterns can be used in classical quality assurance
processes of vehicle OEMs, but also serve as an important
basis for predictive maintenance and automated on-line self-
diagnosis in intelligent vehicles.

Future work comprises an extension of the proposed
analysis process by supervised learning techniques in order
to train a system to automatically suggest a repair solution
for a given error pattern. To facilitate research in this area,
we encourage OEMs to make chunks of OBD and repair
data publicly available.

REFERENCES

[1] John A Hartigan. Consistency of single linkage for high-density
clusters. Journal of the American Statistical Association, 76(374):388–
394, 1981.

[2] Shyam Boriah, Varun Chandola, and Vipin Kumar. Similarity mea-
sures for categorical data: A comparative evaluation. In Proceedings
of the 2008 SIAM International Conference on Data Mining, pages
243–254. SIAM, 2008.

[3] David Arthur and Sergei Vassilvitskii. k-means++: The advantages
of careful seeding. In Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 1027–1035. Society
for Industrial and Applied Mathematics, 2007.

[4] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clus-
tering: Analysis and an algorithm. In Advances in neural information
processing systems, pages 849–856, 2002.

[5] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and
computing, 17(4):395–416, 2007.

[6] Brendan J Frey and Delbert Dueck. Clustering by passing messages
between data points. science, 315(5814):972–976, 2007.

[7] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. Journal of computational and
applied mathematics, 20:53–65, 1987.

[8] Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster
analysis. Communications in Statistics-theory and Methods, 3(1):1–27,
1974.

[9] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu.
Understanding of internal clustering validation measures. In Data
Mining (ICDM), 2010 IEEE 10th International Conference on, pages
911–916. IEEE, 2010.

[10] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[11] Karlheinz Gröchenig and Georg Zimmermann. Hardy’s theorem and
the short-time fourier transform of schwartz functions. Journal of the
London Mathematical Society, 63(1):205–214, 2001.

251

