
Modeling Dynamic Component Interfaces�

Franz Huber� Andreas Rausch� Bernhard Rumpe

email� fhuberf� rausch� rumpeg�in�tum�de

Technische Universit�at M�unchen

Arcisstr� ��� D	
���� M�unchen� Germany

Abstract

In this paper we adopt a component model based on object�oriented systems� introducing

the concepts of components and their structure� A component consists of a dynamically

changing set of connected objects� Only some of these objects are interface objects� and are

thus accessible from the environment� During the component lifetime not only the number

of objects� but also that of interface objects� and their connections change� To describe

this situation� we introduce Component Interface Diagrams �CIDs� � an adaption of UML

diagrams � as a notation to characterize interfaces of components� their structure� and their

navigability� We show how CIDs can be used to describe the in�house developed Open Editor

Framework �OEF�� Finally� we give guidelines that allow to map components described with

CIDs directly to several component technologies� like ActiveX� CORBA� or Java Beans�

�� Introduction

Today� on top of object�oriented techniques� an additional layer of software development�
based on components is being established� The goals of Componentware �BRS��� Sam��	
are very similar to those of object�orientation
 reuse of software is to be facilitated and
thereby increased� software shall become more reliable and less expensive� One of the
goals of the Frisco project �Tec��	 that we currently carry out was to develop a framework
for graphical and textual editors that was particularly open for the incorporation of new
editors� without changing the source code of the framework� In order to achieve this� we
decided to use component concepts to structure and encapsulate di�erent entities of the
framework� such that they can even be dynamically loaded and unloaded�
Componentware takes a large leap toward reusability� since components aim at a gran�

ularity much larger than single objects do� However� today the question what component
concepts are� is still under investigation� Several approaches �Sam��	 in general agree that
components should be based on object�orientation� However� when details are considered
some explicit or subtile di�erences can be found� So� when applying the ideas of components
within our object�oriented framework� we �rst had to clarify our notion of components�
Second� after a clari�cation what components are� the question was raised how to de�

scribe components in an abstract and compact way� While todays methods� like UML
�Gro��	� as well as their predecessors e�g� OMT �RBP��
	� Fusion �CAB���	� or the Booch

� This paper is joint work of the the project SysLab �supported by the DFG under the Leibniz Program�
and by Siemens�Nixdorf�� and the project �A�� Methods for Component�Based Software Engineering	� a
part of �Bayerischer Forschungsverbund Software�Engineering �FORSOFT�	� supported by Siemens ZT

[HRR98] F. Huber, A. Rausch, B. Rumpe.
Modeling Dynamic Component Interfaces.
In: TOOLS 26, Technology of Object-Oriented Languages and Systems.
Madhu Singh, Bertrand Meyer, Joseph Gil, Richard Mitchell (eds.).
IEEE Computer Society.
www.se-rwth.de/publications

Method �Boo��	� o�er Class Diagrams that are suited to describe the internal structure of
components� Class Diagrams are not quite suited to describe the interface of a component�
Therefore� we introduce a convenient description technique that allows to describe the

interfaces of a component� which is called �Component Interface Diagrams�� Component
Interface Diagrams allow to structure interfaces� de�ne multiplicities� and describe naviga�
tion paths between these interfaces that can be used to retrieve new sub�interfaces� Since
the capabilities of components that we want to describe are similar to Class Diagrams� we
adapted the latter for our needs�
Our Component Interface Diagrams emerged during the development of the framework

Frisco and greatly helped to de�ne a good architecture� This technique was subsequently
generalized and proved useful within other developments� The quality of the Frisco frame�
work was considerably improved by the notion of components that we introduced�
In the remainder of this section� we brie�y introduce the Frisco OEF framework� which

will serve as example application� and discuss the properties of components on which we
base our notation� Component Interface Diagrams are introduced and applied to the Fris�
co framework in Section �� In Section � we discuss a mapping of our component concept
to common object technologies� such as ActiveX �Cha��	� CORBA �OHE��	� and especially
Java Beans �Mic��	�

���� A brief introduction into Frisco OEF

Frisco is a document�oriented software engineering tool prototype� It is based on a
subset of UML notations �Gro��	 but incorporates precisely de�ned re�nement and trans�
formation rules� Frisco provides a variety of editors combining graphical and textual
parts as well as tables within a single document� An example of a Frisco editor is given
in Figure
�
To achieve �exibility� we developed the OEF �Open Editor Framework� as an open ap�

proach of nesting document parts into one compound document� The developed framework
provides a standardized set of protocols for embedding documents� To structure these
protocols� our notion of component interfaces is used�
For each document element� a speci�c kind of editor� called PartHandler� exists� Each

PartHandler component consists of a possibly large set of internal objects implementing
its functionality� A subset of these objects provides the protocol interface necessary for
embedding it into the enclosing document frame� The interface objects hide the internal
object structure of a PartHandler� They are the only way of communication with the
environment� This framework� which has deliberate similarities to OpenDoc �App��	� is
implemented in Java� and the PartHandlers are realized as Java Beans�

���� Properties of our component�based model

The concept of components is built on top of object�oriented concepts� This allows to
use all advantages of object�orientation and build the component layer in such a way that
programming in the large is even more feasible� When looking at the implementation of a
component� we �nd the usual object structure� However� if a set of objects that commonly
performs a task is grouped together� a new kind of entity with new characteristics emerges�
which needs a new and appropriate kind of description�

Figure 1. A Sample Screenshot of a Compound Document Editor in Frisco

We do not enforce every entity of the system to be considered a component� but allow
independent objects to live between components� Thus developers are free to choose what
they want to be a component� Components may interact directly� but may also be glued
together using independent objects�
The component concept �ts into the type system of the underlying language� such as

in Java �GJS��	� As components are intended to be reused across language boundaries�

there could be a mapping of the component infrastructure into several type systems as�
e�g�� found in CORBA�
Components exhibit a characteristics similar to objects� Their instances can be dynam�

ically created� they have a clearly de�ned interface� and they have a well�structured state�
Beyond objects� they exhibit some additional features� A component has hierarchically
structured interfaces� hierarchically structured states� and state and interface structure
may change dynamically�
To achieve this� we assume a component to consist of a dynamically changing set of

objects� that are either internal to the component or are part of its interface�
A so�called principal object controls the components� The lifecycle of the component

instance is exactly the lifecycle its principal object� Other components and objects can
initially access a component via the principal object� From the principal object they can
receive references to other interfaces of the component� This way� a complex interface
structure to access the component can be obtained�
Once a reference of an internal object has been given to the environment� this object is

no longer internal� but belongs to the interface of the component� Thus� the interface of
the component is dynamically changing�
Our experiences show that� in many cases� it is not necessary to use concepts of object

migration between components� Since component�based systems usually have a rather
static structure� it is su�cient to allow objects that have been internal to a component to
�appear� on the interface� thus allowing to access them from outside� Please note that we
regard physical distribution and migration completely independent of the logical structure�
Thus a part of a component may migrate between systems� but still be a part of the �now
physically distributed� component� In general� it is not necessary for components to be
tightly connected� e�g�� allowing to realize object factories �GHJV��	�
Objects that are created within a component belong to this component during their

lifetime� We assume that objects are not explicitly destroyed but garbage collected which
allows us to disregard dangling references and related problems�

�� Describing components

Using the concept of components during software development� it is important to have
appropriate modeling techniques at hand� that directly allow to deal with components� The
newly developed standard UML �Gro��	 provides a rich set of techniques for describing
di�erent views of objects� Especially useful for describing components are the following
notations

Interaction Diagrams describe interactions either between objects in a component� or
between components�

State Diagrams are a descendant of StateCharts �Har��	 and characterize the behavior of
single objects within a component� but also of an abstraction of the entire component�s
behavior�

Interface and Class Declarations describe the methods and attributes� together with
their types and access rights�

Class Diagrams are used to describe the possible structures of a system or a component�

Object Diagrams de�ne the static part of the internal structure of a component�

Our experiences show that a larger subset of the objects within a component has the
same lifecycle as the principal object and does not change its linkage� Thus� the internal
structure of a component is rather static and can be described by an Object Diagram�
However� when regarding components UML does not directly provide su�cient tech�

niques to describe the interface structure of a component� As the interface structure of a
component consists of a dynamically changing set of objects� it is increasingly important
to have an appropriate notation to give an abstract and compact overview of this interface
structure� Beyond the given UML notations� we propose in Section ��� an adapted ver�
sion of Class Diagrams � Component Interface Diagrams � that allows us to cope with the
extended capabilities of component interfaces�

���� Frisco OEF interfaces

In Frisco OEF several kinds of components are used� We now introduce and brie�y
describe a subset of the interfaces that PartHandler components provide�

BasicPartHandler is the principal interface that every PartHandler must provide� It
covers rudimentary content and embedding functionality and allows to access addi�
tional interfaces of a PartHandler� To allow the enclosing document frame to access
part information relevant for embedding� a number of methods are available to obtain
information about content and size� Please note that this interface does not provide
services for editing documents� since it is desirable that certain document parts should
be displayed read�only�

Edit interfaces can be obtained by invoking the getEdit method� This interface is provided
only if the part is editable� It basically provides the services to externalize �save� its
content and to activate and deactivate editing capabilities�

Menu interfaces allow access to the PartHandler �s menus� Two menus are allowed �one
attached to the global menu bar� and a contextual menu��

Undo allows a PartHandler to participate in the OEF Undo�Redo mechanism� After an
ActionListener registers at the component� it receives a UndoableAction each time a
change occurs�

Connection allows to access the interconnections between PartHandlers in the compound
document� e�g�� to propagate changes in order to ensure consistency between parts�

���� Purpose of Component Interface Diagrams

At the beginning of the lifetime of a component� the principal object �in Frisco an
instance of BasicPartHandler� is the only object that is accessible from the environment�
Thus the interface of the component is initially given by the principal object� Over time�
this may change� More objects may be created inside the component� and a reference to
them may be given to the environment� leading to a dynamic extension of the component
interface� This provides an important component property
 being able to provide additional
interfaces during runtime if required� The purpose of a Component Interface Diagram �CID�
is to give clients a concise knowledge of the possible set of interfaces they may use and how
access to these interfaces can be gained�
Due to the requirement of strong typing for components� interfaces may be created

during runtime� but their type must be known initially� A CID gives information about the

visible interfaces� their inheritance relations� and navigation paths between these interfaces�
Furthermore� methods and multiplicities of these interfaces are shown� CIDs are adapted
from UML Class Diagrams� Figure � shows an CID for the PartHandler component�

PartHandler

Menu

«principal»
BasicPartHandler

+setDocumentServices()
+...()
+getMenus()
+getConnection()
+getEdit(GUIFrame g)

Connection

Edit

+getUndo()

Undo

+undo(UndoableAction a)
+redo(UndoableAction a)
+addActionListener(a)

UndoableAction

+getUndo()

1 1..2

1

1..n1

0..1

$1->caller

1..2->caller

$0..1->g

$1->caller

*1->a
$1->caller

Figure 2. A Frisco Component Interface Diagram

Let us for now disregard the arrows and their labels� Besides denoting the kind of compo�
nents a CID belongs to �here PartHandler�� a CID contains externally visible classes� their
inheritance relations� visible methods� and� in addition� multiplicities of possible instances�
The PartHandler in Figure � o�ers six externally visible interfaces� among them the

principal interface marked with the appropriate stereotype�
Each class can be given a multiplicity that determines the maximum allowed set of

interfaces during runtime� Each interface will usually be implemented by an object� and a
component may provide multiple objects of the same class at its component interface� Like
many other components PartHandler has several single instance�only interfaces �e�g� the
Edit interface�� but also unconstrained ones� like UndoableAction�
Public methods together with their type may be provided in the CID just like they can

be de�ned within UML�s Class Diagrams� The � in front of each method just indicates that
it is public as it is in UML� The method list serves two purposes� A method often either is
used to provide navigation facilities from one interface to another� or realizes functionality
provided by the component� Although the latter is the more important� we now focus on
the former�
Navigation paths are introduced as a concept to indicate the possible paths where to

navigate from one interface to another� A navigation path is denoted by an arrow from a
method of one interface to another interface� The PartHandler in Figure � shows� which
navigation paths between interfaces are existing� It tells us� e�g�� that from the Edit inter�
face� the Undo interface can be obtained�
Navigation between interfaces is done by calling the method� usually resulting in a ref�

erence to a new interface �see Section ��� for a detailed discussion�� Please note that these
navigation paths are not the same as associations� Although an association is a good candi�

date to be the component�s internal way to implement e�cient support for such navigation�
it is left open to the components internal details how to support navigation� Another way
to implement navigation is to create a new object with the appropriate interface each time
such a navigation access is required�
So far the CIDs give a �rst �avor of the interfaces of a component� but their expressiveness

is limited� We therefore add a transition labeling to describe how new interfaces can be
obtained� whether we iteratively receive the same interface� or a new one for each request�
For example� calling getMenus on the principal interface returns one or two Menu interfaces
to the caller �������caller��
The multiplicities on navigation arrows indicate how often the use of this method leads

to a new interface� In general they do not tell us what happens� if the method is called too
often�
However� if iterative calls result in the same interface for all callers� this is indicated by

���� To indicate the creation of a new interface ��� is used instead �see method addAc�
tionListener��
The communication between a component is often not limited to a call from the environ�

ment and a return from the component� Instead� when called� a component can itself make
�call backs� to objects of the environment� By these call backs� additional objects can be�
come externally known� without the initial caller of the components method being involved�
Such an example is given by the call of getEdit that does not return an interface to the
caller but passes the method�s parameter along to another call returning this interface to
the object referenced by the parameter ��������g�� Please note� that such a �call back� in
general need not take place immediately� but can be delayed �e�g�� done by another thread��
Furthermore� repeated call backs are allowed� For instance� the Undo interface allows to
register UndoActionListeners �method addActionListener� that will receive a reference to
an UndoableAction each time an undoable change occurs�
CIDs specify which references to its objects a component can give to the environment�

A careful �ow analysis� as done for other purposes already in Java compilers� could prove
correctness of the component implementation�
There are basic objects� such as Java Strings� that are publicly available �see Section
����

It is useful to exclude such basic classes from the component concept� but to let them �oat
through component borders freely� regardless� where they have been created� However�
such exclusion has to be done carefully� being aware of implicit communication via shared
objects which could lead to a behavior that is not derivable by observation of component
interfaces�
Given the technique of Component Interface Diagrams and the already mentioned nota�

tions of UML� we can de�ne di�erent views of components� With CIDs� we can de�ne the
Black�Box View of components� Class Diagrams are useful to specify the internal struc�
ture of a component� the so�called Glass�Box View� With object diagrams we can specify
run�time behavior of components as an object structure snapshot� Figure � illustrates the
relationship between these di�erent diagrams
 With class diagrams one can show the imple�
mentation of CIDs �see Section ��� Object diagrams can be used to show run�time behavior
of class diagrams�
Hence� the integration of a CID within standard object�notations like UML can be given

by a mapping of the CID into an embedding class diagram� where all component inter�
faces map to classes� the inheritance relation and the multiplicities are preserved� and the
navigation relation is mapped to method calls accordingly�

PartHandler - Object Diagram

PartAndConnection

Undo

Edit

Menu
Menu

ComplexUndoableAction

ComplexUndoableAction

PartHandler - Class Diagram

PartAndConnection

Menu

AbstractHandler

UndoableAction

Undo

AbstractAction

Edit
ComplexUndoableAction

PartHandler - Black Box View

Menu

«principal»BasicPartHandler+setDocumentServices()

+...()
+getMenus()+getConnection()
+getEdit(GUIFrame g)

Connection

Edit

+getUndo()

Undo
+undo(UndoableAction a)

+redo(UndoableAction a)

+addActionListener(a)

UndoableAction
+getUndo()

1

1..2

1

1..n

1

0..1

$1->caller

1..2->caller

$0..1->g

$1->caller

*1->a

$1->caller

Figure 3. From Component Interface Diagrams over Class Diagrams up to Object
Diagrams

The most important capability of components is the possibility to provide a complex�
well�structured set of individual and standard interfaces� Therefore� a classi�cation of
interfaces is a point of interest following two main goals

� Separation of concerns for the component developer ending up with a more modular
implementation than one monolithic interface could provide�

� Clearly structured individual and standard interfaces to give component users a more
natural way of understanding the di�erent purposes of the entire component�

The designer of a CID should structure the interfaces with respect to appropriate me�
thodical guidelines� This could be expressed in UML stereotypes for standard interfaces�
For example� special interfaces for storage� printing� the undo�redo�mechanism� security�
con�guration� online help� testing and debugging are often useful� These standard inter�
faces are especially needed for component�based systems supporting plug�in of components�
like� for instance� editors with exchangeable spell checkers�

���� Guidelines to map components to objects

Based on our experiences� we suggest the following guidelines for a mapping� In general�
there are three kinds of possibilities to implement navigation between interfaces�
We have focused on the preferable method call� But it is also possible to use public

readable attributes for interface access if they are available� or a dynamic cast of a given
interface into another interface� The latter is� e�g�� possible in Java� where failed casts can
be caught by an exception�

Component interface types are mapped either into Java classes or Java interfaces� The
former has the disadvantage that classes are not abstract and thus can be instantiated
from the environment� the latter cannot be used if attributes are publicly available in
the interface� As we prefer methods for navigation� we suggest to use Java interfaces to
implement CID interfaces�
When the desired multiplicity of an interface is
 or a link has modi�er �� then the

interface needs to be stored after creation within the component to be repeatedly exported�
Its creation can either be done when the component is created� or in a lazy manner� when
the �rst request is served� Anyhow� these interfaces should be implemented following the
singleton pattern �GHJV��	�
If multiplicity of a navigation� or of an interface is restricted and repetition is not wanted�

at least the number of already created interfaces needs to be stored� A proper reaction
for too many requests is necessary
 either returning nil or throwing an exception� The
standard for too many requests is the latter one� the former one should be used to cope
with optional interfaces�
The creation of a component goes along with the creation of its principal object� For that

purpose� the creator must know the actual class of the principal object� It therefore helps
to use the same names for the component and the principal class� In our example we did
not follow this principle in order to simplify discussion
 The component PartHandler and
the basic interface resp� class PartHandler �here called BasicPartHandler� are something
quite di�erent� If clients want to instantiate components in a �exible way� a global name
service or an object factory �GHJV��	 should be implemented�
A navigation path will often be realized using an association� However� such an associa�

tion relates objects within the component and therefore is part of the implementation and
not of the interface of the component� Although associations are good candidates for nav�
igation path implementation� this is not enforced� Another way to implement navigations
is to use variables that are global within the component when� e�g�� multiplicity is set to

� Yet another way to implement navigations is possible if a new interface is created and
given to the environment with each method invocation� These new interfaces need not be
stored within the component� but can themselves contain references to other component
parts�
Similar to aggregation of objects� we conceptually allow the hierarchical composition

of components� However� our experiences show� that in practice� components will not be
deeply nested� The composition of components is done by creating and using a component
within another one�

�� Mapping the component model to component infrastructures

Today� three main component infrastructures are in practical use
 Microsoft�s ActiveX�
based on OLE and DCOM �Cha��	� several CORBA implementations �OHE��	� and SUN�s
Java Beans �Mic��	� It is di�cult to estimate at this time which technology will dominate
in the future� Consequently� there should be a mapping of CIDs in all three technologies
available�
As all three technologies support a composition concept and provide an interface def�

inition language � MS�IDL� IDL� and Java Interfaces � � a CASE tool supporting CIDs
or similar description techniques could generate interface de�nitions for each technology�

Hence� a mapping from our component based model to these technologies is basically pos�
sible�

PartHandler

«principal»
BasicPartHandler

Connection

+registerDocManager()

1..1

$1->caller

getConnection()

DocManager

«principal»
DocManager

+registerAtPartHandler()
+notifyChanges()

Figure 4. Interacting OEF Components

Representatively� we discuss a Java Bean�based implementation of the component�based
system shown in Figure �� This system presents an abstraction of two Frisco components

The PartHandler �see Section ��
� Figure �� and a new component� the DocManager�
The purpose of the DocManager is to observe its PartHandlers and propagate changes
to related PartHandlers� If the method registerAtPartHandler is called the DocManager

receives a pointer to the Connection interface �getConnection� and registers itself �regis�
terDocManager�� Afterwards� if a user edits any diagram� the corresponding editor com�
ponent �PartHandler� noti�es the DocManager� which then ensures that all other a�ected
PartHandlers are informed of the change� eventually disallowing it� if it leads to inconsistent
documents�

���� Implementing Component Interface Diagrams with Java Beans

According to its creators from JavaSoft �A Java Bean is a reusable software component
that can be manipulated visually in a builder tool� �Mic��� JT��	� This covers a wide
range of di�erent possibilities� The scope of functionality reaches from simple GUI parts�
like buttons� up to full�featured database access adaptors�
In technical terms� a Bean is a Java object� The speci�c characteristics of Beans are

A Public Interface o�ers Properties� Methods� and Events for clients to access the Bean�

Introspection allows a builder tool to explore the Bean�s interfaces and present it to
programmers� For that purpose� the Java Re�ection Technique is used�

Customization allows developers to change the properties of Beans during design�time�

Persistence is used to store the Bean�s state permanently and restore it later�

Beans can support additional features� such as� e�g�� security� drag � drop� or remote
invocation� To support several of these features� Beans have to obey some conventions�
As Beans are just Java objects� Beans can implement several Java interfaces� This �ts

directly into our component concept� as we also allow several interfaces for each component

and inheritance between interfaces� Beans also support single inheritance� which is not yet
used for components in our model�
Beans are packaged in so�called JAR �les that include� among code and other resources�

optionally serialized Bean instances� Components in our component model can be con�
nected via links� As the standard Java name service is a crude circumvention to establish
links between Bean instances in di�erent JAR �les� it is necessary to de�ne an own name
service� or to use the new Java Naming and Directory Interface �Jav��	� or even to use a
Bean�conformant infrastructure supporting a global name service� like� e�g�� IBM�s Compo�
nentBroker �IBM��	�

Figure 5. Implementing CIDs with Java Beans

Each CID interface is mapped into a Java interface� for each CID component a Java Bean
is realized� where the Java Bean has to implement the corresponding Java interface� Figure �
illustrates an implementation of the example given in Figure � by using a conventional UML
Class and Package Diagram� There are three Java interfaces� one for each CID interface
�BasicPartHandler� Connection� and DocManager�� In the presented solution there are
only two Java classes implementing these three interfaces� One could also implement the
interfaces with more classes or provide additional attributes� methods� or classes� like� for
instance� the class PartHandlerImpl� which has an association to the interface DocManager�
The Java classes and interfaces are packaged into JAR �les� one for each CID component�
The resulting JAR �les resemble the implementation of former components� thus the

PartHandler component is implemented as a package named PartHandlerBean�

���� Implementing Component Interface Diagrams with ActiveX or CORBA

Implementing CIDs with other component infrastructures� like ActiveX or CORBA� is
similar to what has been presented in the previous section with Java Beans� In ActiveX�
each component can provide several interfaces� which maps directly into our model� But
ActiveX does not support the concept of subtyping� so subtyping should not be used in
CIDs if the target is ActiveX� Since ActiveX provides only a simple naming service� called
Monikers� we suggest to implement an own naming service or use standardized implemen�
tations� as� e�g�� provided in CORBA� to realize links between ActiveX components�
Using CORBA as target means having interfaces that allow multiple inheritance� as

proposed in our model� But a CORBA object cannot implement more than one interface�
Instead� CORBA o�ers a module concept where interfaces can be grouped together into a
speci�c namespace� given by the surrounding module� Hence� in CORBA� CID components

are thus reduced to simple namespaces� But CORBA provides a global name service� Links
between CORBA objects as needed in our component model can be implemented in a
straightforward fashion�

�� Related work

Our work is inspired from work found in the area of Architecture Description Languages
�ADL� �HHK���	� the OPEN Modeling Language �OML� �FHSGPJ��	� Catalysis �DW��	�
and UML �Gro��	� In the �eld of ADL descriptions of components and their interactions
are found� OML as well as UML also provide description techniques for components and
interfaces and their collaboration� Finally� Catalysis o�ers description techniques for com�
ponents supporting several interfaces and their relations�
In contrast to CIDs� where one speci�es a single component� its interfaces� and the corre�

sponding navigation paths� all of these description techniques describe a set of components
and their interactions� With CIDs one can specify a component and its interfaces without
describing the concrete context� namely other components using the described component�
This is especially useful in Componentware since components are intended to be reused in
di�erent environments�
To sum up� most component�related description techniques describe components and

their interactions in a speci�c context� With CIDs it is possible to describe components
without a speci�c context� concentrating on their interfaces and navigation paths�

�� Conclusion

The proposed concept of components was de�ned as a result of designing and implement�
ing the Frisco framework for document editing� Although UML provides several descrip�
tion techniques to describe di�erent views of object�oriented systems� including component
implementations� a need for the description of component interfaces arises� To remedy this
problem� Component Interface Diagrams have been introduced� They are essentially an
adaption of UML Class Diagrams for purposes of describing structured and dynamically
changing interfaces and their navigation paths�
The high quality of Frisco shows the suitability of the component concept and the de�

�ned notation� Although several extensions are imaginable� e�g�� allowing object migration
or de�ning a notion of inheritance on components �not only their interfaces�� we expect the
given notion of components and the de�ned concept of Component Interface Diagrams to
be su�cient for a large class of applications�
We consider it to be more important that language and tool support allow to conveniently

de�ne component types and automatically translate them into object�oriented implemen�
tations� This would considerably boost component technology�

References

�App�
� Apple Computer Inc
 OpenDoc Programmer�s Guide for the MacOS
 Addison�Wesley� ���

�Boo��� G
 Booch
 Object�Oriented Analysis and Design with Applications
 Benjamin�Cummings� �nd
edition� ����

�BRS��� K
 Bergner� A
 Rausch� and M
 Sihling
 Componentware � The Big Picture
 In CBSE����
Kyoto� Japan International Workshop on Component�Based Software Engineering� ����

�CAB���� D
 Coleman� P
 Arnold� S
 Bodo�� C
 Dollin� H
 Gilchrist� F
 Hayes� and P
 Jeremes
 Object�
Oriented Development � The Fusion Method
 Prentice Hall� ����

�Cha�
� D
 Chappell
 Understanding ActiveX and OLE
 Microsoft Press� ���

�DW��� D
 D�Souza and A
 Wills
 Catalysis � practical rigor and re�nement
 Technical report� ����

�FHSGPJ��� D
 Firesmith� B
 Henderson�Sellers� I
 Graham� and M
 Page�Jones
 OPEN Modeling Language
�OML	 Reference Manual
 ����

�GHJV��� E
 Gamma� R
 Helm� R
 Johnson� and J
 Vlissides
 Design Patterns
 Addison�Wesley� ����

�GJS�
� J
 Gosling� B
 Joy� and G
 Steele
 The Java Language Speci
cation
 Addison�Wesley� ���

�Gro��� UML Group
 Uni�ed Modeling Language
 Version �
�� Rational Software Corporation� Santa
Clara� CA������� USA� July ����

�Har��� D
 Harel
 On Visual Formalisms
 Communications of the ACM� �������������� May ����

�HHK��
� Christoph Hofmann� Eckart Horn� Wolfgang Keller� Klaus Renzel� and Monika Schmidt
 The
�eld of software architecture
 Technical Report TUM�I�
��� Technische Univerit�at M�unchen�
���

�IBM��� IBM
 Component Broker Technical Overview
 IBM report� ����

�Jav��� JavaSoft
 JNDI� Java Naming and Directory Interface
 Version �
�� SunMicrosystems� January
����

�JT��� H
 Jubin and Jalapeno Team
 Cooking Beans in the Enterprise
 IBM report� ����

�Mic��� Sun Microsystems
 Java Beans
 Version �
��� Sun Microsystems� July ����

�OHE�
� R
 Orfali� D
 Harkey� and J
 Edwards
 The Essential Distributed Objects Survival Guide
 John
Wiley and Sons� ���

�RBP���� Rumbaugh� Blaha� Premerlani� Eddi� and Lorensen
 Object�Oriented Modeling and Design

Prentice Hall� ����

�Sam��� J
 Sametinger
 Software Engineering with Reusable Components
 Springer�Verlag� ����

�Tec��� Technische Universit�at M�unchen
 Frisco�s Home Page� http���www��informatik�
tu�muenchen�de�proj�syslab�frisco�oef� ����

