
Meta-Modelling Semantics of UML 1

Chapter 1

KEYWORDS, ETC.
(The first two pages only resemble the abtract infos and are
needed to ensure proper layout of the rest of the article.
Bernhard)

Name(s) and affiliation (s):
Andy Evans
University of York, York, UK
andye@cs.york.ac.uk

Robert France
Colorado State University, Colorado, US
france@cs.colostate.edu

Kevin Lano
Imperial College, London, UK
kcl@doc.ic.ac.uk

Bernhard Rumpe
Software \& Systems Engineering
Munich University of Technology, Munich, Germany
rumpe@in.tum.de

Title:
Meta-Modelling Semantics of UML

Index items:
UML, Meta-model, Theory, Formalization, OCL, Semantics,
Generalisation

Abstract:

The Unified Modelling Language is emerging as a de-facto standard for
modelling object-oriented systems. However, the semantics document that
a part of the standard definition primarily provides a description
of the language’s syntax and well-formedness rules. The meaning of the
language, which is mainly described in English, is too informal

[ELF+99c] A. Evans, K. Lano, R. France, B. Rumpe.
Meta-Modeling Semantics of UML.
In: Behavioral Specifications of Businesses and Systems.
H. Kilov, B. Rumpe, I. Simmonds (eds.)
Kluver Academic Publisher, 1999.
www.se-rwth.de/publications

2 Chapter 4

and unstructured to provide a foundation for developing formal
analysis and development techniques. This paper outlines a formalisation
strategy for making precise the core semantics of UML. This is acheived
by strengthening the denotational semantics of the existing UML
semantics. To illustrate the approach, the semantics of
generalization/specialization
are made precise.

Chapter 4

META-MODELLING
SEMANTICS OF UML

Andy Evans
University of York, UK

andye@cs.york.ac.uk

Robert France
Colorado State University, US

france@cs.colostate.edu

Kevin Lano
Imperial College, UK

kcl@doc.ic.ac.uk

Bernhard Rumpe
Munich University of Technology

Germany
rumpe@in.tum.de

Abstract The Unified Modelling Language is emerging as a de-facto standard for mod-
elling object-oriented systems. However, the semantics document that a part of
the standard definition primarily provides a description of the language’s syntax
and well-formedness rules. The meaning of the language, which is mainly de-
scribed in English, is too informal and unstructured to provide a foundation for
developing formal analysis and development techniques. This paper outlines a
formalisation strategy for making precise the core semantics of UML. This is
achieved by strengthening the denotational semantics of the existing UML meta-
model. To illustrate the approach, the semantics of generalization/specialization
are made precise.

1. INTRODUCTION

The Unified Modeling Language (UML) [BRJ98, RJB99] is rapidly becoming a de-
facto language for modelling object-oriented systems. An important aspect of the
language is the recognition by its authors of the need to provide a precise description
of its semantics. Their intention is that this should act as an unambiguous description of
the language, whilst also permitting extensibility so that it may adapt to future changes
in object-oriented analysis and design. This has resulted in a Semantics Document
[OMG99], which is presently being managed by the Object Management Group, and
forms an important part of the language’s standard definition.

46 Chapter 4

The UML semantics is described using a meta-model that is presented in terms
of three views: the abstract syntax, well-formedness rules, and modelling element
semantics. The abstract syntax is expressed using a subset of UML static modelling
notations. The abstract syntax model is supported by natural language descriptions of
the syntactic structure of UML constructs. The well-formedness rules are expressed in
the Object Constraint Language (OCL) and the semantics of modelling elements are
described in natural language. The advantage of using the meta-modelling approach is
that it is accessible to anybody who understands UML. Furthermore, the use of object-
oriented modelling techniques helps make the model more intuitively understandable.

A potential advantage of providing a precise semantics for UML is that many of
the benefits of using a formal language such as Z [S92] or Spectrum [BFG�93] might
be transferable to UML. Some of the major benefits of having a precise semantics for
UML are given below:

Clarity: The formally stated semantics can act as a point of reference to resolve
disagreements over intended interpretation and to clear up confusion over the
precise meaning of a construct.

Equivalence and Consistency: A precise semantics provides an unambiguous
basis from which to compare and contrast the UML with other techniques and
notations, and for ensuring consistency between its different components.

Extendibility: The soundness of extensions to the UML can be verified (as
encouraged by the UML authors).

Refinement: The correctness of design steps in the UML can be verified and
precisely documented. In particular, a properly developed semantics supports
the development of design transformations, in which a more abstract model is
diagrammatically transformed into an implementation model.

Proof: Justified proofs and rigorous analysis of important properties of a sys-
tem described in UML require a precise semantics in order to determine their
correctness.

Unfortunately, the current UML semantics are not sufficiently formal to realise these
benefits. Although much of the syntax of the language has been defined, and some
static semantics given, its semantics are mostly described using lengthy paragraphs
of often ambiguous informal English, or are missing entirely. Furthermore, limited
consideration has been paid to important issues such as proof, compositionality and
rigorous development. A further problem is the extensive scope of the language, all of
which must be dealt with before the language is completely defined.

This chapter describes work being carried out by the precise UML (pUML) group
and documented in [PUML99, FELR98, EFLR98]. PUML is an international group
of researchers and practitioners who share the goal of developing UML as a precise
(formal) modelling language, thereby enabling it to be used in a formal manner. This
chapter reports on work being carried out by the group to strengthen the existing
semantics of UML. In Section 2., a formalisation strategy is described (developed
through the experiences of the group) that aims to make precise the existing UML

Meta-Modelling Semantics of UML 47

semantics. A core UML semantics model is identified in Section 3. as a first step
towards achieving this goal. Section 4. then describes how the formalisation strategy
has been applied to the development of a precise understanding of a small yet interesting
part of the UML semantics - generalization/specialization hierarchies. Finally, the
paper concludes with a brief overview of some future directions of the group’s work.

2. FORMALISATION STRATEGY

In order to implement the pUML approach it is necessary to develop a strategy for
formalising the UML. This is intended to act as a step by step guide to the formalisation
process, thus permitting a more rigorous and traceable work program.

In developing a formalisation strategy for UML it has been necessary to consider
the following questions:

1. Is the meta-modelling approach used in the current UML semantics suitable for
assigning a precise semantics to UML?

2. Should the existing UML semantics be used as a foundation for developing a
precise semantics for UML?

3. Given the large scope of UML, which parts should be formalised first?

Suitability of meta-modelling

There are many approaches used to assign semantics to languages. One of the best
known (and most popular) is the denotational approach (for an in-depth discussion
see [S86]). The denotational approach assigns semantics to a language by giving
a mapping from its syntactical representation to a meaning, called a denotation. A
denotation is usually a well-defined mathematical value, such as a number or a set.
Typically, functions are used to define mappings between syntax and denotations. For
example, the meaning of a simple language for adding and subtracting natural numbers
might be described in terms of two functions, add and subtract, and the result of each
would be a single integer value.

The use of a language to give a ‘meta-circular’ description of its own denotational
semantics is well known in Computer Science. For example, the specification lan-
guage Z has been given a meta-circular semantics using a simple subset of Z [S92].
Unfortunately, the meta-modelling approach opens itself to the criticism that it doesn’t
really define anything. Informally, if a reader does not understand UML, then it is
unlikely that they will understand the meaning of UML when written in UML.

The justification given for using meta-modelling in these contexts is that, in principle
at least, it should be possible to give a formal interpretation to a meta-description in
terms of a more basic language such as predicate logic. This argument can also be
applied to UML, as it seems likely that it can be given a more fundamental interpretation
in terms of sets and predicate logic. Indeed, a significant amount of work has already
been done to describe the semantics of UML class diagrams and OCL like expressions
[BR98] in Z. There is also an important pragmatic reason for choosing UML to describe
the denotational semantics of UML: Because UML is designed to provide an intuitive

48 Chapter 4

means for constructing models, using UML to help better understand UML is likely
to be a useful way of testing the expressiveness and power of UML as a modelling
language.

Given that UML can be used to describe its own semantics, how should these
semantics be presented in order to emphasise the denotational approach? As described
in the introduction, the current UML semantics already makes a distinction between
syntax and semantics (as in the denotational approach). However, it mainly uses
English prose to describe the semantic part. The pUML approach advances this work
by using associations (and constraints on associations) to map syntactical elements
to their denotations. This approach has also been used in the UML semantics to a
limited extent. For example, associations are described by the set of possible object
links they are associated with. The distinguishing feature of the pUML approach is its
emphasis on obtaining precise denotational descriptions of a much wider selection of
UML modelling elements.

Working with the standard

Assuming that a meta-modelling approach is adopted to describe the UML se-
mantics, two approaches to developing a precise semantics can be adopted. The first
approach is to ignore the existing semantics documentation and develop a new model.
This has the advantage that the modeller is completely free to develop a semantics
that is appropriate to their needs. For example, greater emphasis might be placed on
obtaining a simple semantic model, or one that will readily support a particular proof
technique.

The second approach is to adopt the existing semantics as a foundation from which
a precise semantics can be obtained. Some good reasons for adopting this approach
are as follows:

1. It recognises that considerable time and effort has been invested in the devel-
opment of the existing UML semantics. It cannot be expected that a radically
different semantic proposal will be incorporated in new versions.

2. Without working within the constraints of the existing semantics it is easy to
develop models that are incompatible with the standard or omit important aspects
of it.

An important aspect of the pUML approach is its aim of eventually contributing
to the emerging standard. Therefore, it is the second approach that has been adopted.
This is why the remainder of the paper will focus on developing an approach to
incrementally clarifying the existing semantics of UML.

Clarifying a core semantics

To cope with the large scope of the UML it is natural to concentrate on essential
concepts of the language to build a clear and precise foundation as a basis for formalisa-
tion. Therefore, the approach taken in the group’s work is to concentrate on identifying
and formalising a core semantic model for UML before tackling other features of the

Meta-Modelling Semantics of UML 49

language. This has a number of advantages: firstly, it makes the formalisation task
more manageable; secondly, a more precise core will act as a foundation for under-
standing the semantics of the remainder of the language. This is useful in the case of
the many diagrammatical notations supported by UML, as each diagram’s semantics
can be defined as a particular ‘view’ of the core model semantics. For example, the
meaning of an interaction diagram should be understandable in terms of a subset of
the behavioural semantics of the core.

Formalisation strategy

The formalisation strategy consists of the following steps:

1. Identify the core elements of the existing UML semantics.

2. Iteratively examine the core elements, seeking to verify their completeness.
Here, completeness is achieved when: (1) the modelling element has a precise
syntax, (2) is well-formed, and (3) has a precise denotation in terms of some
fundamental aspect of the core semantic model.

3. Use formal techniques to gain better insight into the existing definitions as shown
in [FELR98, EFLR98].

4. Where in-completeness is identified, we attempt to address it in a number of
ways, depending on the type of omission found.

Model strengthening - this is necessary where the meaning of a model
element is not fully described in the meta-model. The omission is fixed by
strengthening the relationship between the model element and its denota-
tion.

Model extension - in certain cases it is necessary to extend the meta-
model to incorporate new denotational relationships. This occurs when no
meaning has been assigned to a particular model element, and it cannot
be derived by constraints on existing associations. For example, this is
necessary in the case of Operation and Method, where the meaning of
a method is defined in terms of a procedureExpression and Operation is
given no abstract meaning at all.

Model simplification - in some cases, aspects of the model are surplus to
needs, in which case we aim to show how they can be omitted or simplified
without compromising the existing semantics.

5. Feed the results back into the UML meta-model, with the aim of clarifying the
semantics of a core part of the UML.

6. Disseminate to interested parties for feedback.

Finally, it is important to consider how the notion of proof can be represented in
the semantic model. This is essential if techniques are to be developed for analysing
properties of UML models. Such analysis is required to establish the presence of

50 Chapter 4

desired properties in models [E98]. The need to establish properties can arise out of
the need to establish that models adhere to requirements or out of challenges posed
by reviewers of the models. Proof is also important in understanding properties of
model transformations in which a system is progressively refined to an implementation
[BHH�97].

3. THE CORE SEMANTICS MODEL

The question of what should form a core precise semantics for UML is already par-
tially answered in the UML semantics document. It identifies a ‘Core Package -
Relationships’ package and a number of ‘Common Behaviour’ packages. The Core
Relationship package defines a set of modelling elements that are common to all UML
diagrams, such as ModelElement, Relationship, Classifier, Association and General-
ization. However, it only describes their syntax. The Common Behavior (Instances
and Links) package gives a partial denotational meaning to the model elements in
the core package. For instance, it describes an association between Classifier and
Instance. This establishes the connection between the representation of a Classifier
and its meaning, which is a collection of instances. The meaning of Association (a
collection of Object Links) is also given, along with a connection between Association
roles and Attribute values.

To illustrate the scope, and to show the potential for realising a compact core
semantics, the relevant class diagrams of the two models are shown in the Figures 4.1
and 4.2. Well-formedness rules are omitted for brevity.

An appropriate starting point for a formalisation is to consider these two models in
isolation, with the aim of improving the rigor with which the syntax of UML model
elements are associated with (or mapped to) their denotations.

4. FILLING THE SEMANTIC GAP

In this section, we illustrate how the pUML formalisation approach has been applied
to a small part of the core model. The modelling concept that will be investigated is
generalization/specialization.

4.1 DESCRIPTION

In UML, a generalization is defined as “a taxonomic relationship between a more
general element and a more specific element”, where “the more specific element is
fully consistent with the more general element” [OMG99], page 2-34 (it has all of its
properties, members, and relationships) and may contain additional information.

Closely related to the UML meaning of generalization is the notion of direct and
indirect instances: This is alluded to in the meta-model as the requirement that “an
instance is an indirect instance of ... any of its ancestors” [OMG99], page 2-56.

UML also places standard constraints on subclasses. The default constraint is that
a set of generalizations are disjoint, i.e. “ (an) instance may have no more than one of
the given children as a type of the instance” [OMG99], page 2-35. Abstract classes

Meta-Modelling Semantics of UML 51

+connection

{ordered}

Class

isActive : Boolean

Association

Attribute

initialValue : Expression

AssociationEnd

isNavigable : Boolean

ordering : OrderingKind

aggregation : AggregationKind

targetScope : ScopeKind

multiplicity : Multiplicity

changeability : ChangeableKind

visibility : VisibilityKind

2..*

1

2..*

1

* 0..1

+qualifier

* {ordered}

+associationEnd

0..1

Classifier

1 *

+type

1 *

**

+participant

*

+specification

*

Relationship

ModelElement

name : Name

Generalization

discriminator : Name

GeneralizableElement

isRoot : Boolean

isLeaf : Boolean

isAbstract : Boolean

1*

+parent

1

+specialization

*

* 1

+generalization

*

+child

1

Figure 4.1 Fragment of the core relationships package

enforce a further constraint, which implies that no instance can be a direct instance of
an abstract class.

We now examine whether these properties are adequately specified in the UML
semantics document. In this paper, we will only consider properties that relate to
Classifiers: the UML term for any model element that describes behavioural and
structural features. Classes are a typical specialisation of Classifiers.

4.2 EXISTING FORMAL DEFINITIONS

France et al. [BR98] have defined a formal model of generalization that fits very
well with that adopted in UML. Classes are denoted by a set of object references,
where each reference maps to a set of attribute values and operations. generalization
implies inheritance of attributes and operations from parent classes (as expected). In
addition, class denotations are used to formalise the meaning of direct and indirect
instances, disjoint and abstract classes. This is achieved by constraining the sets of

52 Chapter 4

ModelElement

(from Core)

Association

(from Core)

AssociationEnd

(from Core)
2..*1

+connection

2..*1

Link

1

*

+association1

*

Attribute

(from Core)

LinkEnd

1

*

+associationEnd
1

*

1

+connection

2 .. *
{ordered}

Classifier

(from Core)

AttributeLink

*1 *

+attribute

1

Instance

1

*

+instance

1

+link

*

*

+classifier
1..*

1

0..*

1

+slot 0..* *

1

*

+value1+theInstance

Figure 4.2 Fragment of the common behaviour package

objects assigned to classes in different ways depending on the roles the classes play in
a particular generalization hierarchy. For example, assume that ai is the set of object
references belonging to the class a, and b and c are subclasses of a. Because instances
of b and c are also indirect instances of a, it is required that bi � ai and ci � ai,
where bi and ci are the set of object references of b and c. Thus, a direct instance of
b or c must also be an indirect instance of a. A direct instance is also distinguishable
from an indirect instance if there does not exist a specialised class of which it is also
an instance.

This model also enables constraints on generalizations to be elegantly formalised
in terms of simple constraints on sets of object references. In the case of the standard
‘disjoint’ constraint on subclasses, the following must hold: bi � ci � �, i.e. there
can be no instances belonging to both subclasses. For an abstract class, this constraint
is further strengthened by requiring that bi and ci partition ai. In other words, there
can be no instances of a, which are not instances of b or c. Formally, this is expressed
by the constraint: bi � ci � ai.

We will adopt this model in order to assign a precise denotational meaning to
generalization/specialization.

4.3 SYNTAX AND WELL-FORMEDNESS

The abstract syntax of generalization/specialization is described by the meta-model
fragment in Figure 4.3 of the core relationships package:

Meta-Modelling Semantics of UML 53

Generalization

discriminator : Name

GeneralizableElement

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

+generalization +child

* 1

+specialization +parent
* 1

Classifier

Class

isAbstract : Boolean

Figure 4.3 Meta-model fragment of Generalization/Specialization

The most important well-formedness rule which applies to this model element, and
is not already ensured by the class diagram, is that circular inheritance is not allowed.
Assuming allParents defines the transitive closure of the relationship induced by
self.generalization.parent, which happens to be the set of all ancestors,
then it must hold that:

context GeneralizableElement
not self.allParents -> includes(self)

4.4 SEMANTICS

The completeness of the semantic formalisation vs. the desired properties of gen-
eralization is now examined. We concentrate on determining whether the following
properties of generalization are captured in the meta-model:

instance identity and conformance.

direct and indirect instantiation of classifiers.

disjoint and overlapping constraints on sub-classifiers.

abstract classes.

As noted in Section 3., the UML meta-model already describes a denotational
relationship between Classifier and Instance. The meta-model fragment in Figure 4.4
describes this relationship.

54 Chapter 4

Class

(from Core)

ModelElement

(from Core)

Classifier

(from Core)

Instance

1..* *

+classifier

1..* *

Figure 4.4 Meta-model fragment for Class and Instance relationship

However, unlike the formal model described above, the UML meta-model does not
describe the constraints that generalization implies on this relationship. For example,
an Instance can be an instance of many classifiers, yet there are no constraints that
the classifiers are related. Thus, the meta-model must be strengthened with additional
constraints on the relationship between model elements and their denotations.

4.5 MODEL STRENGTHENING

The first aspect of the model to be strengthened relates to the meaning of indirect
instances. As stated in Section 4.1, an instance of a classifier is also an indirect instance
of its parent classifiers. This property, which we term as ‘instance conformance’ can
be precisely stated by placing an additional constraint on the relationship between
the instances of a classifier and the instances belong to the classifier’s parents. It is
specified as follows:

context c : Classifier
invariant

c.generalization.parent -> forall(s : Classifier |
s.instance -> includesAll(c.instance))

Meta-Modelling Semantics of UML 55

This states that the instances of any Classifier, c, are a subset of those belonging to the
instances of its parents.

4.5.1 Direct instances. Given the above property, it is now possible to precisely
describe the meaning of a direct instance:

context i : Instance
isDirectInstanceOf(c : Classifier) : Boolean
isDirectInstanceOf(c) =

c.allParents -> union(Set(c)) = i.classifier

A direct instance directly instantiates a single class and indirectly instantiates all
its parents. This definition is in fact a more precise description of the OCL operation
oclIsTypeOf, i.e.

context i : Instance
oclIsTypeOf(c : Classifier) : Boolean
oclIsTypeOf(c) = i.isDirectInstanceOf(c)

A similar operation can be used to assign a precise meaning to the OCL operation
oclIsKindOf:

context i : Instance
oclIsKindOf(c : Classifier) : Boolean
oclIsKindOf(c) = i.oclIsTypeOf(c) or

c.allSupertypes ->
exists(s : Classifier | i.oclIsTypeOf(s))

Finally, an OCL operation which returns the Classifier from which an instance is
directly instantiated from can be defined:

context i : Instance
direct : Classifier
direct = i.classifier -> select(c | i.isDirectInstanceOf(c))

4.5.2 Indirect instances. Once the meaning of a direct instance is defined, it
is straightforward to obtain an OCL operation that returns all the Classifiers that an
instance indirectly instantiates.

context i : Instance
indirect : Set(Classifier) :
indirect = i.classifier - Set(i.direct)

The set of indirect classes is the difference of the set of all classifiers instantiated
by the instance and the direct classifier.

4.5.3 Instance identity. Unfortunately, the above constraints do not guarantee
that every instance is a direct or indirect instance of a related classifier. For example,
consider two classifiers that are not related by generalization/specialization. The

56 Chapter 4

current UML semantics do not rule-out the possibility of an instance being instantiated
by both classifiers.

Thus, an additional constraint must be added in order to rule out the possibility of
an instance being instantiated from two or more un-related classes. This is the unique
identity constraint:

context i : Instance
invariant

i.classifier = i.direct -> union(i.indirect)

This states that the only classifiers that an object can be instantiated from are either
the classifier that it is directly instantiated from or those that it is indirectly instantiated
from.

4.5.4 Disjoint subclasses. Once direct and indirect instances are formalised, it is
possible to give a precise description to the meaning of constraints on generalizations
(for example the disjoint constraint).

The disjoint constraint can be formalised as follows:

context c : Classifier
invariant

c.specialization.child -> forall(i,j : Classifier |
i <> j implies i.instance ->

intersection(j.instance) -> isEmpty)

This states that for any pair of direct subclasses of a class, i and j, the set of
instances of i will be disjoint from the set of instances of j.

4.5.5 Abstract classes. Finally, the following OCL constraint formalises the re-
quired property of an abstract class that it can not be directly instantiated:

context c : Classifier
invariant

c.isAbstract implies
c.specialization.child.instance -> asSet = c.instance

Note, the result of the specialization.child path is a bag of instances
belonging to each subclass of c. Applying the asSet operation results in a set of
instances. Equating this to to the instances of c implies that all the instances of c
are covered by the instances of its subclasses. This, in conjunction with the disjoint
property above, implies the required partition of instances.

4.6 MODEL EXTENSION

The above definition of the ‘disjoint’ constraint is adequate provided that it applies
across all generalizations, and indeed this is the default assumption in UML. However,
UML also permits overlapping constraints to be applied across subclasses as shown in
Figure 4.5.

Meta-Modelling Semantics of UML 57

A

DCB

overlapping

Figure 4.5 Partly overlapping subclasses

Here, instances of C and D may overlap, but they must be disjoint from instances
of B (the default disjoint constraint still exists between B and C and B and D). Thus,
the overlapping constraint is viewed as overriding the existing default constraint.

Unfortunately, overlapping constraints are not explicitly encoded in the existing
semantics. Therefore, it is necessary to extend the meta-model with an explicit over-
lapping constraint in order to be able to formalise its meaning. This is shown in Figure
4.6.

ModelElement

name : Name

OverlappedDisjoint

Constraint

body : BooleanExpression*1..*

+stereotype

Constraint

*

+constrained {ordered}

Other

Figure 4.6 Fragment of the meta-model with extended Constraint

Here, overlapping constraints are modelled as a subclass of Constraint. Because
overlapping constraints must be applied across more than one subclass, the following
additional well-formedness rule must be added:

context o : Overlapping
invariant

o.constrained -> size > 1

An improved version of the disjoint constraint can now be given:

context c : Classifier
invariant

58 Chapter 4

c.specialization -> forall(i,j : Generalization |
(i <> j and
not (i.hasSameOverlappingConstraint(j)))
implies i.child.instance ->

intersection(j.child.instance) -> isEmpty)

This states that the instances of two or more generalizations are disjoint unless they
overlap. Note that the same overlapping constraint must be applied to the generaliza-
tions.

The operation hasSameOverlappingConstraint is defined as follows:

context i : Generalization
hasSameOverlappingConstraint(j : Generalization) : Boolean

hasSameOverlappingConstraint(j) =
((i.stereotypeConstraint -> asSet) ->

intersection(j.stereotypeConstraint -> asSet) ->
exists(c : Constraint | c.oclType = Overlapping))

This operation is true if a pair of generalizations share the same overlapping con-
straint.

This completes the formalisation examples. Although not complete, they indicate
the benefits of adopting a denotational emphasis in modelling the UML semantics.
In particular, they have provided a much improved understanding of some important
aspects of UML. They have also provided a foundation from which to clarify many other
aspects of the language, for example, the meaning of the OCL operations oclIsKindOf
and oclIsTypeOf.

5. CONCLUSION

This paper has described ongoing work by members of the precise UML group, who
are seeking to develop UML as a precise modelling language. By applying previous
knowledge and experience in formalising OO concepts and semantic models, it has
been shown how important aspects of the current UML semantics can be clarified and
made more precise. A formalisation strategy was also described, with the aim that it
will act as a template for exploring further features of UML and for developing new
proof systems for the standard language.

In the longer term, our intention is to give a semantics to the complete notation set,
by mapping into the core, extending the core only when there is not already a concept
which suffices. Of course one role of semantics is to clarify and remove ambiguities
from the notation. Therefore we will not be surprised if we find that the notation
needs to be adjusted or the informal semantics rewritten. However, we will be able to
provide a tightly argued, semantically-based recommendation for any change deemed
necessary.

Some consideration also needs to be given to quality insurance. There are at least
three approaches we have identified:

1. peer review and inspection

Meta-Modelling Semantics of UML 59

2. acceptance tests

3. tool-based testing environment

So far the only feedback has come from 1. Since a meta-model is itself a model,
acceptance tests could be devised as they would be for any model. Perhaps “testing”
a model is a novel concept: it at least comprises devising object diagrams, snapshots,
that the model must/must-not accept. Better than a list of acceptance tests on paper
would be a tool embodying the meta-model, that allowed arbitrary snapshots to be
checked against it.

Finally, we re-iterate the factors driving the work outlined in this paper. Given the
UML’s intended role as a modelling notation standard, it is imperative that it has a
well-founded semantics. Only once such a semantics is provided can the UML be used
as a rigorous modelling technique. Moreover, the formalisation of UML constructs is
an important step towards gaining a deeper understanding of OO concepts in general,
which in turn can lead to the more mature use of OO technologies. These insights will
be gained by exploring consequences of particular interpretations, and by observing
the effects of relaxing and/or tightening constraints on the UML semantic model.

Acknowledgments

This material is partially based upon work supported by: the National Science Foun-
dation under Grant No. CCR-9803491; the Bayerische Forschungsstiftung under the
FORSOFT research consortium and the DFG under the Leibnizpreis program, and the
Laboraturio de Methodos Formais of the Departamento de Informatica of Pontificia
Universidade Catolica do Rio de Janeiro.

References

[BFG�93] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hußmann, D. Nazareth, F. Re-
gensburger, O. Slotosch, and K. Stølen. The Requirement and Design Spec-
ification Language��������, An Informal Introduction, Version 1.0, Part
1. Technical Report TUM-I9312, Technische Universit ät München, 1993.

[BHH�97] Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel Klein, Barbara
Paech, Bernhard Rumpe, and Veronika Thurner. Towards a formalization
of the unified modeling language. In Satoshi Matsuoka Mehmet Aksit,
editor, ECOOP’97 Proceedings. Springer Verlag, LNCS 1241, 1997.

[BR98] J-M. Bruel and R.B.France. Transforming UML models to formal specifi-
cations. In UML’98 - Beyond the notation, LNCS 1618. Springer-Verlag,
1998.

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

[EFLR98] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Develop-
ing the UML as a formal modelling notation. In Jean Bezivin and Pierre-
Allain Muller, editors, UML’98 Proceedings. Springer-Verlag, LNCS 1618,
1998.

60 Chapter 4

[E98] A. S. Evans. Reasoning with UML class diagrams. In WIFT’98. IEEE
Press, 1998.

[FELR98] R. France, A. Evans, K. Lano, and B. Rumpe. The UML as a formal
modeling notation. Computer Standards & Interfaces, 19, 1998.

[OMG99] Object Management Group. OMG Unified Modeling Language Specifica-
tion, version 1.3r2. found at: http://www.rational.org/uml. 1999.

[PUML99] The pUML Group. The precise UML web site:
http://www.cs.york.ac.uk/puml. 1999.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[S86] D. A. Schmidt. Denotational Semantics: A Methodology for Language
Development. Allyn and Bacon, 1986.

[S92] J.M. Spivey. The Z Reference Manual, 2nd Edition. Prentice Hall, 1992.

About the Authors
Andy Evans has taught and researched in the area of formal methods and their application
to object-oriented and real-time systems. He is co-founder of the precise UML group and
forthcoming co-chair of UML’2000. He has authored and co-authored papers on formalising
UML and object-oriented standards.
Robert France is currently an Associate Professor in the Computer Science Department at
Colorado State University. Currently, his primary research activities revolve around the for-
malization of object-oriented modeling concepts and the development of rigorous software
development techniques.
Kevin Lano has carried out research and development using formal methods both in industry
and academia. He is the author of “Formal Object-oriented Development" (Springer, 1995) and
“The B Language and Method" (Springer, 1996). His current research is on the integration of
formal methods and safety analysis techniques, and on the formalisation of UML.
Bernhard Rumpe has taught and supervised research in the area of object-oriented modelling
and programming, formal methods and embedded systems. His work includes refinement and
composition techniques for structural as well as behavioral notations, methodical guidelines,
and the development of formalisation approaches for UML. He co-authored and co-edited three
books. He is program chair of UML’99.

