
Retrofitting Controlled Dynamic
Reconfiguration into the Architecture

Description Language MontiArcAutomaton

Robert Heim1, Oliver Kautz1, Jan Oliver Ringert2,
Bernhard Rumpe1,3, Andreas Wortmann1

1 Software Engineering, RWTH Aachen University, Aachen, Germany
2 School of Computer Science, Tel Aviv University, Israel

3 Fraunhofer FIT, Aachen, Germany

Abstract. Component & connector architecture description languages
(C&C ADLs) provide hierarchical decomposition of system functionality
into components and their interaction. Most ADLs fix interaction con-
figurations at design time while some express dynamic reconfiguration of
components to adapt to runtime changes. Implementing dynamic recon-
figuration in a static C&C ADL by encoding it into component behavior
creates implicit dependencies between components and forfeits the ab-
straction of behavior paramount to C&C models. We developed a mech-
anism for retrofitting dynamic reconfiguration into the static C&C ADL
MontiArcAutomaton. This mechanism lifts reconfiguration to an archi-
tecture concern and allows to preserve encapsulation and abstraction
of C&C ADLs. Our approach enables efficient retrofitting by a smooth
integration of reconfiguration semantics and encapsulation. The new dy-
namic C&C ADL is fully backwards compatible and well-formedness of
configurations can be statically checked at design time. Our work pro-
vides dynamic reconfiguration for the C&C ADL MontiArcAutomaton.

1 Introduction

Component & connector (C&C) architecture description languages (ADLs) [1,2]
combine the benefits of component-based software engineering with model-driven
engineering (MDE) to abstract from the accidental complexities [3] and nota-
tional noise [4] of general-purpose programming languages (GPLs). They employ
abstract component models to describe software architectures as hierarchies of
connected components. This allows to abstract from ADL implementation de-
tails to a conceptual level applicable to multiple C&C ADLs.

In many ADLs, including MontiArcAutomaton [5], the configuration of C&C
architectures is fixed at design time. The environment or the current goal of the
system might however change during runtime and require dynamic adaptation
of the system [6] to a new configuration that only includes a subset of already
existing components and their interconnections as well as introduces new compo-
nents and connectors. To support dynamic adaptation, a C&C architecture either
has to adapt its configuration at runtime or it must encode adaptation in the

[HKRRW16] R. Heim, O. Kautz, J. O. Ringert, B. Rumpe, A. Wortmann: 
Retrofitting Controlled Dynamic Reconfiguration into the Architecture Description Language MontiArcAutomaton. 
In: Software Architecture - 10th European Conference, ECSA 2016, Copenhagen, Denmark, November 28 - December 2, 2016, Proceedings, volume 9839 of LNCS, pages 175-182. Springer, 2016. 
www.se-rwth.de/publications/



behaviors of the related components. This encoding introduces implicit depen-
dencies between components and forfeits the abstraction of behavior paramount
to C&C models. It imposes co-evolution requirements on different levels of ab-
straction and across components. Dynamic reconfiguration mechanisms and their
formulation in ADLs help to mitigate these problems by formalizing adaptation
as structural reconfiguration. This ensures that components keep encapsulating
abstractions over functionality.

We develop a concept for retrofitting controlled dynamic adaptation into the
static C&C ADL MontiArcAutomaton. The concept lifts reconfiguration to the
conceptual level of components and connectors to preserve the fundamental ab-
straction and encapsulation mechanisms of C&C ADLs. It is controlled in the
sense that it enables a restricted dynamism to benefit from greater run-time
flexibility without loosing the validation properties of static configurations and
their testability. Our concept enables efficient retrofitting by a smooth integra-
tion of reconfiguration semantics and encapsulation. It is implemented in the
C&C ADL MontiArcAutomaton and its code generation framework. Our design
for retrofitting reconfiguration kept changes to the language and code generation
local and the resulting dynamic C&C ADL is fully backwards compatible.

Sect. 2 gives an example to demonstrate benefits of dynamic reconfiguration.
Afterwards, Sect. 3 introduces our concept of controlled dynamic reconfiguration
for MontiArcAutomaton and describes its implementation. Sect. 4 discusses our
approach and compares it to related work and Sect. 5 concludes.

2 Example

Automatic transmission is a commonly used type of vehicle transmission, which
can automatically change gear ratios as a vehicle moves. The driver may choose
from different transmission operating modes (TOMs) such as Park, Reverse,
Neutral, Drive, Sport, or Manual while driving. Depending on the chosen TOM,
a transmission control system decides when to shift gears.

A C&C architecture might provide one component for each different shift-
ing behavior. If the architecture is static, components must exchange control
information at runtime to decide whether they take over the shifting behav-
ior. The architect then has to define and implement inter-component protocols
for switching between different behaviors. Dynamic reconfiguration enables to
model structural flexibility in composed software components explicitly. Here,
the transmission control system’s architecture uses only components related to
the selected transmission operating mode by reconfiguring connections between
components as well as by dynamic component activation and instantiation.

Fig. 1 (top) depicts a C&C model showing the composed component Shift-
Controller. It contains the three subcomponents manual, auto, and sport
for the execution of different gear shifting behaviors and the subcomponent scs
for providing sensor data comprising the current revolutions per minute (rpm),
the vehicle inclination (vi), and the throttle pedal inclination (tpi) encoded as
integers. The component ShiftController has an interface of type TOM to



MAA

ShiftController

configuration Sport

SCSensors

scsTOM
SportShiftCtrl

sport

GSCmd

ShiftController

SCSensors

scs

TOM

Integer vi

Integer rpm

Integer tpi

SportShiftCtrl

sport

ManShiftCtrl

manual
GSCmd

Integer rpm

Integer vi

Integer tpi

GSCmd

AutoShiftCtrl

auto
Integer rpm

Integer vi

Integer tpi

GSCmd

composed component subcomponent of name auto and type AutoShiftCtrl

connectors between scs and sport introduced via reconfiguration

ShiftController

configurationManumatic

TOM GSCmd

active 
subcomponent

incoming port 
of name rpm

ManShiftCtrl

manual

GSCmd

Fig. 1. Three configurations of the ShiftController component. Top: Initial con-
figuration. Middle: Configuration for shifting gears during the transmission operating
mode Sport. Bottom: Configuration for shifting gears during the transmission oper-
ating mode Manumatic.

receive the currently selected TOM and one interface of type GSCmd to emit com-
mands for shifting gears. Immediately after engine start up all subcomponents
are neither active nor connected (top configuration). Once the currently selected
TOM is known to component ShiftController, it changes its configuration
accordingly and starts the contributing subcomponents (bottom configurations).
While the currently selected TOM is Sport (bottom left configuration), only
subcomponents scs and sport are active to emit sensor data and commands
for shifting gears, whereas only subcomponent manual is active when the cur-
rently selected TOM is Manumatic (bottom right configuration). Making the
active components and connectors explicit increases comprehensibility of the
architecture. The deactivation of components at runtime has further practical
benefits, such as saving computation time and power consumption.

3 Retrofitting Controlled C&C Reconfiguration

We present a concept for retrofitting dynamic reconfiguration into the MontiArc-
Automaton ADL [5]. All possible component configurations and their transitions
are defined at design time, which allows static analysis to prevent malformed
configurations from being deployed. At runtime, the reconfiguration is applied
when pre-defined conditions for reconfiguration are met. No configuration va-
lidity changes are required at runtime. The reconfiguration mechanism is self-
directed and pre-defined: Initiation and application of dynamic reconfiguration
can only be applied by a component itself. This allows independent and reusable



specifications of composed components. All reconfiguration possibilities are spec-
ified and fully available in the reconfiguring component. This facilities analysis
and application. In addition, our approach enables component instantiation and
removal to gain greater flexibility.

This section describes preliminaries on the MontiArcAutomaton ADL, an
overview of our concept, and its implementation within MontiArcAutomaton.

3.1 The MontiArcAutomaton ADL

MontiArcAutomaton [5] is an architecture modeling infrastructure comprising
the MontiArcAutomaton C&C ADL [7] as well as model transformation and
code generation capabilities. The MontiArcAutomaton ADL enables to model
C&C architectures as hierarchies of connected components. Components are
black-boxes that consume input messages and produce output messages. Atomic
components employ embedded behavior models or attached GPL artifacts to
perform computations. The behavior of composed components emerges from the
interaction of their subcomponents. These interact via unidirectional connectors
between the typed ports of their interfaces. Components and connectors cannot
be instantiated, nor removed at runtime. The data types of ports are defined in
terms of class diagrams. The MontiArcAutomaton ADL distinguishes component
types from instances, supports component configuration, and components with
generic type parameters. Its infrastructure supports transformation of platform-
independent architecture models into platform-specific models and composition
of code generators to reuse generation capabilities for different aspects.

3.2 Overview: Component Modes for Dynamic Reconfiguration

Our approach for modeling dynamic reconfiguration relies on explicit modes,
which fully define possible configurations. A mode is a configuration of a com-
posed component and components can only switch between their pre-defined
modes. In modes, we distinguish subcomponent instantiation and activation: the
lifecycle of instantiated subcomponents ends with any mode switch, while de-
activated subcomponents retain their state between modes. Components switch
between their modes via mode transitions, which are again fixed at design time.
Each mode transition consists of a source mode, a target mode, and a guard
expression (e.g., over ports of the composed component and its direct subcom-
ponents). Intuitively, when the source mode equals the current mode of a corre-
sponding component instance, and the guard is satisfied, reconfiguration to the
target mode takes place. The mode transitions of a component define a state
machine over the state space of component modes with input of data messages
observable within the component.

MontiArcAutomaton distinguishes component types and instances. Modes
and mode transitions are defined on the component type level of MontiArc-
Automaton. However, at runtime each component instance reconfigures itself
independently based on its current mode and observable messages. Thus there
is no synchronization overhead induced by component types.



MontiArcAutomaton

1 component ShiftController {
2 port in TOM tom, out GSCmd cmd;
3

4 component ManShiftCtrl manual;
5 component AutoShiftCtrl auto;
6 component SCSensors scs;
7

8 mode Idle {} mode Manumatic { /* ... */ } mode Auto { /* ... */ }
9

10 mode Sport, Kickdown {
11 activate scs;
12 component SportShiftCtrl sport;
13 connect scs.rpm -> sport.rpm; connect scs.vi -> sport.vi;
14 connect scs.tpi - sport.tpi; connect sport.cmd -> cmd;
15 }
16

17 modetransitions {
18 initial Idle;
19 Idle -> Auto [tom == DRIVE];
20 Auto -> Kickdown [scs.tpi > 90 && tom == DRIVE];
21 Kickdown -> Auto [scs.tpi < 90 && tom == DRIVE]; // further transitions
22 }
23 }

Listing 1. Excerpt of the ShiftController component type definition with five
modes (ll. 8-15) and a mode transition automaton (ll. 17-22).

3.3 Defining Component Modes

The C&C core concepts identified in [1] and implemented in MontiArcAutomaton
consist of components with interfaces, connectors, and architectural configura-
tions (i.e., topologies of subcomponents). In MontiArcAutomaton, architectural
configurations are defined locally within composed components. For dynamic re-
configuration we extend the existing single component configuration with mul-
tiple modes, where each mode expresses one configuration. We continue the
ShiftController example depicted in Fig. 1 in MontiArcAutomaton syntax
with support for modes shown in Listing 1.

Subcomponents with instances shared between multiple modes are defined
in the body of the composed component and can be activated or deactivated in
modes. As an example, the subcomponent scs of type SCSensors is defined in
Listing 1, l. 6 and activated in modes Sport and Kickdown in l. 11. Subcompo-
nents are deactivated by default, e.g., subcomponents manual and auto, ll. 4-5
are deactivated in mode Sport, ll.10-15. In addition, subcomponents can be in-
stantiated when entering a mode and destroyed when switching to another mode.
As an example, instances of subcomponent sport of type SportShiftCtrl as
defined in l. 12 are unique to modes Sport and Kickdown. Connectors between
components are defined for each mode.

For each mode we can determine at design time whether the expressed con-
figuration is a valid MontiArcAutomaton component configuration. In addition
some well-formedness rules need to be checked: (1) Each mode of each composed
component type has a unique name. (2) Each subcomponent instantiated in a
mode has a unique name in the context of the component containing the mode.
(3) Each subcomponent instance referenced in a mode exists.



3.4 Defining Mode Transitions

Composed components with multiple modes change their configuration based on
observable messages. The messages observable by a component are messages on
its own ports and messages on ports of its subcomponent instances.

All mode transitions are defined locally within the composed component. An
example is shown in Listing 1, ll. 17-22. Following the keyword modetransi-
tions, the mode automaton contains a single initial mode declaration (l. 18)
and multiple transitions (ll. 19-21). These describe mode switches and their
conditions in guard expressions. Guard expression are written in a language re-
sembling expressions in an object-oriented GPL (e.g., it uses dot-notation to
reference messages on ports of components).

The following well-formedness rules apply for the definition of mode tran-
sitions: (4) Each composed component type has exactly one initial mode. (5)
The subcomponent interface elements referenced in guards exist. (6) Modes ref-
erenced in transitions exist in the containing component.

3.5 Implementation Details of Retrofitting

We now highlight some implementation details of retrofitting dynamic reconfig-
uration into the MontiArcAutomaton infrastructure.

On the language level, modes reuse existing modeling elements for subcom-
ponents, ports, and connectors. Mode transitions reuse the automata modeling
elements presented in [7], which allowed us to reuse existing well-formedness
rules of the MontiArcAutomaton ADL to describe the static semantics of dy-
namic reconfiguration. We added the well-formedness rules described above.

We extended the existing code generators [5] to enable integration of dynamic
reconfiguration with the dynamic semantics of MontiArcAutomaton. Due to lo-
calizing the impact of reconfiguration in composed components only, retrofitting
into code generation was straightforward. The extended MontiArcAutomaton
ADL and the generated code are backwards compatible because we could trans-
fer the encapsulation of reconfiguration from the model level to the code level.

4 Discussion and Related Work

The importance of dynamic reconfiguration has long been recognized [8] and is
implemented for multiple ADLs [9–17]. Nonetheless, many ADLs focus on other
aspects and support static architectures only (e.g., DiaSpec [18], Palladio [19],
xADL [20]). Also, there is no consensus on how architectural models describe
dynamic reconfiguration. Usually, specific modeling elements exist [10–13,15–17].

Similar to our concept, some ADLs (e.g, AADL [15], AutoFocus [16, 17])
enable dynamic reconfiguration in a controlled fashion. Here, composed com-
ponents change between configurations (called “modes”) predefined at design
time only. Specific transitions control when components may change their con-
figuration. While this restricts arbitrary reconfiguration (cf. π-ADL [11], Arch-
Java [10]), it increases comprehensibility and guarantees static analyzability.



Dynamic reconfiguration can be programmed or ad-hoc [21]. In programmed
reconfiguration (e.g., ACME/Plastik [13], AADL [15], ArchJava [10]), conditions
and effects specified at design time are applied at runtime. Ad-hoc reconfigura-
tion (e.g., C2 SADL [9], Fractal [14], ACME/Plastik [13]) does not necessarily
have to be specified at design time and takes place at runtime, e.g., invoked by
reconfiguration scripts. It introduces greater flexibility, but component models
do not reflect the reconfiguration options. This enables simulating unforeseen
changes to test an architecture’s robustness, but it complicates analysis and
evolution. For the latter reason MontiArcAutomaton’s concept solely includes
programmed reconfiguration.

Besides modeling dynamic removal and establishment of connectors, Monti-
ArcAutomaton supports dynamic instantiation and removal of components. In
ACME/Plastik [13], so-called actions can remove and create connectors and com-
ponents. ArchJava [10] embeds architectural elements in Java and, hence, enables
instantiating corresponding component classes as Java objects. C2 SADL [9] sup-
ports ad-hoc instantiation and removal of components. Fractal [14] provides sim-
ilar concepts in its aspect-oriented Java implementation. π-ADL’s [11] language
constructs enable instantiation, removal, and movement of components.

5 Conclusion

We have developed and presented a concept for retrofitting controlled dynamic
reconfiguration into the static ADL MontiArcAutomaton. Our concept main-
tains important abstraction and encapsulation mechanisms. Dynamic reconfig-
urable components have modes and mode automata to switch between con-
figurations declaratively programmed at design time. The state of components
during runtime can be either retained between different configurations or com-
ponents can be instantiated and removed. We implemented our concept within
the MontiArcAutomaton architecture modeling infrastructure. The implementa-
tion includes an extended syntax, analysis tools, and a code generator realizing
semantics of dynamic reconfigurable components with synchronous communica-
tion. Interesting future work could investigate the applicability of our concept
for retrofitting dynamic reconfiguration into further ADLs.

References

1. Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Transactions on Software Engi-
neering (2000)

2. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What Industry
Needs from Architectural Languages: A Survey. IEEE Transactions on Software
Engineering (2013)

3. France, R., Rumpe, B.: Model-Driven Development of Complex Software: A Re-
search Roadmap. In: Future of Software Engineering 2007 at ICSE. (2007)

4. Wile, D.S.: Supporting the DSL Spectrum. Computing and Information Technol-
ogy (2001)



5. Ringert, J.O., Roth, A., Rumpe, B., Wortmann, A.: Language and Code Generator
Composition for Model-Driven Engineering of Robotics Component & Connector
Systems. Journal of Software Engineering for Robotics (JOSER) (2015)

6. Salehie, M., Tahvildari, L.: Self-Adaptive Software: Landscape and Research Chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS) (2009)

7. Ringert, J.O., Rumpe, B., Wortmann, A.: Architecture and Behavior Modeling of
Cyber-Physical Systems with MontiArcAutomaton. Shaker Verlag (2014)

8. Lim, W.Y.P.: PADL–a Packet Architecture Description Language. Massachusetts
Institute of Technology, Laboratory for Computer Science (1982)

9. Medvidovic, N.: ADLs and Dynamic Architecture Changes. In: Joint Proceedings
of the Second International Software Architecture Workshop (ISAW-2) and Inter-
national Workshop on Multiple Perspectives in Software Development (Viewpoints
’96) on SIGSOFT ’96 Workshops. (1996)

10. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architec-
ture to Implementation. In: Proceedings of the 24th International Conference on
Software Engineering (ICSE). (2002)

11. Oquendo, F.: π-ADL: an Architecture Description Language based on the higher-
order typed π-calculus for specifying dynamic and mobile software architectures.
ACM SIGSOFT Software Engineering Notes (2004)

12. Cuesta, C.E., de la Fuente, P., Barrio-Solórzano, M., Beato, M.E.G.: An “abstract
process” approach to algebraic dynamic architecture description. The Journal of
Logic and Algebraic Programming (2005)

13. Joolia, A., Batista, T., Coulson, G., Gomes, A.T.: Mapping ADL Specifications to
an Efficient and Reconfigurable Runtime Component Platform. In: 5th Working
IEEE/IFIP Conference on Software Architecture, 2005. WICSA 2005. (2005)

14. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.: The FRACTAL
component model and its support in java. Software - Practice and Experience
(2006)

15. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley (2012)

16. AutoFocus 3 Website. http://af3.fortiss.org/ Accessed: 2016-01-18.
17. Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schätz, B.: AutoFOCUS 3: Tooling

Concepts for Seamless, Model-based Development of Embedded Systems. In: Joint
proceedings of ACES-MB 2015 – Model-based Architecting of Cyber-physical and
Embedded Systems and WUCOR 2015 – UML Consistency Rules. (2015)

18. Cassou, D., Koch, P., Stinckwich, S.: Using the DiaSpec design language and
compiler to develop robotics systems. In: Proceedings of the Second Interna-
tional Workshop on Domain-Specific Languages and Models for Robotic Systems
(DSLRob). (2011)

19. Becker, S., Koziolek, H., Reussner, R.: Model-Based Performance Prediction with
the Palladio Component Model. In: Proceedings of the 6th International Workshop
on Software and Performance. (2007)

20. Khare, R., Guntersdorfer, M., Oreizy, P., Medvidovic, N., Taylor, R.N.: xADL:
Enabling Architecture-Centric Tool Integration with XML. In: Proceedings of the
34th Annual Hawaii International Conference on System Sciences. (2001)

21. Bradbury, J.S.: Organizing Definitions and Formalisms for Dynamic Software Ar-
chitectures. Technical report, School of Computing, Queen’s University (2004)

http://af3.fortiss.org/

	Retrofitting Controlled Dynamic Reconfiguration into the Architecture Description Language MontiArcAutomaton



