
Andreas Oberweis, Ralf Reussner (Hrsg.): Modellierung 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 141

Modeling Variability in Template-based Code Generators

for Product Line Engineering

Timo Greifenberg1 , Klaus Müller1, Alexander Roth1, Bernhard Rumpe1, Christoph
Schulze1, Andreas Wortmann1

Abstract: Generating software from abstract models is a prime activity in model-driven engineering.
Adaptable and extendable code generators are important to address changing technologies as well
as user needs. However, they are less established, as variability is often designed as configuration
options of monolithic systems. Thus, code generation is often tied to a fixed set of features, hardly
reusable in different contexts, and without means for configuration of variants. In this paper, we
present an approach for developing product lines of template-based code generators. This approach
applies concepts from feature-oriented programming to make variability explicit and manageable.
Moreover, it relies on explicit variability regions (VR) in a code generator’s templates, refinements
of VRs, and the aggregation of templates and refinements into reusable layers. A concrete product
is defined by selecting one or multiple layers. If necessary, additional layers required due to VR
refinements are automatically selected.

Keywords: Model-Driven Engineering, Code Generator Development, Variability Modeling

1 Introduction

Engineering complex software systems introduces a conceptual gap between the problem
domains and the solution domains of discourse [FR07]. Model-driven engineering (MDE)
aims to bridge this gap by lifting abstract models to primary development artifacts. Deriv-
ing executable software from models requires extensive handcrafting or code generators.
Thus, generating software from abstract models is a prime activity in MDE and many
domains have adopted code generation [RR15].

Although reuse is of essence in software engineering, most code generators are monoliths
developed for a very specific purpose (such as a certain target platform with specific fea-
tures) that do not consider reuse or variability as their primary focus. Reusing such code
generators in different contexts with different requirements or features is hardly feasible
and thus impedes code generator development. One approach to handle variability in such
monolithic code generators is to create code generator variants via informal reuse [Jö13]
such as copy-paste. In this scenario, the original code generator variant is copied and all re-
quired changes are applied to the copy of the variant. The main downside of this approach
is that generator changes might need to be applied to all generator copies. This is laborious
and error-prone. An alternative to that is to use specific code generation frameworks with
built-in support for handling variability [Ac15, Xt15]. Even though this alternative does
not result in monolithic code generators, the resulting code generator variants are bound
1 RWTH Aachen University, Software Engineering, Germany, http://www.se-rwth.de

[GMR+16] T. Greifenberg, K. Müller, A. Roth, B. Rumpe, C. Schulze, A. Wortmann:
Modeling Variability in Template-based Code Generators for Product Line Engineering.
In: Modellierung 2016 Conference, LNI P-254, pp. 141–156. Bonner Köllen Verlag, 2016.

