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Abstract. Reuse is a key technique for a more efficient development
and ensures the quality of the results. In object technology explicit en-
capsulation, interfaces, and inheritance are well-known principles for in-
dependent development that enable combination and reuse of developed
artifacts. In this paper we apply modularity concepts for domain specific
languages (DSLs) and discuss how they help to design new languages by
extending existing ones and composing fragments to new DSLs. We use
an extended grammar format with appropriate tool support that avoids
redefinition of existing functionalities by introducing language inheri-
tance and embedding as first class artifacts in a DSL definition. Language
embedding and inheritance is not only assisted by the parser, but also by
the editor, and algorithms based on tree traversal like context checkers,
pretty printers, and code generators. We demonstrate that compositional
engineering of new languages becomes a useful concept when starting to
define project-individual DSLs using appropriate tool support.

1 Introduction

Reuse of developed artifacts is a key technique for more efficient development
and high quality of the results. This is especially the case for object oriented
programming: existing well-tested code is packed into libraries in order to reuse
the developed components in new projects. However, these principles are not
consequently applied when designing languages in general and domain specific
languages (DSLs) in particular. Those languages are often built from scratch
without explicit and systematic reuse of existing languages or fragments beyond
some knowledge on language design in the heads of designers.

The idea of a DSLs is to assist the tasks of developing software through effi-
cient development of models. Based on DSL models, property analysis, metrics,
and smells as well as code generation help the developers to become more ef-
ficient and to deliver higher quality systems. Today, when applying DSL-based
software development it takes too long to create all these tools, because they
are implemented from scratch too often. Thus, we explain an infrastructure that
allows reuse, extension, and composition of existing languages and their tools.

Our experience in some projects where we helped developers designing a
language specific for their domain shows that the creation of high-quality lan-
guages is a labor intensive task. Hence, once a language is developed, the reuse

[KRV08] H.Krahn, B. Rumpe, S. Vélkel

MontiCore: Modular Development of Textual Domain Specific Languages

In: Proceedings of the 46th International Conference Objects, Models, Components, Patterns (TOOLS-Europe).
Zurich, Switzerland, 2008

R. F. Paige, B. Meyer: LNBIP 11, pp. 297-315

Springer-Verlag Berlin-Heidelberg 2008

www.se-rwth.de/publications



2 Holger Krahn, Bernhard Rumpe, and Steven Vélkel

in other contexts is highly desirable. This idea was discussed in [Spi01] in form
of design patterns for the development of DSLs. Different strategies such as lan-
guage extension, language specialization, or piggypack (language combination)
are introduced and preferred to a standalone realization. However, most of to-
day’s DSL frameworks do not support these patterns and so methodological
assistance in this respect is poor.

In this paper we present work on appropriate tooling based on the MontiCore
framework [GKR106, KRV07b, Mon], which allows defining a DSL by an inte-
grated specification of abstract and concrete syntax in a concise grammar-based
format. It supports rule inheritance, introduction of interfaces, and associations
directly in the grammar which results in an abstract syntax that outbalances the
common tree structure and is comparable to current metamodeling standards.
Because modularity and existing composition techniques are core requirements
for reuse, we explore two mechanisms for modularizing grammars. We apply
language inheritance that can be used in order to extend existing languages by
redefining productions or adding alternatives in conjunction with the introduc-
tion of interfaces in a language definition. In addition, language embedding can be
used to define explicit nonterminals in a grammar which can be filled by a frag-
ment of another language (e.g., expressions or statements). Most importantly,
this can be done at configuration time, and thus allows a modular independent
development and compilation of tools that deal with language fragments. Be-
cause both, guest and host languages have separate lexers and parsers, they can
be developed independently and do not interfere with each other. This technical
separation allows a component based composition of grammars and their tools.
Thus we are able to set up libraries of quality assured languages which can be
reused in other contexts.

Both modularity mechanisms are implemented in MontiCore. In this paper
we explain how these mechanisms are integrated in generation of language recog-
nition artifacts such as parsers and lexers as well as the abstract syntax in the
form of a strongly typed abstract syntax tree (AST). Furthermore, language
specific editors with several comfort functionalities such as syntax highlighting
or outlines can be generated as Eclipse plugins in a modular fashion to support
an efficient use of the language under design [KRVO07a).

The rest of this paper is structured as follows: Section 2 explains existing
approaches from compiler design and metamodeling to design language based
tools in a modular fashion. Section 3 describes the basic syntax of the MontiCore
grammar format. In Section 4 two different concepts for defining abstract and
concrete syntax in a modular way are explained. Section 5 describes how this
modular language definition permits other functionalities like tree traversal and
editor generation to be specified in a modular fashion. Section 6 concludes the

paper.
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2 Related Work

Modularity and composing complex systems from modules [Par72] is an impor-
tant concept in computer science because it enables multiple developers to work
concurrently on the same project. It allows them to understand the system part
under design without requiring them to understand the whole system.

In [Spi01] different design patterns are introduced. Especially language exten-
ston and piggyback describe two modularization mechanisms. Language extension
describes the extensions of a host language (often an existing GPL) by elements
that are domain specific. This approach for specifying domain specific languages
(DSL) is often named embedded DSLs. Piggyback describes the extension of a
DSL by extracts of other languages, for example, GPL statements in a DSL for
describing context free grammars. This combination is often used as an input
language for parser generators.

In the context of grammar based software (for short: grammarware [KLV05])
the modular development of parsers is an important goal. The class of context
free grammars is closed under composition in the sense that the composition of
two context free languages is again a context free language. The main problem
is that this property does not hold true for the subsets that are usually used for
parsing like LL(k) or LR (k). To solve this problem, more sophisticated parsing
algorithms like Generalized-LR [Tom85] and Early parsers [Ear70] have been
created. Packrat parsing [For02, Gri06] uses parsing expression grammars which
are closed under composition, intersection, and complement.

A particularly difficult problem is the composition on the lexical level. In
[BVO07] possible solutions are discussed. The concrete solution proposed for this
problem is scannerless parsing where no separate lexer exists, which might in
turn impose runtime difficulties depending on the composed languages. In the
following we show that the control of the lexer state from the parser, that was
not favored by the authors of [BV07] for technical reasons, can be seamlessly
integrated in a DSL framework.

The focus of language libraries discussed in [BVO07] is to realize embedded
DSLs where the guest language is assimilated to the host language in order
to design the extension in a modular way. MetaBorg [BV04, BAGV05] uses a
GPL as a host language. The DSL is assimilated to the GPL functionality by
mapping the DSL code to library code that provides the desired functionality.
In contrast, our approach does not specifically aim at embedded DSLs but at
the combination of separately developed DSLs that are all mapped to a GPL
by separate but cooperating code generations. For this kind of problem the
assimilation phase does not apply because due to their restrictive expressiveness
usually different DSLs cannot be assimilated to each other. Embedded DSLs can
also be realized with Attribute Grammars that focus on how distinct attributes
can be realized in a modular way (e.g., using Forwarding [WMBKO02]).

Even though the above mentioned parsing algorithms can achieve composi-
tionality, an intrinsic problem of language composition is to avoid ambiguities in
the composed language. Although GLR and Early can, depending on the imple-
mentation, return a set of all ASTs instead of a single one, further development
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steps like semantic analysis and code generation usually require the choice of
exactly one tree. Packrat parsing does return at most one tree, as ambiguities
are avoided by design. The alternatives are prioritized and limited backtracking
functionality is possible by using predicates. Therefore, the developer has to pay
close attention to the order of alternatives when designing a language. In gen-
eral for any given parsing algorithm, ambiguities must be avoided and therefore,
good language composition shall help the user to detect ambiguities and help
him to circumvent them.

In the field of attribute grammars, modularity is a highly researched topic.
Multiple language inheritance [MZLA99, MLA299] helps to extend existing lan-
guage and attribute definitions. Some approaches use generic patterns to create
reusable grammar chucks (e.g., [Ada91]). A few compiler frameworks, e.g., Jas-
tAdd [EHO7], focus on modular extensible language definitions and compiler
construction.

The focus of compiler design and DSL frameworks is a bit different. Com-
piler frameworks and related tools usually aim at programming languages and
their modular extensions. An important property is that two extensions of a
base language can be developed independently of each other and be integrated
seamlessly. In this way, embedded DSLs are realized. The frameworks target at a
single form of code generation usually towards the host language or bytecode. On
the contrary, DSL frameworks focus on the creation of modeling languages that
are not necessary executable. The DSLs are used for a variety of purposes like
product and test code generation, documentation, and model-to-model transfor-
mations.

DSL frameworks (e.g., [LMBT01, Metb]) often rely on a graphical concrete
syntax and do not support the user with a modular language definition. Other
tools like [Meta] allow defining textual DSLs but do not provide modularity
concepts either. DSL frameworks like OpenArchitectureWare [Ope] based on
EMOF or Ecore and Moflon [AKRS06] based on CMOF use package imports and
merges to allow a compositional definition of the abstract syntax of a language.
The definition of the concrete syntax using tools like TCS [JBKO06] or xText [Ope]
are usually not compositional.

3 Language Definition using MontiCore

MontiCore uses an enriched context-free grammar as input format which is sim-
ilar to the input format of Antlr [PQ95] that is also used for parser generation.
Figure 1 contains an illustrative example of a DSL describing a bookstore.

The grammar body consists of regular lexer and context-free parser rules.
Lexer rules are marked by the keyword ident and defined by regular expressions.
To simplify the development of new languages, we use predefined rules for IDENT
and STRING to recognize names and strings. A language may declare its own lexer
rules as shown in line 7. In addition, a mapping to a Java type can be defined.
In our case, ID is mapped to the built-in type int. More complex mappings can
be specified using Java directly [KRVO7b].
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MontiCore-Grammar

package mc.examples.bookstore;

grammar Bookstore {

1
2
3
4
5 // Create a token "ID" which is reflected
6 // as int in the abstract syntax

7 ident ID (’0’..°9°)+ : int;

8

9 Bookstore = "bookstore" name:IDENT "{" ( Book | Jourmal )x* "}" ;
10

11 Book = "book" id:ID title:STRING "by"

12 authors:Person ("," authors:Person)* ";" ;

13

14 Journal = "journal" id:ID title:STRING ";" ;

15

16 Person = forename:IDENT lastname:IDENT ;

17

18}

Fig. 1. Bookstore example

Parser rules have a name and a right-hand-side (RHS) which describes the
syntactical structure recognized by the generated parser as well as the structure
of the abstract syntax. A RHS consists of references to other lexer or parser
rules, alternatives that are separated by ”|”, and blocks which are surrounded
by brackets (e.g., line 9). Furthermore, optional elements can be expressed by a
question mark, a Kleene star denotes unbounded repetitions, and a plus denotes
a cardinality of at least one. In addition, we use a package mechanism similar
to Java: grammars have a name (Bookstore in line 3) and an optional package
(line 1) which determines the fully qualified name and the desired location in
the file system.

MontiCore automatically derives an abstract syntax from this grammar for-
mat as follows. Each production forms a class having the same name as the
production. Each reference to a lexer rule on the RHS forms an attribute of this
class. References to parser rules are reflected as composition relationships with
automatically determined cardinalities. In addition, the references can explicitly
be named (e.g., line 12: authors:Person) in order to define the name of the
attributes and compositions. Figure 2 shows the abstract syntax derived for our
bookstore-example. Note that the abstract syntax is automatically mapped to
Java classes in the same package as the grammar. Get- and set-methods for at-
tributes as well as for compositions, tree traversal support, clone-methods, and
equal-methods are automatically generated to simplify the use of the abstract
syntax.

The abstract syntax is not limited to trees but additional associations be-
tween classes of the abstract syntax can be specified in the language definition.
The linking of the objects is established after parsing the tree structure. The al-
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BookStore
Name:String
Journal Book Person
Title:Strin Title:Stri . Stri
- g T?Strlng authors Forename.Stn.ng
Id: int Id: int Lastname: String

Fig. 2. Abstract syntax for the bookstore example defined in Figure 1

gorithms responsible for linking can either be specified in a declarative manner or
can be hand-programmed depending on the suitability of standard mechanisms
for references within a DSL. For deeper discussions on the grammar format as
well as on the derivation of the abstract syntax and especially on the associations
we refer to [KRVO7b].

Typically counter-arguments exist against the decision of specifying abstract
and concrete syntax in one format. We think that the most important pro argu-
ment is that no inconsistencies can occur between both artifacts which simplifies
the development of a DSL. This cost reduction is of high importance as the
initial investment for defining a DSLs has often to be proven worth by overall
reduced project costs and quality improvements.

We are aware of tool infrastructure that can keep both artifacts consistent
(like [KW96]) but think that the unified format also helps the user to keep
both artifacts aligned with each other quite closely. The advantage is that the
structure of the language (and based on that, its semantics) is aligned with the
user perception of it (= the concrete syntax).

More technically, the most common counter-arguments are: First, there is a
demand for multiple concrete syntaxes for a single abstract syntax. We doubt
that this is the case for DSLs where the concrete syntax usually emerges from the
domain. Often this argument targets at the reuse of development artifacts like
code generation, but as model-to-model transformation facilities have emerged
in the last years to a mature state, more explicit and flexible ways to reuse code
generations for multiple languages than using a common concrete to abstract
syntax mapper exist. Second, the abstract syntax is then not abstract enough,
as syntactic sugar, associativity, and priorities of operators are still presented
in the abstract syntax. This is not the case in MontiCore, as we extended the
grammar format in such a way that multiple rules can refer to the same class in
the abstract syntax. However, we will not discuss this feature in detail here.

MontiCore generates parsers that are based on Antlr 2.74. Therefore, the
used parsing algorithm is LL(k) with semantic and syntactic predicates which is
sufficient to parse a large variety of languages. We extended the parser genera-
tor by adding the generation of heterogeneously and strongly typed AST-classes
including inheritance and associations. The main criteria for choosing Antlr in re-
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spect to other parser generators mentioned in Section 2 was the relatively concise
EBNF based syntax that makes it attractive to inexperienced language engineers.
The resulting parsers perform well and also due to the classical lexer/parser dis-
tinction standard algorithms for error messages and recovery strategies are well
understood. The recursive descent structure of generated parsers makes it easy
to debug the parsers and feasible for us to integrate the modularity concepts and
the building of our abstract syntax as explained in this paper. In addition, every
production can be used as a starting production which helps to reuse fragments
in other composed languages.

4 Concepts of Modularity

In software engineering, the most commonly used modeling language is UML
which is often combined with OCL for expressing constraints or actions. Taking
this combination as an example for our language modularization mechanisms,
we can make three main observations. First, a core which contains elements
that are used in most of the UML sublanguages (e.g., classes or stereotypes)
can be identified. It would be reasonable to extract these elements into a core
language and to reuse it in other sublanguages like the UML suggests with
its modular definition in different packages. Second, one could imagine using
another constraint or action language than OCL for UML. Third, OCL could
be combined with other languages when there is a demand for a constraint
sublanguage. To summarize, a tight coupling between UML and OCL is not
desirable when designing such a modeling language.

The reuse of parts of a language in a different context and a loosely coupled
combination of languages are supported by MontiCore by its modularity con-
cepts: language inheritance and language embedding. The former can be used to
define a grammar by extending one or more supergrammars whereas language
embedding permits to define explicit nonterminals in grammars which can be
filled at configuration time by an appropriate embedded language. Both mecha-
nisms are introduced in the following; we will discuss their effects especially on
the abstract syntax and the advantages for defining new languages.

4.1 Language Inheritance

Language inheritance can be used when an existing DSL shall be extended by
defining new productions or existing nonterminals shall be overridden without
modification of the supergrammar. Therefore, the extending grammar defines
only the differences between the existing language and the new one. We use
the concept of multiple language inheritance as introduced in [MZLA99] for at-
tribute grammars. It can be seen as a method to achieve Language extension or
Language specialization as discussed in [Spi0l]. Language extension is typically
the case when the subgrammar adds new alternatives to an existing rule by over-
riding it. A well-known example for language extension is LINQ [MBBO06] where
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SQL-statements can be used as an expression inside an existing general purpose
language. Language specialization occurs, e.g., by adding additional context con-
straints. It is often used to remove "unsafe” features of a language to gain safe
sublanguages. In both cases, the definition of new languages is not desirable.
Instead, a reuse should be preferred.

The MontiCore grammar format allows developers to define language inheri-
tance by using the keyword extends followed by a list of fully qualified grammar
names in the header of a grammar. From the concrete syntax point of view, the
nonterminals and terminals of all supergrammars are visible in the current gram-
mar and can therefore be reused. Furthermore, MontiCore enables to override
existing productions by specifying a production with the same name. In con-
trast to [MZLA99] we use an ordered inheritance approach where in the case
of name collisions, i.e. two supergrammars use a common production name, the
production from the first supergrammar is used. For example if both grammars
A and B share a production name X and grammar C inherits from both A and B,
the production from A is used. As an extension to the current implementation
we plan to integrate a more sophisticated mechanism than the order of super-
grammars to resolve conflicts. A simple example is shown in Figure 3 where the
nonterminal Journal is redefined by adding editor information.

MontiCore-Grammar

package mc.examples.bookstore?2;

grammar ExtendedBookstore extends mc.examples.bookstore.Bookstore {

1

2

3

4

5 Journal = "journal" id:ID title:STRING "editors"

6 editors:Person ("," editors:Person)* ";" ;
7

8

}

Fig. 3. Definition of Language Inheritance in MontiCore

The inheritance on the grammar basis leads to a modification of the abstract
syntax of the language that is comparable to a package merge [OMGO5]. For each
overridden production a new class is created that inherits from all classes that
are associated with the productions with the same name in the supergrammars.
The key difference is that all unmerged classes remain unchanged and are not
directly present in the merged package which is the package of the subgrammar.
We found this approach appealing because algorithms such as transformations,
code generators, or even symbol tables written for the original language still
work for the extended languages (maybe with minor modifications for overridden
productions).

The resulting abstract syntax for our running example is outlined in Figure 4.
The new class Journal inherits from the version of its supergrammar. Please note
that the new generated parser produces instances which conform to the new
grammar, i.e., there will be only instances of mc.examples.bookstore.Book,
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mc.examples.bookstore2. Journal, mc.examples.bookstore.BookStore, and
mc.examples.bookstore.Person. Objects of mc.examples.bookstore. Journal
will be not be created.

Language inheritance can lead to multiple inheritance of classes in the ab-
stract syntax which is a problem in the current MontiCore implementation. The
upcoming generation of AST-classes will map the classes of the abstract syn-
tax to Java interfaces and create implementations like other metamodeling tools
[BSM*03, AKRS06] to avoid such problems.

mc.examples.bookstore
BookStore
Name:String
Journal Book Person
TltI«g:Strlng TltIQ:Strlng authors Forename:Stri.ng
Id: int Id: int Lastname: String
= | editors
mc.examples.bookstore2
Journal
Title:String g
Id: int

Fig. 4. Abstract syntax for the bookstore of Figure 3

This technique of overriding rules is typically used when the designer of the
supergrammar does not foresee changes which are made in a subgrammar. How-
ever, there are scenarios where such modifications are predictable. In the case of
our simple bookstore the developer may foresee that there will be subgrammars
which introduce new items such as audio books. For these scenarios, MontiCore
enables to define interfaces as possible extension point for subgrammars. Fig-
ure 5 shows a modified version of the basic grammar and the resulting abstract
syntax.

Line 1 introduces a new interface Item, which is implemented by both Book
and Journal (line 9 and 14 respectively). This definition leads to the genera-
tion of a Java-interface and the implements-relationship between the involved
classes/interfaces. Note that we do not compute the attributes of interfaces au-
tomatically as the interfaces should serve as an extension point for new sublan-
guages which add new productions implementing this interface.

There are two main advantages of this version. First, a subgrammar can
add new Items without changing or overriding the Bookstore. Therefore, a new
production in the subgrammar simply implements the interface as described
above. Second, the designer of the supergrammars can define attributes which
have to be implemented by using the ast keyword that is used in order to modify
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MontiCore-Grammar

1 Interface Item;

2 BookStore .| <<interface>>

s ast Item = Name:String Item

4 title:STRING; Title:String

; a A

6 Bookstore = "bookstore" name:IDENT i

7 "{" (items:Item)* "}"; ! :

8 X Journal Book

o Book implements Item = Title:String Title:String

10 "book" id:ID title:STRING "by" |Id:int Id: int

11 authors:Person

12 ("," authors:Person)* ";"; « | authors
13 Person

14 Journal implements Item = Forename:String
15 "journal" id:ID title:STRING ";" . Lastname: String

16

Fig. 5. Definition of bookstores using interfaces

the abstract syntax. Line 4 states that all implementing classes of the interface
Item provide at least a title.

Using this approach the designer of a sublanguage is able to add new kinds of
items by extending our basic grammar and defining these new items as subtypes
of the item interface as shown in Figure 6.

MontiCore-Grammar

1 package mc.examples.bookstore3;

2

3 grammar ExtendedBookstore extends mc.examples.bookstore.Bookstore {
4

5 AudioBook implements Item = "audiobook" id:ID title:STRING ";";

6

7}

Fig. 6. Adding new items to the bookstore

In this simple example both grammars are not really decoupled from each
other as the subgrammar directly inherits from the supergrammar. This might
be a problem especially when only a few nonterminals of the subgrammar should
be reused in other settings. In our example one can imagine that AudioBooks
should be reused as items for a record shop. Using the former approach we had
to change the subgrammar. Then, AudioBooks would implement another inter-
face defined in the record shop grammar. However, this is often not desirable as
the new grammar would be able to parse both book stores and record shops. In
order to avoid this strong coupling MontiCore allows multiple grammar inheri-
tance. This technique allows us to design both grammars separately by removing
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the inheritance between the grammars and the implements-relationship between
AudioBook and Item and finally to define a third grammar which combines
both supergrammars. Figure 7 shows an example. Please note that the grammar
mc.examples.audio.Audio where the class AudioBook is defined is omitted here
for space reasons because it is identical to the definition in Figure 6 except for
the language and nonterminal inheritance.

MontiCore-Grammar mc.examples.bookstore /| [ mc.examples.audio  /
package mc.examples.bookstore4; <<interfaces>> AudioBook
ltem
grammar ExtendedBookstore extends
mc.examples.bookstore.Bookstore, D Z%

mc.examples.bookstore4 /

AudioBook

AudioBook implements Item;

1
2
3
4
5 mc.examples.audiobook.Audio {
6
7
8
9

}

Fig. 7. Multiple grammar inheritance

Language inheritance is typically used when the sublanguage is very similar
to the superlanguage because otherwise problems in the lexical analysis may
occur. The lexer rules of the subgrammar are a combination of the lexer rules
of all supergrammars. They can be overridden in the same way like parser rules.
The keywords of the language are a union of all keywords of the supergrammar
plus the newly defined keywords of the subgrammar. A prominent example for
the consequences can be seen in the introduction of the assert keyword in Java
- legacy code using assert as identifier had to be adapted in order to conform
to the new language. However, this problem can be avoided using language
embedding where the recognition of the involved languages is strictly decoupled
from each other because separate parsers and lexers are used.

4.2 Language Embedding

Domain specific languages are usually designed for a specific task; therefore it is
often necessary to combine several languages to be able to define all properties
of the desired software system precisely. A typical example for this approach is
OCL which is used to define additional constraints on a model that cannot be
expressed in the host language (e.g., class diagrams).

For convenience and for the sake of clarity it is desirable to write an OCL
statement nearby the artifact it is constraining in the same file. Using stan-
dard approaches and parsing technologies would result in a monolithic and huge
grammar combining both host language and OCL. This is even more problem-
atic when combinations of more than two languages are used. Therefore, an
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independent development of all involved languages and a flexible combination
mechanism is highly desirable.

MontiCore provides external nonterminals in grammars which means that
their derivation is determined at configuration time by another appropriate lan-
guage. We modify the bookstore example to be combined with an appropriate
bibliography format (e.g., bibtex) as shown in Figure 8. In this example, line
1 introduces the external nonterminal Bookentry which is used on the RHS of
Book (line 8). Note that there is no further information about the language to
be embedded; hence the combination with a language that provides an arbitrary
definition for BookEntry is valid.

MontiCore-Grammar

external Bookentry;
external Journalentry / example.IJournalEntry;

Bookstore = "bookstore" name:IDENT "{" (Book | Journal)* "}" ;
Book = "book" id:ID title:STRING

"by" authors:Person ("," authors:Person)*
Bookentry ";" ;

© ® N o ;oA W N =

-
o

Journal = "journal" id:ID title:STRING Journalentry ";" ;

[
.

Person = forename:IDENT lastname:IDENT ;

=
N

Fig. 8. Expressing constraints for the embedded language by interfaces

The usage of external nonterminals leads to a composition relationship to
ASTNode which is the base interface of all AST classes in MontiCore. However,
it is sometimes desirable to define constraints for an embedded language in form
of interfaces which must be implemented by the top level node of the embedded
grammar. Therefore, MontiCore allows declaring the name of the interface to be
implemented next to the definition of the external nonterminal as shown in line
2 of Figure 8. This version introduces an external nonterminal Journalentry
that restrict the top level node of the embedded grammar to classes that imple-
ment example.IJournalEntry. The slash marks these interfaces as handwritten,
therefore it is possible to access properties of the embedded language in form of
methods from the host language. Furthermore, in this version the composition
relationship is more reasonable since it is typed with examples.IJournalEntry
instead of ASTNode. In addition, this example shows that the combination of
languages is not restricted to two grammars.

In order to enable an independent development MontiCore derives parsers
and AST classes separately and combines these components at configuration
time as shown in Figure 9. For each grammar we generate a lexer and for each
production of that grammar an adapter to the parser generated by Antlr without
considering a concrete language combination. Therefore, each production can be



MontiCore: Modular Development of Textual Domain Specific Languages 13

used as a start production which is an important property to combine language
fragments. This method enables us to reuse these artifacts without recompi-
lation. Then, we combine the parsers/lexers-combinations to a superordinated
parser which is able to switch between the different grammars. Every time a
concrete parser finds an external nonterminal the control is passed to the super-
ordinated parser which invokes the parser/lexer-combination of the embedded
language.

Configuration:
bookstore.Bookentry ->
Grammar bookstore generation bibtex.BibtexBook
Concrete
External Bookentry; Lexer/Parser

Lexer/Parser

compiled independenﬂy% Superordinated

Grammar bibtex

Concrete
BibtexBook = ..... generation | Lexer/Parser

Fig. 9. Language embedding

Doing so, the bookstore parser ensures correct behavior by invoking the su-
perordinated parser and thus, the bibtex parser (and lexer). Then, the rest of
the text will be recognized according to that grammar. Thus, both languages
are really independent from each other in their lexical and syntactic structure,
and more important, the combination cannot be ambiguous as lexer and parsers
are exchanged when switching the language. In order to allow compositional de-
velopment beyond syntax, algorithms can be developed independently of each
other as described in Section 5.

From a technical point of view a language combination consists of two pieces
of information. The first one declares the grammar to be used when starting to
recognize a text. The second piece of information in turn indicates which external
nonterminal in a grammar should be replaced by which nonterminal of another
grammar. Both can be expressed using a simple DSL as shown in Figure 10 or
by combining the parsers/lexer by handwritten Java-code.

To realize the exchange of parsers and lexers in the desired fashion, we mod-
ified Antlr. First, all parsers/lexers use a shared queue which contains the input
stream. Every time a parser consumes a token of length n, the first n characters
are removed from the queue. It is important that this removal is not carried out
when the lexer creates a token because it might be that the current lexer is not
the right one for the currently considered part of the file. The main reason for
this fact is that the position of the lexer is in front of the position of the parser in
the file, especially when the parser uses its lookahead as this shifts the position
of the lexer forward without shifting the current position of the syntactical anal-
ysis forward in the same ratio. Whenever the parser invokes the superordinated
parser in order to recognize an embedded language, the queue is reset to the end
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MontiCore-Grammar

// define rule Bookstore of the grammar mc.examples.bookstore.Bookstore
// to be used when starting to parse the text
mc.examples.bookstore.Bookstore.Bookstore bst <<start>>;

// embed bibtex rule for books as Bookentry
mc.examples.bibtex.Bibtex.BibtexBook bibBook in bst.Bookentry;

// embed bibtex rule for journals as Journalentry
mc.examples.bibtex.Bibtex.BibtexJournal bibJrn in bst.Journalentry;

© ® N O ‘oA W N =

Fig. 10. Combining languages using a special DSL

of the last token the host parser consumed. From this point onward, the embed-
ded lexer starts to re-process the next characters. By this strategy we ensure the
correct behavior of the embedded parser as no following token was typified by
the host lexer. This strategy leads to repetitive lexing but does not impose great
overhead as the maximal length of the re-typified character string is limited by
the chosen lookhead or the considered length of syntactic or semantic predicates.

MountiCore grammars are a form of grammar fragments as defined in [LA&m01].
Grammar fragments do not have a defined start production and referred non-
terminals may be undefined. In the MontiCore context every grammar could be
understood as a grammar fragment, because every production can be used as
start production. This behavior is especially useful if parts of a language shall be
reused as it was the case when we embedded a rule for Bookentry and another
rule of the same grammar for Journalentry.

The example shown so far enables a language developer to embed different
languages to different external nonterminals. Different sublanguages can be used
but the decision is bound at configuration time and only a single language can
be used for one external nonterminal. In Figure 11 we developed our running
example further such that the developer can embed multiple languages for a
single external nonterminal.

The different languages are registered under a unique name. Then, we assign
string values to variables like shown in line 5 where we parse booktype and
assign this value to the global variable bt (astscript {set(bt,booktype);}).
In line 10 we refer to this variable in order to decide which language is used
for Bookentry. In line 13 a different approach is taken in the sense that we
call an embedded language depending on the value of a variable of the current
rule instead of a global variable. Using this way a bookstore grammar can be
developed that allows multiple formats for defining journals and books and the
user of the resulting language can choose the one to use.
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MontiCore-Grammar

external Bookentry;
external Journalentry / example.IJournalEntry;

Bookstore = "bookstore" name:IDENT
booktype:IDENT astscript { set(bt,booktype); }
"{" (Book | Jourmal)* "}" ;

Book = "book" id:ID title:STRING
"by" authors:Person ("," authors:Person)*
Bookentry<global bt> ";" ;

© ® N O ‘oA W N =

=
= o
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Journal = "journal" id:ID title:STRING
jt:IDENT Journalentry<jt> ";" ;

-
w

[
'S

Person = forename:IDENT lastname:IDENT ;

o
o

Fig. 11. Using different parsers for a single nonterminal

5 Modular Development of Domain Specific Tools

The development of domain specific modeling languages consists not only of
defining an abstract and a concrete syntax. Furthermore, there are several other
steps necessary, e.g., code generation, syntactic checks, or the implementation of
language specific tools. In the following we give two examples of how the further
processing of modular languages is supported by MontiCore.

Modular visitors. Visitor-like algorithms simplify programming a code gener-
ator because each language construct can independently be translated as long as
the tree structure of the AST is similar to the structure of the generated code.
The main advantage of this design pattern is that the algorithm does not contain
traversal code.

To increase the usability of the modular facilities within the MontiCore
framework we complemented the modular language definition with a modular
tree traversal. Without this facility a user would still program visitors for combi-
nations of languages which are not reusable. Using our modular visitor concept,
a user can program visitors independently for different fragments that handle
the classes defined within a grammar. These classes can then be combined to a
visitor without recompilation which invokes the different methods automatically.
Thus, we use the same approach for combining visitors as for combining lexers
and parsers in the case of language embedding.

For language inheritance the different visitors can be subtyped to change the
behavior for the newly added or overwritten productions. Where subtyping is
not feasible due to the single-supertype restriction Java imposes, delegation can
be used.

Modular tool generation. Comfortable and usable tool support is an impor-
tant success criterion for new domain specific modeling languages. However, the
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development of language specific tools such as editors is a time-consuming task,
which gets even more complicated when we take the modularity concepts into
account. Language embedding for example, requires not only an independent
generation of parsers and lexers and a possibility to combine them at config-
uration time. The same approach should be reflected in tooling: independent
development/generation of editors and afterwards, combination at configuration
time. Doing so, it is possible to develop one editor for OCL separately and to
combine it with other editors (e.g., for class diagrams, statecharts, or sequence
diagrams) instead of implementing an editor for class diagrams with OCL, stat-
echarts with OCL, and so on.

MontiCore grammars can be complemented by additional information which
is used in order to generate language specific editors as Eclipse plugins. Gener-
ated editors offer different comfort functionalities such as syntax highlighting, an
outline, foldable code regions, or error messages. We will only briefly introduce
editor generation in this paper. For deeper discussion on editor generation we
refer to [KRV07a].

The editor generation of MontiCore is fully integrated with the modularity
concepts we discussed in this paper. For each grammar (which possibly has
external nonterminals) we generate visitors as described in the beginning of this
section. These visitors evaluate those parts of the abstract syntax which are
defined in the current grammar. Among other things, they are able to provide
an outline page with items, or to advise the document which code regions can
be folded. Then, we are able to combine the visitors without recompilation in
order to gain an editor which supports the current language combination (e.g.,
class diagrams and OCL). Furthermore, when handling grammar inheritance, we
simply use object oriented inheritance between the generated editors. This allows
us to override (or to complement) the behavior of the supereditor, and even more
important, to further develop the supereditor without a need to recompile every
subeditor, and thus, every sublanguage.

6 Conclusion and Outlook

In this paper we explained how the DSL framework MontiCore and especially
how the defining grammar format has been extended to support two different
kinds of modularity mechanisms. The modular development as well as the com-
bination and extension techniques simplify the integration of DSLs and their
according tools in software development projects.

Language inheritance can be used to extend existing languages by new non-
terminals or to override existing nonterminals of the supergrammar. The effects
on the abstract syntax are similar to those of UML package merge as only the
delta is used to generate new abstract syntax classes. In the case of overriding,
these new classes directly inherit from the old ones. Therefore, existing arti-
facts such as symbol tables, context constraint checkers, or code generation can
be reused with minor modifications. Language embedding on the other hand is
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useful to explicitly add points of variation in modeling languages to include frag-
ments of other languages. The strong decoupling of the languages by separate
lexers/parsers minimizes interferences and permits a component based compo-
sition of grammars.

In addition, MontiCore supports the development of modular domain spe-
cific modeling languages beyond syntax. For this purpose, we explained how a
language definition is complemented with further concepts like editor generation
and tree traversal. Both concepts reflect the modular approaches for defining the
abstract and the concrete syntax of a language.

MontiCore has been used to define several small DSLs as well as some com-
plex languages. We realized a subset of UML [Rum04b, Rum04a] including state-
charts, class, sequence, and object diagrams. Furthermore, we developed a gram-
mar for OCL and Java 5 and helped industrial partners to implement a DSL
for a part of an AUTOSAR specification [Ho6w07]. In addition, we evaluated
view based modeling of logical automotive architectures [GHK08] with Monti-
Core. In addition, MontiCore itself is realized using a bootstrapping approach.
Currently about 75% of the code is generated from several DSLs.

We currently elaborate on a possible connection of the MontiCore framework
with EMF [BSM 03] as well as MOFLON [AKRS06] to simplify the interoper-
ability of DSLs defined with MontiCore and metamodeling techniques. This will
allow us to gain further support for model transformations and code generation
from a variety of tools. Furthermore, we will explore composition of languages
beyond syntax. This includes compositional context constraints and symbol ta-
bles as this plays an important role especially in the case of language embedding.
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