
Using Grammar Masking to Ensure Syntactic Validity in
LLM-based Modeling Tasks

Lukas Netz

netz@se.rwth-aachen.de

Chair of Software Engineering

Aachen, NRW, Germany

Jan Reimer

jan.reimer@rwth-aachen.de

Chair of Software Engineering

Aachen, NRW, Germany

Bernhard Rumpe

rumpe@se.rwth-aachen.de

Chair of Software Engineering

Aachen, NRW, Germany

ABSTRACT
We present and evaluate a method called grammar masking, which

is used to guide large language models (LLMs) toward produc-

ing syntactically correct models for a given context-free grammar.

Prompt engineering methods such as few-shot learning or priming

can be used to improve the chances of an LLM producing cor-

rect syntax, but the more complex the grammar, the more time-

consuming and less promising these methods become. Previous

work is focused primarily on the usage of either language model

training or prompt engineering. In this work, a method is presented

that restricts the output to a given grammar using constrained de-

coding to ensure the output adheres to a valid syntax.We use several

domain-specific languages (DSLs) built with MontiCore and task

multiple LLMs to produce models with and without constrained

decoding. A corresponding parser is used to confirm the syntactic

correctness of each model. We show that grammar masking can

dramatically improve the modeling capabilities of several LLMs,

reducing the need for well-refined prompting while increasing the

chance of producing correct models.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; • Software and its engineering→Model-driven software
engineering.

KEYWORDS
LLM, MDSE, Guidance, CFG, Constrained Decoding
ACM Reference Format:
Lukas Netz, Jan Reimer, and Bernhard Rumpe. 2024. Using Grammar Mask-

ing to Ensure Syntactic Validity in LLM-based Modeling Tasks. In ACM/IEEE
27th International Conference on Model Driven Engineering Languages and
Systems (MODELS Companion ’24), September 22–27, 2024, Linz, Austria.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3652620.3687805

1 INTRODUCTION
Large language models (LLM) [23, 41] are highly sophisticated tools
that, among other things, are capable of generating code artifacts
based on a natural language input [4, 12, 32]. As we operate in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3687805

the context of model-driven software engineering, we focus on

the synthesis of textual models using the predefined syntax of

a given domain-specific language (DSL). Given that the syntax

definition of the targeted DSL might not be included in the corpus

of training data used for the language model, it is necessary to

rely on post-training optimization techniques such as few-shot

learning [8, 17], fine-tuning [31], or prompt engineering [11, 26].

However, as these methods rely on prompt engineering, they have

one common element: they only improve the likelihood that the

LLM produces syntactically correct models but cannot guarantee it.

In this work, we introduce an approach that uses the context-free

grammar (CFG) of the targeted DSL to filter out any syntactically

invalid output during the generation process of an open-source LLM.

We will evaluate results by comparing this approach to previous

successful modeling tasks for LLMs using only few-shot learning.

2 FOUNDATIONS
We introduce several foundations, such as the used framework

Guidance, and the DSLs for which we will generate models.

2.1 Large Language Model
A LLM is a language model that is trained on a vast amount of

text data. It is distinguished by its capability for general-purpose

language understanding and generation. These models acquire

their abilities by learning statistical relationships from text doc-

uments through a computationally intensive self-supervised and

semi-supervised training process [36]. LLMs can perform text gen-

eration, a type of generative AI [1], by taking an input text and

iteratively predicting the next token or word. In the context of soft-

ware engineering, LLMs present significant potential to enhance

and automate various tasks [25], particularly those related to Model-

Driven Software Engineering (MDSE) and modeling languages [5,

28].

2.2 Few-Shot learning
Few-shot learning (FSL) is a well-established in-context learning

approach for large language models [17, 31, 8]. A pre-trained LLM

can be prompted with a set of 𝑁 exemplary question-answer pairs

(𝑞𝑖 , 𝑎𝑖)𝑁
𝑖=1

before being provided with the actual question 𝑞. The

FSL output 𝑎 for the question 𝑞 is defined as 𝑃𝐿𝐿𝑀 (𝑎 |𝑞, (𝑞𝑖 , 𝑎𝑖)𝑁
𝑖=1

).
In addition, further instructions can be added to improve the results

[39]. Further work is published on the FSL improvement introducing

intermediate reasoning steps (e.g. Chain of thought) [40, 15, 38].

The success of few-shot in-context learning depends on the

utility of the implicit knowledge within the provided examples and

the clarity with which the task specifications are communicated

through the provided examples. In the case of Domain-Specific

[NRR24] L. Netz, J. Reimer, B. Rumpe:
Using Grammar Masking to Ensure Syntactic Validity in LLM-based Modeling Tasks.
In: Workshop on Artificial Intelligence and Model-driven Engineering, MODELS Companion ’24:
International Conference on Model Driven Engineering Languages and Systems (MDE Intelligence),
pp. 570–577, Association for Computing Machinery (ACM), Oct. 2024.

https://orcid.org/0000-0003-2013-2919
https://orcid.org/0000-0002-2147-1966
https://doi.org/10.1145/3652620.3687805
https://doi.org/10.1145/3652620.3687805
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3687805&domain=pdf&date_stamp=2024-10-31

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Netz et al.

Languages, the structured nature of the combinatorial output space,

represented by the CFG of the DSL, is not easily covered by the

limited number of demonstrations. Thus, generating models for a

DSL with an FSL-based approach remains a significant challenge

for LLMs.

2.3 Guidance-AI
Guidance

1
is a tool designed to optimize and enhance the process

of generating text output with Large Language Models. It provides

a flexible and efficient way to control and ‘guide’the output of these

models to achieve specific goals or adhere to desired formats. In our

case, we use the formatting capabilities of Guidance to produce out-

put that adheres to the formatting rules of a given DSL. Guidance

internally defines a DSL implemented by developers fromMicrosoft

for structured prompting of LLMs. Any prompting template consist-

ing of a mix of unconstrained generation, function calls, constant

strings, or grammar-constrained generation is transformed into a

tree-like data structure, where each node represents different parts

of the grammar. The core classes are Function and its subclasses

GrammarFunction, which represents grammar rules, and RawFunc-
tion, which is used to interleave native Python functions within

a grammar. Grammar functions are either a join or a select, and

regex expressions in the grammar are reduced to these two opera-

tions. Terminals are either individual bytes or byte ranges. Figure 1

illustrates a simple grammar tree with the possible productions "a"

or "ab".

The main idea for achieving a structured output is online parser-

guided generation synchronizing a parser and scanner with an LLM

to determine valid tokens at each step dynamically. In the main

Loop, as seen in Figure 3. When LLM generates text, it predicts

the next token in a sequence. For each possible token, a logit is

generated, representing the confidence that this token is correct

based on the training of the LLM. A logit refers to the unnormalized

output value for each token or word, which is then used to calculate

the probability distribution over the vocabulary for the model’s

next prediction. To those confidence values, a softmax function is

applied to the confidence scores so they all add up to 1 and can be

used as probabilities. Based on these probabilities, a multinomial

distribution is calculated. Now, for each step, the tokens are tried

one by one and checked by the Guidance parser to see if they result

in a valid partial parse.

The Parser is an Earley Parser constructed by Guidance based

on the supplied grammar. An Earley parser efficiently processes

context-free grammars in three phases. During prediction, it gen-

erates new states based on grammar rules for non-terminals. In

the scanning phase, it matches and consumes terminal symbols in

the input. Completion advances states when a rule ends, prepar-

ing for the next parsing steps. This method handles all possible

paths, accommodating ambiguous and complex grammars effec-

tively. Many other Frameworks only support subsets of CFGs since

they are based on LR(1) or LALR(1) parsers. The Guidance parser

enhances the standard Earley parser by introducing commit points,

which force the parser to commit to specific parse paths, effectively

1
https://github.com/guidance-ai

pruning the search space and avoiding backtracking. No other al-

ternatives are considered once a commit point is reached, ensuring

that the parser adheres strictly to chosen paths.

The parser in the Guidance framework employs several opti-

mization strategies to enhance performance and efficiency by min-

imizing the frequency of calls to the LLM. In figure Figure 3, we

can also see that tries are used in two instances. A trie, or prefix

tree, is a data structure that efficiently stores and retrieves keys,

typically strings. Each node represents a common prefix shared

by some keys, allowing fast lookups by a prefix. The tokens of the

LLM are converted to a trie, making it possible to identify valid

tokens and constraining the search space quickly. Another trie is

constructed for the grammar, and by traversing it alongside gen-

eration, the forced prefixes and suffixes are added to the output

without invoking the LLM.

This is in contrast to template-based approaches, which may

force tokens that alter the attention distribution and potentially

degrade the LLM output. Online parsers can maintain minimal

invasiveness by checking tokens one by one [6]. However, this

method often incurs high inference overhead since they may need

to check the entire model vocabulary at each step, as seen in Table 1.

Select

Byte(b’a’) Join

Byte(b’a’) Byte(b’b’)

Figure 1: Grammar Tree Structure

2.4 MontiCore based Modeling Languages
As the chair for Software Engineering, we develop and maintain the

language workbench MontiCore
2
[19]. The language workbench

is used for language engineering and to generate corresponding

tooling for the defined DSLs, that themselves can be used in gen-

erative software engineering tasks [GLM+24, 14]. For brevity, we
will focus on two languages: one used to define requirements and

specifications in simplified structured English (SEN) and another

used to define UML class diagrams: CD4A.

2.4.1 Structured English – A Controlled Natural English (DSL) for
Regulatory Comliance. This DSL was primarily developed to stan-

dardize the definition of requirements and is based on the work of

Konrad and Cheng [20]. The DSL can be used to write requirements

and expressions in controlled simplified English [18], while still

being able to be parsed and processed by tooling.

1 After starting the engine , each time we
2 pull the turn indicator lever up, the right
3 indicator blinks within 500 ms.

2
https://monticore.github.io/

https://github.com/guidance-ai
https://monticore.github.io/

Using Grammar Masking to Ensure Syntactic Validity in LLM-based Modeling Tasks MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Generic Requirement in English

We can identify scopes and patterns in the provided Requirement:

1 After Q:Formula , if P:Formula holds ,
2 then in response S:Formula eventually holds
3 time:TimeBound.

Patterns found in Requirement

Next, we can derive the SEN-Requirement from the natural English

one:

1 After engine equals started , if
2 turn_indicator_lever equals up holds ,
3 then in response right_indicator equals
4 blinking eventually holds within 500
5 Milliseconds.

Derived Structured English from Requirement

2.4.2 Class Diagrams for Analysis (CD4A). The modeling language

CD4A is based on UML class diagrams and closely implements all

common features of class diagrams e.g., inheritance, associations,
and enumerations (see [10]). The syntax follows a Java-notation,

making it easy for developers to adopt the language. Listing 1

depicts a simple class diagram in CD4A syntax. The diagram is titled

’LibraryDiagram’ and defines the four classes Library, Member,
Librarian, and Book. In addition, the inheritance from Member to

Librarian and an association from Library to Book is modeled.

1 classdiagram LibraryDiagram {
2 class Library {
3 String name;
4 String adress;
5 }
6 class Member {
7 String name;
8 Long memberID;
9 String contacInfo;
10 }
11 class Librarian extends Member {}
12 class Book {
13 String title;
14 }
15 association [1] Library -> Book [*];
16 }

Listing 1: CD4A Class Diagram Defining Person, Student and
Animal Class and their relations.

3 RELATEDWORK
Although open-source frameworks such as Guidance have been

published in recent years, little research has been done on using

LLMs with constrained decoding as a modeling tool.

Initial work was published by Wang et al. in [37]. The presented

approach uses grammar prompting to guide an LLM towards a con-

strained output. They demonstrate the viability of their approach,

by constraining an LLM to specific DSLs.

3.1 MBSE with generative AI
There are many algorithms, that can be considered as ‘generative

artificial intelligence’such as evolutionary algorithms [27], Genera-

tive Adversarial Networks [13] or LLMs. Within this work we only

focus on language models. Bader et al. use an FSL-based approach

on the GPT-3.5-turbo-1106 LLM to produce textual UML Models

in XML notation based on natural-language input. In this work,

Bader shows that valid models can be created; however, they also

point out some challenges of the LLM-based approach, such as

limited context length and hallucination-related problems with the

generated models [3].

Timperley et al. assess the usage of LLMs to generate model-

based spacecraft system architectures [34]. The approach relies on

generating textual models for system architectures, requirements,

and ontologies. The analysis concludes that LLMs can provide a

high degree of assistance in modeling tasks in the early stages of

spacecraft design. However, the modeling process still requires

human supervision and can not be yet fully automated. A similar

conclusion is drawn by Busch et al. [9]. In their approach, a Low-

Code development platform is developed using a visual modeling

language. Similar to Timberly et al. full automation is not yet pos-

sible due to the uncertainty introduced by relying on an LLM to

generate code.

[2] explores the capabilities of current LLMs to create general-

purpose code. The paper indicates that LLMs have a greater po-

tential to create correct syntax for GPLs it was already trained

on.

3.2 SynCode
SynCode [16, 35] is a framework for grammar-guided generation

with large language models. SynCode tries to optimize runtime

perfomance by using an offline-constructed lookup table called the

DFA mask store. This table is based on the DFA of the language

grammar terminals and is designed to retain only syntactically valid

tokens during the generation process.

The core of SynCode’s approach involves a two-step process

during the LLM decoding stage. First, the partial output generated

by the LLM is parsed to produce accept sequences and a remain-

der. Accept sequences represent valid terminal sequences that can

follow the current partial output, while the remainder accounts

for any unparsed or partially parsed tokens. Next, using the ac-

cept sequences and remainder, SynCode traverses the DFA states

and retrieves masks from the DFA mask store. These masks filter

out syntactically invalid tokens from the LLM’s vocabulary, ensur-

ing that only valid tokens are considered during each step of the

generation process.

One of the greatest advantages of this approach is that the en-

tire constraint infrastructure can be pre-computed. By accepting a

longer initial setup time to generate the mask stores, the inference

process becomes significantly faster, with only a minimal overhead

of about 10%, even for complex grammars. This makes it particu-

larly well-suited for handling complex grammars, such as those

found in MontiCore.

Sadly at the time of writing, this framework was incompatible

with our approach, thus a comparison between the used framework

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Netz et al.

and SynCode could not be perfomed. Hopefully, future updates to

Syncode will make this possible.

4 APPROACH

Figure 2: Evaluating the performance of a few-shot learning-
based approach

Within this work, we focus on the syntactic correctness of the

models produced by the LLM. We evaluate by comparing two ap-

proaches: one that only uses FSL and one that combines FSL with

grammar masking. Even if a model is syntactically correct, there

can still be semantic errors, e.g. the model could be an empty model,

which might be syntactically valid, but does not satisfy the given

modeling task. We were able to exclude this trivial error case in our

tests, however, an in depth semantic analysis was not performed.

Previous tests have shown that LLMs implement a large part of

the requirements in the generated artifacts in the majority of cases

[28]. The generated results did not indicate a deviation from the

previous measurements on semantic accuracy.

4.1 Using Few-Shot learning-based Modeling
Method

So far, FSL is one of the best prompting approaches to get an LLM to

produce syntax in a predefined grammar. One drawback is that its

performance heavily relies on the complexity of the grammar, the

dependency on the LLM’s familiarity with the concepts underlying

the modeling task, and a good selection of examples to represent

the rules of the grammar of the targeted DSL. FSL is limited to

a set of examples to convey all syntactic relevant elements of a

grammar [37], while also passing on ’best practices’ for a modeling

task in this language. As LLMs have a tendency to lose accuracy on

increasingly larger prompts [22], we have to choose the examples

for each grammar, or even for each use case carefully. In our FSL

approach, generic domain-independent examples for each gram-

mar were selected, as our overreaching goal is the development

of a domain-independent DSL-specific modeling approach, that

is not optimized for a specific use case or domain. A higher accu-

racy is very likely, by narrowing down the approach to specific

target domains and thus choosing corresponding examples from

corresponding use cases.

Within this work, we compare our approach with the perfor-

mance of the FSL approach developed in [28]. The approach is

depicted in Figure 2. A user informally defines a modeling task, that

is extended with sample models of the target DSL. The extended

prompt is provided to a LLM and the resulting model is checked by a

parser. All models are provided with the same prompt-engineering

and with the same set of modeling tasks. The computation, with

the exception of the OpenAI model, was run on the same hardware.

Figure 3: Combining the Guidance Framework with Monti-
Core to generate syntactically valid models.

4.2 Using a Grammar Masking-based Modeling
Method

In our constrained decoding approach we use Guidance as discussed

in Section 2.3. The constrained decoding approach is evaluated sim-

ilarly as the FSL approach (cf. Figure 4. The prompt containing the

modeling task is supplemented with the same additional models, as

in the previous approach. The grammar of the target DSL is trans-

formed and provided through Guidance to the LLM. All generated

models are parsed with a parser that is based on the same grammar.

The pipeline involves transforming the MontiCore Grammar using

a Visitor Pattern into a Lark Grammar [21] (cf. Listing 2), which

is then integrated with Guidance. A detailed setup is shown in

Figure 3. The framework starts with an initial prompt, that at the
beginning is also the current prompt. The framework is limited to a

Using Grammar Masking to Ensure Syntactic Validity in LLM-based Modeling Tasks MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Figure 4: Evaluating the performance of a grammar-masking-
based approach

1 start: automaton
2 automaton: "automaton" NAME "{" (state |

transition)* "}"
3 state: "state" NAME ("<<" (" initial" | "

final") ">>")* (("{" (state |
transition)* "}") | ";")

4 transition: NAME "-" NAME ">" NAME ";"
5 NAME: /[a-zA-Z_$][a-zA-Z_0 -9$]*/
6 %ignore WS
7 %import common.WS

Listing 2: Example of Lark Grammar

fixed set of tokens; if there are still tokens left, the system checks

with the help of a grammar trie if there is an unambiguous contin-

uation for the current prompt (e.g., ’bool’ has to be completed to

’boolean’). This is used as a shortcut to circumvent LLM usage. If

this is not the case, the LLM is used to recommend tokens (trans-
former), which are passed to an earley parser, which can identify

invalid token suggestions. Valid tokens are passed on and added to

the current output. The cycle starts again at the current output.
Currently, Guidance only uses greedy decoding, which picks

the most probable allowed token. This reduces the effect of logit

probability biasing, such as temperature, hence the same prompt

will produce the same generated artifact. Thus to test the system, we

need many distinct use cases. Several modeling tasks from software

engineering exams were selected as templates to synthesize further

exam tasks. An LLM was commissioned to generate a list of 1000

domains (cf. Listing 3).

1 Automotive Systems ,
2 Hydraulic Press Control Systems ,
3 Healthcare Management Systems ,
4 E-commerce Platforms ,
5 Financial Trading Systems ,
6 Telecommunication Networks ,
7 Smart Home Automation ,
8 [...]

Listing 3: Except from synthesized domains. A complete list
can be found in [29]

1 A voting system is being designed for a local
2 election. The system should be able to handle

3 multiple voting stations , each with its own
4 set of voters. Each voter has a unique
5 identifier and can cast one vote per election.
6 The vote is recorded as a preference for a
7 particular candidate.
8 [...]

Listing 4: Except from synthesized use case. A complete list
can be found in [29]

These were in turn given individually to the LLM in order to create

new tasks using an FSL approach with the above-mentioned exam

tasks. A set of 1000 exam tasks with similar specification levels was

thus created (cf. Listing 4). The task synthetization was executed

by Llama 3 8B in a 4-bit quantization.

We then compare the artifacts that parse in constrained gener-

ation with those that parse in unconstrained generation for each

task.

5 RESULTS
To evaluate the presented approach several class diagrams and

structured English models were generated, the parsing subset (4.225

CD4A models and 359 SEN models) can be found here: [29]. The

results (Table 1) indicate that the constrained generation method

significantly increases the percentage of syntactically correct out-

puts from 46.52% to 92.63% (Llama 3). However, this improvement

comes at the cost of increased generation time, with constrained

generation taking an average of 74.09 seconds compared to 5.71

seconds for unconstrained generation. Similar results are observed

for other LLMs. 36.57 % of the models produced by Phi3 Mini in 4 Bit

Quantization in an unconstrained mode are parsable, compared to

86.98 % in the constrained mode. Gemma 7B in 4-Bit Quantization

produces only 0.003 % in an unconstrained mode, compared to 93.00

% in the constrained mode. Mistral 7B in 3-Bit Quantization pro-

duces 20.99 % parsable models compared to 92.37 % parsable models

in a constrained configuration. Quantization was chosen to accom-

modate the hardware constraints of the experimental setup. The

Large Lanugage Models were limited to 8GB, due to the available

experimental setup. All models took significantly more computa-

tion time when using constrained decoding. Using the Phi3 model

in a constrained configuration took 34 times longer than using the

Model in an unconstrained configuration. These increases could

be combated by pre/computing the constraints, e.g. by using the

Syncode approach (cf. subsection 3.2) which is connected to further

challenges.

Using the same first 100 prompts, GPT-4o [30] was also tested.We

were unable to apply constrained decoding as it is a closed-source

model. At the time of writing, GPT-4o is one of the most capable

LLMs in several benchmarks [24]. Thus, it is expected that themodel

performs better (76 % parsable models) in an unconstrained mode.

However, most likely due to the communication overhead, the time

needed to create a model is, on average, doubled in comparison to

the locally running open-source models.

We also tested the Structured English DSL SEN in addition to

the Class Diagram DSL CD4A. We observe the same patterns as in

CD4A: In an unconstrained setting using Llama 3, 26.54% of the

produced models are parsable, whereas in a constrained configura-

tion, 90.26% are parsable. The same can be shown for the LLMs Phi3

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Netz et al.

and Mistral: significantly more produced models are parsable us-

ing constrained decoding, than using unconstrained generation. In

comparison to the CD4A modeling task, GPT-4o does not perform

significantly better than the locally running LLMs: with 24.63%

parsable models in an unconstrained configuration.

Not all runs could be completed in both cases (CD4A and SEN).

Although 1000 prompts for CD4A and 123 promts for SEN were

provided to the LLMs, a run was aborted in case a token limit

was reached. Thus for example Llama3 8B 4-Bit only produced 991

models instead of 1000.

Constrained decoding does not currently achieve complete cor-

rectness because Monticore’s grammar includes keywords not yet

supported by our approach. For example, enum (on, off, finished)
is interpreted as a function. In contrast, Monticore’s implementa-

tion would not allow enum to be read as a function name, thereby

guiding the generation incorrectly. Most of these differences were

adapted by hand.

In Table 2, we can see a peculiarity of constrained generation.

While the overall number of language constructs used is similar, the

number of compositions and associations is the same. This occurs

because the model tries to extend tokens maximally. Due to the

prompting and grammar constraints, both constructs, which have

exactly 11 characters, are equally likely to be generated.

At this point, we would like to point out that the results do not

show the best possible modeling capabilities of the individual mod-

els, as we have deliberately not optimized the few-shot learning

prompting intensively. The results mainly show the performance

gain with constant prompting with and without grammar prompt-

ing. The results with GPT-4o, which received the same prompts,

serve as a comparison.

We encountered many unforeseen problems in achieving these

results. First, EBNF grammars, which are supported by most of the

currently available frameworks, are weak in expressing common

features of interesting languages.

• WhitespacesMontiCore parsers are, in parts, whitespace-

agnostic and ignore them, similar to most compilers such as

the C compiler. However, whitespace is important for the

attention distribution of the LLM when evaluating input and

output. Therefore, grammars should be modified to enforce

correct formatting, for example, by integrating them with a

linter.

• Fuzzy Testing Additionally, grammars are often only tested

against human input instead of some extensive fuzzy testing,

which usually results in no additional benefits. However,

for an LLM, the grammar should be entirely correct. Often,

in grammars that are common on the internet, some rules

never trip a human up, but an LLM will make every error

you allow it to.

• Grammar Mistakes Instead of a modifier being only al-

lowed once or not at all, the Kleene star allows // to be read

as a modifier as shown in Figure 5. By abusing incorrect

grammar the LLM makes comments which are not allowed

by using two modifiers.

• Endless repetitions and limited tokens A CD4A file can

have arbitrarily many classes, and in fact, there can be arbi-

trarily many of most constructs. However, since our VRAM

1 modifier: stereotype? ("public" | ... | "/" |
...)*

Leading to this Code being parseable:

1 class Frame {
2 Material material; // steel
3 Wheel ;
4 }

CD4A Code

Figure 5: CD4A Example

is limited, the LLM can only generate a finite amount of

tokens. Therefore, grammar masking only guarantees cor-

rect artifacts if the generation stops before the token limit

is reached. In some cases, the LLM gets stuck in endless

repetitions, making it unlikely to terminate in a parsable

state.

6 DISCUSSION
The results shown in Table 1 and Table 2 show very promising

results, in the following we discuss aspects such as limitations and

generalizability of the approach.

6.1 Applicability to other grammars
The approach presented in this work is based on MontiCore Gram-

mars, which are transformed into LARK grammars. Hence this

approach can be applied to any MontiCore Grammar. MontiCore

provides infrastructure that permits the developers to define con-

text conditions (CoCos) [7]. These CoCos are rules that check the

well-formedness of models. These context conditions are crucial

for ensuring that models adhere to the specified rules and con-

straints of the language. DSLs with fewer CoCos are transferable

to this method with less effort, as this approach only impacts the

adherence to the grammar and not the CoCos. In addition, gram-

mar masking is expected to yield fewer improvements on DSLs

already encountered in pretraining, such as PlantUML [33], or SQL,

as these languages should already perform well. LLMs that are

already trained on a specific DSL will be more likely to produce

syntactically correct models.

This approachwas developed withMontiCore grammars inmind.

However, the approach can be applied to any grammar that is

transformable into a LARK grammar (cf. Figure 3, Figure 4).

6.2 Impact Grammar Masking on Model
Semantics

The approach presented in this paper relies primarily on filtering

out syntactically invalid tokens. Although we did not notice any

changes in the semantics of the resulting models, we cannot rule

out the possibility that relevant content is excluded from the model

or modified so that the semantics of the model are changed. A

closer look at random samples, in which both approaches resulted

in syntactically correct models, revealed that models generated

with the constrained approach do not systematically contain fewer

elements than those generated with the unconstrained approach.

Using Grammar Masking to Ensure Syntactic Validity in LLM-based Modeling Tasks MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Table 1: Mean Processing Time and Parsing Rates

Unconstrained Constrained

CD4A (1000 examples)

Llama3 8B 4-Bit
Time (s) 5.71 74.10

Parsed (%) 416/991 (41.97%) 918/991 (92.63%)

Phi3 Mini 4-Bit
Time (s) 4.63 138.29

Parsed (%) 357/976 (36.57%) 849/976 (86.98%)

Gemma 7B 4-Bit
Time (s) 2.46 54.20

Parsed (%) 2/658 (0.003%) 612/658 (93.00%)

Mistral 7B 3-Bit
Time (s) 4.89 73.59

Parsed (%) 190/905 (20.99%) 836/905 (92.37%)

GPT-4o (100 examples)
Time (s) 8.77 N/A

Parsed (%) 76/100 (76.00%) N/A

SEN (123 examples)

Llama3 8B 4-Bit
Time (s) 1.04 5.23

Parsed (%) 30/113 (26.54%) 102/113 (90.26%)

Phi-3-Mini 4-Bit
Time (s) 1.13 10.12

Parsed (%) 4/122 (3.27%) 105/122 (86.06%)

Mistral 7B 3-Bit
Time (s) 1.22 5.39

Parsed (%) 11/96 (11.45%) 85/96 (88.54%)

GPT-4o
Time (s) 1.84 N/A

Parsed (%) 17/69 (24.63%) N/A

Numbers include only generations without out-of-token errors.

Table 2: Mean Values of Syntactic Elements (Llama3 CD4A)

Unconstrained Constrained

Composition Count 5.669021 5.809284

Association Count 0.21998 5.809284

Class Count 7.849647 8.095863

Table 2 implies the opposite. The differences observed were mainly

in the formatting and naming of elements.

Models generatedwith contained decodingmight be less detailed,

as this does not necessarily appear in quantitative analysis (e.g.

counting classes and attributes). A further in-depth analysis of the

content would be necessary.

6.3 Choosing Between Constrained and
Unconstrained Generation

As we could show in the case of the DSL CD4A, FSL alone can suf-

fice to create an approach that is very likely to yield a syntactically

correct model (e.g. by using a sufisticated LLM such as GPT-4o

cf. Table 1). This approach is not limited to the DSLs presented in

this paper and can be applied to further modeling languages with

sufficient prompt engineering. Nevertheless, this approach requires

experts in the field of generative AI (e.g. a Prompt Engineer) and ex-

perts in the specific modeling language to provide specific and ideal

representative examples of the targeted language. Hence, an FSL-

only-based approach would be unsuitable for developers unfamiliar

with the targeted DSL. In contrast, the grammar-masking-based

approach is less reliant on good prompting and can be derived from

a given MontiCore grammar, thus only needing the grammar file

and a few samples of the targeted modeling language to operate. In

addition, the grammar masking approach presented in this work

enables smaller less performant models to serve as modeling tools.

Smaller models such as the Llama 3 8B in a 4-bit quantization can

be executed on hardware that is available for the end user (e.g.

NVIDIA GeForce RTX 3070), making this approach independent

from external server clusters such as the ones needed for an OpenAI

based approach.

6.4 Limitations
One of the key limitations of this approach is its missing support

for context conditions. As context conditions often need the entire

model to be applied, they can not be used in a filtering capacity dur-

ing model creation. Thus, they have to be applied in a succeeding

step after a model for a specific DSL has been created. Grammar

masking reduces the number of models that do not adhere to the

provided grammar, thus also increasing the overall number of cor-

rect models that potentially comply with the context conditions,

as any syntactically invalid models are filtered out at a very early

stage. Another limitation is the high degree of specialization in one

grammar. This approach limits the LLM to only producing models

for one specific grammar. A second setup and a delegator are needed

if the framework is meant to switch between DSLs. Switching out

the prompting alone will not suffice.

As mentioned above, grammars might need to be adapted and

refined to operatewith this approach, as LLMs tend to find loopholes

in ‘incompletely’defined grammars. This requires the developer

who sets up the framework to have some experience in language

design.

7 CONCLUSION
We were able to show that frameworks that enable constrained

decoding enable smaller, less performant LLMs to produce syntac-

tically correct models at a reasonable rate. Our experiments show,

that grammar masking can significantly increase the chance of an

LLM-based approach to produce valid models for a given DSL. We

could demonstrate this improvement for two DSLs. Within this

paper, we only address syntactic validation of the produced models.

Further analysis has to be performed to systematically evaluate if

there are systematic differences in the semantics of unconstrained

and constrained models. In addition, an extensive difference in

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Netz et al.

computation time between unconstrained and constrained gener-

ation was measured. As a result, we recommend that the method

described in this work should only be used if a satisfactory out-

come cannot be achieved using conventional prompt engineering

methods. Improvements in frameworks, such as precomputations

(Syncode) and runtime optimations, could soon reduce the gap in

computation time.

REFERENCES
[1] Thimira Amaratunga. [n. d.] Understanding large language models.

[2] Jacob Austin et al. 2021. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

[3] Elias Bader, Dominik Vereno, and Christian Neureiter. [n. d.] Facilitating user-

centric model-based systems engineering using generative ai.

[4] Marco Barenkamp, Jonas Rebstadt, and Oliver Thomas. 2020. Applications of

ai in classical software engineering. AI Perspectives, 2, 1, 1.
[5] Nils Baumann, Juan Sebastian Diaz, Judith Michael, Lukas Netz, Haron Nqiri,

Jan Reimer, and Bernhard Rumpe. 2024. Combining retrieval-augmented gen-

eration and few-shot learning for model synthesis of uncommon dsls. In Mod-
ellierung 2024 Satellite Events. Gesellschaft für Informatik eV, 10–18420.

[6] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2024. Guiding llms the

right way: fast, non-invasive constrained generation. (2024). https://arxiv.org

/abs/2403.06988 arXiv: 2403.06988 [cs.LG].
[7] Arvid Butting, Rohit Gupta, Nico Jansen, Nikolaus Regnat, and Bernhard

Rumpe. 2023. Towards Modular Development of Reusable Language Com-

ponents for Domain-Specific Modeling Languages in the MagicDraw and

MontiCore Ecosystems. Journal of Object Technology, 22, 1, (Sept. 2023), 1:1–21.
doi: 10.5381/jot.2023.22.1.a4.

[8] Tom Brown et al. 2020. Language models are few-shot learners. Advances in
neural information processing systems, 33, 1877–1901.

[9] Daniel Busch, Gerrit Nolte, Alexander Bainczyk, and Bernhard Steffen. 2023.

Chatgpt in the loop: a natural language extension for domain-specific modeling

languages. In International Conference on Bridging the Gap between AI and
Reality. Springer, 375–390.

[10] Chair of Software Engineering. 2023. Class Diagram For Analysis.

[11] Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. 2024.

Unleashing the potential of prompt engineering in large language models:

a comprehensive review. (2024). https : / /arxiv .org/abs/2310.14735 arXiv:

2310.14735 [cs.CL].
[12] Talia Crawford, Scott Duong, Richard Fueston, Ayorinde Lawani, Samuel

Owoade, Abel Uzoka, Reza M Parizi, and Abbas Yazdinejad. 2023. Ai in soft-

ware engineering: a survey on project management applications. arXiv preprint
arXiv:2307.15224.

[13] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa

Sengupta, and Anil A Bharath. 2018. Generative adversarial networks: an

overview. IEEE signal processing magazine, 35, 1, 53–65.
[14] Imke Drave, Akradii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe,

and Simon Varga. 2021. A Methodology for Retrofitting Generative Aspects

in Existing Applications. Journal of Object Technology (JOT), 20, (Nov. 2021),
1–24. Alfonso Pierantonio, (Ed.) doi: https://doi.org/10.5381/jot.2021.20.2.a7.

[15] DavidDohan et al. 2022. Languagemodel cascades. arXiv preprint arXiv:2207.10342.
[16] [n. d.] Efficient and general syntactical decoding for large language models.

https://github.com/uiuc-focal-lab/syncode. [Accessed 02-07-2024]. ().

[17] Andrea Fedele. 2023. Explain and interpret few-shot learning. In xAI (Late-
breaking Work, Demos, Doctoral Consortium), 233–240.

[18] Norbert E Fuchs, Kaarel Kaljurand, and Tobias Kuhn. 2008. Attempto controlled

english for knowledge representation. ReasoningWeb: 4th International Summer
School 2008, Venice, Italy, September 7-11, 2008, Tutorial Lectures, 104–124.

[19] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. 2021. MontiCore Lan-
guage Workbench and Library Handbook: Edition 2021. Aachener Informatik-
Berichte, Software Engineering, Band 48. Shaker Verlag, (May 2021). isbn: 978-3-

8440-8010-0. http://www.monticore.de/handbook.pdf.

[20] Sascha Konrad and Betty HC Cheng. 2005. Real-time specification patterns. In

Proceedings of the 27th international conference on Software engineering, 372–
381.

[21] [n. d.] Lark documentation. https://lark- parser.readthedocs.io/en/stable/.

[Accessed 27-06-2024]. ().

[22] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,

Fabio Petroni, and Percy Liang. 2024. Lost in the middle: how language models

use long contexts. Transactions of the Association for Computational Linguistics,
12, 157–173.

[23] Yiheng Liu et al. 2023. Summary of chatgpt-related research and perspective

towards the future of large language models. Meta-Radiology, 100017.

[24] [n. d.] LLM Leaderboard - Compare GPT-4o, Llama 3, Mistral, Gemini & other

models | Artificial Analysis — artificialanalysis.ai. https://artificialanalysis.ai/l

eaderboards/models. [Accessed 01-07-2024]. ().

[25] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul

Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from using

code explanations generated by large language models in a web software

development e-book. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1, 931–937.

[26] Golam Md Muktadir. 2023. A brief history of prompt: leveraging language

models.(through advanced prompting). arXiv e-prints, arXiv–2310.
[27] Johanna Nellen, Benedikt Wolters, Lukas Netz, Sascha Geulen, and Erika

Ábrahám. 2015. A genetic algorithm based control strategy for the energy

management problem in phevs. In GCAI, 196–214.
[28] Lukas Netz, Judith Michael, and Bernhard Rumpe. 2024. From natural language

to web applications: using large language models for model-driven software

engineering. In Modellierung 2024. Gesellschaft für Informatik eV, 179–195.

[29] [SW] Lukas Netz and Jan Reimer, LLMs4MBSE Synthetic-Artifacts version 1.0,

July 2024. url: https://github.com/Lukas-Netz/llm4mbse-synthetic-artifacts.

[30] OpenAI et al. 2024. Gpt-4 technical report. (2024). https://arxiv.org/abs/2303.08

774 arXiv: 2303.08774 [cs.CL].
[31] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua

B Tenenbaum, Hugo Larochelle, and Richard S Zemel. 2018. Meta-learning for

semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676.
[32] Ahmed R Sadik, Sebastian Brulin, and Markus Olhofer. 2023. Coding by design:

gpt-4 empowers agilemodel driven development. arXiv preprint arXiv:2310.04304.
[33] D Singh andHJS Sidhu. 2018. Optimizing the softwaremetrics for uml structural

and behavioral diagrams using metrics tool. Asian Journal of Computer Science
and Technology, 7, 2, 11–17.

[34] Louis Timperley, Lucy Berthoud, Chris Snider, and Theo Tryfonas. [n. d.]

Assessment of large language models for use in generative design of model

based spacecraft system architectures. Available at SSRN 4823264.
[35] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep

Singh. 2024. Improving llm code generation with grammar augmentation. arXiv
preprint arXiv:2403.01632.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you

need. CoRR, abs/1706.03762. arXiv: 1706.03762.
[37] Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A Saurous, and Yoon Kim.

2024. Grammar prompting for domain-specific language generation with large

language models. Advances in Neural Information Processing Systems, 36.
[38] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. 2022. Self-consistency improves

chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171.
[39] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian

Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned language

models are zero-shot learners. arXiv preprint arXiv:2109.01652.
[40] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits rea-

soning in large language models. Advances in neural information processing
systems, 35, 24824–24837.

[41] Wayne Xin Zhao et al. 2023. A survey of large language models. (2023). https:

//arxiv.org/abs/2303.18223 arXiv: 2303.18223 [cs.CL].

https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2403.06988
https://doi.org/10.5381/jot.2023.22.1.a4
https://arxiv.org/abs/2310.14735
https://arxiv.org/abs/2310.14735
https://doi.org/https://doi.org/10.5381/jot.2021.20.2.a7
https://github.com/uiuc-focal-lab/syncode
http://www.monticore.de/handbook.pdf
https://lark-parser.readthedocs.io/en/stable/
https://artificialanalysis.ai/leaderboards/models
https://artificialanalysis.ai/leaderboards/models
https://github.com/Lukas-Netz/llm4mbse-synthetic-artifacts
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

	Abstract
	1 Introduction
	2 Foundations
	2.1 Large Language Model
	2.2 Few-Shot learning
	2.3 Guidance-AI
	2.4 MontiCore based Modeling Languages

	3 Related Work
	3.1 MBSE with generative AI
	3.2 SynCode

	4 Approach
	4.1 Using Few-Shot learning-based Modeling Method
	4.2 Using a Grammar Masking-based Modeling Method

	5 Results
	6 Discussion
	6.1 Applicability to other grammars
	6.2 Impact Grammar Masking on Model Semantics
	6.3 Choosing Between Constrained and Unconstrained Generation
	6.4 Limitations

	7 Conclusion

