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6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen
basiert, wurde von mir klar gekennzeichnet, was von anderen und was von mir
selbst erarbeitet wurde;

7. Teile dieser Arbeit wurden zuvor veröffentlicht und zwar in: [BKRW17, BKRW19,
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Abstract

Models are the primary development artifacts used in model-driven software devel-
opment. Therefore, models continuously evolve during the design, development, and
maintenance of software systems. Thus, model differencing is an important task to
understand the syntactic and semantic differences between model versions.

Previous work produced general (and thus language-independent) approaches for syn-
tactic model differencing, but only a few language-dependent approaches for semantic
model differencing. Approaches combining syntactic with semantic model differencing
by relating the syntactic changes of models to their semantic differences rarely exist.
Previous work neglected the development of language-independent approaches abstract-
ing from a concrete model property for detecting the syntactic elements of a model,
which cause that the model does not satisfy the property. If the property encodes a
requirement and the non-satisfaction represents the existence of a bug, then detecting
the syntactic model elements causing the non-satisfaction of the property facilitates de-
velopers in detecting the syntactic model elements causing the bug.

This thesis presents a framework for precisely defining modeling languages, includ-
ing syntax, semantics, and model evolution possibilities. To demonstrate its feasibility,
the framework is instantiated with four concrete modeling languages: Time-synchronous
port automata, feature diagrams, sequence diagrams, and activity diagrams. For each of
these modeling languages, this thesis presents syntactic and semantic differencing opera-
tors. The operators facilitate developers in understanding the syntactic and semantic dif-
ferences between models of the languages. Based on the framework for precisely defining
modeling languages, this thesis presents a modeling language and property-independent
framework for automatic model repairs. The framework facilitates developers in detect-
ing the syntactic elements of a model causing that the model does not satisfy a property.
Instantiating the framework with a concrete modeling language and a concrete model
property enables the automatic calculation of syntactic changes that transform a model
not satisfying the property to a model that satisfies the property. The syntactic model el-
ements affected by the syntactic changes can be interpreted to cause the non-satisfaction
of the property. Developers can review the affected elements as evidence for the identi-
fication of the required changes for fixing the bug that causes the non-satisfaction of the
property. Alternatively, the automatically calculated syntactic changes can be directly
applied to the model to obtain a model that satisfies the property. The framework relies
on the assumption that it is possible to partition the syntactic changes applicable to
each model into finitely many model-specific and property-specific equivalence classes.

This thesis presents formal proofs for the correctness of the language-independent and
language-dependent results. The applicability and usefulness of the modeling language-
independent frameworks are demonstrated by instantiating the frameworks with four
modeling languages and the properties refinement, generalization, and refactoring.



The instantiations of the frameworks with the four modeling languages and the ex-
ample properties can be directly employed in development processes. The process of
instantiating the frameworks is a methodology for the development of syntactic and se-
mantic differencing procedures as well as precise model evolution analyses for detecting
syntactic model elements causing the non-satisfaction of properties.
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Chapter 1

Introduction

Software engineering has emerged to cope with the development complexity of large
software systems [NR69]. The complexity of software systems is often caused by the
conceptual gap between the problem domain and the low abstraction level of general-
purpose programming languages (GPLs) [FR07]. One promising possibility to cope
with the complexity is to describe software systems on a more abstract level than GPL
source code. Model-driven development (MDD) is a paradigm for increasing the ab-
straction of software system descriptions by leveraging models as primary development
artifacts [Sel03, Sch06, FR07, BCW17, KRR18]. “A model is an abstraction of an aspect
of reality (as-is or to-be) that is built for a given purpose” [CFJ+16].

A model is an abstraction of an original that fulfills a purpose concerning the orig-
inal [Sta73, MFBC12, Rum16]. In MDD, a model is thus an abstract representation
of (parts of) a software system that fulfills a purpose concerning the software system.
Developers use models to describe systems on a level of abstraction that is closer to the
problem domain as GPL source code [Sel03, KRR18, FR07]. Models are used construc-
tively to automatically generate (parts of) an executable software system or are inter-
preted (executed) in the context of a running system [Sel03, Sch06, FR07, KRR18]. Due
to iterative development methodologies, changing requirements, and bug fixes, models
continuously evolve during the design, development, and maintenance of software sys-
tems [MD08, MRR11a]. Therefore, model differencing is an important task [BKL+12]
in MDD for detecting bugs and exploring design alternatives [MRR11a].

The fundamental entities for model differencing are differencing operators that can
be used for model comparisons [MRR11a]. Research on model differencing includes
syntactic model differencing, semantic model differencing, and hybrid approaches that
combine syntactic and semantic model differencing.

Syntactic differencing focuses on detecting the differences between two models in terms
of change operations (e.g., add, delete, move, update) [AP03, EPK06, ASW09, XS07,
GKLE13, BKL+12, KKT13, TELW14]. A syntactic differencing operator takes two
models as input and outputs change operations [BKL+12]. The application of the change
operations to one model yields the other model [AP03, MR15, MR18, KR18a]. However,
syntactic differencing abstracts from the semantics of models. Two models may be
syntactically different but semantically equivalent. Vice versa, two syntactically similar
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Chapter 1 Introduction

models may have very different semantics. Syntactic differencing operators cannot detect
these circumstances.

Semantic differencing approaches differ from syntactic differencing by focusing on dif-
ferences in terms of the elements in the semantics of models [MRR11a, MRR12, MR18,
KR18b]. For example, the semantic difference from a class diagram cd1 to a class diagram
cd2 contains all objects models in the semantics of cd1 that are not object models in the
semantics of cd2 [MRR11e]. Similarly, the semantic difference from an activity diagram
ad1 to an activity diagram ad2 contains all execution traces in the semantics of ad1 that
are not execution traces in the semantics of ad2 [MRR11b, KR18b]. Semantic differ-
encing approaches usually assume that models have a set-based denotational semantics.
The elements in the semantics of a model represent mathematical abstractions of the
possible realizations of the model. The semantic difference from a model m to a model
m′ is defined as the set of elements in the semantics of the model m that are not elements
in the semantics of the model m′ [MRR11a, MRR11g, MRR12, MR15, MR18, KR18a].
Each element in the semantic difference is called a diff witness and represents a pos-
sible realization of the model m that is not a possible realization of the model m′. If
the semantics of the model m is included in the semantics of the model m′, then the
semantic difference is empty. In this case, the model m can be interpreted to be a
refinement [MRR11a, KR18a] of the model m′ because every possible realization of m
is also a possible realization of m′. Research in semantic differencing focuses on the
development of language-specific semantic differencing operators [MRR11e, MRR11b,
BKRW17, AHC+12, KR18b, DKMR19, DEKR19]. A semantic differencing operator is
an automatic procedure to determine whether there are semantic differences from one
model to another model. Previous research has only produced a few such procedures for
well-accepted modeling languages as, for example, for parts of the Unified Modeling Lan-
guage (UML) [OMG15]. Semantic differencing operators take two models of the same
language as input and output either that no semantic difference exists or a finite non-
empty set of diff witnesses. Developers can survey the diff witnesses to increase their
understanding of the semantic difference from one model to another model. The diff
witnesses also facilitate developers in detecting the syntactic model elements that cause
semantic differences. However, semantic differencing approaches almost completely ab-
stract from the syntax of models. Thus, they usually have difficulties to facilitate the
detection of the syntactic model elements that cause the existence of semantic differences.

Approaches that combine syntactic differencing with semantic differencing rarely ex-
ist [MR15, MR18, KR18a]. A framework for determining the syntactic model elements
that cause the existence of semantic differences from a model to another model is intro-
duced in [KR18a]. The framework considers two models in isolation (without considering
a changelog) and identifies syntactic changes that transform one model to a refinement
of the other model. A framework for determining the changes contained in a changelog
causing that a successor model version does not permit a specific realization is presented
in [MR15, MR18]. The framework considers two models and a changelog between the
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models. The analyses of the framework can be used to identify the syntactic changes
contained in the changelog, which cause that a successor model version does not permit a
concrete realization of its predecessor model version. The existing approaches combining
syntactic with semantic model differencing are tailored towards concrete problems (i.e.,
refinement and containment of a concrete realization) and, therefore, do not abstract
from the model property of interest.

Model differencing is almost the opposite of model merging [MRR11a]. Model differ-
encing is concerned with detecting the syntactic or semantic differences from one model
to another model. One of the main goals of model differencing is to facilitate developers
in understanding the differences between models. In contrast, merging is concerned with
merging multiple models [Ber86, Wes10, TELW14, LvO92, Men02, BKL+12]. To this
effect, model merging aims at identifying and resolving the conflicts [LvO92, BKL+12,
Men02, Wes10, TELW14] between the models for constructing a merged model that
incorporates aspects of all versions.

The goal of this thesis is to provide contributions in the contexts of semantic differ-
encing and hybrid approaches that combine semantic and syntactic differencing with

1. one semantic differencing operator for each modeling language under consideration.
The languages have heterogeneous semantic domains and semantic mappings.

2. a concrete modeling language- and property-independent method to repair models
with respect to model properties (e.g., refinement) for the development of model
evolution analyses relating the syntax of models to their semantics.

In the following, Section 1.1 classifies this thesis in the context of the research con-
ducted at the chair of Software Engineering RWTH Aachen University. Section 1.2
highlights the main goals and contributions. Afterwards, Section 1.3 overviews the orga-
nization of this thesis. Section 1.4 introduces notational conventions and mathematical
foundations. Section 1.5 overviews the publications that have been published before and
in the context of this thesis.

1.1 Context of the Thesis

The foundations for the research conducted in the context of this thesis are grounded
in previous research undertaken at the chair of Software Engineering RWTH Aachen
University. This section overviews this research.

The fundamental insight that the definition of every modeling language should con-
stitute a syntax definition, the definition of a semantic domain, and the definition of
a semantic mapping (independent of the degree of formality) is explicated in [HR04].
Based on this, the vision for the development of semantic differencing operators is pre-
sented in [MRR11a]. The vision led to the development of concrete semantic differencing
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operators for class diagrams [MRR11e] and activity diagrams [MRR11b]. A method for
summarizing similar semantic model differences to condensate and increase the amount
of information presented to an engineer is presented in [MRR11g]. An interim summary
on semantic model differencing [MRR12] summarizes the above research and presents
possible future work directions in semantic model differencing. One future work direc-
tion includes the development of more language-specific differencing operators. Another
future work direction is concerned with the combination of syntactic and semantic dif-
ferencing approaches. This thesis addresses both of these directions.

1.2 Main Goals and Contribution

The main contributions of this thesis are:

1. A formal and concrete modeling language-independent methodology for the devel-
opment of precise syntactic and semantic model evolution analyses.

2. A semantic differencing operator for finite time-synchronous port automata, an
automaton variant for modeling finite message-driven interactive systems. The
semantics of a time-synchronous port automaton consists of infinite communication
histories of messages communicated via channels.

3. A semantic differencing operator for a feature diagram variant. The semantics of
a feature diagram consists of the configurations that do not violate the constraints
induced by the feature diagram.

4. A semantic differencing operator for a sequence diagram variant. The semantics
of a sequence diagram consists of systems runs (encoding finite execution traces)
that do not violate the constraints induced by the sequence diagram.

5. A semantic differencing operator for an activity diagram variant. The semantics
of an activity diagram consists of the finite execution traces that are explicitly
modeled in the activity diagram.

6. A concrete modeling language- and property-independent framework based on
meaningful assumptions for computing syntactic changes to repair models with
respect to their properties.

7. Instantiations of the model repair framework with the four concrete modeling lan-
guages and the concrete properties refinement, generalization, and refactoring.

1.3 Thesis Organization

This thesis is organized as follows:
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• Chapter 2 presents a framework for precisely defining modeling languages and
model evolution possibilities.

• Chapter 3 presents the time-synchronous port automaton modeling language, a
semantic differencing operator, change operations, and a syntactic differencing op-
erator for the time-synchronous port automaton modeling language.

• Chapter 4 presents the feature diagram modeling language, a semantic differencing
operator, change operations, and a syntactic differencing operator.

• Chapter 5 presents the sequence diagram modeling language, a semantic differenc-
ing operator, change operations, and a syntactic differencing operator.

• Chapter 6 presents the activity diagram modeling language, a semantic differencing
operator, change operations, and a syntactic differencing operator.

• Chapter 7 introduces the model repair framework, including an assumption on
modeling languages that is sufficient to guarantee the computability of repairing
syntactic changes, and algorithms for the computation of repairing changes.

• Chapter 8 presents instantiations of the model repair framework with the concrete
modeling languages and refinement, generalization, and refactoring properties.

• Chapter 9 summarizes the thesis and presents possible directions for future work.

1.4 Notational Conventions and Mathematical Foundations

This section introduces notational conventions for foundations of this thesis.

1.4.1 Sets and Functions

The set of natural numbers is denoted by N. Let A and B be two sets. A ∪ B denotes
the union of A and B. A ∩ B denotes the intersection of A and B. A \ B denotes the
relative complement of B in A. A×B denotes the cartesian product of A and B.

The powerset of a set A is denoted by ℘(A). The set of all finite subsets of a set A
is denoted by ℘fin(A). A partition of a set A is a set P ⊆ ℘(A) such that ∀B,C ∈ P :
B ∩ C = ∅ and

⋃
B∈P B = A, i.e., the sets in P are pairwise disjoint and the union of

the sets in P is equal to A.

A binary relation ∼ on a set A is said to be an equivalence relation iff it is reflexive
(a ∼ a for all a ∈ A), symmetric (a ∼ b iff b ∼ a for all a, b ∈ A), and transitive (a ∼ b
and b ∼ c implies a ∼ c for all a, b, c ∈ A).

We write f : A → B to denote that f is a total function from A to B. Similarly,
f : A ⇀ B denotes that f is a partial function from A to B. We denote by dom(f)⊆ A
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the domain of a (partial) function f : A ⇀ B and write f(x) = ⊥ to denote that
x /∈ dom(f). Thus, f(x) = ⊥ denotes that f is undefined on x ∈ A.

A function f is said to be finite iff dom(f) is finite. For finite functions, we sometimes
use a set-based notation that describes the underlying relation. For instance, the set
{(1, a), (2, b)} denotes the function f : {1, 2} → {a, b} where f(1) = a and f(2) = b. We
use the notation x : y for denoting a tuple (x, y) in the set of a function. For instance,
{(1, a), (2, b)} and {1 : a, 2 : b} denote the same function. For every (total or partial)
function f : A ⇀ B and R ⊆ A, the restriction of f to R is defined as the function
f |R: R→ B that satisfies f |R(x) = f(x) for all x ∈ R.

A function f : A → B is said to be injective iff ∀x, y ∈ A : f(x) = f(y) ⇒ x = y. A
function f : A→ B is said to be surjective iff ∀y ∈ B : ∃x ∈ A : f(x) = y. A function f
is said to be bijective iff it is injective and surjective.

1.4.2 Finite and Infinite Words

Let Σ be an arbitrary set. We denote by

• Σ∗ the set of all finite sequences (finite words) over the set Σ.

• ε the empty sequence, which is an element of Σ∗.

• Σ∞ the set of all infinite sequences over Σ.

• |s| the length of a sequence s ∈ Σ∗ ∪Σ∞ where |ε| = 0 and |s| =∞ for all s ∈ Σ∞.

• s def
= {n ∈ N | n ≤ |s|} the set of all natural numbers that are smaller than or equal

to the length of a finite sequence s ∈ Σ∗.

• s.i the (i+ 1)-th element of a sequence s where i < |s|.

• s&t the concatenation of two sequences s, t ∈ Σ∗ ∪ Σ∞. If s ∈ Σ∞, then s&t
def
= s.

Similarly, s&a denotes the concatenation of the sequence s ∈ Σ∗ ∪ Σ∞ with the
unique sequence of length one containing the symbol a ∈ Σ. If the context is clear,
we simply write st instead of s&t.

• v the prefix relation over finite and infinite sequences, which is defined as usual
∀s, t ∈ Σ∗ ∪ Σ∞ : s v t⇔ ∃u : s&u = t.

• @ the true prefix relation, which is defined by ∀s, t ∈ Σ∗∪Σ∞ : s @ t⇔ s v t∧s 6= t.

• s↓i the prefix of the sequence s with length 0 ≤ i ≤ |s| where s↓0 = ε.

• rt(s) the result from removing the first element from a non-empty sequence s.

• a : s the result from prepending the symbol a ∈ Σ to the sequence s ∈ Σ∗ ∪ Σ∞.
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We lift the concatenation operator to sets of finite words as usual: Let Σ be a set. If
A ⊆ Σ∗ and B ⊆ Σ∗ are two sets of finite words, then A&B

def
= {vw | v ∈ A ∧ w ∈ B}

denotes the set of words obtained from the pairwise concatenation of the words contained
in A with the words contained in B. Similarly, if A ⊆ Σ∗ is a set of words and c ∈ Σ,
then A&c

def
= A&{c} and c&A

def
= {c}&A.

1.4.3 Countable Sets

A set C is said to be countable iff there exists an injective function f : C → N. This
thesis uses the following standard results (e.g., [Hal60, End72, Rud76, Kan00]):

• The set of all finite sequences over a countable set is countable.

• Every finite cartesian product of countable sets is countable.

• The union of countably many countable sets is countable.

• The set of all finite subsets of a countable set is countable.

• Every subset of a countable set is countable.

1.4.4 Nondeterministic Finite Automata

Nondeterministic finite automata [RS59, HMU06] are abstract machines that act as
acceptors for finite words over alphabets. An alphabet is a non-empty finite set that
does not contain the empty word ε. The syntax of nondeterministic finite automata
with epsilon-moves is defined as follows:

Definition 1.1. A nondeterministic finite automaton with epsilon moves (NFA) is a
tuple (S,Σ, δ, i, F ) where

• S is a finite set of states,

• Σ is an alphabet,

• δ ⊆ S × (Σ ∪ {ε})× S is a transition relation,

• i ∈ S is an initial state, and

• F ⊆ S is a set of final states.

The epsilon closure of a state in an NFA is the set of all states reachable from the
state in the NFA by only following epsilon-transitions.

Definition 1.2. Let A = (S,Σ, δ, i, F ) be an NFA. The epsilon closure EA(q) of a state
q ∈ S in A is defined as the smallest set that satisfies the following two conditions:
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• q ∈ EA(q)

• ∀p ∈ EA(q) : ∀(s, a, t) ∈ δ : (s = p ∧ a = ε)⇒ t ∈ EA(q).

A run of an NFA A = (S,Σ, δ, i, F ) on a word w = w1, w2, ..., wn is a finite sequence
of states r0, r1, ..., rn ∈ S∗ that satisfies the following three conditions:

1. r0 ∈ EA(i),

2. for all 0 ≤ j < n, there exists r′ ∈ S such that rj+1 ∈ EA(r′) and (rj , wj+1, r
′) ∈ δ,

3. rn ∈ F .

An NFA A accepts a word w iff there exists a run of A on w. The language recognized
by A is defined as L∗(A)

def
= {w ∈ Σ∗ | A accepts w}.

1.4.5 Büchi Automata

Büchi automata [Büc90, Far02, Saf88] are abstract machines that serve as acceptors of
infinite words over alphabets. The syntax of Büchi automata without epsilon-moves as
used in this thesis is similar to the syntax of NFAs:

Definition 1.3. A Büchi automaton (BA) is a tuple (S,Σ, δ, i, F ) where

• S is a finite set of states,

• Σ is an alphabet,

• δ ⊆ S × Σ× S is a transition relation,

• i ∈ S is an initial state, and

• F ⊆ S is a set of final states.

A Büchi automaton B = (S,Σ, δ, i, F ) accepts a word w = w1, w2, ... ∈ Σ∞ iff there
exists an infinite sequence of states s0, s1, ... ∈ S∞ that satisfies the following conditions:

1. s0 = i,

2. (sj , wj+1, sj+1) ∈ δ for all j ∈ N,

3. sj ∈ F for infinitely many j ∈ N.

The language recognized by B is defined as Lω(B)
def
= {w ∈ Σ∞ | B accepts w}.
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1.4.6 Graphs and Trees

A (directed) graph is a tuple (V,E) where V is a set of nodes and E ⊆ V × V is a set of
edges. A walk in a graph (V,E) is a finite sequence of nodes v0, ..., vk with k ≥ 0 such
that (vi−1, vi) ∈ E for all 0 < i ≤ k. A walk v0, ..., vk in a graph G is said to be a walk
from the node s to the node t iff v0 = s and vk = t. A walk v0, ..., vk in a graph G is
called a path iff vi 6= vj for all 0 ≤ i, j ≤ k with i 6= j. A walk v0, ..., vk in a graph G is
called a cycle iff k > 0 and v0 = vk. A graph G is said to be acyclic iff there does not
exist a cycle in G.

A rooted tree is a tuple (V, r, E) where (V,E) is an acyclic graph, r ∈ V is the root
node of the tree, and there exists exactly one path from the root r to every node v ∈ V
in (V,E). A path v0, ..., vk in a tree (V, r, E) is said to be rooted iff v0 = r. A rooted
tree (V, r, E) is said to be infinite iff V is infinite. An infinite branch of a tree (V, r, E) is
an infinite sequence of nodes v0, v1, ... such that v0 = r and (vi, vi+1) ∈ E for all i ∈ N.
If T = (V, r, E) is a rooted tree and (s, t) ∈ E, then s is said to be the parent of the
node t in T and t is said to be a child of s in T . A rooted tree T = (V, r, E) is said to
be finitely branching iff every node s ∈ V has finitely many children in T .

This thesis uses the special case of König’s Lemma [Kön27] for rooted trees:

• Every finitely branching infinite rooted tree with a countable set of nodes contains
an infinite branch.

1.5 Own Related Publications

The results of this thesis are grounded in multiple years of research. Hence, various parts
have been published before this thesis. The previously published contents of this thesis
that are presented in the main sections were developed by the author of this thesis. The
following overviews the publications that are related to the topics of the thesis:

• The semantic differencing method for time-synchronous port automata is presented
in [BKRW17]. A further advanced automaton variant based on time-synchronous
port automata and the identification of an automaton class that enables efficient
semantic differencing is presented in [BKRW19].

• The semantic differencing method for the feature diagram modeling language is
presented in [DKMR19].

• The semantic differencing method for the activity diagram modeling language is
presented in [KR18b].

• The method for automatic model repairs is grounded in the method presented
in [KR18a] for repairing failed model refinements. The model repair framework is
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a generalization of the refinement repair framework presented in [KR18a]. More
specifically, a refinement repair problem is a model repair problem that uses the
property refinement.

• A semantic differencing method for statecharts that model the behavior of object
oriented systems is presented in [DEKR19]. The underlying semantics is based on
mapping statecharts to finite stimulus/reaction traces.

• Achievements, failures, and a possible future for model-based software engineering
are presented in [KRR18]. The publication emphasizes that models need a precise
definition (including syntax and semantics) to be usable for amenable tooling (e.g.,
tooling for semantic differencing).

• A translation from class diagrams to the model checking tool Alloy [Jac06] is pre-
sented in [KMRR17]. The described translation details the translation described
in [MRR11d] and can be used for various semantic class diagram analyses, such as
semantic differencing, as presented in [MRR11e].

• A pre-study on the usefulness of syntactic and semantic differencing operators for
developers is presented in [DKMR20].
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Chapter 2

A Generic Framework for Defining
Modeling Languages

This chapter presents a generic framework for precisely defining modeling languages and
model evolution possibilities.

A generic framework for defining modeling languages is useful for capturing com-
mon concepts that are fundamental components of each modeling language. It enables
the development of concrete modeling language-independent methods for solving model
analysis problems. For instance, the model repair framework introduced in Chapter 7,
the refinement repair framework [KR18a], and the Diffuse framework [MR15, MR18]
abstract from concrete modeling languages.

The central notion of the generic framework for defining modeling languages is the term
“model“. This thesis considers each model to be an abstract representation of (parts of)
a software system. In MDD, models are used constructively to automatically generate
(parts of) an executable software system or are interpreted (executed) in the context
of a running system [Sel03, Sch06, FR07, KRR18]. As sketched in [BC11], a precisely
defined semantics of models is necessary to disable ambiguities in the implementations
of code generation and interpretation procedures.

One major disadvantage of many MDD projects is the lack of precisely defined se-
mantics for the used models. The lack of precisely defined semantics quickly leads to
misconceptions among different stakeholders of the development project [BC11] and may
ultimately result in incorrect system implementations. For example, the UML [BC11,
BMMR12, OMG15] is a modeling language without a precisely defined semantics that
leaves much room for interpretation. A precisely defined semantics not only eliminates
ambiguities of the modeled concepts but also enables the development of methods and
tools for performing semantic model analyses [GJK+13]. Thus, in this thesis, the se-
mantics of models is regarded as a fundamental component of each modeling language.

Models continuously evolve due to iterative development methodologies, changing re-
quirements, and bug fixes [MRR11a]. Therefore, a precise concept for capturing all
model evolution possibilities is necessary for the development of precise model evolution
analyses that incorporate the syntactic changes of models. For this reason, the generic
framework constitutes the notion of change operation. Each change operation describes
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while(a!=x) {

a++;

}
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concrete syntax abstract syntax conceptually reduded

abstract syntax

��, �, �, �, �, �	

well-formedness

well-formed(m)

well-formedness

well-formed‘(m)
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relates

Figure 2.1: The conceptual parts of the complete definition of a modeling language in-
spired by [CGR09, Grö10].

(a part of) an evolution step from a predecessor model version to a successor version. A
set of change operations can be used to describe all model evolution possibilities.

In the following, Section 2.1 introduces the framework for defining modeling languages.
Subsequently, Section 2.2 introduces the notion of change operation. Section 2.3 discusses
the usage of a uniform universe of names for syntactic model elements. Afterwards,
Section 2.4 introduces a template for defining change operations. Finally, Section 2.5
presents related work.

2.1 Modeling Language

Figure 2.1 depicts the conceptual parts of a complete modeling language definition in-
spired by [CGR09, Grö10]. The concrete and abstract syntax are usually defined by
grammars or metamodels [SBPM09, VBD+13, VC15, KRV10, HR17, Bet16]. Tools,
such as EMF Ecore [SBPM09], MontiCore [KRV10, HR17], MPS [VBD+13], Never-
lang [VC15], and Xtext [Bet16], facilitate the definition of the concrete or abstract syntax
of models and often generate tooling for transforming models from their concrete syntax
representation to their representation in the abstract syntax. The conceptually reduced
abstract syntax is a simplified representation that can be derived from the abstract syn-
tax by transforming complex syntactic constructs into simpler syntactic constructs such
that the expressiveness of the modeling language is not reduced. The reduction enables
defining the semantics of models containing complex syntactic constructs by transform-
ing the constructs in the models into simpler constructs for which the semantics can
be more easily defined directly. Thus, focusing on the reduced abstract syntax eases
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the definition of the semantics of models. As sketched in Figure 2.1, the conceptually
abstract syntaxes of the modeling languages presented in this thesis are defined math-
ematically using tuples. The semantic mapping relates each model to elements of the
semantic domain.

The framework defined in this thesis abstracts from the internal syntactic properties
of models and from the technology used to create the models’ syntactic representation.
Therefore, in the sense of this thesis, a precise definition of a modeling language consists
of the definitions of the language’s conceptually reduced abstract syntax, the semantic
domain, and the semantic mapping [HR00, HR04, CGR09, Grö10, GR11].

Definition 2.1. A modeling language L is a tuple L = (M,Sem, sem) where

• M is a non-empty, countable set of models,

• Sem is a set, which is called semantic domain, and

• sem: M → ℘(Sem) is a semantic mapping.

The definition abstracts from the internal details of models by simply assuming that
the set M is a non-empty countable set of models. The set M represents the reduced
abstract syntax of the modeling language. As argued in Section 2.3, the requirement for
countability is not a limitation in practice. In this thesis, the countability assumption is
exploited in Chapter 7 due to the use of König’s Lemma [Kön27] (cf. Section 1.4).

The semantic domain Sem is a set of well-understood mathematical structures. For
modeling languages that are used to describe the behavior of systems, such as state-
charts, activity diagrams, and automata models, the semantic domain is usually a set
that contains all traces of all executions that can be possibly modeled (e.g., [Rum96,
Rin14, BKRW17, KR18b, DEKR19]). The semantic domains for class diagram and
object diagram modeling languages can be chosen as the set of all possible object struc-
tures (e.g., [MRR11e, MRR11f, MRR11d, KMRR17]), which describe objects of a system
and the links between them. A possible semantic domain for a feature diagram model-
ing language is the set of all possible feature configurations (e.g., [AHC+12, DKMR19]),
where each feature configuration is a finite set of feature names.

The semantic mapping sem maps each syntactically well-formed model m ∈ M to
its meaning sem(m), which is a subset of the semantic domain. With this, a semantic
mapping is a translation from an intuitive modeling notation (models) into mathemat-
ically well-understood entities. While models are typically finite in the sense that they
are composed of finitely many modeling elements, the semantics of a model is usually
an infinite set representing the model’s possible realizations. While a model may be
intuitively understandable for developers, the semantics of a model may be (and usually
is) a complex and infinite set that is hard to understand on its own because it does not
reveal the dependencies between its realizations.
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As the semantic mapping is an axiomatic component of every modeling language, a
semantic mapping cannot be proven to be right or wrong. It rather must be chosen
in a way such that it adequately represents (an abstraction of) the real properties of
the modeled system. Nevertheless, argumentations about the semantics, i.e., whether
a semantic mapping adequately represents the reality, are important. The semantics of
the models must adequately represent the real system behaviors as realized by the used
code generators or model interpreters. Otherwise, semantic model analyses may produce
results that are incorrect with respect to the real properties of the system.

With the set-based semantic mapping, it is easy to model underspecification when
interpreting each r ∈ sem(m) as a possible realization of a model m ∈ M [HKR+07].
As models are abstract representations of (parts of) a system, models are usually highly
underspecified and thus permit multiple realizations. If a model does not permit any
realization, then it is inconsistent [HKR+07]:

Definition 2.2. Let L = (M,Sem, sem) be a modeling language. A model m ∈ M is
called consistent in L iff sem(m) 6= ∅.

If L is clear from the context, we say that a model m is consistent instead of saying
that m is consistent in L.

An inconsistent model contains some contradicting constraints in itself [HKR+07]. It
can thus be interpreted to contain some bug, which needs to be fixed to make the model
become meaningful.

The semantic difference from one model to another model is the set of elements in
the semantics of the former model that are no elements in the semantics of the latter
model [MRR11a]:

Definition 2.3. Let L = (M,Sem, sem) be a modeling language. The semantic dif-

ference from a model m ∈ M to a model m′ ∈ M in L is defined as δL(m,m′)
def
=

sem(m) \ sem(m′).

If L is clear from the context, we write δ(m,m′) instead of δL(m,m′) and say that
δ(m,m′) is the semantic difference from m to m′ instead of saying that δ(m,m′) is the
semantic difference from m to m′ in L.

Each element w ∈ δ(m,m′) is called a diff witness [MRR11a] (from m to m′ in L).
Each diff witness represents a concrete proof for a semantic property of the model m
that is no property of the model m′. It thus reveals a difference in the meaning of
the two models. Due to changing requirements and the availability of additional infor-
mation, all the information concerning the possible realizations of a system is usually
not known a priori at the start of the development. The understanding of the system
under development continuously increases. Therefore, developers start modeling highly
underspecified models that capture their knowledge of a system at a certain stage dur-
ing the development process and continuously change the models to incorporate new or
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changed requirements. Semantic model differencing is an important task for developers
to detect bugs and explore design alternatives. Specifically, developers are interested in
the realizations of the successor model version that are no possible realizations of the
predecessor version, and vice versa. Therefore, developers compare two model versions
to detect the semantic difference from the successor version to the predecessor version
and vice versa. When interpreting a model m ∈ M as a successor version of a model
m′ ∈ M , then the set δ(m,m′) contains exactly the elements added to the semantics of
m′ during the evolution to m. Vice versa, δ(m′,m) contains exactly the realizations that
have been removed from the semantics of m′ during the evolution to m.

A semantic differencing operator [MRR11a] for a modeling language is an automati-
cally executable method that takes two models of the language as input and outputs a
finite set of diff witnesses contained in the semantic difference from one of the models to
the other model if at least one exists. Developers can use semantic differencing operators
and review the computed diff witnesses to increase their understanding of the semantic
differences from one model to another model. Part II presents four semantic differencing
operators for four modeling languages.

If additional information about a system under development becomes available, but no
requirement changes, developers refine the models of the system by adequately changing
the models to incorporate the newly obtained information. Then, the set of possible
realizations of each refined model (capturing the available information) should be a subset
of the possible realizations of the model’s predecessor version. A model is a refinement
of another model if the semantics of the former model is a subset of the semantics of the
latter model [HKR+07]. Vice versa, if a model is a refinement of another model, then
the latter model is a generalization of the former model. If two models are refinements
of each other (i.e., they are semantically equivalent), then the two models are called
refactorings of each other.

Definition 2.4. Let L = (M,Sem, sem) be a modeling language and let m,m′ ∈ M be
two models.

• m is called a refinement of m′ in L iff sem(m) ⊆ sem(m′).

• m is called a generalization of m′ in L iff sem(m) ⊇ sem(m′).

• m is called a refactoring of m′ in L iff sem(m) = sem(m′).

If L is clear from the context, we say that a model m is a refinement (respectively
generalization, refactoring) of a model m′ instead of saying that m is a refinement (re-
spectively generalization, refactoring) of m′ in L.

It is generally not the case that for each pair of models, one of the two models is
a refinement, generalization, or refactoring of the other. In practice, most models are
generally not related to each other via one of the three relations.
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From the definition of semantic difference, it directly follows that a model is a refine-
ment of another model iff the semantic difference from the model to the other model is
empty, i.e., it holds that sem(m) ⊆ sem(m′) iff δ(m,m′) = ∅.

If a model is a refinement of another model, all elements in the semantics of the
former are included in the semantics of the latter. Thus, every predicate that holds for
all realizations in the semantics of a model also holds for all realizations in the semantics
of every refinement of the model: More formally, if m ∈ M is a refinement of m′ ∈ M ,
P ⊆ Sem is a predicate on Sem, and it holds that sem(m′) ⊆ P (i.e., all realizations
of m′ satisfy the predicate), then it holds that sem(m) ⊆ P (i.e., all realizations of m
satisfy the predicate). With this interpretation, refinement is alternatively definable over
the satisfaction of semantic predicates.

Proposition 2.1. Let L = (M,Sem, sem) be a modeling language and let m,m′ ∈M be
two models. Then, sem(m) ⊆ sem(m′) iff ∀P ⊆ Sem : sem(m′) ⊆ P ⇒ sem(m) ⊆ P .

Proof. Let L, m, and m′ be given as above.
”⇒”: Assume sem(m) ⊆ sem(m′) holds. Let P ⊆ Sem. If sem(m′) ⊆ P holds, then

it also holds that sem(m) ⊆ P because sem(m) ⊆ sem(m′).

”⇐”: Assume ∀P ⊆ Sem : sem(m′) ⊆ P ⇒ sem(m) ⊆ P holds. Define P
def
= sem(m′).

Using the assumption and sem(m′) ⊆ P , we can derive sem(m) ⊆ P = sem(m′).

The alternative characterization of refinement can be exploited to analyze the evolution
of models during system development. If a successor model version is a refinement of its
predecessor version, then all semantic properties that hold for the predecessor version
also hold for the successor version. Thus, every bug that can be represented by a semantic
property of models that is absent in the predecessor version is guaranteed to be absent
in the refined successor version.

The possibility to check whether a model refines another model is also useful on the
receipt of new requirements. The addition of a new requirement to a set of existing
requirements solely restricts the set of possible realizations: It might be the case that
a new requirement becomes available and a model is changed to a successor version
that is a refinement of its predecessor version and additionally satisfies the predicate
corresponding to the new requirement. Then, the successor version is guaranteed to
satisfy all previously available requirements too.

Vice versa, generalization is a useful property for reducing the examination of the sat-
isfaction of a requirement by a more refined model to the examination of the satisfaction
of the requirement by a more general model. If P ⊆ Sem is a predicate on Sem that the
realizations of a model m should satisfy and m′ is known to be a generalization of the
model m, then it suffices to check whether the realizations of the model m′ satisfy the
property to conclude that the realizations of m also satisfy the property. Analogously,
if two models are refactorings of each other, then their realizations satisfy the same
predicates on the semantic domain.
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If the semantic difference from a model to another model is empty, then a semantic
differencing operator outputs no diff witness. Therefore, if the semantic differencing
operator always outputs a diff witness in the case at least one exists, then the semantic
differencing operator can detect whether one model is a refinement, a generalization, or
a refactoring of another model [MRR11a]. If requirements are represented by models,
the semantic differencing operator can be used to automatically check whether a model
satisfies the requirements.

The development of semantic differencing operators that can automatically detect
refinement for Turing complete languages is impossible because, in general, language
inclusion checking between Turing machines is undecidable [HU69]. In this thesis, we re-
strict our view to modeling languages for which the development of semantic differencing
operators is possible.

2.2 Change Operations and Syntactic Differencing

Change operations describe how models can be changed. In this thesis, a change opera-
tion is a partial function from models to models.

Definition 2.5. Let L = (M,Sem, sem) be a modeling language. A change operation
for L is a partial function o : M ⇀M .

If L is clear from the context, we say that o is a change operation instead of saying
that o is a change operation for L.

Change operations are partial functions because not all possible changes to a model
are meaningful and a change may modify a model such that the result is not well-
formed [KKT13, TELW14, GKLE13, MR15, MR18, KR18a]. For instance, adding a
transition to an NFA that does not contain the transition’s states results in a structure
that is not a well-formed NFA.

Alternatively, it is also possible to model change operations by total functions as
described in [Ste08] (where the term edit is used). There, if the application of a change
to a model would result in an ill-formed model, then the corresponding change operation
would leave the model unchanged. When modeling a change operation as a partial
function, the domain of the change operation explicates the set of models for which the
application of the change operation is meaningful.

A sequence of change operations is called change sequence. Change sequences can be
used for describing steps for changing models. Change sequences can also be used for
tracking model changes, for example, in a version control system.

Definition 2.6. Let L = (M,Sem, sem) be a modeling language and let O be a set of
change operations for L. For all models m ∈ M and all change sequences t ∈ O∗, the
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operator . : M×O∗ ⇀M for applying change sequences is recursively defined as follows:

m . t =


m, if t = ε

⊥, if |t| ≥ 1 ∧ t.0(m) = ⊥
t.0(m) . rt(t), otherwise.

We sometimes write m.t ∈M instead of m.t 6= ⊥ or, equivalently, (m, t) ∈ dom(.).

The application of a change sequence to a model iteratively applies the change opera-
tions contained in the sequence in order. If one of the change operations is not applicable
to the model on which it is applied, then the complete change sequence is not applicable
to the input model. The empty change sequence does not change the input model.

Definition 2.7. A countable set of change operations O is called change operation suite
for L iff each o ∈ O is a change operation for L.

If L is clear from the context, we simply say that O is a change operation suite instead
of saying that O is a change operation suite for L.

Change operation suites are well suited to describe all evolution possibilities for the
models of a modeling language. During development processes, it should be possible
to change every model to any other model. Thus, meaningful change operation suites
provide change operations such that every model can be changed to every other model
by applying change sequences that consist of change operations of the change operation
suite. These change operation suites are called complete.

Definition 2.8. A change operation suite O is called complete iff there exists a function
∆ : M ×M → O∗ such that ∀m,m′ ∈M : m .∆(m,m′) = m′.

The sequence ∆(m,m′) (cf. Definition 2.8) is said to be a syntactic difference from
m to m′. Each function satisfying the above property in Definition 2.8 is said to be a
syntactic differencing operator for L.

Models are usually encoded as finite structures. Hence, syntactic differencing operators
often exist when using adequate change operations suites (cf. [AP03, CRP07, MR18,
TELW14]). Usually, there is no unique syntactic differencing operator for a modeling
language. Meaningful syntactic differencing operators map models to short, or even
shortest, change sequences satisfying the property defined above.

The application of semantic differencing operators is usually computationally expen-
sive. Therefore, when analyzing the semantic differences between two successive model
versions, it is useful to be able to (partially) check whether the successor version refines its
predecessor version by solely analyzing syntactic criteria [Rum96, BHP+98, PR97]. This
automatic check is partially achievable with refinement calculi (e.g., [Rum96, BHP+98,
PR97]). If every change operation in a change sequence changes every model (on which
it is defined) to a refinement of the model, then the change sequence transforms every
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model (on which it is defined) to a refinement of the model. This yields a sufficient,
but not necessary, criterion for checking whether one model refines another model by
analyzing a syntactic difference from the latter model to the former model. Analogous
statements hold for generalizations and refactorings.

Definition 2.9. Let L = (M,Sem, sem) be a modeling language and let o : M ⇀M be
a change operation for L.

• o is said to be refining iff ∀m ∈ dom(o) : sem(o(m)) ⊆ sem(m).

• o is said to be generalizing iff ∀m ∈ dom(o) : sem(m) ⊆ sem(o(m)).

• o is said to be refactoring iff o is generalizing and refining.

Refining change operations are interpretable to be constructive realizations of the cor-
responding modeling language’s refinement relation [Rum96]. Part II presents complete
change operations suites for all modeling languages defined in this thesis. For each change
operation, we analyze whether it is refining, generalizing, or refactoring. As described
in Part III, the change operation properties defined in Definition 2.9 can also be used to
achieve practical performance improvements for automatic model repairs.

Whether a change operation is refining, generalizing, or refactoring can be determined
from the properties of one of its inverse operations:

Definition 2.10. A change operation o is called an inverse of a change operation p iff
∀m ∈ dom(p) : p(m) ∈ dom(o) ∧ o(p(m)) = m.

If an inverse of a change operation is refining, then the change operation is generalizing.
Dually, if the inverse of a change operation is generalizing, then the change operation is
refining. If an inverse of a change operation is refactoring, then the change operation is
also refactoring.

Proposition 2.2. Let L = (M,Sem, sem) be a modeling language and let o, p be two
change operations for L such that o is an inverse of p.

1. If o is generalizing, then p is refining.

2. If o is refining, then p is generalizing.

3. If o is refactoring, then p is refactoring.

Proof. Let L = (M,Sem, sem), o, and p be given as above.

Proof of 1: Assume o is generalizing. Let m ∈ dom(p) be a model. As o is an inverse
of p, it holds that p(m) ∈ dom(o) and o(p(m)) = m. As o is generalizing, it holds that
sem(p(m)) ⊆ sem(o(p(m))) = sem(m). Hence, p is refining.
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Proof of 2: Assume o is refining. Let m ∈ dom(p) be a model. As o is an inverse
of p, it holds that p(m) ∈ dom(o) and o(p(m)) = m. As o is refining, it holds that
sem(m) = sem(o(p(m))) ⊆ sem(p(m)). Hence, p is generalizing.

Proof of 3: Assume o is refactoring. Let m ∈ dom(p) be a model. As o is an inverse
of p, it holds that p(m) ∈ dom(o) and o(p(m)) = m. As o is refactoring, it holds that
sem(m) = sem(o(p(m))) = sem(p(m)). Hence, p is refactoring.

2.3 Universe of Names

Models and change operations usually rely on names. For instance, automata-based
modeling languages use names for states and transition labels. A uniform namespace
enables the definition of meaningful change operations for modeling languages. For
instance, the definition of a change operation for adding a state with a specific name to
a finite automaton requires the knowledge that the name is a possible name for a state.
For this reason, we assume the existence of an infinite set of names used in models. We
use the same set of names for all modeling languages. We further require that the set of
names is countable, which is of theoretical importance for the application of results in the
context of model repairs (cf. Chapter 7) due to the use of König’s Lemma [Kön27]. The
requirement for countability is no restriction from a practical perspective: Developers
introduce and reference model elements with names, which are usually finite strings over
some fixed alphabet, such as the set of all alphanumerical letters (’a’-’Z’, ’0’-’9’). The set
of all finite strings (words) over a finite alphabet is countably infinite (cf. Section 1.4).
Thus, the set of all finite words over the set of all alphanumerical letters, for example,
is an adequate universe of names. In the remainder of this thesis, let UN denote this
countably infinite set of names.

2.4 A Template for Describing Change Operations

The formal definitions of change operations for modeling languages with a complex
syntax are sometimes cumbersome to define and difficult to understand. Therefore,
this section introduces a notational convention for defining change operations by using
an intuitive template. The remainder of this thesis uses this template for defining the
change operations for the modeling languages presented in Part II.

Figure 2.2 illustrates the structure of the template. The change operation-specific
parts are surrounded by curly brackets, consist of italic characters, and are highlighted
in blue. Each template is divided into six sections.

The first section introduces the names of the described change operations and defines
the signatures of the change operations. The second part contains assumptions and is
used to specify the ranges of parameters used by the defined change operations. The
third part consists of a short intuitive explanation of the change operation. The fourth
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{Informal Change operation name} with signature {signature of the change operation}

{Formal identification of the change operation}

↦

{Representation of the output model of the change operation} where {definition of auxiliary

values used in the

representation of the

output model}

Application

Parameters

Explanation

Example

{Assumptions that define the ranges of the parameters of the change operation}

{A short explanation of the change operation}

Domain

{Representation of the input model of the change operation}

{Formal identification 

of the change operation}

{Definition of the domain of the change operation}

Example

input

Model

Example

output

Model

Figure 2.2: The template for defining change operations.

part defines the domain of the defined change operations. The fifth part defines the
effect of applying the change operation. It contains a representation of the input model
(in tuple notation) and a representation of the resulting model after applying the change
operation (in tuple notation). A block introduced with the keyword where defines
auxiliary values that are used in the representation of the resulting model. The sixth
part illustrates an example application of the change operation. The input and output
models are represented in an intuitive graphical notation.

Figure 2.3 depicts an example for the usage of the template where MNFA denotes
the set of all NFAs using state names and transition labels from the universe of names
UN . The first part states that the template defines change operations called transition-
addition operations that have the signature MNFA ⇀ MNFA. The second part intro-
duces the assumption that s, t ∈ UN denote names of states and l ∈ UN denotes a transi-
tion label. The explanation states that the change operation addTs,l,t adds the transition
(s, l, t) to an NFA that contains the states and uses the label. The fourth part defines the
domain of the change operation addTs,l,t as the set of all NFAs that contain the states s
and t in their set of states and the label l in their set of labels. The fifth part defines the ef-
fect from applying the change operation. In this case, if A = (S,Σ, δ, i, F ) ∈MNFA is an
NFA and A ∈ dom(addTs,l,t), then addTs,l,t(A) = (S,Σ, δ′, i, F ) where δ′ = δ ∪{(s, l, t)}.
The sixth part illustrates an example application of a transition-addition operation.
The automata in the example are depicted in a graphical notation. In the example,
the transition-addition operation addTs,a,t is applied to the automaton depicted on the
left-hand side. The automaton on the right-hand side results from applying the change
operation to the automaton that is depicted on the left-hand side.
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Transition-addition operations with signature ���� → ����

����	,�,�

↦

��, Σ, �′, �, ��where �� � � ∪ ���, �, ���
Application

Parameters

Explanation

Example

Let �, � ∈ �� be two state names and let � ∈ �� be a transition label.

The operation ����	,�,� adds the transition ��, �, �� to an NFA, if it contains the states and uses the label.

Domain

��, Σ, �, �, ��

�, Σ, �, �, � ∈ � ! ����	,�,� ⇔ �, � ∈ � ∧ � ∈ Σ

����	,$,�
t

s

�

%

t

s

�

%
�

Figure 2.3: An example template defining NFA change operations.

2.5 Related Work

This section presents related work on the definition of modeling languages (cf. Sec-
tion 2.5.1), syntactic model differencing (cf. Section 2.5.2), and semantic model differ-
encing (cf. Section 2.5.3).

2.5.1 Modeling Language Definition and Variability

The basic principle to represent a modeling language as a tuple of well-formed expressions
(syntax), a semantic domain, and a semantic mapping is presented in [HR00, HR04]. The
use of a set-based semantics for models is proposed in [HKR+07]. In this thesis, models
also have a set-based semantics, which reflects by construction that models are usually
highly underspecified.

Similar definitions of modeling language are used in the context of modeling language
variability [CGR09, GR11, Grö10]. Modeling language variability is concerned with
the possibility to define multiple modeling language variants, define common variants,
and understand the differences and commonalities between different modeling languages.
With this, modeling language variability at least concerns the abstract syntax, the se-
mantic domain, and the semantic mapping of a modeling language. While this thesis
abstract from the concrete syntax of a modeling language, [CGR09, GR11, Grö10] ad-
ditionally considers the concrete syntax of a modeling language as a variation point.
Considering the concrete syntax of a modeling language is not necessary for this thesis.
The language variability framework introduces a methodology to identify commonalities
and differences between languages. This thesis focuses on model evolution analysis.
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The description of syntactic modeling language variability is specialized to the case of
the integrated definition of concrete and abstract syntax with grammars in [BEK+18,
BEK+19]. This thesis abstracts from the technique used to define the abstract syntax
and treats the available models as a possibly infinite set.

The abstract syntaxes of the modeling languages presented in this thesis are defined
mathematically by using tuples. Change operations for the models of the languages are
defined as partial mathematical functions taking a tuple representing a model as input
and outputting a tuple representing the changed model. Alternatively, it could have been
possible to define the syntaxes of the modeling languages with graph grammars or to
define the change operations with graph transformation rules [Nag76, Nag79, AEH+99,
Hec06, EEPT06]. The general mathematical notations using tuples and functions en-
able flexible and compact definitions of the abstract syntaxes and change operations.
Graph grammars and graph transformation rules are special mathematical formalisms
for defining languages of graphs and graph modifications. Thus, using general mathe-
matical notations for defining the syntaxes and change operations enables defining as
least as flexible and compact definitions as enabled by the use of the special formalisms.
If this thesis used graph grammars or graph transformation rules, the definitions could
have been less flexible and less compact. Less flexible and less compact definitions would
have complicated several proofs that are part of this thesis. Nevertheless, the formaliza-
tion of the languages and the transformations by means of graph grammars and graph
transformations is interesting future work.

2.5.2 Syntactic Model Differencing and Change Operations

A modeling language-independent, generic procedure to determine a change operation
suite for a modeling language and to compute the syntactic difference from one model
to another model is described in [AP03]. The derived change operations represent the
addition, deletion, and modification of model elements. The approach abstracts from the
models’ semantics and is neither concerned with refining nor generalizing nor refactoring
change operations.

A method for determining the syntactic difference from a model to another model
by using a model merging language is presented in [EPK06]. The method computes
addition and deletion operations for adding and deleting model elements. Similarly,
another approach where changes are represented by change operations for adding and
removing model elements is presented in [MGH05].

An approach to syntactic differencing that computes change facts that are inter-
pretable to represent syntactic differences in terms of operations for adding, deleting,
moving, and renaming model elements is described in [XS07].

A method for traversing abstract syntax trees for computing the syntactic difference
between models in terms of additions, deletions, and shifts of subtrees of the abstract
syntax tree is presented in [OWK03].
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An approach for the comparison of process models is presented in [KGE09, GKLE10,
GLKE10]. The approach identifies dependencies and conflicts between change opera-
tions. It is tailored towards merging process models. The approach [GLKE10] presents
a method for detecting semantically equivalent process model fragments via comparing
their normal forms. However, it is neither tailored towards detecting two syntactically
different but semantically equivalent (trace equivalent) process models nor towards se-
mantic model differencing.

A survey of model versioning is presented in [BKL+12]. The survey includes syntactic
model differencing and a comparison of various model versioning systems. A survey of
model comparison approaches and their applications is presented in [SC13]. Most of the
approaches presented in the survey focus on the calculation of syntactic similarities and
differences of models.

The idea of refining change operations also appears in [Rum96]. The approach [Rum96]
introduces a refinement calculus based on refining change operations for multiple mod-
eling languages, which all use the system model [Rum96] as the semantic domain.

2.5.3 Semantic Model Differencing

Research in semantic model differencing focuses on the development of language-specific
semantic differencing operators.

Approaches to semantic differencing are enumerative or non-enumerative [LMK14b].
Enumerative approaches compute a single witness or a finite set of witnesses as concrete
proofs for semantic differences. Non-enumerative semantic differencing approaches do
not compute witnesses. Instead, they aim at computing an aggregated description that
summarizes some of the semantic differences (not necessarily all) from one model to
another model. Non-enumerative approaches may present the differences by a model of
the same modeling language or by using another notation.

Related work produced an enumerative semantic differencing operator for class di-
agrams [MRR11e]. The approach uses the set of all possible object structures as the
semantic domain. The semantic mapping maps each class diagram to a (usually infinite)
set of object structures representing the possible data states of systems as modeled in
the class diagram. The semantic mapping used for the class diagram language is config-
urable by using the technique presented in [MRR11f]. The semantic differencing operator
takes two class diagrams as input and returns a finite set of object structures that are
instances of one of the class diagrams and not of the other class diagram. As presented
in [MRR11d, KMRR17], the implementation is based on a reduction to Alloy [Jac06].

An enumerative semantic differencing operator for activity diagrams is presented
in [MRR11b]. The set of models is the set of all valid activity diagrams. The semantic
domain contains all possible finite execution traces over all possible action labels. The
semantic mapping maps each activity diagram to the set of all execution traces of actions
that are modeled by the activity diagram. The semantic differencing operator takes two
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activity diagrams as input and returns a finite set of traces that are modeled in one of
the activity diagrams and not modeled in the other activity diagram. The algorithm is
based on a fixed point calculation inspired by symbolic model-checking [BCM+92].

Another enumerative semantic differencing operator for activity diagrams is presented
in [KR18a]. The approach relies on translating activity diagrams to non-deterministic
finite automata [HMU06]. The translation enables a reduction from semantic differencing
of ADs to language inclusion checking between finite automata. The implementation of
the differencing operator is based on the automaton language inclusion checking tool
RABIT [ACC+11, www20].

An enumerative semantic differencing operator for a feature model language is intro-
duced in [AHC+12]. The set of models is the set of all feature models. The semantic
domain is the set of all possible configurations (sets of feature names). The semantic
mapping maps each feature model to the set of all configurations described by the fea-
ture model. The approach is based on the common closed-world semantics where the
configurations in the semantics of a feature model are required to contain features that
are explicitly used in the feature model. The implementation is based on a translation to
the boolean satisfiability problem. The semantic differencing operator takes two feature
models as input and outputs configurations of one of the feature models that are no
configurations of the other feature model.

A method that can be used for decreasing the computational complexity for semantic
differencing of feature models using the closed-world semantics is introduced in [TBK09].
The method can be exploited to simplify the propositional logic formula used for semantic
differencing based on common clauses of the formulas generated for the individual feature
models. Based on the common clauses, it is possible to split the formula into multiple
smaller formulas. If any of the smaller formulas is satisfiable, then the semantic difference
is not empty.

Another enumerative semantic differencing operator for feature models is presented
in [DKMR19]. As in the approach above, the set of models is the set of all feature
models and the semantic domain is the set of all possible configurations. However, the
semantic mapping of the approach presented in [DKMR19] differs from the semantic
mapping used in the other approach [AHC+12]. In [DKMR19], the semantic mapping
maps each feature model to the set of all configurations that are valid in the feature
model. The approach assumes that a configuration in the semantics of a feature model
may contain features that are not used in the feature model, i.e., features that are not
used in the feature model are considered to be unconstrained. Thus, the semantics
of each feature model is an infinite set if the universe of possible features is infinite.
This semantics is tailored towards feature model evolution analysis in early development
stages [DKMR19]. The semantic differencing operator takes two feature models as input
and returns a finite set of configurations that are valid in the first feature model and
not in the second feature model. The approach also describes a possible implementation
based on a translation to the boolean satisfiability problem.
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An enumerative semantic differencing operator for UML/P statecharts [Rum16] is
presented in [DEKR19]. UML/P statecharts are a statechart variant for describing the
behavior of object-oriented systems [Rum16, Rum17]. The set of models is the set of
all UML/P statecharts. The semantic domain contains all finite behaviors that describe
stimulus/reaction traces [DEKR19]. The semantic mapping maps each statechart to
the (usually infinite) set of all stimulus/reaction traces that it describes. The semantic
differencing operator takes two UML/P statecharts as input and outputs a stimulus/reac-
tion trace that is possible in one of the UML/P statecharts and not in the other UML/P
statechart. The semantic differencing operator reduces semantic differencing for UML/P
statecharts to language inclusion checking for finite automata [HMU06]. The reduction
enables an implementation based on RABIT [ACC+11, www20].

A semantic differencing operator for finite time-synchronous port automata is pre-
sented in [BKRW17]. Finite time-synchronous port automata are an automaton variant
for describing the behavior of interactive systems. The set of models is the set of all
finite time-synchronous port automata. The semantic domain contains all infinite be-
haviors that represent infinite communication histories of messages sent via communi-
cation channels. The semantic mapping maps each automaton to the set of all possible
communication histories that it describes. The semantic differencing procedure takes
two automata as input and returns a finite set of communication histories of the first
automaton that are not communication histories of the second automaton. The op-
erator is based on a reduction to the language inclusion checking problem for Büchi
automata [Büc90, Far02, Saf88]. The implementation is based on the language inclusion
checking tool RABIT.

Similar automata are finite time-synchronous channel automata [BKRW19]. A se-
mantic differencing procedure for these automata and subclasses that enable efficient
semantic differencing are presented in [BKRW19].

A framework for semantic differencing based on behavioral semantics specifications is
presented in [LMK14b]. The framework is instantiated with an activity diagram, a class
diagram, and a Petri net language. However, from [LMK14b] it is not clear whether the
semantic differencing operators always find at least one witness in case one exists. It is
further unclear, whether the framework always detects whether one model is a refinement
of another model in case refinement holds.

An approach to semantic differencing for combinatorial models of test designs is pre-
sented in [TM17]. The models are called combinatorial models. A combinatorial model
consists of parameters, finite value sets (defining possible values for the parameters), and
propositional constraints over the parameters. The semantic domain consists of tuples
of assignments of values to parameters. Each element in the semantic domain is called a
test. The semantics of a combinatorial model is the set of all tests assigning values to pa-
rameters such that the propositional constraints of the combinatorial model are satisfied.
The approach presents semantic differences in the form of strongest exclusions, which
are the smallest (in a special sense) parameter/value combinations that are excluded by
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the constraints of a model. The set of all strongest exclusions can be interpreted to be
an aggregated description of the semantic difference from one combinatorial model to
another combinatorial model. The authors argue that the semantic difference could also
be presented by complete tests [TM17]. However, they state that this presentation has
semantic problems (as it might not be well-defined whether a test that is valid in one
version is valid in another version) and that the number of possible tests in the semantic
difference may be huge [TM17].

Non-enumerative semantic differencing approaches have been applied to feature mod-
els and automata [FLW11] as well as to class diagrams [FALW14]. Non-enumerative se-
mantic differencing approaches present the semantic difference from a model to another
model by a model of the respective same language. The approaches rely on composition
operators. A differencing result is interpretable as a quotient resulting from dividing the
one model by the other model. Composing the one input model with the quotient yields
a model that has no semantic differences to the other input model.
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Chapter 3

Finite Time-Synchronous Port Automata

Interactive systems consist of multiple software components that cooperate and exchange
information with each other to perform a complex task [BS01, Rin14]. Cyber-physical
systems are interactive systems that consist of software distributed on different comput-
ing devices interacting with each other as well as with physical processes via sensors and
actuators [Lee08, Alu15]. This section focuses on a modeling language for specifying the
behavior of interactive systems while focusing on modeling the software part. Interac-
tive systems are developed in different domains, such as automotive, avionics, consumer
electronics, or robotics. Due to the complexity of interactive systems, their development
is difficult, costly, and error-prone [BS01].

Focus [BS01, Bro10, RR11] is a framework that provides formal foundations for
modeling and specifying the semantics of interactive systems. In Focus, an interactive
system is modeled with components that exchange messages via well-defined communi-
cation channels. The behavior of an interactive system is characterizable by the history
of messages that are received and sent by the system. Stepwise refinement (e.g., [BS01])
is a development methodology for the controlled evolution of software components. Each
successor component version must be a refinement of its predecessor version. Thus, the
development process starts with highly underspecified components that are iteratively
refined until obtaining a correct-by-construction system implementation. Automated
semantic differencing greatly facilitates stepwise refinement methodologies by enabling
to automatically check whether a successor version is a refinement of its predecessor
version [BKRW17, BKRW19].

A finite time-synchronous port automaton (TSPA) is a finite automaton variant se-
mantically grounded in the Focus theory for describing the behavior of interactive
components participating in logically timed interactive systems [BKRW17, BKRW19].
For instance, Figure 3.1 depicts the graphical notation of the TSPA switch inspired by
a similar example from [Rin14]. As usual, states are represented as labeled circles. The
initial state is marked with an arrow originating from a filled, black dot. The TSPA con-
sists of the states on and off, where the state on is the initial state of the TSPA. It has
exactly one input channel btn and one output channel sig. Both channels are of type
{ξ, t, f}. Communicating the empty pseudo-message ξ via a channel during a time unit
represents that no message is present on the channel during the time unit. The message
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off on

TSPA switch

btn: �	/	sig: �btn: �	/	sig: �

btn: �	/	sig: �

btn: �	/	sig: �

btn sig

���	 btn = ���	 sig = {�, �, �}

initial state marker

state named on

transition

input channel btn

output channel sig

channel types

btn: �	/	sig: � btn: �	/	sig: �

Figure 3.1: The TSPA switch models the behavior of a toggle switch.

t represents the value true and the message f represents the value false. Transitions
are represented by directed arrows between states. Each transition is labeled with its
channel valuation. The TSPA switch models the behavior of a toggle switch. The
message t received via the channel btn represents that the button has been pressed.
The message f received via the channel btn represents that the button has not been
pressed and the message ξ represents that no message is available. The TSPA indicates
whether the switch is turned on or off by sending messages via the channel sig. When
the TSPA is in the state off and receives the message ξ or the message f , then it stays
in state off and outputs the message f via channel sig. If the TSPA is in the state
off and the button is pressed, then the TSPA switches to state on and outputs t via
its output channel. The TSPA behaves analogously in the state on.

In time-synchronous [BS01, Bro10, RR11, BKRW17, BKRW19, GR95] systems, the
execution of components is divided into logical time units. A time unit represents an ab-
stract modeling concept. Component implementations may be unaware of time, perform
their computations in local time units, or even synchronize their executions with each
other. In each time unit, each component (TSPA) receives exactly one message on each of
its input channels, executes finitely many computations, and eventually outputs exactly
one message via each of its output channels. TSPAs are an adequate formal abstract syn-
tax for finite, discrete, logically timed, interactive systems that can be modeled, for ex-
ample, with AutoFocus [HF10, AVT+15], EmbeddedMontiArc [KRRvW17, KRSvW18],
MontiArc [HRR12, Hab16], MontiArcAutomaton [Rin14, Wor16, BKRW17, BKRW19],
and SysML’s [OMG17] internal block diagrams.

The individual TSPAs in a system interact with each other via messages communicated
on typed channels. This thesis focuses on syntactic and semantic differencing as well as
the repair of single TSPAs (cf. Chapter 8). We refer to related work [GR95, BKRW17,
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BKRW19] for a discussion on the syntactic composition of TSPA and the composition
of the semantics of TSPAs. Semantic differencing operators for systems composed of
multiple automata are presented in [BKRW17, BKRW19].

This chapter is based on previous work [BKRW17, BKRW19], where we introduced
finite TSPAs and a semantic differencing operator for TSPAs. In the following, Sec-
tion 3.1 introduces the syntax of TSPAs. Then, Section 3.2 defines the semantics of
TSPAs. Section 3.3 presents a semantic differencing operator for TSPAs. Afterwards,
Section 3.4 introduces change operations for TSPAs. Section 3.5 introduces the TSPA
modeling language. Section 3.6 discusses related work.

3.1 Time-synchronous Port Automata Syntax

TSPAs interact with their environments by sending and receiving messages via typed
channels. In the remainder of this section, let M ⊆ UN be a fixed set of messages that
contains a special element ξ ∈M. The special element ξ ∈M is called pseudo message
as it models the mathematical concept of the absence of a message.

A type is a set of messages that contains the empty message. Let Type denote a fixed
non-empty set of data types where each type t ∈ Type satisfies t ⊆M and t ∈ ξ. Types
facilitate restricting the possible messages that are allowed to be sent via a channel. For
example, a type that contains the boolean values and the empty message can be defined
by Bool

def
= {true,false, ξ}.

A channel is a communication link between components. Each channel has a unique
name. In the following, let C ⊆ UN denote a set of channel names. The function
type : C → Type maps each channel c ∈ C to its type type(c).

The input and output channels of a component are described by a channel signature.
A channel signature is a tuple (I,O) where I ⊆ C and O ⊆ C with I ∩ O = ∅ are
non-empty, finite, disjoint sets of input and output channels.

A channel assignment a ∈ B→ over a set of channels B ⊆ C is an element of the set
B→

def
= {a : B → M | ∀c ∈ B : a(c) ∈ type(c)}. A channel assignment over a set of

channels maps each channel to a message of its type. Channel assignments describe the
messages communicated via a set of channels during a time unit. For example, if a, b, c ∈
C are channels that are typed with booleans, then type(a) = type(b) = type(c) = Bool.
A channel assignment for the set of channels α = {a, b, c} is {a : true, b : false, c : ξ}.
The channel assignment α maps the channel a to the message true, the channel b to
the message false, and the channel c to the message ξ.

A TSPA specifies the behavior of (an excerpt of) an interactive system [BKRW17,
BKRW19]. A TSPA can also model a component’s implementation. We assume a
white-box viewpoint on the components of an interactive system architecture [BKRW17,
BKRW19] where the internals of component implementations and specifications are avail-
able. All component specifications and implementations are represented by TSPAs.
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Definition 3.1. A (finite) TSPA is a tuple A = (Σ, S, ι, δ) where

• Σ = (I,O) is a channel signature,

• the type type(c) of each channel c ∈ I ∪O is finite,

• S ⊆ UN is a finite set of states,

• ι ∈ S is the initial state,

• δ ⊆ S × (I ∪O)→ × S is the transition relation, and

• ∀s ∈ S : ∀i ∈ I→ : ∃(u, a, v) ∈ δ : u = s ∧ a|I = i, i.e., the TSPA is reactive.

We denote by MPA the set of all TSPAs. We sometimes write (I,O, S, ι, δ) instead of
((I,O), S, ι, δ) if it is clear from the context that ((I,O), S, ι, δ) is a TSPA. The states
of a TSPA define its internal data states. A TSPA starts in its initial state. It receives
inputs via its input channels and emits outputs via its output channels. The reactions of
a TSPA are defined by its transition relation. The transition relation defines the possible
outputs and internal state changes of the TSPA, depending on its current state and input.
The last condition in Definition 3.1 requires TSPAs to be reactive. Reactivity states that
for every state and every input, the TSPA defines at least one transition that is enabled
for the input in the state. This condition ensures that TSPAs are adequate models for
components [BKRW17, BKRW19]: A component must not block its environment and
must be able to react to every possible input in every time unit [BKRW17, BKRW19].

For example, the TSPA switch, which is graphically depicted in Figure 3.1, can be
formally defined by the tuple (Σ, S, ι, δ) with

• the channel signature Σ = (I,O) where I = {btn} and O = {sig},

• the set of states S = {off,on},

• the initial state ι = off, and

• the transition relation δ = (off, {btn : ξ,sig : ξ},off), (off, {btn : f,sig :
ξ},off), (off, {btn : t,sig : t},on), (on, {btn : ξ,sig : t},on), (on, {btn :
f,sig : t},on), (on, {btn : t,sig : ξ},off)}) where

• type(btn) = type(sig) = {ξ, t, f}.

3.2 Time-synchronous Port Automata Semantics

This section defines a semantics for TSPAs based on sets of communication histories.
Each communication history in the semantics of a TSPA corresponds to a complete
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observation of the messages sent on the TSPA’s channels during an execution. Alter-
natively, the semantics for TSPAs can be defined by sets of stream processing func-
tions [GR95, BKRW17]. Each stream processing function in the semantics of a TSPA
represents a deterministic implementation of the TSPA. Each stream processing function
is an infinite mathematical structure that contains a communication history for every
possible input. A single stream processing function is hardly presentable to users and is
no easily comprehensible diff witness. In contrast, single communication histories clearly
reveal a difference and are adequate diff witnesses. Hence, this thesis uses a semantic
domain based on communication histories instead of a semantic domain based on stream
processing functions. However, a semantic mapping based on stream processing functions
is more fine-grained than a semantic mapping based on communication histories [RR11].
Refinement under the stream processing function semantics implies refinement under the
communication history semantics but not vice versa. Thus, although a TSPA A may
be a refinement of a TSPA B under the communication history semantics, the TSPA
A might be no refinement of the other TSPA B under the stream processing function
semantics. However, if a TSPA A is not a refinement of a TSPA B under the commu-
nication history semantics, then it is also guaranteed that A is not a refinement of B
under the stream processing function semantics [BKRW17]. Thus, the communication
history semantics can also be used as a sound heuristic for refinement checking under
the stream processing function semantics.

In each time unit, a TSPA receives exactly one message via each of its input channels,
performs one state change by executing one transition that is enabled by its inputs,
and outputs exactly one message as defined by the transition via each of its output
channels. Components continuously receive messages via their input channels and emit
messages via their output channels. The history of messages processed by a channel of a
component is thus describable by a stream that contains messages in the order of their
transmission [BS01, Bro10, BKRW17]. A stream over a non-empty set M is an infinite
sequence s ∈M∞.

A communication history over a channel signature describes the streams of messages
communicated via the signature’s input and output channels. Each message sent via a
channel must be well-typed, i.e., an element of the channel’s type.

Definition 3.2. A communication history over a channel signature Σ = (I,O) is an
infinite stream ((I ∪O)→)∞.

For every channel signature Σ, we denote by ΣΩ the set of all communication histories
over Σ. Every communication history over a channel signature is a function that maps
time units to channel assignments where every channel assignment maps the channels of
the signature to messages of their types. If Σ = (I,O) is a channel signature, then the set
of communication histories ΣΩ is isomorphic to the set F = {f : (I ∪O)→M∞ | ∀c ∈
I ∪ O : f(c) ∈ type(c)∞}, i.e., the set of communication histories is isomorphic to the
set of all functions mapping channels to streams of messages of the channels’ types. For
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example, let {a, b, c} ∈ C be three channels that are typed with the boolean values, i.e.,
type(a) = type(b) = type(c) = {true,false, ξ}. Assume that Σ = ({a}, {b, c}) is a
channel signature with the input channel a and the output channels b and c. Then,
({a : true, b : false, c : ξ}, {a : false, b : false, c : false})∞ is a communication
history over Σ.

An execution of a TSPA starts in the TSPA’s initial state. In each time unit, the
TSPA receives one message on each of its input channels, performs one state change by
taking a transition that is enabled by the inputs and outputs one message on each of its
output channels as defined by the transition.

Definition 3.3. An execution σ = s0, θ0, s1, θ1, ... of a TSPA A = (Σ, S, ι, δ) is an
infinite alternating sequence of states and channel valuations such that s0 = ι and
(si, θi, si+1) ∈ δ for all i ∈ N.

The communication history his(σ) produced by an execution σ = s0, θ0, s1, θ1, ... is
defined as the communication history θ0, θ1, ... containing the channel assignments of σ.

We denote by execs(A) the set of all executions of a TSPA A. The executions of a
TSPA comprise its internal behaviors, which are invisible to its environment. Commu-
nication histories represent executions from a black-box viewpoint by abstracting from
the internal state changes. The semantics of a TSPA are all communication histories
produced by its executions.

Definition 3.4. Let A be a TSPA. The semantics JAKPA of the TSPA A is defined as

the set JAKPA def
= {his(σ) | σ ∈ execs(A)} of all communication histories produced by the

executions of A.

An example execution of the TSPA switch depicted in Figure 3.1 is given by σ =
(off, {btn : t,sig : t},on, {btn : t,sig : ξ})∞. The communication history produced
by the execution is given by ({btn : t,sig : t}, {btn : t,sig : ξ})∞. The communica-
tion history is produced by the execution that occurs when the switch is continuously
pressed in each time unit.

3.3 Semantic Differencing of Time-synchronous Port Automata

The semantic difference from a TSPA to another TSPA is the set of all communica-
tion histories produced by the executions of the former TSPA that are no commu-
nication histories produced by the executions of the latter TSPA. This section intro-
duces a semantic differencing operator for TSPAs based on the procedure previously
published in [BKRW17]. The procedure reduces semantic differencing of TSPA to the
language inclusion checking problem for BAs, which is a well-known decidable prob-
lem [Büc90, Far02, Saf88]. To this effect, two TSPAs are translated to BAs, before it is
checked whether the language recognized by one of the BAs is a subset of the language
recognized by the other BA. The following defines the translation from TSPAs to BAs.
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Definition 3.5. Let A = (Σ, S, ι, δ) with Σ = (I,O) be a TSPA. The BA ba(A) associ-

ated with the TSPA A is defined as ba(A)
def
= (S, (I ∪O)→, δ, ι, S) with

• the set of states S,

• the alphabet (I ∪O)→,

• the transition relation δ,

• the initial state ι, and

• the set of accepting states S.

Im Definition 3.5, the TSPA A is interpreted as a BA where all states are accepting.
The BA ba(A) is well-defined: The set of states S is finite. As I and O are finite, the
set I ∪ O is finite. As further type(c) is finite for each channel c ∈ I ∪ O, it holds that
(I ∪ O) ×

⋃
c∈I∪O type(c) is finite. Therefore, it especially holds that (I ∪ O)→ is finite

because (I ∪O)→ ⊆ (I ∪O)×
⋃
c∈I∪O type(c). Further, as S and (I ∪O)→ are finite, the

set δ ⊆ S × (I ∪O)→ × S is also finite.
For every communication history in the semantics of a TSPA, there is a unique word

that represents the communication history in the language recognized by the BA asso-
ciated with the TSPA. Vice versa, for every word in the language recognized by a BA
associated with a TSPA, there is a unique communication history representing the word.

Proposition 3.1. Let A = (Σ, S, ι, δ) be a TSPA. Then, JAKPA = Lω(ba(A)).

Proof. Let A = (Σ, S, ι, δ) be a TSPA where Σ = (I,O) and let ba(A) = (S, (I ∪
O)→, δ, ι, S) be the BA associated with A.

”⊆”: Let σ = s0, θ0, s1, θ1, ... be an execution of A. By definition of execution, it holds
that (si, θi, si+1 ∈ δ) for all i ∈ N and s0 = ι. As further all states of ba(A) are accepting,
the BA ba(A) accepts the word θ0, θ1, ... = his(σ). Thus, his(σ) ∈ Lω(ba(A)).

”⊇”: Let σ = θ0, θ1, ... ∈ Lω(ba(A)). Then, there exists an infinite sequence of states
s0, s1, ... ∈ S∞ such that s0 = ι, (sj , wj , sj+1) ∈ δ for all j ∈ N, and sj ∈ S for infinitely
many j ∈ N. This directly implies that e = s0, θ0, s1, θ1, ... ∈ execs(A) is an execution
of A. Thus, σ = his(e) ∈ JAKPA.

Proposition 3.1 enables reducing semantic differencing of TSPAs to language inclusion
checking between BAs. A TSPA A is a refinement of a TSPA B iff the language rec-
ognized by the BA ba(A) associated with the the TSPA A is a subset of the language
recognized by the BA ba(B) associated with the TSPA B. As the language inclusion
checking problem for BAs is a well-known decidable problem [Büc90, Far02, Saf88], this
yields a semantic diff operator for the TSPA modeling language: Let A1 and A2 be two
TSPAs. To check whether δ(A1, A2) = ∅, we construct the BAs ba(A1) and ba(A2) and
check whether Lω(ba(A1)) ⊆ Lω(ba(A2)). If the BA language inclusion procedure yields
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represents least significant bit of binary number
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Figure 3.2: The three TSPAs mod4Ctr, threeCtr, and reset. The TSPAs mod4Ctr
and threeCtr represent implementations with incomparable semantics.
Both implementations are refinements of the TSPA reset modeling a highly
underspecified specification.

a word w ∈ Lω(ba(A1)) \Lω(ba(A2)) in case language inclusion does not hold, this word
can be returned as a diff witness for the semantic difference from A1 to A2.

Semantic differencing of TSPAs facilitates developers in understanding the evolution
of the behaviors modeled by two TSPA versions. It can further be used as an automatic
method to check whether a TSPA satisfies a specification modeled with another TSPA.

For instance, the left-hand side of Figure 3.2 depicts the three TSPAs mod4Ctr,
threeCtr, and reset in their graphical notations inspired by the model from [Fuc95,
BKRW19]. Each TSPA has the input channels inc and res as well as the output
channels lsb and msb. All channels are of type {ξ, t}, where the empty pseudo-message
ξ represents the absence of a message during a time unit and the message t (true)
represents the presence of a message. The transition table on the right-hand side of
Figure 3.2 defines the channel valuations of the transitions of the TSPAs mod4Ctr and
threeCtr. For instance, the TSPA mod4Ctr has a transition labeled inc0 starting in
the state 0 and ending in the state 1. The tuple (0, {inc : t, res : ξ, lsb : t,msb : ξ}, 1)
formally represents this transition.
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The TSPA mod4Ctr represents the implementation of an interactive modulo-4-counter.
Its states represent the counter’s possible values. In each time unit, it outputs the
counter’s updated value in binary representation via the output channels lsb and msb.
For example, the output channel valuation {lsb : ξ,msb : t} represents the value two
and the output channel valuation {lsb : t,msb : t} represents the value three. Indepen-
dent of the message the TSPA receives via the channel inc, it resets its value when it
receives the message t via channel res and outputs the representation of its updated
value zero. If the TSPA receives the message t via channel inc and the message ξ via
channel res, then it updates the counter’s value to its current value plus one modulo
four and outputs the representation of the updated value. Otherwise, if it receives ξ via
both of its input channels, it does not change its state and outputs the counted value.

The TSPA threeCtr behaves similar to the TSPA mod4Ctr. The difference is that
it does not change its value when it is in the state 3 and receives the instruction to
increment the counter. Semantic differencing reveals exactly this difference. Applying
our semantic differencing operator reveals that the two TSPAs have incomparable se-
mantics. On the one hand, semantic differencing reveals that ({inc : t, res : ξ, lsb :
t,msb : ξ}, {inc : t, res : ξ, lsb : ξ,msb : t}, {inc : t, res : ξ, lsb : t,msb : t}, {inc : t, res :
ξ, lsb : ξ,msb : ξ})∞ is a possible communication history of the TSPA mod4Ctr that
is no possible communication history of the TSPA threeCtr. Vice versa, semantic
differencing reveals that {inc : t, res : ξ, lsb : t,msb : ξ}, {inc : t, res : ξ, lsb : ξ,msb :
t}&({inc : t, res : ξ, lsb : t,msb : t})∞ is a possible communication history of the TSPA
threeCtr that is no possible communication history of the TSPA mod4Ctr.

The TSPAs mod4Ctr and threeCtr define exactly one transition for each state
and input channel valuation combination. Thus, they are interpretable as deterministic
implementations. In contrast, the TSPA reset is highly underspecified, as it defines
multiple transitions with the same input channel valuation originating from its state.
Its communication histories model the specification that the counter must output the
representation of the value zero whenever it receives the message t via the input chan-
nel res. Its communication histories are all possible communication histories where
the values on the output channels represent the value zero whenever the value on the
channel res is equal to t. It is possible to check whether an implementation satisfies
this specification by checking whether the semantic difference from the implementation
to the specification is empty. Using our semantic differencing operator reveals that both,
the semantic difference from the TSPA mod4Ctr to the TSPA reset and the semantic
difference from the TSPA threeCtr to the TSPA reset, are empty. Therefore, the
implementations modeled with the TSPAs mod4Ctr and threeCtr both satisfy the
specification modeled with the TSPA reset.
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TSPA #States #Transitions

aut1 2 4
aut2 2 4
impl 5 20
spec 2 98

mod4Ctr 4 13
threeCtr 4 13
reset 1 10

Figure 3.3: The number of states and transitions of the TSPAs used for the semantic
differencing experiments.

Semantic Differencing Implementation and Experiments

We implemented the semantic differencing operator for TSPAs to perform experimental
evaluations. The implementation is written in Java and uses the automaton language
inclusion checking tool RABIT1 [ACC+11] for BA language inclusion checking. The
implementation of the semantic differencing operator takes two TSPAs as inputs. It
translates the TSPAs into BAs according to the translation described above and outputs
the BAs in the BA format, which is the input format of RABIT. Subsequently, the
implementation uses the tool RABIT for language inclusion checking of the BAs. In case
language inclusion does not hold, RABIT provides a counterexample, which is returned
as a diff witness.

We performed experimental evaluations with seven example TSPAs. Appendix A
presents the example TSPAs in detail. Figure 3.3 summarizes the sizes of the TSPAs
in terms of the numbers of states and transitions of the TSPAs. By construction of the
translation from TSPAs to BAs, each BA resulting from translating a TSPA has the
same numbers of states and transitions.

We executed the semantic differencing operator for all pairs of example TSPAs that
are thematically related. All experiments were executed on a laptop computer with an
Intel Core i7-8650U CPU @ 1.90GHz processor, 16GB RAM, and a Samsung PM981
512GB SSD hard drive using Windows 10 and Java 1.8.0 192.

Figure 3.4 summarizes the computation times of the semantic differencing operator
and presents the computed diff witnesses for the input pairs. If no witness exists, i.e.,
refinements holds, then the corresponding cell in the table contains the symbol -. If
Appendix A defines an abbreviation for a channel assignment, then the channel assign-
ment is represented by its abbreviation in the witnesses to save space. For instance,
the semantic differencing operator took 113ms to detect that the TSPA threeCtr is
a refinement of the TSPA reset. The semantic differencing operator took 140ms to

1http://languageinclusion.org/
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Difference Time Diff witness

δ(aut1,aut1) 125ms -
δ(aut1,aut2) 127ms {i : ξ,o : 1}∞
δ(aut2,aut1) 150ms {i : ξ,o : ξ}∞
δ(aut2,aut2) 149ms -
δ(impl,impl) 163ms -
δ(impl,spec) 196ms (emg1,emgOff2)&fwd∞

δ(spec,impl) 176ms {lMot : FORWARD,rMot : FORWARD,bump : PRESSED,emgStp : PRESSED}∞
δ(spec,spec) 140ms -
δ(mod4Ctr,mod4Ctr) 126ms -
δ(mod4Ctr,threeCtr) 140ms (inc0,inc1)&(inc2,inc3,inc0,inc1)∞

δ(mod4Ctr,reset) 128ms -
δ(threeCtr,mod4Ctr) 135ms (inc0,inc1)&inc2∞

δ(threeCtr,threeCtr) 119ms -
δ(threeCtr,reset) 113ms -
δ(reset,mod4Ctr) 118ms nop1∞

δ(reset,threeCtr) 111ms nop1∞

δ(reset,reset) 108ms -

Figure 3.4: The time needed by the semantic differencing operator for semantic differ-
encing of the pairs of example TSPAs.

compute the diff witness (inc0,inc1)&(inc2,inc3,inc0,inc1)∞ in the semantic
difference from mod4Ctr to threeCtr.

For the examples, the computation times range from 108ms to 196ms. We conclude
that the implementation handles the example TSPAs sufficiently quick. However, the
example TSPAs are relatively small in terms of the numbers of states and transitions
used in the TSPAs. Therefore, the results are not generalizable to large TSPAs and
real world examples, especially because language inclusion checking between BAs is, in
general, computationally hard.

3.4 Time-synchronous Port Automata Change Operations

This section defines the change operations for a complete TSPA change operation suite.
Some of the change operations are neither refining nor generalizing. Although these
change operations are irrelevant for developers to constructively refine or generalize mod-
els, the change operations are necessary to obtain a complete change operation suite.
The completeness of the change operation suite is required for the model repair frame-
work presented in Chapter 7 and the framework’s instantiation presented in Chapter 8.
If a change operation is refining or generalizing, then it is possible to incorporate perfor-
mance improvements into algorithms that compute solutions (cf. Section 7.5) for special
model repair problems as introduced in Section 8.1.

Figure 3.5 overviews the different change operations. Adding a non-existing state
(cf. No. 1) is a refactoring operation. State-deletion operations (cf. No. 2) are refining.
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No. Operation Refining Generalizing
1. Adding a non-existing state 3 3
2. Deleting a state, if reactivity is preserved 3 7
3. Adding a transition with a specific label 7 3
4. Deleting a transition with a specific label 3 7
5. Adding an input channel 7 7
6. Adding an output channel 7 7
7. Deleting a channel 7 7
8. Changing the initial state to another existing state 7 7

Figure 3.5: TSPA change operations and their properties.

The addition of a transition with a specific label (cf. No. 3) is a generalizing operation.
Vice versa, transition-deletion (cf. No. 4) operations are refining. In general, the opera-
tions for adding and deleting channels (cf. No. 5, 6, 7) are neither refining nor generalizing
because they can completely change the communication histories of a TSPA. Similarly,
operations for changing the initial state (cf. No. 8) are neither refining nor generalizing
because they may completely change the communication histories of a TSPA.

3.4.1 State-Addition Operations

State-addition operations with signature ��� ⇀ ���

�����

	, �, �, �,  	∈ ��� ����� ⇔ � ∉ �

↦

�	, �, �′, �, ′� where �� � � ∪ �
� �  ∪ �, �, � 	 	� ∈ 	 ∪ � →�

Application

Explanation

Example

Let � ∈ �� be a state name.

The operation ����� adds the state � to a TSPA that does not contain the state.

Domain

	, �, �, �, 

 !"# $ �  !"# � � %&, 1�

$

$: & /

�: &
$: 1 / �: &

$: 1 / �: 1

off

on

$: & / �: 1

�
����� s

$: 1 / �: &

$: 1 / �: 1

$: & / �: 1

$: & / �: &

$ �

Parameters

$: & /

�: &
$: 1 / �: &

$: 1 / �: 1

off

on

$: & / �: 1

Figure 3.6: State-addition operations addSs for all state names s ∈ UN .

Figure 3.6 defines the state-addition operations. Each state-addition operation addSs
is parametrized with a name s ∈ UN representing a state name. On the application of
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the state-addition operation addSs to a TSPA, the state s and a transition from the
state to itself for each possible channel valuation of the TSPA’s channels are added to
the TSPA. To explicate that used states cannot be added, the operation is applicable to
a TSPA iff the state s does not exist in the TSPA. Thus, an already defined state cannot
be added. In the example application (Figure 3.6), the state s is added to the TSPA.

Adding a state to a TSPA yields a TSPA where the newly added state is isolated,
i.e., it cannot be reached by the initial state. Thus, the resulting TSPA has the same
executions as the original TSPA. As this implies that the semantics of the TSPAs contain
the same behaviors, state-addition operations are refactoring:

Proposition 3.2. Let addSs be a state-addition operation and let A ∈MPA be a TSPA
such that addSs is applicable to A. Then, JaddSs(A)KPA = JAKPA.

Proof. Let s ∈ UN , addSs, and A = (I,O, S, ι, δ) ∈MPA be given as above.

”⊆”: Let σ ∈ JaddSs(A)KPA be a communication history. Then, there exists an ex-
ecution e = s0, θ0, s1, θ1, ... ∈ execs(addSs(A)) such that his(e) = σ. By definition of
execution, it holds that s0 = ι and (sj , θj , sj+1) ∈ δ ∪ {(s, a, s) | a ∈ (I ∪ O)→} for all
j ∈ N. As the state s is not reachable from the initial state of addSs(A), no state in the
execution e is equal to s, i.e., it holds that sj 6= s for all j ∈ N. Therefore, it holds that
(sj , θj , sj+1) ∈ δ for all j ∈ N. As further s0 = ι, we have that e is an execution of A.
Therefore, σ = his(e) ∈ JAKPA.

”⊇”: Let σ ∈ JAKPA be a communication history. Then, there exists an execution
e = s0, θ0, s1, θ1, ... ∈ execs(A) such that his(e) = σ. By definition of execution it holds
that s0 = ι and (sj , θj , sj+1) ∈ δ for all j ∈ N. As each state of A is also a state of
addSs(A) and each transition of A is also a transition of addSs(A), we can conclude that
e is also an execution of addSs(A). Thus, σ = his(e) ∈ JaddSs(A)KPA.

3.4.2 State-Deletion Operations

Figure 3.7 defines the state-deletion operations. Each state-deletion operation delSd is
parametrized with a name d ∈ UN representing a state name. On the application of the
state-deletion operation delSd to a TSPA, the state d as well as all transitions using the
state are removed from the TSPA. The operation is applicable to a TSPA iff the state to
delete is not the initial state and deleting the state yields a TSPA that is reactive. This
condition ensures the well-formedness of the resulting TSPA. In the example application
(Figure 3.6), the state d is deleted from the TSPA.

The deletion of a state from a TSPA yields a TSPA with a state set that is a subset
of the original TSPA’s state set and a transition set that is a subset of the original
TSPA’s transition set. The initial state remains unchanged. Thus, each execution of
the resulting TSPA is also an execution of the original TSPA. Therefore, state-deletion
operations are refining:
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State-deletion operations with signature ��� ⇀ ���

����	


, �, �, , � 	∈ ��� ����	 ⇔ � ∈ � ∖  ∧
∀� ∈ � ∖ � : ∀� ∈ 
→: ∃ �, �, � ∈ �, �, � ∈ �	 	� � � ∧ � � � : � ! � ∧ �|
 ! �

↦

$
, �, �′, , �′& where �' ! � ∖ �
�' ! �, �, � ∈ �	 	� � � ∧ � � � 

Application

Explanation

Example

Let � ∈ () be a state name.

The operation ����	 deletes the state � from a TSPA, if reactivity of the TSPA is preserved.

Domain


, �, �, , �

*+,� � ! *+,� � ! -., 1 

����	
� �

Parameters

�

�: . /

�: .
�: 1 / �: .

�: 1 / �: 1

off

on

�: . / �: 1

�

�: . /

�: .
�: 1 / �: .

�: 1 / �: 1

off

on

�: . / �: 1

d

�: 1 /

�: .

�: . / �: 1

�: . /

�: .

�: . / �: 1

�: . / �: .

Figure 3.7: State-deletion operations delSd for all state names d ∈ UN .

Proposition 3.3. Let delSd be a state-deletion operation and let A ∈MPA be a TSPA
such that delSd is applicable to A. Then, JdelSd(A)KPA ⊆ JAKPA.

Proof. Let d ∈ UN , delSd, and A = (I,O, S, ι, δ) ∈ MPA be given as above. Let
σ ∈ JdelSd(A)KPA be a communication history. Then, there exists an execution e =
s0, θ0, s1, θ1, ... ∈ execs(delSd(A)) of delSd(A) such that his(e) = σ. As delSd(A) and
A share the same initial state and each state of delSd(A) is also a state of A and each
transition of delSd(A) is also a transition of A, we can conclude that e is also an execution
of A. Thus, σ = his(e) ∈ JAKPA.

3.4.3 Transition-Addition Operations

Figure 3.8 defines the transition-addition operations. Each transition-addition operation
addTs,t,a is parametrized with two state names s, t ∈ UN and a channel assignment a.
On the application of the transition-addition operation addTs,t,a to a TSPA, a transition
from the state s to the state t with label a is added to the TSPA. The operation is
applicable to a TSPA iff the states s and t exist in the TSPA and a is a valid channel
assignment over the channels of the TSPA. This condition ensures the well-formedness
of the resulting TSPA. Further, a transition-addition operation is not applicable to a
TSPA if it already contains the transition. Thus, an already existing transition cannot
be added. In the example application (Figure 3.8), the transition (on, {i : ξ, o : ξ},on)
is added to the TSPA.
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Transition-addition operations with signature ��� ⇀ ���

�����,
,�

�, , �, �, � 	∈ ��� �����,
,� ⇔ �, � ∈ � ∧ � ∈ � ∪  → ∧ �, �, � ∉ �

↦

��, , �, �, �′� where � ! � ∪ " �, �, � #
Application

Parameters

Explanation

Example

Let �, � ∈ $% be two state names, and let � be a channel assignment.

The operation �����,
,� adds the transition ��, �, �� to a TSPA.

Domain

�, , �, �, �

�&'( ) ! �&'( � ! "*, 1#

����,-,,-,".:0,,:0#
)

): * /

�: *
): 1 / �: *

): 1 / �: 1

off

on

): * / �: 1

� )

): * /

�: *
): 1 / �: *

): 1 / �: 1

off

on

): * / �: 1

�

): * / �: *

Figure 3.8: Transition-addition operations addTs,t,a for all state names s, t ∈ UN and
channel assignments a.

Adding a transition to a TSPA yields a TSPA with a transition set that is a superset
of the original TSPA’s transition set. The set of states and the initial state remain
unchanged. Thus, each execution of the original TSPA is also an execution of the
resulting TSPA. Therefore, transition-addition operations are generalizing:

Proposition 3.4. Let addTs,t,a be a transition-addition operation and let A ∈ MPA be
a TSPA such that addTs,t,a is applicable to A. Then, JAKPA ⊆ JaddTs,t,a(A)KPA.

Proof. Let s, t ∈ UN , a ∈ C→, addTs,t,a, and A = (I,O, S, ι, δ) ∈ MPA be given as
above. Let σ ∈ JAKPA be a communication history. Then, there exists an execution
e = s0, θ0, s1, θ1, ... ∈ execs(A) such that his(e) = σ. By definition of execution it holds
that s0 = ι and (sj , θj , sj+1) ∈ δ for all j ∈ N. As every transition of A is also a
transition of addTs,t,a(A), every state of A is also a state of addTs,t,a(A), and A as well
as addTs,t,a(A) share the same initial state, we can conclude that e ∈ execs(addTs,t,a(A))
is also an execution of addTs,t,a(A). Thus, σ = his(e) ∈ JaddTs,t,a(A)KPA.

3.4.4 Transition-Deletion Operations

Figure 3.9 defines the transition-deletion operations. Each transition-deletion operation
delTs,t,a is parametrized with two names s, t ∈ UN representing state names and a
channel assignment a. On the application of the transition-deletion operation delTs,t,a
to a TSPA, the transition with source state s, labeled with the channel assignment a,
and target state t is removed from the TSPA. The operation is only applicable to a
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Transition-deletion operations with signature ��� ⇀ ���

����	,�,�

, �, �, �, � 	∈ ��� ����	,�,� ⇔ �, �, � ∈ � ∧ ∀� ∈ →: ∃  , �!, " ∈ � ∖ $ �, �, � %:  & � ∧ �′| & �

↦

*, �, �, �, �′+ where �! & � ∖ $ �, �, � %
Application

Parameters

Explanation

Example

Let �, � ∈ ,- be two state names, and let � be a channel assignment.

The operation ����	,�,� deletes the transition *�, �, �+ from a TSPA containing the transition, if reactivity is preserved.

Domain

, �, �, �, �

�./� � & �./� � & $0, 1%

����23,23,$4:5,2:5%�

�: 0 /

�: 0
�: 1 / �: 0

�: 1 / �: 1

off

on

�: 0 / �: 1

�

�: 0 / �: 0

�

�: 0 /

�: 0

�: 1 / �: 1

off

on

�: 0 / �: 1

��: 1 / �: 0

Figure 3.9: Transition-deletion operations delTs,t,a for all state names s, t ∈ UN and
channel assignments a.

TSPA if the resulting TSPA obtained after deleting the transition is reactive. This
condition ensures the well-formedness of the resulting TSPA. Further, the operation is
only applicable to a TSPA, if the transition to delete is used by the TSPA. In the example
application (Figure 3.9), the transition (on, {i : ξ, o : ξ},on) is deleted.

The deletion of a transition from a TSPA yields a TSPA with a set of transitions that
is a subset of the original TSPA’s set of transitions. The set of states and the initial state
remain unchanged. Thus, each execution of the resulting TSPA is also an execution of
the original TSPA. As this implies that each behaviors of the resulting TSPA is also a
behavior of the original TSPA, transition-deletion operations are refining:

Proposition 3.5. Let delTs,t,a be a transition-deletion operation and let A ∈MPA be a
TSPA such that delTs,t,a is applicable to A. Then, JdelTs,t,a(A)KPA ⊆ JAKPA.

Proof. Let s, t ∈ UN , a ∈ C→, delTs,t,a, and A = (I,O, S, ι, δ) ∈ MPA be given as
above. Let σ ∈ JdelTs,t,a(A)KPA be a communication history. Then, there exists an
execution e = s0, θ0, s1, θ1, ... ∈ execs(delTs,t,a(A)) of delTs,t,a(A) such that his(e) = σ.
As delTs,t,a(A) and A share the same initial state and each state of delTs,t,a(A) is also a
state of A, and each transition of delTs,t,a(A) is also a transition of A, we can conclude
that e is also an execution of A. Thus, σ = his(e) ∈ JAKPA.
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Input-channel-addition operations with signature ��� ⇀ ���

�����	

�, �, �, , � 	∈ ��� �����	 ⇔ � ∉ � ∪ �

↦

��′, �, �, , �′� where �� � � ∪ ���
�� � �, �,  ∈ � ! �� ∪ � → ! �	 	��, �| $∪% ,  � ∈ ��

Application

Parameters

Explanation

Example

Let � ∈ & be a channel name.

The operation �����	 adds the channel � as input channel to a TSPA not containing the channel.

Domain

�, �, �, , �

 '() * �  '()��� �  '() � � �+, 1�

�����	
*

�

*: +,�: + /

									�: +
*: 1, �: + /

�: +*: 1,
�: + /

						�: 1

off

on

*: +, �: + /	�: 1

*: +, �: 1 /	�: 1

*: 1
�: 1 /

�: 1

*: 1, �: 1 /	� ↦ +

*: +,�: 1 /	�: +

�

*

*: + /

�: +

*: 1 / �: 1

off

on

*: + / �: 1

�*: 1 / �: +

Figure 3.10: Input-channel-addition operations addICc for all channel names c ∈ C.

3.4.5 Input-Channel-Addition Operations

Figure 3.10 defines the input-channel-addition operations. Each input-channel-addition
operation addICc is parametrized with a channel name c ∈ C. On the application of
the input-channel-addition operation addICc to a TSPA, the channel c is added to the
TSPA’s input channel set. The operation is applicable to a TSPA iff the TSPA is not
using the channel that is added by the operation. This explicates that adding already
used channels in not possible. Adding an input channel to a TSPA completely changes
the TSPA’s set of transitions. The reactions to the inputs received via the channel are
completely underspecified: For each transition of the original TSPA and each message
in the type of the added input channel, the resulting TSPA contains a transition with
the same source and target states as the original transition. The transition’s assignment
to the channels of the original transition remains unchanged and the assignment to the
added input channel is equal to the message in the type of the added input channel. In
the example application (Figure 3.10), the channel c is added to the TSPA. The type
of the added channel c is type(c) = {ξ, 1}. As the original TSPA contains the transi-
tion (off, {i : ξ, o : ξ},off), for example, the resulting TSPA contains the transitions
(off, {i : ξ, o : ξ, c : ξ},off) and (off, {i : ξ, o : ξ, c : 1},off).

The addition of an input channel to a TSPA completely changes the TSPA’s set
of transitions. Therefore, input-channel-addition operations are neither refining nor
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generalizing. For instance, every communication history of the TSPA depicted on the
left-hand side in the example of Figure 3.10 is no communication history of the TSPA
depicted on the right-hand side in the example of Figure 3.10.

3.4.6 Output-Channel-Addition Operations

Output-channel-addition operations with signature ��� ⇀ ���

�����	


, �, �, , � 	 ∈ ��� �����	 ⇔ � ∉ 
 ∪ �

↦

�
, �′, �, , �′� where �� � � ∪ ���
�� � �, �,  ∈ � ! 
 ∪ �′ → ! �	 	��, �| $∪% ,  � ∈ ��

Application

Parameters

Explanation

Example

Let � ∈ & be a channel name.

The operation �����	 adds the channel � as output channel to a TSPA not containing the channel.

Domain


, �, �, , �

 '() * �  '()��� �  '() � � �+, 1�

�����	
*

�

*: +	/
�: +, �: +

*: 1	/
			�: +, �: +*: 1	/

�: +,
		�: 1

off

on

*: +	/	�: +, �: 1

*: +	/	�: 1, �: 1

*: 1	/
			�: 1,
			�: 1

*: 1	/	�: 1, � ↦ +

*: +	/	�: 1, �: +

�

*

*: + /

�: +

*: 1 / �: 1

off

on

*: + / �: 1

�*: 1 / �: +

Figure 3.11: Output-channel-addition operations addOCc for all channel names c ∈ C.

Figure 3.11 defines the output-channel-addition operations. The addition of an output
channel has a similar effect as the addition of an input channel. Each output-channel-
addition operation addOCc is parametrized with a channel name c ∈ C. On the applica-
tion of the output-channel-addition operation addOCc to a TSPA, the channel c is added
to the TSPA’s output channel set. The operation is applicable to a TSPA iff the TSPA
is not using the channel that is added by the operation. Adding an output channel to
a TSPA completely changes the TSPA’s set of transitions. The reactions of the TSPA
in terms of the messages sent via the output channel are completely underspecified: For
each transition of the original TSPA and each message in the type of the added output
channel, the resulting TSPA contains a transition with the same source and target states
as the original transition. The transition’s assignments to the channels of the original
transition remain unchanged and the assignment to the added output channel is equal
to the message in the type of the added output channel. In the example application
(Figure 3.11), the channel c is added to the TSPA. The type of the added channel c is

50



3.4 Time-synchronous Port Automata Change Operations

type(c) = {ξ, 1}. As the original TSPA contains the transition (off, {i : ξ, o : ξ},off),
for example, the resulting TSPA contains the transitions (off, {i : ξ, o : ξ, c : ξ},off)
and (off, {i : ξ, o : ξ, c : 1},off).

The addition of an output channel to a TSPA completely changes the TSPA’s set of
transitions. Therefore, output-channel-addition operations are neither refining nor gen-
eralizing change operations. For instance, every communication history in the semantics
of the TSPA depicted on the left-hand side in the example of Figure 3.11 is no com-
munication history in the semantics of the TSPA depicted on the right-hand side in the
example of Figure 3.11.

3.4.7 Channel-Deletion Operations

Channel-deletion operations with signature ��� ⇀ ���

����	


, �, , �, � 	 ∈ ��� ����	 ⇔ � ∈ 
 ∪ �

↦

�
′, �′, , �, �′� where 
� � 
 ∖ ���
�� � � ∖ ���

�� �  , !|�#∪$�∖�	�, % 	 	� , !, %� ∈ ��

Application

Parameters

Explanation

Example

Let � ∈ & be a channel name.

The operation ����	 delets the channel � from a TSPA that contains the channel.

Domain


, �, , �, �

����	

%'(� ) � %'(���� � %'(� � � �*, 1�

)

�

): *,�: * /

									�: *
): 1, �: * /

�: *): 1,
�: * /

						�: 1

off

on

): *, �: * /	�: 1

): *, �: 1 /	�: 1

): 1
�: 1 /

�: 1

): 1, �: 1 /	� ↦ *

): *,�: 1 /	�: *

�

)

): * /

�: *

): 1 / �: 1

off

on

): * / �: 1

�): 1 / �: *

Figure 3.12: Channel deletion operations delCc for all channel names c ∈ C.

Figure 3.12 defines the channel-deletion operations. Each channel-deletion operation
delCc is parametrized with a channel name c ∈ C. On the application of the channel-
deletion-operation delCc to a TSPA, the channel c is deleted from the TSPA’s sets of
input and output channels. The operation is applicable to a TSPA iff the TSPA uses
the channel that is to be deleted. Deleting a channel from a TSPA completely changes
the TSPA’s set of transitions. For each transition of the original TSPA, the resulting
TSPA contains a transition that has the same source and target states as the original
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transition. The transition’s channel assignment maps the channels of the resulting TSPA
to the same messages as the channel assignment of the original transition. In the example
application (Figure 3.12), the channel c is deleted from the TSPA. As the original TSPA
contains the transition (off, {i : ξ, c : ξ, o : ξ},off), for example, the resulting TSPA
contains the transition (off, {i : ξ, o : ξ},off).

Deleting a channel from a TSPA completely changes the TSPA’s set of transitions.
Therefore, channel-deletion operations are neither refining nor generalizing operations.
For instance, the TSPA depicted on the left-hand side in the example of Figure 3.12
does not share any communication history with the TSPA on the right-hand side in the
example of Figure 3.12.

3.4.8 Initial-State-Change Operations

Initial-state-change operations with signature ��� ⇀ ���

����	
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Let � ∈ �� be a state name.
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Figure 3.13: Initial-state-change operations chngIs for all state names s ∈ C.

Figure 3.13 defines the initial-state-change operations. Each initial-state-change op-
eration chngIs is parametrized with a state name s ∈ UN . On the application of the
initial-state-change operation chngIs to a TSPA, the initial state of the TSPA is changed
to the state s. The operation is applicable to a TSPA iff the TSPA contains the state
that is made the initial state. This condition ensures the well-formedness of the resulting
TSPA. In the example application (Figure 3.13), the initial state of the TSPA is changed
to on.

Changing the initial state in a TSPA can completely change the TSPA’s communica-
tion histories. Therefore, initial-state-change operations are, in general, neither refining

52



3.5 Time-Synchronous Port Automaton Modeling Language

nor generalizing. For instance, every communication history of the TSPA depicted on
the left-hand side in the example of Figure 3.13 is no communication history of the TSPA
depicted on the right-hand side in the example of Figure 3.13.

3.5 Time-Synchronous Port Automaton Modeling Language

We define the change operation suite OPA for TSPAs as the set of all TSPA change oper-
ations as defined in the previous sections. The change operation suite OPA is complete.
A simple algorithm for computing a change sequence to transform a TSPA A to another
TSPA A′ operates as follows:

1. Start with the empty sequence.

2. For each state of A′ that is no state of A, append a change operation for adding
the state.

3. If the initial state of A′ is different from the initial state of A, then append a change
operation for changing the initial state to the initial state of A′.

4. For each channel of A that is no channel of A′, append a change operation for
deleting the channel.

5. For each channel of A′ that is no channel of A, append a change operation for
adding the channel.

6. For each transition of A′ that is no transition of the TSPA obtained from applying
the change sequence obtained after the first five steps to the TSPA A, append a
transition-addition operation adding the transition.

7. For each state of A that is no state of A′, append a state-deletion operation deleting
the state.

8. For each transition of the TSPA obtained from applying the change sequence ob-
tained after the first seven steps to the TSPA A that is no transition of the TSPA
A′, append a transition-deletion operation deleting the transition.

The algorithm sketched by the eight steps describes (disregarding the underspecifica-
tion concerning the order in which the operations are appended in each step) a function
∆PA : MPA × MPA → O∗PA that takes two TSPAs as inputs and outputs a change
sequence of TSPA change operations. The state-addition operations appended in the
second step are applicable because they add states that do not exist in the input TSPA.
The operation appended in the third step is applicable because the initial state must exist
after applying the change operations computed in the second step. The channel-deletion
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operations appended in the fourth step are applicable because the change sequence ob-
tained after the first three steps does not change the sets of channels of the TSPA A.
Similarly, the channel addition operations appended in the fifth step are applicable be-
cause the channels are not added by the change operations appended in the first four
steps. The transition-addition operations appended in the sixth step are applicable be-
cause they add transitions that are not used by the TSPA. After applying the change
sequence obtained after the first six steps to the TSPA A, the set of transitions of the
resulting TSPA is a superset of the set of transitions of the TSPA A′. Further, the set
of states of the resulting TSPA is a superset of the set of states of the TSPA A′. The
state-deletion operations appended in the seventh step are applicable because they in-
herently preserve reactiveness: If the TSPA resulting from applying the change sequence
obtained after the first seven steps were not reactive, then the TSPA A′ would not be
reactive. Similarly, the transition-deletion operations appended in the eighth step are
applicable because they preserve reactivity as the TSPA A′ is reactive by definition.
Applying the computed change sequence to the TSPA A yields the TSPA A′. Thus, for
the function ∆PA, it holds that ∀m,m′ ∈ MPA : m . ∆PA(m,m′) = m′. Therefore, the
change operation suite OPA is a complete change operation suite for TSPAs.

The TSPA modeling language is defined as LPA = (MPA, SemPA, J·KPA) whereMPA is
the set of all TSPAs (cf. Section 3.1), the semantic domain is the set of all communication

histories over all channel signatures SemPA
def
= {ΣΩ | Σ is a channel signature}, and J·KPA

is the semantic mapping for TSPAs that maps each TSPA to all communication histories
produced by the executions of the TSPA (cf. Section 3.2). The set OPA is a complete
change operation suite for the TSPA modeling language.

3.6 Related Work

This section presents related work on automata models for modeling interactive systems
as well as related semantic differencing and model checking procedures.

The notion of finite TSPA is strongly inspired by the notions of port automata [GR95],
I/O∗ automata [RR11, Rum96], and MAAts automata [Rin14].

Port automata and I/O∗ automata consume and produce time slices (finite streams
of messages instead of a single message) containing finitely many input messages with
every transition. In contrast, TSPAs and MAAts automata consume and produce one
message (including the empty pseudo-message ξ) per channel in each time slice. By
definition, TSPAs, as introduced in this thesis, have finitely many states. If the set of
states and the channel types of an MAAts automaton are finite, then the automaton is
guaranteed to have finitely many transitions. This does not hold for I/O∗ automata and
port automata because both have to define a transition for each state and each possible
input stream, i.e., a possible transition for each state and each finite stream for each
input channel. Even if the type of a channel is finite, the set of streams of the channel’s
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type is infinite. The finiteness of the sets of states and transitions enables the automatic
semantic differencing procedure presented in Section 3.3. I/O∗ automata and MAAts

automata require initial outputs on all channels. Variables are explicitly modeled in
the syntax of MAAts automata, whereas variables have to be represented implicitly in
the state spaces of TSPAs [BKRW17]. MAAts automata distinguish between data and
control states (i.e., variables and (control) states). In contrast, TSPAs consist of control
states, only. Data states are easily representable as control states. The time-synchronous
channel automaton (TSCA) variant for the modeling of interactive systems originated
from the notion of TSPA [BKRW19]. The major difference between TSCAs and TSPAs
is that TSCAs solely consist of data states and enable the definition of a commutative
and associative syntactic composition operator.

The π-ADL [Oqu04] is semantically grounded in the π-calculus [Mil99] and supports
statistical model checking for verifying the properties of dynamic software architectures
against properties specified in DynBLTL [CQT+16]. The approach constructs a statis-
tical model of finite system executions and then checks whether the model satisfies a
property within a confidential bound. The approach is tailored to dynamic architectures
and only verifies finite traces. In contrast, the communication histories in the seman-
tics of TSPAs encode infinite traces communicated via the TSPAs’ channels, and the
semantic differencing method guarantees full certainty.

The notion of refinement for timed I/O automata is discussed in [KLSV03]. Similar
to the communication history semantics of TSPAs, the semantics of a timed automaton
is a set of traces. Similar to our approach, a timed I/O automaton is a refinement of
another timed I/O automaton if the semantics (the traces) of the former is a subset of the
semantics (the traces) of the latter. However, timed I/O automata are only marked with
one message per transition, whereas TSPAs allow modeling the receiving and sending
of multiple messages via a single transition. Further, the timing concept of timed I/O
automata is more powerful but also more complicated than the corresponding concepts
of TSPAs [GR95]. A game-based extension of the timed I/O automaton framework that
enables tool supported refinement checking is presented in [DLL+10].

Another approach that supports automated refinement checking based on the time-
synchronous subset of FOCUS is described in [Rin14]. The semantic differencing proce-
dure of [Rin14] is based on translating the semantics of components into WS1S formu-
las. The implementation of the semantic differencing procedure uses the model checker
Mona [EKM98]. The approach suffers from drawbacks of the model checker Mona, which
are grounded in the complexity of solving WS1S problems. In contrast, our approach
is based on a translation to Büchi automata and a reduction to the language inclusion
checking problem for Büchi automata.

The TSPA change operations are inspired by similar change operations defined in
the contexts of refinement calculi for interactive systems [Rum96, PR97, PR99, RR11,
RW18]. The previous works either abstract from the internal states of systems [PR97,
PR99, RW18] or are tailored towards refinement calculi for infinite state systems [Rum96,
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RW18, RR11]. In contrast, the change operations presented in this thesis are used for
the definition of a complete change operation suite for components of finite state systems
that are represented by TSPAs. Furthermore, this thesis not only focuses on refining
change operations, but also examines whether the change operations are refactoring,
generalizing, or whether the semantics of resulting TSPAs may be incomparable to the
semantics of changed TSPAs.

While [Rum96, PR97, PR99, RR11, RW18] focus on infinite state systems and refine-
ment calculi enabling the constructive application of refinement steps, we focus on finite
state systems where semantic differencing can be performed fully automatically. Inter-
esting future work is the application of abstraction techniques [BK08] for abstracting
from irrelevant properties of infinite state systems to obtain finite state systems that
enable the application of automated semantic differencing. One possible way to achieve
this could be the partitioning of states into equivalent classes where each class depends
on the property of interest.
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Feature Diagrams

Software product line engineering facilitates the development of similar software appli-
cations varying in distinct features [CN01, PBv05]. Feature diagrams [KLD02, SHTB06]
are a widely used formalism for describing product lines of different software product
configurations. A feature diagram (FD) describes constraints between features regarding
their selection in configurations. With this, the primary purpose of FDs is to describe
the valid feature combinations (so-called configurations) of a system. The valid config-
urations are the elements in the semantics of an FD.

The syntax of a FD describes the relationship between features in terms of mandatory
and optional features, implies constraints, excludes constraints, and groups of features.

Figure 4.1 depicts the graphical representation of an FD inspired by a similar example
from [MR18]. The FD contains all FD modeling elements. The features of an FD are
organized in a tree. If a feature is selected and the feature is not the root of the tree,
then the parent of the feature in the tree must also be selected. In the example FD, the
feature car is the root of the tree. If the feature locking is selected, then the feature
car must also be selected. All mandatory child features of a selected feature must also
be selected. In the example FD, if the feature car is selected, then the feature engine
must also be selected. If a feature is an optional child of its parent, then the feature
does not need to be selected, although its parent is selected. For example, if the feature
car is selected, then the feature locking does not need to be selected. If a feature is
selected and there exists an implies constraints from the feature to another feature, then
the other feature must also be selected. In the example FD, if the feature fingerprint
is selected, then the feature phone must also be selected. Dually, if a feature is selected
and there exists an excludes constraint between the feature and another feature, then
the other feature must not be selected. For example, if the feature keyless is selected
in the example FD, then the feature phone must not be selected. FDs may contain
or- and xor-groups. A group consists of a parent feature and a subset of the parent
feature’s child features (called the group’s participants). In the example FD, the feature
engine is the parent of an xor-group that has the participants electric, gas, and
hybrid. Similarly, locking is the parent of an or-group that has the participants
keyless, phone, and fingerprint. If the parent feature of an or-group is selected,
then at least one of the group’s participants must also be selected. For example, if the
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Figure 4.1: An FD containing all FD modeling elements inspired by a FD from [MR15].

feature locking is selected (cf. Figure 4.1), then at least one of the features keyless,
phone, and fingerprint must also be selected. If the parent feature of an xor-
group is selected, then exactly one of the group’s participants must also be selected.
In the example FD, if the feature engine is selected, then exactly one of the features
electric, gas, and hybrid must be selected.

Previous research developed various analyzes for FDs [AHC+12, BTRC05, BSRC10]
under the consideration of the usual closed-world semantics. With the closed-world
semantics, every configuration in the semantics of an FD must not contain features
that are not used in the FD. This chapter presents a novel open-world semantics that
is specifically tailored towards semantic evolution analysis in early development stages.
With the open-world semantics, configurations in the semantics of an FD may contain
features that are not used in the FD. This is interesting for comparing FDs developed
in early development stages where it is clear that the original FD does not contain all
available features. Section 4.6 further discusses the differences and the usefulness of
the semantic mappings in different development stages. The contents of this chapter
are based on our previously published work [DKMR19] that introduces the novel FD
semantics and the semantic differencing operator.

In the following, Section 4.1 introduces the syntax of FDs. Afterwards, Section 4.2
defines the novel FD semantics. Then, Section 4.3 presents a semantic differencing oper-
ator for the novel semantics. Section 4.4 introduces FD change operations. Section 4.5
defines the FD modeling language and a complete change operation suite for the FD
modeling language. Section 4.6 presents related work on FD analyses.

4.1 Feature Diagram Syntax

An FD consists of features organized in a tree. The child features of a feature are
mandatory, optional, or organized in or- and xor-groups. Binary cross-tree constraints
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between features can additionally be used to indicate whether the selection of a feature
implies or excludes the selection of another feature. Inspired by [AHC+12], the syntax
of FDs is formally defined as follows:

Definition 4.1. A feature diagram is a tuple (F,E, r,M,Or,Xor, I,X) where

• F ⊆ UN is a finite set of features,

• (F, r, E) is a directed rooted tree with root r ∈ F ,

• r is the root feature,

• M ⊆ E is a set of edges that define the mandatory child features of parent features,

• Or ⊆ F × ℘(F ) defines or-feature groups where for each tuple (p,G) ∈ Or, all
features in the group G share the same parent p, i.e., ∀f ∈ G : (p, f) ∈ E,

• Xor ⊆ F × ℘(F ) defines xor-feature groups where for each tuple (p,G) ∈ Xor, all
features in the group G share the same parent p, i.e., ∀f ∈ G : (p, f) ∈ E,

• I ⊆ F × F is a set of implies constraints,

• X ⊆ F × F is a set of excludes constraints.

The following well-formedness rules apply:

• mandatory child features are not part of any feature group, i.e., ∀(f, g) ∈ M :
∀(p,G) ∈ Or ∪Xor : f = p⇒ g /∈ G.

• each feature is part of at most one or-group, i.e., ∀f ∈ F : ∀(p,G), (p′, G′) ∈ Or :
(p,G) 6= (p′, G′)⇒ f /∈ G ∩G′,

• each feature is part of at most one xor-group, i.e., and ∀f ∈ F : ∀(p,G), (p′, G′) ∈
Xor : (p,G) 6= (p′, G′)⇒ f /∈ G ∩G′,

• each feature is not simultaneously part of an or-group and an xor-group, i.e., ∀f ∈
F : ∀(p,G) ∈ Or : ∀(p′, G′) ∈ Xor : f /∈ G ∩G′,

• feature groups are not empty, i.e., ∀(p,G) ∈ Or ∪Xor : G 6= ∅.

Features that are neither the target of a mandatory edge nor participate in any feature
group are optional child features of their parents.

For each FD fd = (F,E, r,M,Or,Xor, I,X) and each feature f ∈ F \ {r}, we denote
by parentfd(f) ∈ F the parent of f in the tree (F, r, E), i.e., for all features f ∈ F \{r},
it holds that p = parentfd(f) iff (p, f) ∈ E. If fd is clear from the context, we simply
write parent(f) instead of parentfd(f). In the remainder of this thesis, MFD denotes
the set of all FDs.

For instance, the FD car depicted in Figure 4.1 can be formally defined by car =
(F,E, r,M,Or,Xor, I,X) with
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• the set of features F = {car,engine,locking,electric,gas, fingerprint
hybrid, keyless, phone},

• the set of edges E = {(car,engine), (car,locking), (engine,electric),
(engine,gas), (engine, hybrid), (locking,keyless), (locking,phone),
(locking,fingerprint)},

• the root feature r = car,

• the set of mandatory edges M = {(car,engine)},

• the set of or-groups Or = {(locking, {keyless,phone,fingerprint})},

• the set of xor-groups Xor = {(engine, {electric,gas,hybrid})},

• the set of implies constraints I = {(fingerprint,phone)}, and

• the set of excludes constraints X = {(phone,keyless)}.

The following section formalizes the semantics of FDs.

4.2 Feature Diagram Semantics

The semantics of FDs are defined as sets of feature configurations. A feature configuration
C is a finite set of feature names C ⊆ UN that represents a set of selected features.
Each FD describes a set of valid configurations. The modeling elements of an FD are
interpreted as constraints on the set of all possible configurations.

Definition 4.2. Let fd = (F,E, r,M,Or,Xor, I,X) be an FD. A configuration C ⊆ UF
is valid in fd iff the following conditions are satisfied:

1. r ∈ C,

2. ∀f ∈ C ∩ F : f 6= r ⇒ parent(f) ∈ C,

3. ∀(f, g) ∈M : f ∈ C ⇒ g ∈ C,

4. ∀(p,G) ∈ Or : p ∈ C ⇒ |C ∩G| ≥ 1,

5. ∀(p,G) ∈ Xor : p ∈ C ⇒ |C ∩G| = 1,

6. ∀(f, g) ∈ I : f ∈ C ⇒ g ∈ C,

7. ∀(f, g) ∈ X : f ∈ C ⇒ g /∈ C.

The semantics JfdKFD of fd is defined as the set of all configurations that are valid
in fd.
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The first constraint states that the root must be selected. The second constraint states
that if a feature simultaneously exists in the configuration and in the FD, then the parent
of the feature in the FD must also be included in the configuration. Thus, if a feature
of the FD is selected, then the parent feature of the feature must also be selected. The
third constraint states that all mandatory child features of a feature must be selected
if the feature is selected. The fourth constraint states that at least one feature of an
or-group must be selected in case the parent of the group is selected. The fifth constraint
states that exactly one feature of an xor-group must be selected in case the parent of the
group is selected. The sixth and seventh constraints require that implies and excludes
constraints are respected.

For example, the configuration {car,engine,gas} is valid in the FD car depicted
in Figure 4.1. The configuration {car,engine,gas,radio} is also valid in the FD
car, although it contains the feature radio, which is not used in the FD car. As the
feature radio is not used in the FD car, its selection is not constrained by the FD
car. The configuration {car} is not valid in the FD car because it contains the feature
car, but does not contain the feature engine.

The usual semantics for FDs [AHC+12, Bat05, BTRC05, BSRC10, CW07, vdB12,
SHTB07, ZZM04] are tailored towards a closed-world : Each configuration in the seman-
tics of an FD must satisfy all the conditions stated in Definition 4.2 and, additionally,
must not contain features that are not used in the FD. Therefore, every configuration in
the closed-world semantics of an FD is also valid in the FD. In contrast, the semantics
used in this thesis is more abstract than the usual closed-world semantics: Configura-
tions in the semantics of an FD may contain features that are not used in the FD. The
FD elements induce constraints over the features used in the FD but do not induce con-
straints on the features that are not used in the FD. Thus, if the set of possible features
is infinite and an FD is consistent, the semantics of the FD also contains infinitely many
configurations. In contrast, when using the usual closed-world semantics, the semantics
of an FD is always a finite set.

From the above argumentation, it is intuitively clear that removing features that
are not defined in an FD from a valid configuration of the FD again yields a valid
configuration of the FD. This property holds because an FD does not constrain features
that are not used in the FD. Similarly, adding features that are not used in an FD to a
valid configuration of the FD again yields a valid configuration of the FD.

Proposition 4.1. Let fd = (F,E, r,M,Or,Xor, I,X) be an FD and let C ⊆ UN be a
configuration. Then, C ∈ JfdKFD iff C ∩ F ∈ JfdKFD.

Proof. Let fd and C be given as above.
”⇒: Assume C ∈ JfdKFD. Then, all the seven conditions in Definition 4.2 are satisfied

for fd and C.
As the first condition is satisfied for fd and C, it holds that r ∈ C. As r ∈ F and

r ∈ C, it holds that r ∈ C ∩ F . Thus, the first condition is also satisfied for fd and
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C ∩F . As the second condition is satisfied for fd and C and since (C ∩F )∩F = C ∩F ,
the second condition is also satisfied for fd and C∩F . As the third condition is satisfied
for fd and C and as M ⊆ F × F , the third condition is also satisfied for fd and C ∩ F .
As the fourth condition is satisfied for fd and C and as ∀(p,G) ∈ Or : p ∈ F ∧G ⊆ F ,
the fourth condition is also satisfied for fd and C ∩F . As the fifth condition is satisfied
for fd and C and as ∀(p,G) ∈ Xor : p ∈ F ∧G ⊆ F , the fifth condition is also satisfied
for fd and C ∩F . As the sixth condition is satisfied for fd and C and as I ⊆ F ×F , the
sixth condition is also satisfied for fd and C ∩ F . As the seventh condition is satisfied
for fd and C and as X ⊆ F ×F , the seventh condition is also satisfied for fd and C ∩F .

Thus, all the seven conditions in Definition 4.2 are satisfied for fd and C ∩F . We can
conclude that C ∩ F is valid in fd.

”⇐”: Assume C ∩ F ∈ JfdKFD. Then, all the seven conditions in Definition 4.2 are
satisfied for fd and C ∩ F .

As the first condition is satisfied for fd and C ∩ F , it holds that r ∈ C. Thus, it
especially holds that r ∈ C. Thus, the first condition is also satisfied for fd and C. As
the second condition is satisfied for fd and C∩F and since (C∩F )∩F = C∩F , the second
condition is also satisfied for fd and C. As the third condition is satisfied for fd and
C∩F , as M ⊆ F×F , and as C∩F ⊆ C, the third condition is also satisfied for fd and C.
As the fourth condition is satisfied for fd and C ∩ F , as ∀(p,G) ∈ Or : p ∈ F ∧G ⊆ F ,
and as C ∩ F ⊆ C, the fourth condition is also satisfied for fd and C. As the fifth
condition is satisfied for fd and C, as ∀(p,G) ∈ Xor : p ∈ F ∧G ⊆ F , and as C∩F ⊆ C,
the fifth condition is also satisfied for fd and C. As the sixth condition is satisfied for
fd and C, as I ⊆ F × F , and as C ∩ F ⊆ C, the sixth condition is also satisfied for
fd and C. As the seventh condition is satisfied for fd and C, as X ⊆ F × F , and as
C ∩ F ⊆ C, the seventh condition is also satisfied for fd and C.

Thus, all the seven conditions in Definition 4.2 are satisfied for fd and C. We can
conclude that C is valid in fd.

Using Proposition 4.1 enables to easily proof that an FD fd is consistent iff there
exists a configuration that is valid in fd and solely contains features that are used in fd.

Proposition 4.2. An FD fd = (F,E, r,M,Or,Xor, I,X) is consistent iff there exists
a configuration C ⊆ F such that C ∈ JfdKFD.

Proof. Let fd = (F,E, r,M,Or,Xor, I,X) be an FD.

”⇒”: Assume fd is consistent, which is equivalent to JfdKFD 6= ∅. Thus, there exists
C ∈ JfdKFD. Using Proposition 4.1, we obtain that C ∩ F ∈ JfdKFD.

”⇐”: Assume there exists a configuration C ⊆ F such that C ∈ JfdKFD. Then,
JfdKFD 6= ∅. Thus, fd is consistent.

We further use Proposition 4.1 to proof the main property enabling automatic semantic
differencing of FDs using the semantics as defined in this thesis.
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4.3 Semantic Differencing of Feature Diagrams

The semantic difference δ(fd1, fd2) from the FD fd1 to the FD fd2 contains all config-
urations that are valid in the FD fd1 and not valid in the FD fd2, i.e., δ(fd1, fd2) =
Jfd1KFD \ Jfd2KFD. In case the FD fd2 is a successor version of the FD fd1, the seman-
tic difference δ(fd1, fd2) effectively reveals the configurations that have been removed
during the evolution from fd1 to fd2. Vice versa, the semantic difference δ(fd2, fd1)
reveals the configurations that have been added during the evolution of fd1 to fd2.

Previous work produced a semantic differencing operator for FDs using the usual
closed-world semantics [AHC+12]. The semantics of an FD is always a finite set when
using the usual closed-world semantics. Thus, it is possible to check whether there exists
a configuration in the closed-world semantics of one FD that is not an element in the
closed-world semantics of another FD by iteratively checking whether each element in
the semantics of the former FD is contained in the semantics of the latter FD. The
method presented in [AHC+12] relies on translating two FDs to a propositional formula,
before checking whether the formula is satisfiable.

The following introduces a semantic differencing operator for FDs using the semantics
introduced in Definition 4.2. The operator provides a method for automatically checking
whether the semantic difference for any two FDs is empty and yields a witness in case
the former FD is not a refinement of the other FD.

The semantic differencing method relies on the fact that it suffices to search a finite
set of configurations for a configuration that is valid in one FD and not valid in another
FD. It suffices to search the set of all possible configurations containing features that are
used in at least one of the input FDs for a configuration that is valid in one FD and not
valid in the other FD:

Proposition 4.3. Let fd1 and fd2 be two feature diagrams. Then, Jfd1KFD ⊆ Jfd2KFD

iff (Jfd1KFD ∩ ℘(F1 ∪ F2)) ⊆ (Jfd2KFD ∩ ℘(F1 ∪ F2)).

Proof. Let fdi = (Fi, Ei, ri,Mi, Ori, Xori, Ii, Xi) for i ∈ {1, 2} be two FDs.
”⇒”: Assume Jfd1KFD ⊆ Jfd2KFD holds. This directly implies (Jfd1KFD ∩ ℘(F1 ∪

F2)) ⊆ (Jfd2KFD ∩ ℘(F1 ∪ F2)).
”⇐”: Assume (Jfd1KFD∩℘(F1∪F2)) ⊆ (Jfd2KFD∩℘(F1∪F2)) holds. Let C ∈ Jfd1KFD

be an arbitrary configuration that is valid in fd1. We define C ′
def
= C ∩ (F1 ∪ F2). As

C ∈ Jfd1KFD, using Proposition 4.1, it is guaranteed that C ∩ F1 ∈ Jfd1KFD. As
C ∩ F1 ∈ Jfd1KFD and C ′ ∩ F1 = (C ∩ (F1 ∪ F2)) ∩ F1 = C ∩ F1, it holds that C ′ ∩ F ∈
Jfd1KFD. Using Proposition 4.1, this implies C ′ ∈ Jfd1KFD. Therefore, as C ′ ⊆ F1 ∪F2,
we have that C ′ ∈ Jfd1KFD ∩ ℘(F1 ∪ F2). As by assumption (Jfd1KFD ∩ ℘(F1 ∪ F2)) ⊆
(Jfd2KFD∩℘(F1∪F2)), we obtain that C ′ ∈ Jfd2KFD∩℘(F1∪F2). Therefore, it especially
holds that C ′ ∈ Jfd2KFD. Using Proposition 4.1, this implies C ′ ∩ F2 ∈ Jfd2KFD. As
further C ′∩F2 = (C ∩ (F1∪F2))∩F2 = C ∩F2, we obtain that C ∩F2 ∈ Jfd2KFD. Using
Proposition 4.1, this implies C ∈ Jfd2KFD.
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Chapter 4 Feature Diagrams

There exist well-known translations from FDs to propositional formulas such that the
interpretations satisfying the formula obtained from translating an FD represent ex-
actly the configurations of the FD using the closed-world semantics [BSRC10, BTRC05,
CW07, ZZM04, AHC+12]. The existing method for semantic FD differencing under the
closed-world semantics [AHC+12] uses such a translation for semantic FD differencing.
Similarly, for two FDs fd1 and fd2, it is possible to construct two formulas Φ1 and
Φ2 with the following properties: For each feature in fd1, the formula Φ1 contains a
variable representing that feature. For each feature in fd2, the formula Φ2 contains a
variable representing that feature. Each satisfying interpretation of Φ1 encodes a valid
configuration of fd1. Each satisfying interpretation of Φ2 encodes a valid configuration
of fd2. If the features that are used in both FDs are encoded by the same variables in
both formulas, then each satisfying interpretation of the formula Φ1 ∧ ¬Φ2 encodes a
valid configuration of the FD fd1 that is no valid configuration of the FD fd2. Thus, the
formula Φ1∧¬Φ2 is satisfiable iff there exists a valid configuration of fd1 that is no valid
configuration of fd2 and solely contains features used in fd1 or fd2. Proposition 4.3
guarantees that the semantic difference from fd1 to fd2 is not empty iff the formula
Φ1 ∧ ¬Φ2 is satisfiable.

Similarly, semantic differencing of the FDs using the closed-world semantics requires
to check whether the following formula is satisfiable [AHC+12]: (Φ1∧ (

∧
f∈F2\F1

¬xf ))∧
¬(Φ2 ∧ (

∧
f∈F1\F2

¬xf )) where F1 is the set of features of fd1, F2 is the set of features
of fd2, and xf is the variable encoding the feature f .

Semantic differencing of FDs facilitates understanding the evolution of the configu-
rations modeled by two FD versions and enables automatic FD refinement checking.
For instance, Figure 4.2 depicts three versions of a FD modeling the configurations
of a tablet computer. The FD tablet1 is the initial version. The FD tablet2 is
the successor version of the FD tablet1 and the FD tablet3 is the successor ver-
sion of the FD tablet2. A FD developer might be interested in the semantic dif-
ferences from the successor versions to their respective predecessor versions and vice
versa. Using semantic differencing automatically reveals that the FD tablet2 is not
a refinement of the FD tablet1. The semantic differencing operator outputs that
{tablet,display,memory,processor,dis12,64GB,P100} is a configuration that
is valid in tablet2 and not valid in tablet1. This witness reveals exists since con-
figurations that are valid in tablet1 must either contain the feature dis10 or the
feature dis11. The semantic difference from tablet3 to tablet2 is not empty,
either. Inter alia, the semantic differencing operator outputs that the configuration
{tablet,display,memory,processor,dis11,256GB,P200} is valid in tablet3
and not valid in tablet2. Vice versa, a developer might be interested in the semantic
difference from tablet2 to tablet3. The semantic differencing operator computes
that the configuration {tablet,display,memory,processor,dis12,64GB,P100}
is valid in tablet2 and not valid in tablet3.
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Figure 4.2: Three FDs modeling the valid configurations of a tablet computer.

Semantic Differencing Implementation and Experiments

We implemented the semantic differencing operator for FDs in Java to perform experi-
mental evaluations. The implementation takes two FDs as input. It transforms the FDs
to an Alloy module, an input model of the model checker Alloy1 [Jac06]. An Alloy mod-
ule resulting from translating the FDs contains a predicate modeling the propositional
formula that can be checked for satisfiability to determine whether the semantic differ-
ence from one of the FDs to the other FD is empty. Subsequently, the implementation
uses the Alloy analyzer to check whether there exists a legal instance of the predicate
encoding the formula. A legal instance exists iff the corresponding propositional formula
is satisfiable. In this case, the Alloy analyzer provides a legal instance, which encodes
a configuration that is valid in the one FD and not valid in the other FD. If such a
configuration is found, it is returned as a diff witness.

We choose Alloy for the implementation because it supports exchanging the used SAT
solver for computing legal instances. Alternatively, implementations using other SAT
solvers supporting the required expressiveness are possible. Although Alloy analyses are
based on bounded scopes, the analyses for semantic differencing under the open-world

1https://alloytools.org/
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semantics are complete in case the bound is chosen equal to the sum of the numbers of
features in the input FDs (cf. Proposition 4.3).

An Overview of the Required Alloy Elements

The sections briefly overviews the Alloy language [Jac06] elements required for the trans-
lation of FDs for semantic differencing.

The models of the Alloy language are called modules. The modules resulting from
translating FDs consist of signatures, predicates, and a run command.

Each signature represents a set of objects. Signatures can be attached with multiplic-
ities. For signatures, the lone multiplicity indicates that there is at most one object in
the set of objects represented by the signature. Signatures can extend other signatures.
If a signature s extends a signature t, then every object contained in the set represented
by s is also an element of the set represented by t. Signatures can be marked as abstract.
If a signature is marked as abstract, there cannot exist objects that are solely contained
in the set represented by the abstract signature. However, if a signature s extends an
abstract signature t, then there can exist an object in the set represented by s, which is
then also an element of the set represented by t.

Predicates consist of constraints on the sets of objects represented by signatures. Inter
alia, constraints enable to constrain the number of objects contained in the sets of objects
represented by signatures. Constraints also enable to relate the sizes of the sets of objects
represented by signatures.

Running a run command proceeded by a predicate makes the Alloy analyzer try
to find an instance (sets of objects represented by the signatures) that satisfies the
constraints of the predicate. To this effect, the Alloy analyzer translates Alloy modules
into boolean constraints and then uses a satisfiability solver to check the constraints for
satisfiability [Jac06].

Translation from Feature Diagrams to Alloy for Semantic Differencing

The translation from FDs to Alloy for semantic differencing takes two FDs as input.
The resulting Alloy module always contains the abstract signature feature. For each
feature contained in at least one of the input FDs, the module contains a signature
declaration declaring a signature that has the multiplicity lone, is named as the feature,
and extends the abstract signature feature. If the set of objects represented by the
signature for a feature is not empty, then the feature is chosen as part of a configuration.
Making every signature representing a feature extend the abstract signature feature
enables a uniform handling of features in configurations in the Java implementation.

For each of the input FDs, the translation produces a predicate. For each input FD,
the predicate encodes the constraints on the relationship between the features in the
valid configurations of the FD as defined by the semantic mapping (cf. Definition 4.2).
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4.3 Semantic Differencing of Feature Diagrams

The predicate resulting from translating a FD fd consists of the following constraints:

• If r is the root feature of fd, then the predicate contains the constraint #r = 1.
This constraint models that the root of fd must be selected.

• If p is the parent feature of a feature c in fd, then the predicate contains the
constraint #p >= #c. This constraint models that the parent must be selected if
its child is selected.

• If c is a mandatory child of its parent feature p in fd, then the predicate contains
the constraint #c >= #p. This constraint models that the child must be selected
if its parent is selected.

• If (p,G) is an or-group of fd with parent feature p and group participants G =
{c1, ..., cn}, then the predicate contains the constraint #p = 1 implies #(c1

+...+ cn) >= 1. This constraint models that at least one of the group partici-
pants must be selected if the parent feature is selected.

• If (p,G) is an xor-group of fd with parent feature p and group participants
G = {c1, ..., cn}, then the predicate contains the constraint #p = 1 implies
#(c1 +...+ cn) = 1. This constraint models that exactly one of the group
participants must be selected if the parent feature is selected.

• If (f, g) is an implies constraint of fd, then the predicate contains the constraint
#g >= #f. This constraint models that the feature g must be selected in case the
feature f is selected.

• If (f, g) is an excludes constraint of fd, then the predicate contains the constraints
#f = 1 implies #g = 0 and #g = 1 implies #f = 0. These constraints
model that at most one of the feature f and g may be selected.

For instance, the lower part of Figure 4.3 depicts the Alloy module that results from
translating the FDs fd1 and fd2 that are depicted in the upper part of Figure 4.3.
The module contains examples for all modeling elements of the Alloy language that are
relevant for the semantic differencing implementation.

The module contains the abstract signature Feature (l. 1). For each of the features
A, B, C, D, E that exist in at least one of the input FDs, the module declares a signature
with multiplicity lone that has the same name as the feature. Each of these signatures
extends the abstract signature Feature (l. 2). The predicate fd1 results from translat-
ing the FD fd1. It contains the constraint #A = 1 because A is the root feature in fd1.
The signature contains the constraints #A >= #B (l. 6), #A >= #C (l. 7), and #A >=
#D (l. 8) because A is the parent feature of the features B, C, and D. The constraint #A =
1 implies #(B + C) >= 1 (l. 9) results from translating the or-group of fd1. The
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Figure 4.3: Two FDs and the Alloy module resulting from translating the FDs.

predicate contains the constraint #C >= #D (l. 10) because the FD contains an implies
constraint from the feature D to the feature C.

The predicate fd2 results from translating the FD fd2. The first four constraints
(ll. 14-17) of the predicate fd2 are constructed analogously as the first four constraints
of the predicate fd1 (ll. 5-8). The predicate fd2 contains the constraint #E >= #A
(l. 18) because E is a mandatory child of A in the FD fd2. The constraint #A = 1
implies #(B + C) = 1 (l. 19) results from translating the xor-group of fd2. The
predicate contains the constraints #E = 1 implies #C = 0 and #C = 1 implies
#E = 0 (ll. 20-21) because fd2 contains an excludes constraint between E and C.

The translation from FDs to Alloy modules always produces the predicate fd1NotFd2
(ll. 24-27) and the run command depicted in Figure 4.3, l. 28. The predicate fd1NotFd2
models all instances representing configurations that are valid in the FD represented by

68



4.3 Semantic Differencing of Feature Diagrams

FD #Features #Constraints

car 9 15
car1 8 11
car2 9 12

tablet1 12 18
tablet2 14 21
tablet3 14 23
fd1 4 6
fd2 4 8
fd3 2 3
fd4 3 4

Figure 4.4: The number of features in the example FDs and the number of constrains in
the Alloy predicates generated from the FDs.

the predicate fd1 and not valid in the FD represented by the predicate fd2. Running
the command (l. 28) yields instances iff the semantic difference is not empty.

Experiments

We performed experimental evaluations with the ten example FDs presented in Ap-
pendix B. Figure 4.4 summarizes the sizes of the FDs in terms of the numbers of
their features and the number of constraints contained in the predicates resulting from
translating the FDs. For example, the FD tablet3 has 14 features and the predicate
resulting from translating tablet3 to Alloy consists of 23 constraints. All experiments
were executed on a laptop computer with an Intel Core i7-8650U CPU @ 1.90GHz pro-
cessor, 16GB RAM, and a Samsung PM981 512GB SSD hard drive using Windows 10,
Java 1.8.0 192, and the Java API of Alloy 4.2 using the satisfiability solver SAT4J.

We executed the semantic differencing operator for all pairs of example FDs that are
thematically related. Figure 4.5 summarizes the computation times of the semantic
differencing operator implementation. Figure 4.5 also presents the (first) computed diff
witnesses for the input pairs or indicates (by using the symbol -) that an FD is a
refinement of the other FD. For example, the semantic differencing operator took 24ms
to detect that the FD car is a refinement of the FD car. Similarly, computing the diff
witness {hybrid,phone,engine,car,locking,electric} that is contained in the
semantic difference from car1 to car took 50ms. For the examples, the computation
times range from 11ms to 112ms. We conclude that the implementation handles the
example FDs sufficiently quick. However, the examples are relatively small in terms of
the numbers of features of the FDs. Thus, the results cannot be generalized to large
FDs and real world examples, especially because satisfiability checking is, in general,
computationally hard.
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Difference Time Diff witness

δ(car,car) 24ms -
δ(car,car1) 112ms phone, engine, car, locking, electric, fingerprint
δ(car,car2) 60ms -
δ(car1,car) 50ms hybrid, phone, engine, car, locking, electric
δ(car1,car1) 29ms -
δ(car1,car2) 36ms hybrid, engine, car, locking, electric, gas, fingerprint
δ(car2,car) 40ms -
δ(car2,car1) 85ms phone, engine, car, locking, electric, fingerprint
δ(car2,car2) 29ms -
δ(tablet1,tablet1) 43ms -
δ(tablet1,tablet2) 69ms tablet, wifi, 128GB, memory, 256GB, display, cellular, P200, dis11, processor, dis12
δ(tablet1,tablet3) 68ms tablet, 128GB, memory, P100, 256GB, display, dis11, processor
δ(tablet2,tablet1) 59ms tablet, memory, 256GB, display, P200, processor, dis12
δ(tablet2,tablet2) 39ms -
δ(tablet2,tablet3) 47ms tablet, wifi, memory, 64GB, display, cellular, P200, processor, dis12
δ(tablet3,tablet1) 42ms tablet, memory, 256GB, display, P200, processor, dis12
δ(tablet3,tablet2) 45ms tablet, memory, 256GB, display, P200, processor, dis10
δ(tablet3,tablet3) 28ms -
δ(fd1,fd1) 19ms -
δ(fd1,fd2) 19ms A, B, C, D, E
δ(fd1,fd3) 21ms A, C
δ(fd1,fd4) 24ms A, B
δ(fd2,fd1) 18ms A, B, D, E
δ(fd2,fd2) 17ms -
δ(fd2,fd3) 13ms -
δ(fd2,fd4) 13ms A, B, E
δ(fd3,fd1) 14ms A, B, D
δ(fd3,fd2) 11ms A, B, C, E
δ(fd3,fd3) 12ms -
δ(fd3,fd4) 16ms A, B
δ(fd4,fd1) 15ms -
δ(fd4,fd2) 15ms A, B, C, E
δ(fd4,fd3) 12ms A, C
δ(fd4,fd4) 14ms -

Figure 4.5: The time needed by the semantic differencing operator for semantic differ-
encing of the pairs of example FDs.
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No. Operation Ref. Gen.

1. Adding a feature as optional child 3 7

2. Deleting a non-root leaf feature 7 3

3. Adding an implies constraint 3 7

4. Deleting an implies constraint 7 3

5. Adding an excludes constraint 3 7

6. Deleting an excludes constraint 7 3

7. Creating an or-group 3 7

8. Change type of group to or 7 3

9. Change type of group to xor 3 7

10. Making a mandatory feature optional 7 3

11. Making an optional feature mandatory 3 7

12. Adding a child feature to a group of its parent feature 7 7

13. Excluding a child feature from a group of its parent feature 7 7

14. Renaming the root feature 7 7

Figure 4.6: Feature diagram change operation properties.

4.4 Feature Diagram Change Operations

This section presents FD change operations that are used to define a complete FD change
operation suite. Some of the change operations are neither refining nor generalizing. Al-
though these change operations are irrelevant for developers to constructively refine or
generalize models, the change operations are necessary to obtain a complete change op-
eration suite. The completeness of the change operation suite is required for the model
repair framework presented in Chapter 7 and the framework’s instantiation presented in
Chapter 8. If a change operation is refining or generalizing, then it is possible to incorpo-
rate performance improvements into algorithms that compute solutions (cf. Section 7.5)
for special model repair problems as introduced in Section 8.1.

Figure 4.6 overviews the FD change operations, which are inspired by change oper-
ations from [TBK09, BKL+16]. The addition of a feature (cf. No. 1) adds an unused
feature as an optional child of a used feature to the FD. Feature addition operations are
refining but not generalizing. Vice versa, removing a non-root feature without children
(cf. No. 2) is a generalizing change operation. Operations that add cross-tree constraints
(cf. No. 3, 5) strengthen the constraints induced by the FD on its valid configurations and
are, therefore, refining. Dually, operations for removing cross-tree constraints (cf. No. 4,
6) are generalizing. A change operation for creating an or-group (cf. No. 7) creates an
or-group containing a single feature that is an optional child of its parent before ap-
plying the change operation. The parent of the feature contained in the group remains
unchanged. Therefore, change operations for creating or-groups are refining. Converting

71



Chapter 4 Feature Diagrams

an xor-group to an or-group (cf. No. 8) is a generalizing change operation because or-
groups induce weaker constraints than xor-groups. Dually, operations for converting an
or-group to an xor-group (cf. No. 9) are refining change operation. Operations for making
mandatory features optional (cf. No. 10) are generalizing. Operations for making op-
tional features mandatory (cf. 11) are refining. Operations for adding features to groups
(cf. No. 12) are neither refining nor generalizing. Similarly, operations for excluding fea-
tures from groups (cf. No. 13) are neither refining nor generalizing, either. Operations
for renaming the root feature (cf. No. 14) are neither refining nor generalizing.

4.4.1 Feature-Addition Operations

Feature-addition operations with signature ��� ⇀ ���

�����,


�, �, �,�, �, ���, �, � 	∈ ��� �����,
 ⇔ � ∈ � ∧ � ∉ �
↦

��′, �′, �,�, �, ���, �, �� where �� � � ∪ �
�� � � ∪  �, � !
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Parameters

Explanation

Example
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 adds the unused feature � as optional child of the feature �.  
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f

�����,
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�, �, �,�, �, ���, �, �

Figure 4.7: Feature-addition operations addFf,g for all feature names f, g ∈ UN .

Figure 4.7 defines the feature-addition operations. Each feature-addition operation
addFf,g is parametrized with two names f, g ∈ UN representing feature. On the appli-
cation of the feature-addition operation addFf,g to an FD, the feature g is added as an
optional child to the feature f . The operation is applicable to an FD iff the feature g
does not exist in the FD and the feature f exists in the FD. This condition ensures that
the resulting FD is well-formed.

Thus, an already defined feature cannot be added and a feature can only be added
as a child of an already existing feature. In the example application (Figure 4.7), the
feature g is added as an optional child of the feature f .

Adding a feature as a child to another feature strengthens the constraints on the valid
configurations modeled by the FD. Thus, feature-addition operations are refining:

Proposition 4.4. Let addFf,g be a feature-addition operation and let fd ∈ MFD be an
FD such that addFf,g is applicable to fd. Then, JaddFf,g(fd)KFD ⊆ JfdKFD.
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Proof. Let f, g ∈ UN , addFf,g, and fd = (F,E, r,M,Or,Xor, I,X) ∈ MFD be given as
above. Let C ∈ JaddFf,g(fd)KFD be a valid configuration of the FD addFf,g(fd). Then,
all the seven conditions in Definition 4.2 are satisfied for addFf,g(fd) and C. As the
application of the feature-addition operation addFf,g does not change the root and does
not change the sets M , Or, Xor, I, and X, the first condition as well as the conditions
3.-7. are also satisfied for C and fd. As the second condition is satisfied for addFf,g(fd)
and C, it holds that ∀h ∈ C ∩ (F ∪ {g}) : h 6= r ⇒ p(h) ∈ C. Thus, it especially holds
that ∀h ∈ C ∩ F : h 6= r ⇒ p(h) ∈ C. Thus, the second condition is satisfied for C and
fd. We can conclude that C is valid in fd.

4.4.2 Feature-Deletion Operations

�����

�, �, �,	, 
�, ���, , �↦

��′, �′, �,	, 
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�����
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∀ �, � ∈ �: � " � ∧
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Feature-deletion operations with signature 	'( ⇀ 	'(

Figure 4.8: Feature-deletion operations delFf for all feature names f ∈ UN .

Figure 4.8 defines the feature-deletion operations. Each feature-deletion operation
delFf is parametrized with a name f ∈ UN representing a feature. On the application
of the feature-deletion operation delFf to an FD, the feature f is removed from the FD.
The operation is applicable to an FD iff the feature f exists in the FD and is not the root
feature, the feature f is a leaf feature in the FD, the feature f is not a mandatory child of
its parent, the feature f is not part of any of its parent feature’s groups, and the feature
f is not used in any of the FD’s implies and excludes constraints. These conditions
ensure that the resulting FD is well-formed. Deleting the root is not possible because
we require that an FD always contains at least one feature (the root feature). Thus, it
is only possible to delete optional, non-root, leaf features. In the example application
(Figure 4.8), the feature f is removed from the example FD.
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Deleting a child feature weakens the constraints induced by an FD. Therefore, feature-
deletion operations are generalizing:

Proposition 4.5. Let delFf be a feature-deletion operation and let fd ∈MFD be an fd
such that delFf is applicable to fd. Then, JfdKFD ⊆ JdelFf (fd)KFD.

Proof. Let f ∈ UN , delFf , and fd = (F,E, r,M,Or,Xor, I,X) ∈ MFD be given as
above. Let C ∈ JfdKFD be a valid configuration of the FD fd. Then, all the seven
conditions in Definition 4.2 are satisfied for fd and C. As the application of the feature-
deletion operation delFf does not change the root and does not change the sets M , Or,
Xor, I, and X, the first conditions as well as the conditions 3.-7. are also satisfied
for C and delFf (fd). As the second condition is satisfied for C and fd, it holds that
∀h ∈ C ∩ F : h 6= r ⇒ p(h) ∈ C. Thus, it especially holds that ∀h ∈ (C \ {f}) ∩ F : h 6=
r ⇒ p(h) ∈ C. Thus, the second condition is satisfied for C and delFf (fd). From the
above, we can conclude that C is valid in delFf (fd).

4.4.3 Implies-Constraint-Addition Operations
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Figure 4.9: Implies-constraint-addition operations addIf,g for feature names f, g ∈ UN .

Figure 4.9 defines the implies-constraint-addition operations. Each implies-constraint-
addition operation addIf,g is parametrized with two feature names f, g ∈ UN . On the
application of the implies-constraint-addition operation addIf,g to an FD, an implies
constraint from the feature f to the feature g is added to the FD. The operation is
applicable to an FD iff the features f and g exist in the FD. This condition ensures
that the resulting FD is well-formed. Thus, it is only possible to add implies constraints
between features that are defined in the FD. In the example application (Figure 4.9), an
implies constraint from the feature f to the feature g is added.
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Adding an implies constraint to an FD strengthens the constraints induced by the FD
on the set of its valid configurations. Thus, implies-constraint-addition operations are
refining change operations.

Proposition 4.6. Let addIf,g be an implies-constraint-addition operation and let fd ∈
MFD be an FD such that addIf,g is applicable to fd. Then, JaddIf,g(fd)KFD ⊆ JfdKFD.

Proof. Let f, g ∈ UN , addIf,g, and fd = (F,E, r,M,Or,Xor, I,X) ∈ MFD be given
as above. Let C ∈ JaddIf,g(fd)KFD be a valid configuration of the FD addIf,g(fd).
Then, all the seven conditions in Definition 4.2 are satisfied for addIf,g(fd) and C. As
the application of the feature addition operation addIf,g does not change the root and
does not change the sets F , E, Or, Xor, and X, the conditions 1.-5. as well as 7. are
also satisfied for C and fd. As the sixth condition is satisfied for addIf,g(fd) and C,
it holds that ∀(h, i) ∈ I ∪ {(f, g)} : h ∈ C ⇒ i ∈ C. Thus, it especially holds that
∀(h, i) ∈ I : h ∈ C ⇒ g ∈ C. Thus, the sixth condition is satisfied for C and fd. We can
conclude that C is valid in fd.

4.4.4 Implies-Constraint-Deletion Operations
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Let �, � ∈ �� be two names representing features.

The operation �����,� deletes an implies constraint from the feature � to the feature �.
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Implies-constraint-deletion operations with signature��� ⇀ ���

Figure 4.10: Implies-constraint-deletion operations delIf,g for feature names f, g ∈ UN .

Figure 4.10 defines the implies-constraint-deletion operations. Each implies-constraint-
deletion operation delIf,g is parametrized with two names f, g ∈ UN representing fea-
tures. On the application of the implies-constraint-deletion operation delIf to an FD,
the implies constraint from the feature f to the feature g is removed from the FD. The
operation is applicable to an FD iff the features f and g both exist in the FD and the
FD contains an implies constraint from the feature f to the feature g. This explicates
that it is only possible to delete implies constraints that are defined in the FD. In the
example application, an implies constraint from the feature f to the feature g is deleted.
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Deleting an implies constraint from an FD relaxes the constraints induced by the FD
on its valid configurations.

Proposition 4.7. Let delIf,g be an implies-constraint-deletion operation and let fd ∈
MFD be an FD such that delIf,g is applicable to fd. Then, JfdKFD ⊆ JdelIf,g(fd)KFD.

Proof. Let f, g ∈ UN , delIf,g, and fd = (F,E, r,M,Or,Xor, I,X) ∈ MFD be given as
above. Let C ∈ JfdKFD be a valid configuration of the FD fd. Then, all the seven
conditions in Definition 4.2 are satisfied for fd and C. As the application of the implies-
constraint-deletion operation delIf,g does not change the root and does not change the
sets F , E, M , Or, Xor, and X, the conditions 1.-5. and 7. are also satisfied for C and
delIf,g(fd). As the sixth condition is satisfied for fd and C, it holds that ∀(h, i) ∈ I :
h ∈ C ⇒ i ∈ C. Thus, it especially holds that ∀(h, i) ∈ I \ {(f, g)} : h ∈ C ⇒ i ∈ C.
Thus, the sixth condition is satisfied for C and delIf,g(fd). From the above, we can
conclude that C is valid in delIf,g(fd).

4.4.5 Excludes-Constraint-Addition Operations
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Let �, � ∈ �� be two names representing features.

The operation �����,� adds an excludes constraint from the feature � to the feature �.
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Excludes-constraint-addition operations with signature 
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Figure 4.11: Excludes-constraint-addition operations addXf,g for features f, g ∈ UN .

Figure 4.11 defines the excludes-constraint-addition operations. Similar to implies
constraints, excludes constraints can be added between two arbitrary defined features.
Each excludes-constraint-addition operation addXf,g is parametrized with two names
f, g ∈ UN representing feature names. On the application of the excludes-constraint-
addition operation addXf,g to an FD, an excludes constraint from the feature f to the
feature g is added to the FD. The operation is applicable to an FD iff the features f and
g exist in the FD. Thus, it is only possible to add excludes constraints between features
that are defined in the FD. In the example application, an excludes constraint from the
feature f to the feature g is added.
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Adding an excludes constraint to an FD strengthens the constraints induced by the FD
on its valid configurations. Thus, excludes-constraint-addition operations are refining.

Proposition 4.8. Let addXf,g be an excludes-constraint-addition operation and let fd ∈
MFD be an FD such that addXf,g is applicable to fd. Then, JaddXf,g(fd)KFD ⊆ JfdKFD.

Proof. Let f, g ∈ UN , addXf,g, and fd = (F,E, r,M,Or,Xor, I,X) ∈ MFD be given
as above. Let C ∈ JaddXf,g(fd)KFD be a valid configuration of the FD addXf,g(fd).
Then, all the seven conditions in Definition 4.2 are satisfied for addXf,g(fd) and C. As
the application of the excludes-constraint-addition operation addXf,g does not change
the root and does not change the sets F , E, Or, Xor, and I, the conditions 1.-6. are
also satisfied for C and fd. As the seventh condition is satisfied for addXf,g(fd) and
C, it holds that ∀(h, i) ∈ X ∪ {(f, g)} : h ∈ C ⇒ i /∈ C. Thus, it especially holds that
∀(h, i) ∈ X : h ∈ C ⇒ i /∈ C. Thus, the seventh condition is satisfied for C and fd. We
can conclude that C is valid in fd.

4.4.6 Excludes-Constraint-Deletion Operations

Excludes-constraint-deletion operations with signature��� ⇀ ���
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Figure 4.12: Excludes-constraint-deletion operations delXf,g for features f, g ∈ UN .

Figure 4.12 defines the excludes-constraint-deletion operations. Each excludes-constraint-
deletion operation is applicable to all FDs that contain the constraint to delete. Each
excludes-constraint-deletion operation delXf,g is parametrized with two feature names
f, g ∈ UN . On the application of the excludes-constraint-deletion operation delXf,g to
an FD, the excludes constraint from the feature f to the feature g is removed from the
FD. The operation is applicable to an FD iff the features f and g exist in the FD and the
FD contains an excludes constraint from the feature f to the feature g. This explicates
that it is only possible to delete excludes constraints that are defined in the FD. In the
example, an excludes constraint from the feature f to the feature g is deleted.

77



Chapter 4 Feature Diagrams

Deleting an excludes constraints from an FD relaxes the constraints induced by the
FD on its valid configurations.

Proposition 4.9. Let delXf,g be an excludes-constraint-deletion operation and let fd ∈
MFD be an FD such that delXf,g is applicable to fd. Then, JfdKFD ⊆ JdelXf,g(fd)KFD.

Proof. Let f, g ∈ UN , delXf,g, and fd = (F,E, r,M,Or,Xor, I,X) ∈ MFD be given
as above. Let C ∈ JfdKFD be a valid configuration of the FD fd. Then, all the seven
conditions in Definition 4.2 are satisfied for fd and C. As the application of the excludes-
constraint-deletion operation delXf,g does not change the root and does not change
the sets F , E, M , Or, Xor, and I, the conditions 1.-6. are also satisfied for C and
delXf,g(fd). As the seventh condition is satisfied for fd and C, it holds that ∀(h, i) ∈
X : h ∈ C ⇒ i /∈ C. Thus, it especially holds that ∀(h, i) ∈ X \{(f, g)} : h ∈ C ⇒ i /∈ C.
Thus, the seventh condition is satisfied for C and delXf,g(fd). From the above, we can
conclude that C is valid in delXf,g(fd).

4.4.7 Or-Group-Creation Operations

Or-group-creation operations with signature��� ⇀ ���
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Figure 4.13: Or-group-creation operations createOrf for all feature names f ∈ UN .

Figure 4.13 defines the or-group-creation operations. Each or-group-creation operation
createOrf is parametrized with a name f ∈ UN representing a feature name. The
application of the or-group-creation operation createOrf to an FD creates an or-group
containing the feature f as a subgroup of the parent feature of f . The operation is
applicable to an FD iff the feature f exists in the FD and the feature f is an optional
child feature of its parent. Thus, it is only possible create groups from optional child
features. In the example application (Figure 4.13), the optional child feature f of its
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parent feature r is added to an or-group that solely contains the feature f as subgroup
of the feature r.

Or-group-creation operations create groups containing one feature. This feature is
part of every configuration that contains the feature’s parent feature. As the feature is
optional before applying the operation, or-group-creation operations are refining.

Proposition 4.10. Let createOrf be an or-group-creation operation and let fd ∈MFD

be an FD such that createOrf is applicable to fd. Then, JcreateOrf (fd)KFD ⊆ JfdKFD.

Proof. Let f ∈ UN , createOrf , and fd = (F,E, r,M,Or,Xor, I,X) ∈MFD be given as
above. Let C ∈ JcreateOrf (fd)KFD be a valid configuration of the FD createOrf (fd).
Then, all the seven conditions in Definition 4.2 are satisfied for createOrf (fd) and C. As
the application of the or-group-creation operation createOrf does not change the root
and does not change the sets F , E, M , Xor, I, and X, the conditions 1.-3. as well as 5.-
7. are also satisfied for C and fd. As the fourth condition is satisfied for createOrf (fd)
and C, it holds that ∀(p,G) ∈ Or ∪ {(parent(f), f)} : p ∈ C ⇒ |C ∩ G| ≥ 1. Thus, it
especially holds that ∀(p,G) ∈ Or : p ∈ C ⇒ |C ∩G| ≥ 1. Thus, the fourth condition is
satisfied for C and fd. We can conclude that C is valid in fd.

4.4.8 Xor-to-Or-Conversion Operations

Xor-to-or-conversion operations with signature��� ⇀ ���
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Figure 4.14: Xor-to-or-conversion operations xor2orp,G for all feature names p ∈ UN and
finite sets of feature names G ⊆ UN .

Figure 4.14 defines the xor-to-or-conversion operations. Each xor-to-or-conversion
operation xor2orp,G is parametrized with a feature name p ∈ UN , and a finite set of
names G ⊆ UN representing the names of the features participating in an xor-group.
On the application of the xor-to-or-conversion operation xor2orp,G to an FD, the xor-
group that is defined by the parent feature p and the features participating in the group
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represented by the feature names in the set G is changed to an or-group. The operation
is applicable to an FD iff the FD contains a xor-group with parent p where the group’s
participants are all the features contained in the set G. Thus, it is only possible to
change the type of xor-groups that are defined in the FD. In the example application
(Figure 4.14), the xor-group defined by (r, {f, g}) is changed to an or-group.

As the constraint induced by an xor-group is more constraining than the constraint
induced by an or-group, xor-to-or-conversion operations are generalizing.

Proposition 4.11. Let xor2orp,G be an xor-to-or-conversion operation and let fd be an
FD such that xor2orp,G is applicable to fd. Then, JfdKFD ⊆ Jxor2orp,G(fd)KFD.

Proof. Let p ∈ UN , G ⊆ UN , xor2orp,G, and fd = (F,E, r,M,Or,Xor, I,X) ∈ MFD

be given as above. Let C ∈ JfdKFD be a valid configuration of the FD fd. Then, all
the seven conditions in Definition 4.2 are satisfied for fd and C. As the application
of the xor-to-or-conversion operation xor2orp,G does not change the root and does not
change the sets F , E, M , I, and X, the conditions 1.-3. and 6.-7. are also satisfied
for C and xor2orp,G(fd). As the fifth condition is satisfied for fd and C, it holds that
∀(p′, G′) ∈ Xor : p′ ∈ C ⇒ |C ∩ G′| = 1. Thus, it especially holds that ∀(p′, G′) ∈
Xor \ {(p, g)} : p′ ∈ C ⇒ |C ∩G′| = 1. This implies that the fifth condition is satisfied
for the FD xor2orp,G(fd) and C. This also especially implies that p ∈ C ⇒ |C ∩G| = 1
holds. Thus, it holds that p ∈ C ⇒ |C ∩G| ≥ 1. As the fourth condition is satisfied for
the FD fd and C, it holds that ∀(p′, G′) ∈ Or : p′ ∈ C ⇒ |C∩G′| ≥ 1. From this and the
previous statement, we can infer that ∀(p′, G′) ∈ Or ∪ {(p,G)} : p′ ∈ C ⇒ |C ∩G′| ≥ 1
holds. Therefore, the fourth condition is satisfied for xor2orp,G(fd) and C. From the
above, we can conclude that C is valid in xor2orp,G(fd).

4.4.9 Or-to-Xor-Conversion Operations

Figure 4.15 defines the or-to-xor-conversion operations. Each or-to-xor-conversion op-
eration or2xorp,G is parametrized with a name p ∈ UN representing a feature and a
finite set of names G ⊆ UN representing the names of the features participating in an
or-group. On the application of the or-to-xor-conversion operation or2xorp,G to an FD,
the or-group that is defined by the parent feature p and the features participating in the
group represented by the feature names in the set G is changed to an xor-group. The
operation is applicable to an FD iff the FD contains an or-group with parent p where
the group’s participants are all the features contained in the set G. With this, it is only
possible to change the type of or-groups that are defined in the FD. In the example
application (Figure 4.15), an or-group with the parent r and set of group participants
{f, g} is changed to an xor-group.

As the constraint induced by an xor-group is more constraining than the constraint
induced by an or-group, or-to-xor-conversion operations are refining.
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Or-to-xor-conversion operations with signature��� ⇀ ���
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Figure 4.15: Or-to-xor-conversion operations or2xorp,G for all feature names p ∈ UN and
finite sets of feature names G ⊆ UN .

Proposition 4.12. Let or2xorp,G be an or-to-xor-conversion operation and let fd be an
FD such that or2xorp,G is applicable to fd. Then, Jor2xorp,G(fd)KFD ⊆ JfdKFD.

Proof. Let p ∈ UN , G ⊆ UN , or2xorp,G, and fd = (F,E, r,M,Or,Xor, I,X) be given
as above. Let C ∈ Jor2xorp,G(fd)KFD be a valid configuration of the FD or2xorp,G(fd).
Then, all the seven conditions in Definition 4.2 are satisfied for or2xorp,G(fd) and C.
As the application of the or-to-xor-conversion operation or2xorp,G does not change the
root and does not change the sets F , E, M , I, and X, the conditions 1.-3. and 6.-7.
are also satisfied for C and fd. As the fifth condition is satisfied for or2xorp,G(fd)
and C, it holds that ∀(p′, G′) ∈ Xor ∪ {(p,G)} : p′ ∈ C ⇒ |C ∩ G′| = 1. Thus, it
especially holds that ∀(p′, G′) ∈ Xor : p′ ∈ C ⇒ |C ∩ G′| = 1. This implies that
the fifth condition is satisfied for the FD fd and C. This also especially implies that
p ∈ C ⇒ |C ∩ G| = 1 holds. Thus, it holds that p ∈ C ⇒ |C ∩ G| ≥ 1. As the
fourth condition is satisfied for the FD or2xorp,G(fd) and C, it holds that ∀(p′, G′) ∈
Or \ {(p,G)} : p′ ∈ C ⇒ |C ∩ G′| ≥ 1. From this and the previous statement, we can
infer that ∀(p′, G′) ∈ (Or \ {(p,G)}) ∪ {(p,G)} : p′ ∈ C ⇒ |C ∩ G′| ≥ 1 holds. This is
equivalent to ∀(p′, G′) ∈ Or ∪ {(p,G)} : p′ ∈ C ⇒ |C ∩ G′| ≥ 1 Therefore, the fourth
condition is satisfied for fd and C. We can conclude that C is valid in fd.

4.4.10 Mandatory-to-Optional-Conversion Operations

Figure 4.16 defines the mandatory-to-optional-conversion operations. Each mandatory-
to-optional-conversion operation man2optf is parametrized with a feature name f ∈ UN .
On the application of the mandatory-to-optional-conversion operation man2optf to an
FD, the mandatory child feature f is changed to an optional child feature of its parent.
The operation is applicable to a FD iff the feature f exists in the FD and the feature f
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Mandatory-to-optional-conversion operations with signature#$ ⇀ #$

Figure 4.16: Mandatory feature to optional feature conversion operations man2optf for
all feature names f ∈ UN .

is a mandatory child feature of its parent. In the example application (Figure 4.16), the
mandatory child feature f of its parent feature r is changed to an optional child.

Making a mandatory feature optional in an FD relaxes the constraints induced by the
FD on its valid configuration.

Proposition 4.13. Let man2optf be a mandatory-to-optional-conversion operation and
let fd be an FD such that man2optf is applicable to fd. Then, it holds that JfdKFD ⊆
Jman2optf (fd)KFD.

Proof. Let f ∈ UN , man2optf , and fd = (F,E, r,M,Or,Xor, I,X) ∈ MFD be given
as above. Let C ∈ JfdKFD be a valid configuration of the FD fd. Then, all the seven
conditions in Definition 4.2 are satisfied for fd and C. As the application of the manda-
tory feature to optional feature conversion operation man2optf does not change the root
and does not change the sets F , E, Or, Xor, I, and X, the conditions 1.-2. as well as
4.-7. are also satisfied for C and man2optf (fd). As the third condition is satisfied for
fd and C, it holds that ∀(h, i) ∈ M : h ∈ C ⇒ i ∈ C. Thus, it especially holds that
∀(h, i) ∈M \{(a, b) ∈M | b = f} : h ∈ C ⇒ i ∈ C. Thus, the third condition is satisfied
for C and man2optf (fd). We can conclude that C is valid in man2optf (fd).

4.4.11 Optional-to-Mandatory-Conversion Operations

Figure 4.17 defines the optional-to-mandatory-conversion operations. Each optional-to-
mandatory-conversion operation opt2manf is parametrized with a feature name f ∈ UN .
On the application of the optional-to-mandatory-conversion operation opt2manf to an
FD, the optional child feature f is changed to a mandatory child of its parent. The
operation is applicable to an FD iff the feature f exists in the FD and the feature f is an
optional child feature of its parent. Thus, it is only possible to change existing optional
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Optional-to-mandatory-conversion operations with signature��� ⇀ ���
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Figure 4.17: Optional-to-mandatory-conversion operations opt2manf for all feature
names f ∈ UN .

child features to mandatory child features. In the example application, the optional child
feature f of its parent feature r is changed to a mandatory child of its parent.

Making an optional feature mandatory in an FD strengthens the constraints induced
by the FD on its valid configuration.

Proposition 4.14. Let opt2manf be an optional-to-mandatory-conversion operation
and let fd ∈MFD be an FD such that opt2manf is applicable to fd. Then, it holds that
Jopt2manf (fd)KFD ⊆ JfdKFD.

Proof. Let f ∈ UN , opt2manf , and fd = (F,E, r,M,Or,Xor, I,X) ∈ MFD be given
as above. Let C ∈ Jopt2manf (fd)KFD be a valid configuration of the FD fd. Then,
all the seven conditions in Definition 4.2 are satisfied for opt2manf (fd) and C. As
the application of the optional-to-mandatory-conversion operation opt2manf does not
change the root and does not change the sets F , E, Or, Xor, I, and X, the conditions
1.-2. as well as 4.-7. are also satisfied for C and fd. As the third condition is satisfied for
opt2manf (fd) and C, it holds that ∀(h, i) ∈ M ∪ {(a, b) ∈ E | b = f} : h ∈ C ⇒ i ∈ C.
Thus, it especially holds that ∀(h, i) ∈M : h ∈ C ⇒ i ∈ C. Thus, the third condition is
satisfied for C and fd. We can conclude that C is valid in fd.

4.4.12 Feature-Group-Insertion Operations

Figure 4.18 defines the feature-group-insertion operations. Each of the feature-group-
insertion operations add2Grpf,G is parametrized with a feature name f ∈ UN and a
finite set of feature names G ⊆ UN representing the participants of a group. On the
application of the feature-group-insertion operation add2Grpf,G to an FD, the feature f
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Feature-group-insertion operations with signature�-. ⇀ �-.

Figure 4.18: Feature-group-insertion operations add2Grpf,G for all feature names f ∈
UN , and finite sets of feature names G ⊆ UN .
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Figure 4.19: Example FDs illustrating that group-insertion operations and group-
exclusion operations are neither refining nor generalizing.

is added to its parent feature’s group defined by the set of features G. The operation is
applicable to an FD iff the feature f is not the root feature, the feature f is an optional
child feature of its parent feature, and the feature f and the group defined by the features
in G share the same parent. Thus, it is only possible to add an optional feature to a
group of its parent feature. In the example application (Figure 4.18), the optional child
feature f of its parent feature r is added to the or-group of the parent feature r, which
is defined by the set of feature {g, h}.

In general, adding an optional child feature to a group of its parent feature is neither a
refining nor a generalizing operation. Figure 4.19 illustrates this. The FD fd1 is changed
to the FD fd2: The feature f is added to an xor-group solely containing the feature g.
The semantics of the original FD and the resulting FD are incomparable.
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4.4.13 Feature-Group-Exclusion Operations
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Figure 4.20: Feature-group-exclusion operations exclGrpf for all feature names f ∈ UN .

Figure 4.20 defines the feature-group-exclusion operations. Each of the feature-group-
exclusion operation exclGrpf is parametrized with a feature name f ∈ UN . On the
application of the feature-group-exclusion operation exclGrpf to an FD, the feature f
is removed from the group that contains the feature and is made an optional child of
its parent. The operation is applicable to an FD iff the feature f is part of a group. In
the example application (Figure 4.20), the feature f is excluded from the or-group of its
parent feature r and becomes an optional child feature of its parent.

Feature-group-exclusion operations are neither refining nor generalizing operations.
Figure 4.19 illustrates this. The FD fd1 results from applying the feature-group-
exclusion operation exclGrpf to the FD fd2. In this example, the feature f is removed
from an xor-group. The semantics of each of the FDs contains a configuration that is
not valid in the respective other FD.

4.4.14 Root-Rename Operations

Figure 4.21 defines the root-rename operations. Each root-rename operation rnmRootf
is parametrized with a feature name f ∈ UN . The application of the root-rename
operation operation rnmRootf to an FD renames the root in the FD to f . The operation
is applicable to an FD iff the feature f does not exist in the FD. This prevents that
multiple nodes in the resulting FD are labeled with the same name. In the example
application (Figure 4.21), the root r is renamed to f .

Root-rename operations are neither refining nor generalizing. The example application
depicted in Figure 4.21 illustrates this. For example, {r, g} is a configuration that is valid
in the FD depicted on the left-hand side and not valid in the FD depicted on the right-
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Figure 4.21: Root-rename operations rnmRootf for all feature names f ∈ UN .

hand side. Similarly, {f, g} is valid in the FD depicted on the right-hand side and not
valid in the FD depicted on the left-hand side.

4.5 Feature Diagram Modeling Language

The FD modeling language is defined as LFD = (MFD, SemFD, J·KFD) where MFD is the

set of all FDs (defined in Section 4.1), the semantic domain is defined as SemFD
def
= {C ⊆

UN | C is finite} the set of all possible feature configurations (defined in Section 4.2),
and J·KFD maps each FD fd to the set JfdKFD of all configurations that are valid in fd
(defined in Section 4.2). We define the change operation suite OFD for the FD modeling
language as the set of all FD change operations, as defined in the previous sections. The
change operation suite OFD is complete. A simple algorithm for computing a change
sequence to transform an FD fd to another FD fd′ operates as follows:

1. Start with the empty sequence.

2. For each mandatory feature in fd, append an operation for making the mandatory
feature optional.

3. For each implies constraint in fd, append an operation deleting the constraint.

4. For each excludes constraint in fd, append an operation deleting the constraint.
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5. For each feature participating in a group in fd, append an operation for excluding
the feature from its group.

6. Iteratively append leaf feature deletion operations to delete all features in fd except
the root feature.

7. If the root of fd is different to the root in fd′, append a change operation for
renaming the root of fd to the root in fd′.

8. Iteratively append feature addition operation to construct the feature tree of fd′.

9. For each mandatory feature of fd′, append a change operation for making the
feature mandatory.

10. For each implies constraint of fd′, append a change operation for adding the implies
constraint.

11. For each excludes constraint of fd′, append a change operation for adding the
excludes constraint.

12. For each group of fd′, append an operation for creating an or-group that contains
an arbitrary feature of the group.

13. For each feature participating in a group of fd′ that has not been used for creating
a group in the previous step, append a feature group addition operation for adding
the feature to the group.

14. For each xor-group of fd′, append a change operation for transforming the or-
group, which is defined by the xor-group’s parent and the group’s participants, to
an xor-group.

The algorithm sketched by the fourteen steps describes (disregarding the underspecifi-
cation concerning the order in which the operations are appended in each step) a function
∆FD : MFD×MFD → O∗FD that takes two FDs as inputs and outputs a change sequence
of FD change operations. The operations appended in the second step are applicable
because they make existing mandatory features optional. The constraint deletion opera-
tions appended in the third and fourth steps are applicable because they delete existing
cross-tree constraints. The change operations appended in the fifth step are applicable
because they remove existing group participants from their groups. After the application
of the sequence obtained after appending the operations defined in the first five steps to
the input FD fd, the resulting FD does not contain any mandatory features, groups, or
cross-tree constraints. Thus, the application of the iteratively computed feature-deletion
operations (sixth step) that delete all features except the root is possible. The seventh
step changes the name of the root to the name of the root of the FD fd′. The application
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of the change sequence obtained after appending the operations defined in the first seven
steps to the input FD fd yields an FD without cross-tree constraints. The FD contains a
single feature, which is the root feature of fd′. Applying the change sequence appended
in the eighth step to this intermediate FD yields an FD that has the same feature tree as
the FD fd′. All features in this FD are optional and the FD does neither contain groups
nor cross-tree constraints. The change operations appended in the ninth step make all
optional features mandatory that are also mandatory in fd′. The tenth and eleventh
steps append change operations for adding the cross-tree constraints of fd′. The change
operations appended in the twelfth step create the groups that exist in fd′. Afterwards,
the change operations appended in the thirteenth step add all features to the groups
that are also part of the corresponding groups in fd′. The change operations appended
in the fourteenth step change all or-groups, which are xor-groups in fd′, to xor-groups.
In summary, applying the computed change sequence to the FD fd yields the FD fd′.
Thus, the function ∆FD satisfies ∀m,m′ ∈MFD : m.∆FD(m,m′) = m′. Therefore, the
change operation suite OFD is complete for LFD.

4.6 Related Work and Discussion

A semantic differencing operator for an FD modeling language based on the usual
closed-world semantics is presented in [AHC+12]. Using the notations of this the-
sis, the closed-world semantics of an FD fd = (F,E, r,M,Or,Xor, I,X) is defined

as JfdKFDcw
def
= JfdKFD ∩ ℘(F ), i.e., the set of configurations that are valid in fd and

solely contain features that are used in fd. Semantic differencing with the closed-world
semantics is useful when analyzing the semantic differences between two FDs in late
development stages [DKMR19], such as the application engineering phase [BPvdL05]
of feature-oriented development processes. In late development phases, all possible fea-
tures of the domain of interest are usually identified and explicitly used in the FD that
models the product line. Each added and each removed product should be detected
and reviewed by product line engineers to ensure that the product line only permits
meaningful realizations. In early development stages, however, such as the domain en-
gineering phase [BPvdL05] in feature-oriented development processes, or when using
agile methods for the product line development, requirements on the product line are
permanently subject to change. This especially includes that new features are identified
and added to the FD because the set of all possible features is not necessarily known
at the beginning of the development of the product line. Then, product line developers
have an open-world view on the product line and consider the addition of new features
to FDs as refinements [DKMR19]. With the usual closed-world semantics, however, the
addition of a feature usually yields an FD with a semantics that is incomparable to the
semantics of the original FD.

An approach that suggests a method that can be used to decrease the computational
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complexity for semantic differencing of feature models using the closed-world semantics
is presented in [TBK09]. The idea of the method is to simplify the propositional logic
formula used for semantic differencing based on common clauses of the formulas gener-
ated for the individual feature models, before splitting the formula into multiple formulas
and performing distinct solver calls. The method could also decrease the computational
complexity of semantic differencing operators using the open-world semantics.

Related work [BKL+16] defines the binary relations specialization, refactoring, and
generalization for feature models. The approach uses the usual closed-world semantics.
Tailored to our notation, a feature model is a specialization of another feature model
iff the former feature model is a refinement of the latter feature model. The notions
of refactoring and generalization defined in [BKL+16] coincide with our notions of gen-
eralization and refactoring, as defined in this thesis. The approach also defines change
operations for feature models [BKL+16] and a method for syntactic differencing of fea-
ture models based on the change operations. The article [BKL+16] further presents
sufficient conditions guaranteeing that a feature model is a specialization (respectively
generalization, refactoring) of another feature model based on interpreting changes to
feature models as changes to the sets of constraints induced by feature models.

Besides semantic differencing, there are many automated semantics-based FD anal-
yses (e.g., [TKB+14, BSRC10]). To the best of our knowledge, the existing analyses
are based on the usual closed-world semantics. Basing the analyses on the semantics
presented in this chapter often changes the perspectives of the analyses. The follow-
ing discusses the differences between the perspectives using the different semantics in
combination with various analyses.

There are translations to transform an FD to a propositional formula such that the
satisfying interpretations of the formula represent exactly the products in the closed-
world semantics of the FD [BSRC10, BTRC05, CW07, ZZM04, AHC+12]. As explained
in Section 4.3, these translations are reusable for semantic differencing of FDs with the
semantics presented in this chapter. Similarly, other translation-based techniques for
reasoning about the products of an FD are reusable. Such techniques are, for example,
based on constraint programming as presented in [TBD+08].

A feature is dead in an FD iff no configuration of the FD contains the feature [BSRC10].
Using the closed-world semantics, a feature is dead in an FD iff its instantiation is im-
possible due to contradicting constraints or it is not used by the FD. Using the semantics
presented in this chapter, a feature not used in an FD is unconstrained by the FD. If a
feature is used in an FD, then it is dead with the closed-world semantics iff it is dead
with this chapter’s semantics.

An FD is said to be satisfiable iff its semantics contain a configuration that is differ-
ent from the empty set [BSRC10]. There are various automatic methods for checking
whether an FD is satisfiable using the closed-world semantics [BSRC10, Bat05, TBD+08],
for example, by checking whether the formula obtained from translating an FD is satis-
fiable. An FD is not satisfiable if it contains contradicting constraints. As the semantics
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presented in this chapter assumes that the root of an FD is part of every valid configu-
ration of the FD, an FD is satisfiable with the open-world semantics iff it is satisfiable
with the closed-world semantics.

Operators to determine the number of the modeled products and the set of all possible
products [BTRC05, BSRC10] reveal the size and degree of variability of the modeled
product line. The results facilitate identifying required FD changes towards obtaining
the intended product scope. With this chapter’s semantics, when assuming an infinite
universe of features, the number of valid configurations of an FD is usually infinite
because every FD only constrains a finite set of features.

There are various syntactic FD composition operators [SHTB07, ACLF10, vdBGN10,
vdB12, AHC+12]. Each composition operator takes two FDs as inputs and outputs
another FD that satisfies a property with respect to the semantics of the original FDs. An
intersection composition operator, for instance, composes two FDs to an FD such that the
semantics of the resulting FD is equal to or a superset of the intersection of the semantics
of the two original FDs [SHTB07, ACLF10, vdB12, AHC+12]. Existing syntactic FD
composition operators are defined to obtain compounds that satisfy properties with
respect to the closed-world semantics. Determining the relationship between the open-
world semantics of the resulting FD and the semantics of the input FDs is interesting
future work.

The FD synthesis problem [CW07] is concerned with translating a propositional for-
mula, over variables representing features, to an FD such that the products of the FD
(elements of the closed-world semantics) represent exactly the satisfying interpretations
of the formula. The translation constructs an FD that respects all constraints between
features modeled by the formula. As every element of an FD’s closed-world semantics is
also valid in the FD, existing methods solving the FD synthesis problem are well-reusable
when using the open-world semantics.
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Sequence Diagrams

A sequence diagram (SD) represents an exemplary and possibly incomplete system run
of a software system. This section uses the semantically relevant subset of the UML/P
SD variant [Sch12, Rum16, Rum17], which is a simplified SD variant that is especially
suited for requirements specification, modeling of tests, and system documentation.

An SD models the interactions between objects during possible system runs from a
black-box viewpoint. It abstracts from the internal states of the individual objects. As
SDs represent exemplary system run excerpts, the interactions between objects modeled
by an SD may appear in a different order, multiple times, or even not at all in a real sys-
tem run [Rum16]. The system run may also exhibit additional interactions in addition to
the interactions modeled in the SD. Therefore, UML/P SDs are not suited for modeling
the complete behavior of a system. They are primarily suited for requirements specifi-
cation, test definition, and system documentation. We refer to [Sch12, Rum16, Rum17]
for an introduction to the practical use of UML/P SDs in software development.

Figure 5.1 depicts the graphical representation of the UML/P SD bid1 inspired by
a similar example from [Rum16]. The objects in an SD are organized next to each
other in a row. The objects in an SD have unique names. Names can be enriched with
typing information. For example, the SD bid1 contains an object with label cop-
per912:Auction. The name copper912 is the object’s actual name and Auction
describes the object’s type. Similarly, the SD contains an object labeled :Protocol.
This represents an anonymous object of type Protocol.

Each object has a timeline, which is represented by a vertical line starting at the
object. The timeline of an object represents the progress of time for the object during
system runs. Timelines abstract from real time, i.e., the distances between interactions
on a timeline do not faithfully represent the amount of real time that passes between
the interactions. Therefore, the timeline only represents the chronological order of in-
teractions, ordered from the top towards the bottom.

Activity bars are represented by white boxes that are placed on timelines or other
activity bars. They indicate when objects are active during a system run. Recursive
method calls are represented by activity bars laced on other activity bars. Activity bars
may be omitted and are semantically irrelevant for the semantics used in this section.
They are primarily used to increase the understandability for developers.
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copper912:

Auction

bidPol:

BiddingPolicy
:Protocol

validateBid(bid)

SD bid1

getAuctionStatus

return

writeToProtocol("Auction 912, Bid " accepted")

getBestBid

objects

interaction timeline

activity bar
return
interaction

Figure 5.1: The SD bid1 inspired by a similar SD from [Rum16].

Interactions between objects are modeled with horizontal, directed, and labeled arrows
starting at the timeline of an object and ending at the timeline of an object. The label
of an arrow representing an interaction models an action triggered by the object at
the arrow’s starting point on the object at the arrow’s ending point. An action can
represent asynchronous message transfer, synchronous method calls, returns in response
to synchronous message calls, and exceptions. In the concrete syntax, synchronous
message calls and asynchronous message transfers are indicated via arrows with solid
lines representing the interaction. Returns and exceptions are indicated with dashed
lines. The type of an action is solely important to increase the understandability of the
SD for developers but is semantically irrelevant.

Objects can be tagged with the three stereotypes�complete�,�visible�, and
�initial� [Rum16], which further constrain the interactions of objects in system
runs. The stereotypes and their meanings are described in the following sections.

UML/P SDs can also contain guards specified in the object constraint language (OCL)
for a detailed description of properties that hold during a system run [Rum16]. This
thesis is not concerned with OCL guards used in SDs.

As an SD models exemplary and possibly incomplete system runs, the semantics of
an SD is the infinite set of all system runs that exhibit the interactions specified by the
SD. As stated above, this section is concerned with the semantically relevant syntax
of UML/P SDs without OCL guards. Therefore, we abstract from activity bars. For
simplicity, we only use arrows with solid lines for modeling interactions. For instance,
Figure 5.2 depicts a representation of the SD bid1 (cf. Figure 5.1) that only contains
its semantically relevant syntactic modeling elements.

The contributions of this chapter are twofold. First, this chapter presents a semantic
differencing operator for UML/P SDs based on a variant of the semantics presented
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copper912:

Auction

bidPol:

BiddingPolicy
:Protocol

validateBid(bid)

SD bid2

getAuctionStatus

return

writeToProtocol("Auction 912, Bid " accepted")

getBestBid

Figure 5.2: The SD bid2 only contains the semantically relevant modeling elements of
the SD bid1 depicted in Figure 5.1.

in [Rum16]. Then, this chapter presents a complete change operation suite for SDs.
For each change operation, it is examined whether the change operation is refining,
generalizing, or refactoring.

In the following, Section 5.1 introduces the syntax of SDs. Afterwards, Section 5.2
defines the semantics of SDs. Based on this semantics, Section 5.3 presents the semantic
differencing operator. Then, Section 5.4 introduces the SD change operations. Finally,
Section 5.5 defines the SD modeling language and a complete SD change operation suite,
before Section 5.6 discusses related work.

5.1 Sequence Diagram Syntax

SDs constrain the interactions between objects of a system. In the remainder, letO ⊆ UN
be an infinite set of objects and A ⊆ UN be an infinite set of actions. The set of ob-
jects O contains the possible names of objects in SDs and system runs. The set of
actions A contains the possible names of actions in SDs and system runs. Objects in-
teract with each other via actions. An interaction triggered by an object o ∈ O on
an object o′ ∈ O with action a ∈ A is a tuple (o, a, o′) ∈ O × A × O. To avoid

notational clutter, in the following, let I def
= O × A × O denote the set of all possi-

ble interactions between objects. For an interaction i = (src, act, trg) ∈ I, we de-

note by src(i)
def
= src the source of the interaction, act(i)

def
= act the action of the in-

teraction, trg(i) = trg the target of the interaction, and obj(i) = {src, trg} the set
containing the source object and the target object of the interaction. For instance,
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the first interaction in the SD depicted in Figure 5.2 is represented by the interaction
(copper912:Auction,validateBid(bid),bidPol:BiddingPolicy).

The following defines the syntax of SDs:

Definition 5.1. A sequence diagram is a tuple sd = (O,Oc, Ov, Oi, A, d) where

• O ⊆ O is a finite set of objects,

• Oc ⊆ O is the subset of objects that are tagged as complete,

• Ov ⊆ O is the subset of objects that are tagged as visible,

• Oi ⊆ O is the subset of objects that are tagged as initial,

• A ⊆ A is a finite set of actions, and

• d ∈ (O ×A×O)∗ is a finite sequence of diagram interactions.

In the following, MSD denotes the set of all SDs. The set of objects O contains all
objects that are used in the SD. The sequence d is the sequence of object interactions
in the order as depicted from top to bottom in the graphical notation of SDs. The
sequence models the interactions and the order of the interactions that must appear
during a system run. The sets of objects Oc, Ov, and Oi contain the objects used in
the SD that are tagged with one of the stereotypes �complete�, �visible�, and
�initial�, respectively. Every object can be tagged with multiple of the different
stereotypes. For example, the SD depicted in Figure 5.3 is mathematically defined as
(O,Oc, Ov, Oi, A, d) with

• the objects O = {a,b,c,d},

• the objects tagged as complete Oc = {b},

• the objects tagged as visible Ov = {c},

• the objects tagged as initial Oi = {d},

• the actions A = {foo,bar}, and

• the sequence of diagram interactions d = (a,foo,b), (b,bar,c), (d,foo,a).

Tagging an object with a stereotype further restricts the permitted interactions of the
object during system runs. Generally, the interactions of objects before the occurrence of
the first interaction and after the occurrence of the last interaction modeled in an SD are
unconstrained. The tags restrict the possible interactions between the occurrences of the
first and the last interactions modeled by the SD. If an object is tagged as complete, then
the object must not interact with any object in between the first and the last interaction
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a
≪complete≫

b

≪visible≫

c

foo

SD

≪initial≫

d

bar

foo

Figure 5.3: An SD that contains all SD modeling elements.

of the object differently from stated in the SD. Thus, the modeled interactions of the
object are complete in between the first and the last modeled interactions of the object.
If an object is tagged as visible, then the object must exactly interact with the objects
of the SD as stated in the SD. It must not interact via further interactions with the
objects used in the SD. The interactions of the object with other objects not used in
the SD remain unconstrained. If an object is tagged as initial, then the object must not
perform its interactions as stated in the SD before they are initially performed at the
position at which they are stated. After the occurrence of the interaction at the stated
position, performing the interaction is unconstrained. We refer to [Rum16] for further
discussions on the implications of using the stereotypes. The following section precisely
describes the meanings of the stereotypes through the semantic mapping for SDs.

5.2 Sequence Diagram Semantics

SDs represent possibly incomplete excerpts of system runs. Similar to an SD, a system
run consists of a set of objects, a set of actions used by the objects to interact with each
other, and a trace of interactions between the objects via the actions. Therefore, similar
to SDs, system runs are defined as follows:

Definition 5.2. A system run is a tuple r = (Obj,Act, t) where

• Obj ⊆ O is a finite set of objects,

• Act ⊆ A is a finite set of actions,

• t ∈ (Obj ×Act×Obj)∗ is a trace of interactions.

I(r)
def
= Obj ×Act×Obj denotes the set of all possible interactions over the objects in

Obj and the interactions in Act of the system run r.
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a
≪complete≫

b

foo

SD

bar

Figure 5.4: A simple SD containing two interactions and an object tagged as complete.

An SD models excerpts of system runs. A system run modeled by an SD may contain
more objects and interactions than stated in the SD. Therefore, SDs are always exem-
plary abstractions of real system runs [Rum16]. The semantics of an SD is the set of
all system runs that contain the objects and the interactions between the objects in the
order stated by the SD while satisfying the constraints induced by the stereotypes.

Definition 5.3. A system run r = (Obj,Act, t) is valid in an SD sd = (O,Oc, Ov, Oi, A, d)
where d = d1, ..., dn with n ≥ 0 iff t ∈ I∗&d1&X∗1 &d2&X∗2 &...&X∗n−1&dn&I∗ where

• Xk = I \ (Ic ∪ Iv ∪ Ii,k) for all 0 < k < n,

• Ic = {i ∈ I | obj(i) ∩Oc 6= ∅},

• Iv = {i ∈ I | obj(i) ∩Ov 6= ∅ ∧ obj(i) ⊆ O},

• Ii,k = {dl | k < l ≤ n ∧ obj(dl) ∩Oi 6= ∅} for all 0 < k < n.

The semantics JsdKSD of an SD sd is defined as the set of all system runs that are
valid in sd.

According to Definition 5.3, the interactions of the system run are unconstrained before
the occurrence of the first interaction stated in the SD. Then, the diagram interactions
must occur in the specified order. In between two consecutive diagram interactions,
further interactions may occur, which are the elements of the sets Xk. The stereotypes
constrain the interactions that may occur between two consecutive diagram interactions.
The set Ic contains the interactions that must not occur due to objects tagged as com-
plete. The set Iv contains the interactions that must not occur due to objects tagged
as visible. Similarly, the sets Ii,k contain the actions that must not occur between the
k-th and the (k + 1)-th diagram interaction due to objects tagged as initial. After the
occurrence of the last diagram interaction, the interactions that may occur in the system
run are unconstrained, again.

For example, Figure 5.4 depicts a simple SD with two objects of which one is tagged
as complete and two interactions. The system run ({a,b,c}, {foo,bar}, t) with t =
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(c,foo,a), (a,foo,b), (c,foo,a), (b,bar,a), (c,foo,a) is valid in the SD. The system
run ({a,b,c}, {foo,bar}, t) with t = (a,foo,b), (c,foo,b), (b,bar,a) is not valid in
the SD because the object b is tagged as complete and the trace contains the interaction
(c,foo,b) in between the two consecutive interactions of the sequence of diagram in-
teractions. The system run ({a,b,c}, {foo,bar}, t) with t = (c,foo,b), (a,foo,b) is
not valid in the SD because the trace of the system run does not contain the interaction
(b,bar,a) after the interaction (a,foo,b).

5.3 Semantic Differencing of Sequence Diagrams

The semantic difference from an SD to another SD is the set of all system runs that are
valid in the former SD and not valid in the latter SD. This section presents a semantic
differencing operator for the SD modeling language.

The following motivates the semantic differencing operator using three SDs inspired
from similar SDs modeled in [ABH+17]: Figure 5.5 depicts the three SDs rob1, rob2,
and rob3. The sequence diagrams model interactions between software components
implementing the behavior of an autonomous service robot [ABH+17]. A developer
initially developed the SD rob1. Later in the development process, the developer intends
to abstract from the messages communicated with the stateProvider object. Thus,
the developer changes the SD rob1 to the SD rob2. The developer is interested in
whether the changes indeed induce an abstraction in the sense that every system run
of the original SD rob1 is also a valid system run of the SD rob2. Thus, she uses the
semantic differencing operator, which confirms that every valid system run of rob1 is
also a valid system run of rob2. Vice versa, the developer wants to check whether there
are system runs of the new SD rob2 that are no valid system runs of the SD rob1. Thus,
she again uses the semantic differencing operator. The semantic differencing operator
presents a valid system run of rob2 that is not valid in rob1. With this information,
she understands that rob2 is not a refinement of rob1.

After a while, the developer recognizes that the controller object should not per-
form interactions different from the explicitly modeled interactions stated in the SD.
Therefore, the developer changes the SD rob2 to the SD rob3 by tagging the object
controller as complete. The developer expects the resulting SD rob3 to be a refine-
ment of its predecessor version rob2. To confirm this, she uses the semantic differencing
operator, which confirms that every valid system run of rob3 is also a valid system run
of rob2. Vice versa, the developer wants to know whether the SD rob3 is a refactoring
of the SD rob2. Thus, she uses the semantic differencing operator to check whether the
semantic difference from rob2 to rob3 is also empty. The semantic differencing oper-
ator automatically detects that the SD rob3 is not a refactoring of rob2 and presents
a diff witness to the developer. The diff witness represents a concrete system run of the
SD rob2 that is no valid system run of the SD rob3.
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SD rob1

SD rob2

SD rob3

Figure 5.5: Consecutive SD versions rob1, rob2, and rob3 modeling systems runs of an
autonomous service robot with pairwise different but not disjoint semantics.

The semantic differencing operator for SDs is based on a reduction to the language
inclusion checking problem for finite automata. Under the assumption that the set I of
all possible interactions is infinite, the language I∗ is not regular, i.e., there exists no NFA
that accepts I∗. As the expression I∗ is part of the validity condition in Definition 5.3,
this directly implies that there does not exist an NFA that accepts exactly all the traces
of all systems runs that are valid in an SD.

However, for determining whether there are semantic differences from an SD to another
SD, it suffices to search for a diff witness in a set of all traces of all valid system runs
of the former SD, where the set of all interactions used by the traces in the set is finite,
i.e., only finitely many different interactions need to be considered. The searched set of
traces is a regular language. This ultimately enables reducing semantic differencing of
SDs to language inclusion checking between NFAs.
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The following Proposition 5.1 formally presents the construction of the set of traces.
The proposition further states that it suffices to search this set for a trace of a diff
witness. The proof of Proposition 5.1 is based on two observations: Every SD equally
constrains the use of any two actions that are not used in the SD. Similarly, every SD
equally constrains the interactions of any two objects not used in the SD. For semantic
differencing of two SDs, this enables transforming every system run into a system run
that solely uses the objects and actions of the SDs as well as one object and one action
not used in both SDs. The latter system run is constructed by merging the objects
not used in the SDs into a single object, redirecting the interactions accordingly, and
relabeling the interactions having actions not used in the SDs. The constructed system
run is contained in the semantic difference from one of the SDs to the other SD iff the
original system run is contained in the semantic difference.

Proposition 5.1. Let sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′) be two

sequence diagrams. Further let o ∈ O \ (O ∪ O′) be an object that is neither used by sd
nor by sd′ and let a ∈ A \ (A ∪ A′) be an action that is neither used by sd nor by sd′.

Let ω
def
= O ∪O′ ∪ {o} and α

def
= A ∪A′ ∪ {a}. The following statements are equivalent:

1. JsdKSD 6⊆ Jsd′KSD.

2. There exists a system run r = (Obj,Act, t) with t ∈ (ω × α × ω)∗ such that r ∈
JsdK ∧ r /∈ Jsd′K.

Proof. Let sd, sd′, o, a, ω, and α be given as above.
”⇐”: The existence of a system run r = (Obj,Act, t) with t ∈ (ω × α× ω)∗ such that

r ∈ JsdK ∧ r /∈ Jsd′K directly implies that JsdKSD 6⊆ Jsd′KSD.
”⇒”: Let r = (Obj,Act, t) be an arbitrary system run. First, we fix our notations for

this proof. In the following, we assume:

• d = d1, ..., dn where n ≥ 0,

• X1, ...Xn−1 are the sets Xi for sd as defined in Definition 5.3,

• Ic, Iv, Ii,k are the sets of interactions for sd as defined in Definition 5.3,

• t = t1, ..., tk where k ≥ 0.

We define the system run r′
def
= (ω, α, t′) where |t′| = |t| with t′ = t′1, ..., t

′
k and for all

0 < i ≤ k:

src(t′i) =

{
src(ti) , if src(ti) ∈ O1 ∪O2

o , otherwise.

trg(t′i) =

{
trg(ti) , if trg(ti) ∈ O1 ∪O2

o , otherwise.
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act(t′i) =

{
act(ti) , if act(ti) ∈ A1 ∪A2

a , otherwise.

Then, t′ ∈ (ω × α × ω)∗. Intuitively, the translation from r to r′ leaves the objects,
the actions, and the interactions between objects that are used in sd or sd′ unchanged.
All objects that are neither used by sd nor by sd′ are merged into the object o, which is
neither used by sd nor by sd′. Similarly, all actions that are neither used by sd nor by
sd′ are merged into the action a, which is neither used by sd nor by sd′.

In the following (at the end of this proof), we show that for the two sequence diagrams
sd and sd′ it holds that r ∈ JsdKSD iff r′ ∈ JsdKSD as well as r ∈ Jsd′KSD iff r′ ∈ Jsd′KSD.
Under the assumption that JsdKSD 6⊆ Jsd′KSD holds, we can safely assume r ∈ JsdKSD

and r /∈ Jsd′KSD because r is chosen arbitrarily. This then implies r′ ∈ JsdKSD and
r′ /∈ Jsd′KSD and completes the proof because t′ ∈ (ω × α× ω)∗.

In the following, we show: r ∈ JsdKSD iff r′ ∈ JsdKSD. The proof for r ∈ Jsd′KSD iff
r′ ∈ Jsd′KSD is analogous. We first show the following two properties:

(P1) t′i = dj iff ti = dj for all 0 < i ≤ k and 0 < j ≤ n.

(P2) t′i ∈ Xj iff ti ∈ Xj for all 0 < i ≤ k and 0 < j < n.

Proof of (P1):

Let i, j ∈ N with 0 < i ≤ k and 0 < j ≤ n.

”⇒”: Assume t′i = dj . Then, src(t′i) 6= o, trg(t′i) 6= o, and act(t′i) 6= a because
dj ∈ (O1 ∪ O2) × (A1 ∪ A2) × (O1 ∪ O2), o /∈ O1 ∪ O2, and a /∈ A1 ∪ A2. Therefore, by
definition of t′, it holds that src(t′i) = src(ti), trg(t′i) = trg(ti), and act(t′i) = act(ti).
From this and as t′i = dj , we obtain ti = dj .

”⇐”: Assume ti = dj . As dj ∈ (O1 ∪O2)× (A1 ∪ A2)× (O1 ∪O2), by definition of t′,
we have t′i = ti. Thus, t′i = ti = dj .

Proof of (P2):

Let i, j ∈ N with 0 < i ≤ k and 0 < j < n.

”⇒”: Assume t′i ∈ Xj . Then by definition of Xj , it holds that t′i /∈ Ic and t′i /∈ Iv and
t′i /∈ Ii,j . We now show that this implies ti /∈ Ic and ti /∈ Iv and ti /∈ Ii,j , which implies
that ti ∈ Xj :

”ti /∈ Ic”: As t′i /∈ Ic, it holds that obj(t′i) ∩ Oc = ∅. Suppose towards a contradiction
ti ∈ Ic. Then, obj(ti) ∩Oc 6= ∅. Thus, src(ti) ∈ Oc or trg(ti) ∈ Oc. If src(ti) ∈ Oc, then
src(ti) = src(t′i) because Oc ⊆ O, which contradicts obj(t′i) ∩ Oc = ∅. If trg(ti) ∈ Oc,
then trg(ti) = trg(t′i) because Oc ⊆ O, which contradicts obj(t′i ∩Oc) = ∅. Thus, ti /∈ Ic.

”ti /∈ Iv”: As t′i /∈ Iv, it holds that obj(t′i) ∩ Ov = ∅ ∨ obj(t′i) 6⊆ O. Suppose towards
a contradiction that ti ∈ Iv. Then, obj(ti) ∩ Ov 6= ∅ ∧ obj(ti) ⊆ O. Then, src(ti) ∈ Ov
and src(ti), trg(ti) ∈ O or trg(ti) ∈ Ov and src(ti), trg(ti) ∈ O. If src(ti) ∈ Ov and
src(ti), trg(ti) ∈ O, then src(t′i) = src(ti) ∈ Ov ⊆ O and trg(t′i) = trg(ti) ∈ O. This
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contradicts that t′i /∈ Iv. If trg(ti) ∈ Ov and src(ti), trg(ti) ∈ O, then trg(t′i) = trg(ti) ∈
Ov ⊆ O and src(t′i) = src(ti) ∈ O. This contradicts that t′i /∈ Iv. Thus, ti /∈ Iv.

”ti /∈ Ii,j”: As t′i /∈ Ii,j , it holds that t′i 6= dl for all j < l ≤ n with obj(dl) ∩ Oi 6= ∅.
Suppose towards a contradiction that ti ∈ Ii,j . Then, ti = dl for some j < l ≤ n with
obj(dl) ∩ Oi 6= ∅. As ti = dl and dl ∈ O × A × O, it holds that t′i = ti. This directly
contradicts that t′i /∈ Ii,j . Thus, ti /∈ Ii,j .

”⇐”: Assume ti ∈ Xj . Then, by definition of Xj , it holds that ti /∈ Ic and ti /∈ Iv and
ti /∈ Ii,j . We now show that this implies t′i /∈ Ic and t′i /∈ Iv and t′i /∈ Ii,j , which implies
that t′i ∈ Xj .

”t′i /∈ Ic”: As ti /∈ Ic, it holds that obj(ti) ∩ Oc = ∅. Suppose towards a contradiction
that t′i ∈ Ic. Then, obj(t′i) ∩Oc 6= ∅. Thus, src(t′i) ∈ Oc or trg(t′i) ∈ Oc. If src(t′i) ∈ Oc,
then src(t′i) ∈ O as well as src(t′i) 6= o and, therefore, src(ti) = src(t′i) ∈ Oc, which
contradicts that ti /∈ Ic. If trg(t′i) ∈ Oc, then trg(t′i) ∈ O as well as trg(t′i) 6= o and,
therefore, trg(ti) = trg(t′i) ∈ Oc, which contradicts that ti /∈ Ic. Thus, t′i /∈ Ic.

”t′i /∈ Iv”: As ti /∈ Iv, it holds that obj(ti) ∩ Ov = ∅ ∨ obj(ti) 6⊆ O. Suppose towards
a contradiction that t′i ∈ Iv. Then, obj(t′i) ∩ Ov 6= ∅ ∧ obj(t′i) ⊆ O. Then, src(t′i) ∈ Ov
and src(t′i), trg(t′i) ∈ O or trg(t′i) ∈ Ov and src(t′i), trg(t′i) ∈ O. If src(t′i) ∈ Ov and
src(t′i), trg(t′i) ∈ O, then it especially holds that src(t′i) 6= o and trg(t′i) 6= o. Therefore,
src(ti) = src(t′i) ∈ Ov ⊆ O and trg(ti) = trg(t′i) ∈ O. This contradicts that ti /∈ Iv.
If trg(t′i) ∈ Ov and src(t′i), trg(t′i) ∈ O, then it especially holds that src(t′i) 6= o and
trg(t′i) 6= o. Therefore, src(ti) = src(t′i) ∈ O and trg(ti) = trg(t′i) ∈ Ov ⊆ O. This
contradicts that ti /∈ Iv. Thus, t′i /∈ Iv.

”t′i /∈ Ii,j”: As ti /∈ Ii,j , it holds that ti 6= dl for all j < l ≤ n with obj(dl) ∩ Oi 6= ∅.
Suppose towards a contradiction that t′i ∈ Ii,j . Then, t′i = dl for some j < l ≤ n with
obj(dl)∩Oi 6= ∅. As t′i = dl and dl ∈ O×A×O, it especially holds that src(t′i) 6= o and
trg(t′i) 6= o and act(t′i) 6= a. Thus, t′i = ti. This contradicts that ti /∈ Ii,j . Thus, t′i /∈ Ii,j .

This concludes the proof of (P2).

Combination of (P1) with (P2):

In the following, we combine (P1) and (P2) to show that r ∈ JsdKSD iff r′ ∈ JsdKSD:

”⇒”: Assume r ∈ JsdKSD. Then, t ∈ I∗d1X
∗
1 ...X

∗
n−1dnI∗. Therefore, there exist

n + 1 sub-words u0, ..., un ∈ I∗ of t such that t = u0d1u1d2...dnun and uj ∈ X∗j for all
0 < j < n. From the construction of t′, property (P1), and as t ∈ I∗d1X

∗
1 ...X

∗
n−1dnI∗, it

follows that there exist n+1 sub-words v0, ..., vn ∈ I∗ of t′ such that t′ = v0d1v1d2...dnvn
and |uj | = |vj | for all 0 ≤ j ≤ n. From the above, property (P2), and as uj ∈ X∗j
for all 0 < j < n, it follows that vj ∈ X∗j for all 0 < j < n. This implies that
t′ ∈ I∗d1X

∗
1 ...X

∗
n−1dnI∗, which again implies that r′ ∈ JsdK.

”⇐”: Assume r′ ∈ JsdKSD. Then, t′ ∈ I∗d1X
∗
1 ...X

∗
n−1dnI∗. Therefore, there exist n+1

sub-words u0, ..., un of t′ such that t′ = u0d1u1d2...dnun and uj ∈ X∗j for all 0 < j < n.
From the construction of t′, property (P1), and as t′ ∈ I∗d1X

∗
1 ...X

∗
n−1dnI∗, it follows that
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Figure 5.6: Four SDs sd1, sd2, sd3, and sd4 where sd1 is not a refinement of sd2
and sd3 is not a refinement of sd4.

there exist n+1 sub-words v0, ..., vn ∈ I∗ of t such that t = v0d1v1d2...dnvn and |uj | = |vj |
for all 0 ≤ j ≤ n. From the above, property (P2), and as uj ∈ X∗j for all 0 < j < n, it
follows that vj ∈ X∗j for all 0 < j < n. This implies that t ∈ I∗d1X

∗
1 ...X

∗
n−1dnI∗, which

again implies that r ∈ JsdKSD.

Proposition 5.1 guarantees that searching the set of system runs with a trace over all
the objects used in the SDs, one object that is not used in the SDs, the actions used
in the SDs, and one action not used in the SDs for a diff witness suffices to determine
whether the semantic difference from one of the SDs to the other SD is empty. Stated
differently, an SD is a refinement of another SD iff all system runs with a trace over all
the objects used in the SDs, one object that is not used in the SDs, the actions used in
the SDs, and one action not used in the SDs of the former SD are also system runs of
the latter SD.

Considering one object and one action that are not used by both of the SDs is necessary
because of the constraints induced by objects that are tagged with stereotypes. For
instance, Figure 5.6 depicts the four SDs sd1, sd2, sd3, and sd4. The SD sd1
is not a refinement of the SD sd2. For example, w1

def
= ({p, q, o}, {foo, bar}, t) with

t = (p, foo, q), (o, foo, q), (q, bar, p) ∈ δ(sd1,sd2) is a system run contained in the
semantic difference from sd1 to sd2. However, the set of all systems runs contained
in the semantics of sd1 with a trace over all the objects and actions used in the SDs
is a subset of the set of all system runs contained in the semantics of sd2 with a trace
over all the objects and actions used in the SDs. In contrast, additionally considering
an object not used in both SDs reveals the diff witness w1. Thus, considering an object
not used in the SDs is necessary.

The SDs sd3 and sd4 illustrate why considering an action not used in the SDs
is necessary. The SD sd3 is not a refinement of the SD sd4. For example, w2

def
=

({p, q}, {foo, a}, t) with t = (p, foo, q), (p, a, p), (p, foo, p) ∈ δ(sd3,sd4) is a system run
contained in the semantic difference from sd3 to sd4. However, the set of all systems
runs contained in the semantics of sd1 with a trace over all the objects and actions used
in the SDs is a subset of the set of all system runs contained in the semantics of sd2
with a trace over all the objects and actions used in the SDs. It even holds that the set
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of all systems runs contained in the semantics of sd1 with a trace over all the objects
and actions used in the SDs and one object not used in the SDs is a subset of the set
of all system runs contained in the semantics of sd2 with a trace over all the objects
and actions used in the SDs and one object not used in the SDs. However, additionally
considering an action not used in both SDs reveals the diff witness w2.

As the set of interactions used by an SD is always finite, the above enables a reduction
from semantic SD differencing to language inclusion checking for NFAs. For each of
the two SDs, it is possible to construct an NFA that exactly accepts all traces of all
valid system runs with a trace over all the objects used in the SDs, one object that is
not used in the SDs, the actions used in the SDs, and one action not used in the SDs.
Proposition 5.1 guarantees that the semantic difference from one of the SDs to the other
SD is not empty iff the language recognized by one of the NFAs contains a word that is
not accepted by the other NFA. The following explicates the construction:

Let sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′) be two sequence dia-

grams. Further, let o ∈ O \ (O ∪ O′) be an object that is neither used by sd nor by sd′

and let a ∈ A \ (A ∪ A′) be an action that is neither used by sd nor by sd′. We define

ω
def
= O ∪ O′ ∪ {o} and α

def
= A ∪ A′ ∪ {a}. The set ω contains all objects used in sd or

sd′ as well as the object o that is neither used in sd nor in sd′. Analogously, the set α
contains all actions used in sd or sd′ as well as the action a that is neither used in sd
nor in sd′. For the SD sd, we define the NFA A as A

def
= (S,Σ, δ, i, F ) where

• S = {s ∈ N | s ≤ |d|},

• Σ = ω × α× ω,

• δ = (
⋃

0≤k≤|d| Lk) ∪ Pk with

– L0 = {(0, l, 0) | l ∈ Σ},
– L|d| = {(|d|, l, |d|) | l ∈ Σ},
– Lk = {(k, l, k) | l ∈ Σ ∩ Xk} where Xk depends on sd and is defined as in

Definition 5.3 for all 0 < k < |d|,
– Pk = {(k, dk+1, k + 1) | 0 ≤ k < |d|},

• i = 0, and

• F = {|d|}.

As d is a finite sequence and the set Σ is finite, the NFA A is well-defined. By
construction, it directly follows that the language recognized by A is given by the regular
set L∗(A) = (I∗d1X

∗
1d2x

∗
2...X

∗
n−1dnI∗) ∩ (ω × α × ω)∗ where Xk depends on sd and is

defined as in Definition 5.3 for all 0 < k < n. From this and the definition of SD semantics
(cf. Definition 5.3), it follows that a system run r = (Obj,Act, t) with t ∈ (ω × α × ω)∗

is valid in sd iff the trace t is accepted by A. Analogously, we can construct an NFA
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Figure 5.7: The automata constructed for semantic differencing of the SDs rob1 and
rob2 depicted in Figure 5.5.

B such that a system run r = (Obj,Act, t) with t ∈ (ω × α × ω)∗ is valid in sd′ iff the
trace t is accepted by B. Then, every word accepted by A that is not accepted by B
is the trace of a system run that is valid in A and not valid in B, i.e., a trace of an
element of the semantic difference from sd to sd′. With Proposition 5.1, the semantic
difference from sd to sd′ is not empty iff there exists a word accepted by A that is not
accepted by B. For checking whether there exists such a word, we can use standard
constructions [RS59, HMU06, BK08] from automata theory to construct an automaton
B that accepts the complementary language of B (i.e., L∗(B) = (ω × α× ω)∗ \ L∗(B)),
construct an automaton C that recognizes the intersection of the languages recognized
by A and B (i.e., L∗(C) = L∗(A) ∩L∗(B)), and check whether the language recognized
by C is not empty. Each word recognized by C is then a trace of a diff witness in the
semantic difference from sd to sd′.

The following illustrates the construction of the NFAs using the example SDs depicted
in Figure 5.5. Figure 5.7 depicts the NFAs constructed for semantic differencing of rob1
and rob2. The NFA A1 is constructed from the SD rob1. The NFA B1 is constructed
from the SD rob2. The alphabet of both NFAs is the set of all interactions with an
action used in at least one of the two SDs and an action not used by both SDs between
the objects used in at least one of the SDs and an object not used in both SDs. The
transitions represent the interactions modeled in the SDs. The SD does not contain any
object that is tagged with a stereotype. Therefore, for each interaction in the alphabet
and for each state, the NFA contains a looping transition from the state to itself labeled
with the interaction.

Figure 5.8 depicts the NFAs constructed for semantic differencing of the SDs rob2
and rob3 (cf. Figure 5.5). The NFA A2 is constructed from the SD rob2. The NFA
B2 is constructed from the SD rob3. The alphabets of the NFAs are different from the

104



5.3 Semantic Differencing of Sequence Diagrams
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Object neither used
by sd2 nor by sd3

Transition Name Label

a (ui, deliver(r4222,wd40), controller)

b (controller, getDeliverPlan(r4222,wd40) planner)

c (planner, plan, controller)

d (controller, moveTo(r4222), actionExecuter)

e (actionExecuter, ACTION_SUCCEEDED, controller)

0

Σ

1 52 3 4

a b d e

NFA A2

Σ Σ Σ Σ Σ

c

0

Σ

1 52 3 4

a b d e

NFA B2

Τ Τ Τ Τ

Τ � Σ ∖ 
 ∈ Σ	 	�� 
 ∩ controller � ∅�

c

Σ

Action neither used
by sd2 nor by sd3

Figure 5.8: The automata constructed for semantic differencing of the SDs rob2 and
rob3 depicted in Figure 5.5.

alphabets of the NFAs A1 and B1 because the SDs rob2 and rob3 do not use the object
stateProvider, which is only used by rob1. The object controller is tagged as
complete in rob3. Therefore, the NFA B2 does not contain a looping transition from
each state to itself for each element of the alphabet.

Semantic Differencing Implementation and Experiments

We implemented the semantic differencing operator for SDs to perform experimental
evaluations. The implementation is written in Java and uses the automaton language
inclusion checking tool RABIT1 [ACC+11] for NFA language inclusion checking. We
choose the tool RABIT as it is easy to use and we already used it for the implemen-
tation of the semantic differencing operator for TSPAs (cf. Section 3.3). Alternatively,
implementations using other tools for NFA language inclusion checking are possible. The
implementation of the semantic differencing operator takes two SDs as inputs. It trans-
lates the SDs into NFAs according to the translation described above and outputs the
NFAs in the BA format, which is the input format of RABIT. Subsequently, the imple-
mentation uses the tool RABIT for language inclusion checking of the NFAs. In case
language inclusion does not hold, RABIT provides a counterexample, which is translated
to a diff witness.

We performed experimental evaluations with the seven example SDs presented in
Appendix C. Figure 5.9 summarizes the sizes of the SDs in terms of the numbers of
states and transitions of the NFAs resulting from translating the SDs. As the number of

1http://languageinclusion.org/
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Compared SDs sd1, sd2 #States nfa(sd1) #Trans. nfa(sd1) #States nfa(sd2) #Trans. nfa(sd2)

sd1, sd1 4 147 4 147
sd1, sd2 4 147 4 144
sd2, sd2 4 144 4 144
rob1, rob1 8 2311 8 2311
rob1, rob2 8 2311 6 1733
rob1, rob3 8 2311 6 1381
rob1, rob4 8 2599 8 2599
rob1, rob5 8 2887 9 3248
rob2, rob2 6 905 6 905
rob2, rob3 6 905 6 689
rob2, rob4 6 1949 8 2599
rob2, rob5 6 2165 9 3248
rob3, rob3 6 689 6 689
rob3, rob4 6 1553 8 2599
rob3, rob5 6 1725 9 3248
rob4, rob4 8 2311 8 2311
rob4, rob5 8 2887 9 3248
rob5, rob5 9 2924 9 2924

Figure 5.9: The number of states and transitions of the NFAs constructed from the SDs
for semantic differencing.

Action name Abbreviation Object name Abbreviation

deliver(r4222,wd40) d ui ui
getDeliverPlan(r4222, wd40) gdp controller c

getState() gs planner pl
state s stateProvider sp
plan p actionExecuter ae

moveTo(r4222) mt newObject1 no1
abortAction() aa

ACTION_SUCCEEDED as
ACTION_FAILED af
ACTION_ABORTED ab

Figure 5.10: Abbreviations of action and object names used for describing the diff wit-
nesses presented in Figure 5.11.

states and transitions of the NFAs resulting from the translations depend on both input
SDs, Figure 5.9 depicts the sizes of the NFAs for all pairs of input SDs. We executed the
semantic differencing operator for all pairs of example SDs that are thematically related.
All experiments were executed on a laptop computer with an Intel Core i7-8650U CPU
@ 1.90GHz processor, 16GB RAM, and a Samsung PM981 512GB SSD hard drive using
Windows 10 and Java 1.8.0 192.

Figure 5.11 summarizes the computation times of the semantic differencing opera-
tor and the computed diff witnesses for the input pairs. If no witness exists, i.e.,
refinements holds, then the corresponding cell in the table contains the special sym-
bol -. The object and action names of the SDs rob1,rob2,rob3,rob4, and rob5
are abbreviated in the presented witnesses to save space. Figure 5.10 depicts the re-
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lation between the abbreviations and the original action and object names. For in-
stance, the action name plan is abbreviated as p and the object name controller
is abbreviated as c. The semantic differencing operator took 139ms to detect that
the SD sd1 is a refinement of itself (cf. Figure 5.11). Computing the diff witness
(ui,d,c), (c,gdp,pl), (pl,p,c), (c,mt,ae), (ae,as,c) contained in the semantic dif-
ference from rob3 to rob1 took 991ms.

For the examples, the computation times range from 139ms to 1976ms. We conclude
that the implementation handles the example SDs sufficiently quick. However, the ex-
ample SDs are relatively small in terms of the number of objects and interactions of the
SDs. The results are not generalizable to large SDs and real world examples, especially
because language inclusion checking between NFAs is, in general, computationally hard.

5.4 Sequence Diagram Change Operations

This section presents change operations for SDs. The change operations are used to de-
fine a complete change operation suite for the SD modeling language. Some of the change
operations are neither refining nor generalizing. Although these change operations are
irrelevant for developers to constructively refine or generalize models, the change opera-
tions are necessary to obtain a complete change operation suite. The completeness of the
change operation suite is required for the model repair framework presented in Chapter 7
and the framework’s instantiation presented in Chapter 8. If a change operation is re-
fining or generalizing, then it is possible to incorporate performance improvements into
algorithms that compute solutions (cf. Section 7.5) for special model repair problems as
introduced in Section 8.1.

Figure 5.12 overviews the change operations and indicates whether they are refin-
ing or generalizing. Applying an object-addition operation (cf. No. 1) to an SD can
produce an SD that induces further constraints caused by objects that are tagged as
visible. Therefore, object-addition operations are refining. Vice versa, object-deletion
operations (cf. No. 2) are generalizing. Adding an object to the sets of objects tagged
as complete, visible, and initial, respectively, strengthens the constraints induced by the
SD. Therefore, change operations for adding objects to the sets of objects marked as
complete, visible, and initial (cf. No. 3, 5, 7) are refining. Vice versa, deleting an object
from the sets of objects tagged as complete, visible, and initial, respectively, weakens the
constraints induced by the SD. Therefore, change operations for deleting objects from
the sets of objects marked as complete, visible, and initial (cf. No. 4, 6, 8) are general-
izing. Adding an action to the set of actions (cf. No. 9) of an SD neither changes the
diagram interactions nor the objects of the SD. Therefore, action-addition operations are
refactoring. Only unused actions can be deleted from an SD. Therefore, action-deletion
operations (cf. No. 10) are refactoring. Adding an interaction (cf. No. 11) at a specific
position to the sequence of diagram interactions of an SD yields an SD that has an
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Figure 5.11: The time needed by the semantic differencing operator for semantic dif-
ferencing of the pairs of example SDs and the traces of the computed diff
witnesses.108



5.4 Sequence Diagram Change Operations

No. Operation Ref. Gen.

1. Adding an object 3 7

2. Deleting an object 7 3

3. Adding an object to the set of objects tagged as complete 3 7

4. Deleting an object from the set of objects tagged as complete 7 3

5. Adding an object to the set of objects tagged as visible 3 7

6. Deleting an object from the set of objects tagged as complete 7 3

7. Adding an object to the set of objects tagged as initial 3 7

8. Deleting an object from the set of objects tagged as initial 7 3

9. Adding an action 3 3

10. Deleting an action 3 3

11. Adding an interaction at a specific position 7 7

12. Removing an interaction from a specific position 7 7

Figure 5.12: Sequence diagram change operation properties.

incomparable semantics to the semantics of the original SD. Vice versa, operations for
removing an interaction at a specific position (cf. No. 12) from the sequence of diagram
interactions are neither refining nor generalizing.

5.4.1 Object-Addition Operations

Let � ∈ � be a name representing an object.

Object-addition operations with signature ��� ⇀ ���

�		
�


,
, 
�, 
�, �, 	 	∈ 	�� �		
� ⇔ � ∉ 


↦


�, 
, 
�, 
�, �, 	 where 
� � 
 ∪ ���
Application

Parameters

Explanation

Example

The operation �		
� adds the object �.

Domain


,
, 
�, 
�, �, 	

a b

foo

bar

�		
�
a b

foo

bar

o

Figure 5.13: Object-addition operations addOo for all object names o ∈ O.

Figure 5.13 defines the object-addition operations. Each object-addition operation
addOo is parametrized with an object name o ∈ O. On the application of the object-
addition operation addOo to an SD, the object o is added to the set of objects of the SD.
The operation is applicable to an SD iff the object o does not exist in the SD. Thus, an
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already defined object cannot be added. In the example application (cf. Figure 5.13),
the object o is added to the SD depicted on the left-hand side.

Adding an object to an SD may change the sets of interactions that are prohibited
due to objects tagged as visible. Therefore, object-addition operations are, in general,
not generalizing. For example, Figure 5.14 depicts the two SDs sd1 and sd2 and
a trace of a system run that is valid in sd1 and not valid in sd2. The SD sd2 is
obtained from applying the object-addition operation addOo to sd1. The system run
({a, v, o}, {foo,baz,bar}, t) where t = (a,foo,v), (v,baz,o), (v,bar,a) is valid in
sd1 and not valid in sd2. On the other hand, applying an object-addition operation to
an SD causes that every interaction prohibited in the SD is also prohibited in the SD
that results from the application. Therefore, object-addition operations are refining.

Proposition 5.2. Let addOo be an object-addition operation and let sd ∈ MSD be an
SD such that addOo is applicable to sd. Then, JaddOo(sd)KSD ⊆ JsdKSD.

Proof. Let o ∈ O, addOo, and sd = (O,Oc, Ov, Oi, A, d) where d = d1, ..., dn with n ≥ 0
be given as above. Let sd′ = addOo(sd) = (O′, O′c, O

′
v, O

′
i, A
′, d′).

(1) By definition of addOo, it holds that O′c = Oc. Thus, {i ∈ I | obj(i) ∩ Oc 6= ∅} =
{i ∈ I | obj(i) ∩ O′c 6= ∅}, i.e., the set of interactions prohibited due to objects tagged
as complete in sd is equal to the set of interactions prohibited due to objects tagged as
complete in sd′

(2) By definition of addOo, it holds that O ⊂ O′ and O′v = Ov. Therefore, {i ∈
I | obj(i) ∩Ov 6= ∅ ∧ obj(i) ⊆ O} ⊂ {i ∈ I | obj(i) ∩O′v 6= ∅ ∧ obj(i) ⊆ O′}, i.e., the set
of interactions prohibited due to objects tagged as visible in sd is a subset of the set of
interactions prohibited due to objects tagged as visible in sd′.

(3) By definition of addOo, it holds that d = d′ and O′i = Oi. Therefore, {dl | k < l ≤
n ∧ obj(dl) ∩ Oi 6= ∅} = {dl | k < l ≤ n ∧ obj(dl) ∩ O′i 6= ∅} for all 0 < k < n, i.e., the
set of interactions prohibited due to objects tagged as initial in sd is equal to the set of
interactions prohibited due to objects tagged as initial in sd′.

Using the definition of SD semantics and (1)-(3), we conclude that Jsd′KSD ⊆ JsdKSD.

5.4.2 Object-Deletion Operations

Figure 5.15 defines the object-deletion operations. Each object-deletion operation delOo
is parametrized with an object name o ∈ O. On the application of the object-deletion
operation delOo to an SD, the object o is removed from the SD. The operation is appli-
cable to an SD iff the object o exists in the SD, no interaction in the SD uses the object,
and the object is neither tagged as complete, nor as initial, nor as visible. In the example
application depicted in Figure 5.15, the object o is deleted from the SD depicted on the
left-hand side.
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o

SD sd2

a
≪visible≫

v

foo

SD sd1

(a, foo, v), (v, baz, o), (v, bar, a) is the trace of a system
run that is valid in sd1 and not valid in sd2

bar

a
≪visible≫

v

foo

bar

Figure 5.14: Object-addition operations are not generalizing.

Object-deletion operations with signature��� ⇀ ���

����	

�,��, ��, �, �, � 	∈ ��� ����	 ⇔ � ∈ � ∧ � ∉ �� ∪ �� ∪ � ∧ ∀� ∈ ��: � ∉ �����. ��

↦
�!, ��, ��, �, �, � where �! " � ∖ $�%

Application

Parameters

Explanation

Example

Let � ∈ & be a name representing an object.

The operation ����	 deletes the object �.

Domain

�,��, ��, �, �, �

a b

foo

bar

����	
a b

foo

bar

o

Figure 5.15: Object-deletion operations delOo for all object names o ∈ O.

Deleting an object from an SD may change the sets of interactions that are prohibited
due to objects tagged as visible. Therefore, object deletion operations are, in general,
not refining. This is illustrated in Figure 5.14, which depicts the two SDs sd1 and sd2.
It further depicts a trace of a system run that is valid in sd1 and not valid in sd2.
The SD sd1 can be obtained by applying the object-deletion operation delOo to sd2.
Object-deletion operations are generalizing as their application does not yield an SD
that induces constraints on system runs that are not already induced by the original.

Proposition 5.3. Let delOo be an object-deletion operation and let sd ∈MSD be an SD
such that delOo is applicable to sd. Then, JsdKSD ⊆ JdelOo(sd)KSD.

Proof. In the following, we show that for each object-deletion operation, there exists an
object-addition operation that is an inverse of the object-deletion operation. As object-
addition operations are refining, this implies with Proposition 2.2 that object-deletion
operations are generalizing.

Let o ∈ O be an object name. Let sd = (O,Oc, Ov, Oi, A, d) be an SD such that
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sd ∈ dom(delOo), i.e., the object-deletion operation delOo is applicable to sd. Let
sd′ = (O′, Oc, Ov, Oi, A, d) where O′ = O \ {o}. By definition of delOo, it holds that
delOo(sd) = sd′. As o /∈ O′, it holds that sd′ ∈ dom(addOo). We can derive addOo(sd

′) =
((O \ {o}) ∪ {o}, Oc, Ov, Oi, A, d) = (O,Oc, Ov, Oi, A, d) = sd. We can conclude that
addOo is an inverse of delOo.

5.4.3 Tag-Object-as-Complete Operations

Tag-object-as-complete operations with signature ��� ⇀ ���

�����	

�,��, ��, �, �, � 	∈ ��� �����	 ⇔ � ∈ � ∧ � ∉ ��

↦

�, ��
�, ��, �, �, � where ��

� � �� ∪ ���
Application

Parameters

Explanation

Example

Let � ∈ � be a name representing an object.

The operation �����	 adds the object � to the set of objects tagged as complete.

Domain

�,��, ��, �, �, �

�����	
foo

ba o

bar
baz

foo

ba
≪complete≫

o

bar
baz

Figure 5.16: Tag-object-as-complete operations addOCo for all object names o ∈ O.

Figure 5.16 defines the tag-object-as-complete operations. Each tag-object-as-complete
operation addOCo is parametrized with an object name o ∈ O. On the application of the
tag-object-as-complete operation addOCo to an SD, the object o is tagged as complete
in the SD. The operation is applicable to an SD iff the object o exists in the SD and the
object is not already tagged as complete. In the example application (cf. Figure 5.16),
the object o of the SD depicted on the left-hand side is tagged as complete.

Tagging an object as complete may introduce additional constraints on interactions
caused by the object that is tagged as complete. Thus, tag-object-as-complete operations
are not generalizing. For instance, the system run ({a, b, o}, {foo, bar, baz}, t) where
t = (a, foo, b), (a, foo, o), (b, bar, o), (b, baz, a) is valid in the original SD depicted on the
left-hand side in the example of Figure 5.16 and is not valid in the SD depicted on
the right-hand side. Tagging an object as complete in an SD never relaxes constraints
induced by the SD. Therefore, tag-object-as-complete operations are refining.

Proposition 5.4. Let addOCo be a tag-object-as-complete operation and let sd ∈MSD

be an SD such that addOCo is applicable to sd. Then, JaddOCo(sd)KSD ⊆ JsdKSD.

Proof. Let o ∈ O, addOCo, and sd = (O,Oc, Ov, Oi, A, d) where d = d1, ..., dn with n ≥ 0
be given as above. Let sd′ = addOCo(sd) = (O′, O′c, O

′
v, O

′
i, A
′, d′).
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(1) By definition of addOCo, it holds that Oc ⊆ O′c. Thus, {i ∈ I | obj(i) ∩ Oc 6=
∅} ⊆ {i ∈ I | obj(i) ∩ O′c 6= ∅}, i.e., the set of interactions prohibited due to objects
tagged as complete in sd is a subset of the interactions prohibited due to objects tagged
as complete in sd′.

(2) By definition of addOCo, it holds that O = O′ and O′v = Ov. Therefore, {i ∈
I | obj(i) ∩ Ov 6= ∅ ∧ obj(i) ⊆ O} = {i ∈ I | obj(i) ∩ O′v 6= ∅ ∧ obj(i) ⊆ O′}, i.e., the
set of interactions prohibited due to objects tagged as visible in sd is equal to the set of
interactions prohibited due to objects tagged as visible in sd′.

(3) By definition of addOCo, it holds that d = d′ and O′i = Oi. Therefore, {dl | k <
l ≤ n∧ obj(dl)∩Oi 6= ∅} = {dl | k < l ≤ n∧ obj(dl)∩O′i 6= ∅} for all 0 < k < n, i.e., the
set of interactions prohibited due to objects tagged as initial in sd is equal to the set of
interactions prohibited due to objects tagged as initial in sd′.

Using the definition of SD semantics and (1)-(3), we conclude Jsd′KSD ⊆ JsdKSD.

5.4.4 Untag-Object-as-Complete Operations

Let � ∈ � be a name representing an object.

Untag-object-as-complete operations with signature ��� ⇀ ���

�	
��

�,�� , ��, ��, �, � 	∈ ��� �	
�� ⇔ � ∈ ��

↦

�, ��
�, ��, ��, �, � where ��

� � �� ∖ ���
Application

Parameters

Explanation

Example

The operation �	
�� removes the object � from the set of objects tagged as complete.

Domain

�,��, ��, ��, �, �

�	
��
foo

ba
≪complete≫

o

bar
baz

foo

ba o

bar
baz

Figure 5.17: Untag-object-as-complete operations delOCo for all object names o ∈ O.

Figure 5.17 defines the untag-object-as-complete operations. Each untag-object-as-
complete operation delOCo is parametrized with a name o ∈ O representing an object
name. On the application of the untag-object-as-complete operation delOCo to an SD,
the object o is removed from the set of objects tagged as complete in the SD. The
operation is applicable to an SD iff the object o exists and is tagged as complete in the
SD. In the example application (cf. Figure 5.17), the object o of the SD depicted on the
left-hand side is untagged as complete.

Each untag-object-as-complete operation is the inverse of a tag-object-as-complete
operation. Untagging an object as complete relaxes the constraints induced by the SD.
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Thus, untag-object-as-complete operations are not refining. For instance, Figure 5.17
depicts two SDs where the SD on the right-hand side is obtained by applying an untag-
object-as-complete operation to the SD depicted on the left-hand side. The system run
({a, b, o}, {foo, bar, baz}, t) where t = (a, foo, b), (a, foo, o), (b, bar, o), (b, baz, a) is not
valid in the original SD depicted on the left-hand side and is valid in the SD depicted on
the right-hand side. Untagging an object as complete never strengthens the constraints
induced by the SD. Therefore, untag-object-as-complete operations are generalizing.

Proposition 5.5. Let delOCo be an untag-object-as-complete operation and let sd ∈
MSD be an SD such that delOCo is applicable to sd. Then, JsdKSD ⊆ JdelOCo(sd)KSD.

Proof. We show that for each untag-object-as-complete operation, there exists a tag-
object-as-complete operation that is an inverse of the untag-object-as-complete opera-
tion. As tag-object-as-complete operations are refining, this implies with Proposition 2.2
that untag-object-as-complete operations are generalizing.

Let o ∈ O be an object name. Let sd = (O,Oc, Ov, Oi, A, d) be an SD such that
sd ∈ dom(delOCo), i.e., the untag-object-as-complete operation delOCo is applicable to
sd. Then, o ∈ Oc. Let sd′ = (O,O′c, Ov, Oi, A, d) where O′c = Oc \ {o}. By definition of
delOCo, it holds that delOCo(sd) = sd′. As o /∈ O′c, it holds that sd′ ∈ dom(addOCo).
We can derive addOCo(sd

′) = (O, (Oc \ {o})∪{o}, Ov, Oi, A, d) = (O,Oc, Ov, Oi, A, d) =
sd. We can conclude that addOCo is an inverse of delOCo.

5.4.5 Tag-Object-as-Visible Operations

The operation ������ adds the object � to the set of objects tagged as visible.

Tag-object-as-visible operations with signature ��	 ⇀ ��	

������

�,��, �, ��, �, � 	∈ ��� ������ ⇔ � ∈ � ∧ � ∉ �

↦

�, ��, �
� , ��, �, � where �

� � � ∪ ���
Application

Parameters

Explanation

Example

Let � ∈ � be a name representing an object.

Domain

�,��, �, ��, �, �

������
foo

ba o

bar
baz

foo

ba
≪visible≫

o

bar
baz

Figure 5.18: Tag-object-as-visible operations addOVo for all object names o ∈ O.

Figure 5.18 defines the tag-object-as-visible operations. Each tag-object-as-visible
operation addOVo is parametrized with an object name o ∈ O. On the application of
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the tag-object-as-visible operation addOVo to an SD, the object o is tagged as visible in
the SD. The operation is applicable to an SD iff the object o exists in the SD and the
object is not already tagged as visible. In the example application (cf. Figure 5.18), the
object o of the SD depicted on the left-hand side is tagged as visible.

Tagging an object as visible may introduce additional constraints on interactions
caused by the object that is tagged as visible. Thus, tag-object-as-visible operations
are not generalizing. For instance, the system run ({a, b, o}, {foo, bar, baz}, t) where
t = (a, foo, b), (a, foo, o), (b, bar, o), (b, baz, a) is valid in the SD depicted on the left-
hand side in the example of Figure 5.18 and is not valid in the resulting SD depicted on
the right-hand side of Figure 5.18. Tagging an object as visible in an SD never relaxes
constraints induced by the SD. Therefore, tag-object-as-visible operations are refining.

Proposition 5.6. Let addOVo be a tag-object-as-visible operation and let sd ∈MSD be
an SD such that addOVo is applicable to sd. Then, JaddOVo(sd)KSD ⊆ JsdKSD.

Proof. Let o ∈ O, addOVo, and sd = (O,Oc, Ov, Oi, A, d) where d = d1, ..., dn with n ≥ 0
be given as above. Let sd′ = addOVo(sd) = (O′, O′c, O

′
v, O

′
i, A
′, d′).

(1) By definition of addOVo, it holds that Oc = O′c. Thus, {i ∈ I | obj(i)∩Oc 6= ∅} =
{i ∈ I | obj(i)∩O′c 6= ∅}, i.e., the set of interactions prohibited due to objects tagged as
complete in sd is equal to the interactions prohibited due to objects tagged as complete
in sd′.

(2) By definition of addOVo, it holds that O = O′ and Ov ⊆ O′v. Therefore, {i ∈
I | obj(i) ∩Ov 6= ∅ ∧ obj(i) ⊆ O} ⊆ {i ∈ I | obj(i) ∩O′v 6= ∅ ∧ obj(i) ⊆ O′}, i.e., the set
of interactions prohibited due to objects tagged as visible in sd is a subset of the set of
interactions prohibited due to objects tagged as visible in sd′.

(3) By definition of addOVo, it holds that d = d′ and O′i = Oi. Therefore, {dl | k <
l ≤ n∧ obj(dl)∩Oi 6= ∅} = {dl | k < l ≤ n∧ obj(dl)∩O′i 6= ∅} for all 0 < k < n, i.e., the
set of interactions prohibited due to objects tagged as initial in sd is equal to the set of
interactions prohibited due to objects tagged as visible in sd′.

Using the definition of SD semantics and (1)-(3), we conclude that Jsd′KSD ⊆ JsdKSD.

5.4.6 Untag-Object-as-Visible Operations

Figure 5.19 defines the untag-object-as-visible operations. Each untag-object-as-visible
operation delOVo is parametrized with an object name o ∈ O. On the application of the
untag-object-as-visible operation delOVo to an SD, the object o is removed from the set
of objects tagged as visible in the SD. The operation is applicable to an SD iff the object
o exists and is tagged as visible in the SD. In the example application (cf. Figure 5.17),
the object o of the SD depicted on the left-hand side is untagged as visible.

Each untag-object-as-visible operation is the inverse of a tag-object-as-visible oper-
ation. Untagging an object as visible in an SD relaxes the constraints induced by
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Untag-object-as-visible operations with signature��� ⇀ ���

����	


�,��, �, ��, �, � 	 ∈ ��� ����	
 ⇔ � ∈ �

↦

�, ��, �
� , ��, �, � where �

� � � ∖ ���
Application

Parameters

Explanation

Example

Let � ∈ � be a name representing an object.

The operation ����	
 removes the object � from the set of objects tagged as visible.

Domain

�,��, �, ��, �, �

����	

foo

ba
≪visible≫

o

bar
baz

foo

ba o

bar
baz

Figure 5.19: Untag-object-as-visible operations delOVo for all object names o ∈ O.

the SD. Thus, untag-object-as-visible operations are not refining. For instance, Fig-
ure 5.19 depicts two SDs where the SD on the right-hand side is obtained by applying
an untag-object-as-visible operation to the SD on the left-hand side. The system run
({a, b, o}, {foo, bar, baz}, t) where t = (a, foo, b), (a, foo, o), (b, bar, o), (b, baz, a) is not
valid in the SD depicted on the left-hand side and is valid in the SD depicted on the
right-hand side. Untagging an object as visible in an SD never strengthens the constraints
induced by the SD. Therefore, untag-object-as-visible operations are generalizing.

Proposition 5.7. Let delOVo be an untag-object-as-visible operation and let sd ∈MSD

be an SD such that delOVo is applicable to sd. Then, JsdKSD ⊆ JdelOVo(sd)KSD.

Proof. In the following, we show that for each untag-object-as-visible operation, there
exists a tag-object-as-visible operation that is an inverse of the untag-object-as-visible
operation. As tag-object-as-visible operations are refining, this implies with Proposi-
tion 2.2 that untag-object-as-visible operations are generalizing.

Let o ∈ O be an object name. Let sd = (O,Oc, Ov, Oi, A, d) be an SD such that
sd ∈ dom(delOVo), i.e., the untag-object-as-visible operation delOVo is applicable to sd.
Then, o ∈ Ov. Let sd′ = (O,Oc, O

′
v, Oi, A, d) where O′v = Ov \ {o}. By definition of

delOVo, it holds that delOVo(sd) = sd′. As o /∈ O′v, it holds that sd′ ∈ dom(addOVo). We
can derive addOVo(sd

′) = (O,Oc, (Ov \ {o}) ∪ {o}, Oi, A, d) = (O,Oc, Ov, Oi, A, d) = sd.
We can conclude that addOVo is an inverse of delOVo.

5.4.7 Tag-Object-as-Initial Operations

Figure 5.20 defines the tag-object-as-initial operations. Each tag-object-as-initial oper-
ation addOIo is parametrized with an object name o ∈ O. On the application of the
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Tag-object-as-initial operations with signature ��� ⇀ ���

�����	

�,��, ��, �, �, � 	∈ ��� �����	 ⇔ � ∈ � ∧ � ∉ �

↦

�, ��, ��, �
�, �, � where �

� � � ∪ ���
Application

Parameters

Explanation

Example

Let � ∈ � be a name representing an object.

The operation �����	 adds the object � to the set of objects tagged as initial.

Domain

�,��, ��, �, �, �

�����	
foo

ba
≪initial≫

o

bar
baz

foo

foo

ba o

bar
baz

foo

Figure 5.20: Tag-object-as-initial operations addOIo for all object names o ∈ O.

tag-object-as-initial operation addOIo to an SD, the object o is tagged as initial in the
SD. The operation is applicable to an SD iff the object o exists in the SD and the object
is not already tagged as initial. In the example application depicted in Figure 5.20, the
object o of the SD depicted on the left-hand side is tagged as initial.

Tagging an object as initial may introduce additional constraints on interactions
caused by the object that is tagged as initial. Thus, tag-object-as-initial operations
are not generalizing. For instance, Figure 5.20 depicts two SDs where the SD on the
right-hand side is obtained by applying a tag-object-as-initial operation to the SD on
the left-hand side. In this example, the system run ({a, b, o}, {foo, bar, baz}, t) where
t = (a, foo, b), (o, foo, b), (b, bar, o), (b, baz, a), (o, foo, b) is valid in the original SD de-
picted on the left-hand side and is not valid in the resulting SD depicted on the right-
hand side. Tagging an object as initial in an SD never relaxes constraints induced by
the SD. Therefore, tag-object-as-initial operations are refining.

Proposition 5.8. Let addOIo be a tag-object-as-initial operation and let sd ∈ MSD be
an SD such that addOIo is applicable to sd. Then, JaddOIo(sd)KSD ⊆ JsdKSD.

Proof. Let o ∈ O, addOIo, and sd = (O,Oc, Ov, Oi, A, d) where d = d1, ..., dn with n ≥ 0
be given as above. Let sd′ = addOIo(sd) = (O′, O′c, O

′
v, O

′
i, A
′, d′).

(1) By definition of addOIo, it holds that Oc = O′c. Thus, {i ∈ I | obj(i) ∩Oc 6= ∅} =
{i ∈ I | obj(i)∩O′c 6= ∅}, i.e., the set of interactions prohibited due to objects tagged as
complete in sd is equal to the interactions prohibited due to objects tagged as complete
in sd′.

(2) By definition of addOIo, it holds that O = O′ and Ov = O′v. Therefore, {i ∈
I | obj(i) ∩ Ov 6= ∅ ∧ obj(i) ⊆ O} = {i ∈ I | obj(i) ∩ O′v 6= ∅ ∧ obj(i) ⊆ O′}, i.e., the
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set of interactions prohibited due to objects tagged as visible in sd is equal to the set of
interactions prohibited due to objects tagged as visible for sd′.

(3) By definition of addOIo, it holds that d = d′ and Oi ⊆ O′i. Therefore, {dl | k <
l ≤ n∧ obj(dl)∩Oi 6= ∅} ⊆ {dl | k < l ≤ n∧ obj(dl)∩O′i 6= ∅} for all 0 < k < n, i.e., the
set of interactions prohibited due to objects tagged as initial in sd is a subset of the set
of interactions prohibited due to objects tagged as initial in sd′.

Using the definition of SD semantics and (1)-(3), we conclude that Jsd′KSD ⊆ JsdKSD.

5.4.8 Untag-Object-as-Initial Operations

Untag-object-as-initial operations with signature ��� ⇀ ���

����	


�,��, �, ��, �, � 	 ∈ ��� ����	
 ⇔ � ∈ ��
↦

�, ��, �, ��
�, �, � where ��

� � �� ∖ ���
Application

Parameters

Explanation

Example

Let � ∈ � be a name representing an object.

The operation ����	
 removes the object � from the set of objects tagged as initial.

Domain

�,��, �, ��, �, �

����	

foo

ba o

bar
baz

foo

foo

ba
≪initial≫

o

bar
baz

foo

Figure 5.21: Untag-object-as-initial operations delOIo for all object names o ∈ O.

Figure 5.21 defines the untag-object-as-initial operations. Each untag-object-as-initial
operation delOIo is parametrized with an object name o ∈ O. On the application of the
untag-object-as-initial operation delOIo to an SD, the object o is removed from the set
of objects tagged as initial in the SD. The operation is applicable to an SD iff the object
o exists and is tagged as initial in the SD. In the example application (cf. Figure 5.21),
the object o of the SD depicted on the left-hand side is untagged as initial.

Each untag-object-as-initial operation is the inverse of a tag-object-as-initial operation.
Untagging an object as initial in an SD relaxes the constraints induced by the SD. Thus,
untag-object-as-initial operations are not refining. For instance, Figure 5.21 depicts two
SDs. The SD on the right-hand side is obtained by applying an untag-object-as-initial
operation to the SD on the left-hand side. The system run ({a, b, o}, {foo, bar, baz}, t)
where t = (a, foo, b), (o, foo, b), (b, bar, o), (b, baz, a), (o, foo, b) is not valid in the original
SD depicted on the left-hand side, but is valid in the resulting SD depicted on the right-
hand side. Untagging an object as initial never strengthens the constraints induced by
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the SD. Therefore, untag-object-as-initial operations are generalizing.

Proposition 5.9. Let delOIo be an untag-object-as-initial operation and let sd ∈ MSD

be an SD such that delOIo is applicable to sd. Then, JsdKSD ⊆ JdelOIo(sd)KSD.

Proof. In the following, we show that for each untag-object-as-initial operation, there
exists a tag-object-as-initial operation that is an inverse of the untag-object-as-initial op-
eration. As tag-object-as-initial operations are refining, this implies with Proposition 2.2
that untag-object-as-initial operations are generalizing.

Let o ∈ O be an object name. Let sd = (O,Oc, Ov, Oi, A, d) be an SD such that
sd ∈ dom(delOIo), i.e., the untag-object-as-initial operation delOIo is applicable to sd.
Then, o ∈ OI . Let sd′ = (O,Oc, Ov, O

′
i, A, d) where O′i = Oi \ {o}. By definition of

delOIo, it holds that delOIo(sd) = sd′. As o /∈ O′i, it holds that sd′ ∈ dom(addOIo). We
can derive addOIo(sd

′) = (O,Oc, Ov, (Oi \ {o}) ∪ {o}, A, d) = (O,Oc, Ov, Oi, A, d) = sd.
We can conclude that addOIo is an inverse of delOIo.

5.4.9 Action-Addition Operations

Action-addition operations with signature��� ⇀ ���

�����	


�,�, ��, ��, �, � 	∈ ��� �����	
 ⇔ � ∉ �

↦

�, �, ��, ��, �′, � where �� � � ∪ ���
Application

Parameters

Explanation

Example

Let � ∈ � be a name representing an action.

The operation �����	
 adds the action � to the set of possible actions.

Domain

�,�, ��, ��, �, �

a b

foo

bar

�����	�
�
a b

foo

bar

the concrete graphical syntax does
not reflect the addtion of actions

Figure 5.22: Action-addition operations addActa for all action names a ∈ A.

Figure 5.22 defines the action-addition change operations for SDs. Each action-
addition operation addActa is parametrized with an action name a ∈ A. On the ap-
plication of the action-addition operation addActa to an SD, the action a is added to
the set of possible actions of the SD. The operation is applicable to an SD iff the set
of actions of the SD does not already contain the action a. In the example application
(cf. Figure 5.22), the action a is added to the SD depicted on the left-hand side. The
concrete syntax of the SD remains unchanged as the concrete syntax does not reflect the
set of possible actions, unless they are used on interactions.
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Adding an action to an SD neither changes the sequence of diagram interactions of
the SD, nor the sets of objects tagged as complete, visible, or initial. Therefore, action-
addition operations are refactoring.

Proposition 5.10. Let addActa be an action-addition operation and let sd ∈ MSD be
an SD such that addActa is applicable to sd. Then, JaddActa(sd)KSD = JsdKSD.

Proof. Let addActa be an action-addition operation and let sd = (O,Oc, Ov, Oi, A, d) be
an SD such that addActa is applicable to sd. Further, let sd′ = (O,Oc, Ov, Oi, A∪{a}, d).
By definition of addActa, it holds that addActa(sd) = sd′. By definition of SD semantics,
it directly follows that JsdKSD = JaddActa(sd)KSD.

5.4.10 Action-Deletion Operations

Action-deletion operations with signature ��� ⇀ ���

����	
�

�,��, ��, ��, �, � 	 ∈ ��� ����	
� ⇔ � ∈ � ∧ ∀� ∈ ��: �	
 �. � � �

↦

�, ��, ��, ��, �′, � where � ! � ∖ #�$
Application

Parameters

Explanation

Example

Let � ∈ % be a name representing an action.

The operation ����	
� deletes the action � from the set of possible actions.

Domain

�,��, ��, ��, �, �

a b

foo

bar

����	
&�'

a b

foo

bar

the concrete graphical syntax does
not reflect the removal of actions

Figure 5.23: Action-deletion operations delActa for all action names a ∈ A.

Figure 5.23 defines the action-deletion operations. Each action-deletion operation
delActa is parametrized with an action name a ∈ A. On the application of the action-
deletion operation delActa to an SD, the action a is removed from the set of possible
actions of the SD. The operation is applicable to an SD iff the set of actions of the SD
contains the action a and the action is not used in any interaction of the SD’s diagram
interactions. In the example application, the action a is removed from the SD depicted
on the left-hand side. The graphical syntax of the SD remains unchanged.

The application of an action-deletion operation to an SD neither changes the sequence
of diagram interaction of the SD, nor the sets of objects tagged as complete, visible, or
initial in the SD. Therefore, action-deletion operations are refactoring.

Proposition 5.11. Let delActa be an action-deletion operation and let sd ∈MSD be an
SD such that delActa is applicable to sd. Then, JdelActa(sd)KSD = JsdKSD.
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Proof. Let delActa be an action-deletion operation and let sd = (O,Oc, Ov, Oi, A, d) be
an SD such that delActa is applicable to sd. Further, let sd′ = (O,Oc, Ov, Oi, A\{a}, d).
By definition of delActa, it holds that delActa(sd) = sd′. By definition of SD semantics,
it directly follows that JsdKSD = JdelActa(sd)KSD.

5.4.11 Interaction-Addition Operations

Interaction-addition operations with signature��� ⇀ ���

�����	,�,�,

�,�� , ��, �	, �, � 	∈ ��� �����	,�,�, ⇔ �, � ∈ � ∧ � ∈ � ∧ � � |�|

↦

�, ��, ��, �	, �, �′ where�� � ��, … , �		, �, �, � , �	!�, … , �"

Application

Parameters

Explanation

Example

Let � ∈ #, let �, � ∈ $ be two names representing objects and let � ∈ % be a name representing an action.
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Figure 5.24: Interaction-addition operations addIAi,o,a,p for all indices i ∈ N, object
names o, p ∈ O, and action names a ∈ A.

Figure 5.24 defines the interaction-addition operations. Each interaction-addition op-
eration addIAi,o,a,p is parametrized with an index i ∈ N that defines the position where
the interaction is inserted into the sequence of diagram interactions of an SD, an object
o ∈ O representing the interaction’s source object, the action of the interaction a ∈ A,
and an object p ∈ O representing the interaction’s target object. On the application
of the interaction-addition operation addIAi,o,a,p to an SD, the interaction (o, a, p) is
inserted into the SD’s sequence of diagram interactions at position i. The operation
is applicable to an SD iff the index is smaller than or equal to the length of the SD’s
sequence of diagram interactions, the SD’s set of actions contains the action a, and the
objects o and p exist in the SD. In the example application (cf. Figure 5.24), the interac-
tion (b, baz, o) is added at position 1 to the sequence of diagram interactions of the SD
depicted on the left-and side.

Interaction-addition operations may change an SD such that the resulting SD’s se-
mantics is incomparable to the semantics of the original. Therefore, interaction-addition
operations are neither refining nor generalizing. For instance, Figure 5.25 depicts the two
SDs sd1 and sd2. The SD sd2 can be obtained by applying the interaction-addition
operation addIA1,a,baz,b to the SD sd1. The system run ({a, b}, {foo, bar}, t) where
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(a, foo, b), (b, bar, a) is the trace of a system
run that is valid in sd1 and not valid in sd2

(a, foo, b), (a, baz, b), (b, bar, a) is the trace of a 
system run that is valid in sd2 and not valid in sd1

SD sd2

a
≪complete≫

b

foo

bar

baz

SD sd1

a
≪complete≫

b

foo

bar

Figure 5.25: Interaction-addition and interaction-deletion operations are neither refining
nor generalizing.

t = (a, foo, b), (b, bar, a) is valid in sd1 and not valid in sd2. This illustrates that
interaction-addition operations are, in general, not generalizing. On the other hand, the
system run ({a, b}, {foo, bar, baz}, t) where t = (a, foo, b), (a, baz, b), (b, bar, a) is valid
in the SD sd2 and not valid in the SD sd1, which shows that interaction-addition
operations are, in general, not refining.

5.4.12 Interaction-Deletion Operations

Interaction-deletion operations with signature��� ⇀ ���

����	
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Let � ∈  .
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Figure 5.26: Interaction deletion operations delIAi for all indices i ∈ N.

Figure 5.26 defines the interaction-deletion operations. Each interaction-deletion op-
eration delIAi is parametrized with an index i ∈ N, which defines the position of the
interactions that is removed from an SD’s sequence of diagram interactions. On the
application of the interaction-deletion operation delIAi to an SD, the interaction at
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position i in the sequence of diagram interactions of the SD is deleted from the SD’s
sequence of diagram interactions. The operation is applicable to an SD iff the index is
smaller than the length of the SD’s sequence of diagram interactions, i.e., the index i is
a valid position of the sequence.

In the example application (cf. Figure 5.26), the interaction at position 1 is deleted
from the the SD depicted on the left-and side. Interaction-deletion operations may
change an SD such that the resulting SD’s semantics is incomparable to the seman-
tics of the original. Therefore, interaction-deletion operations are neither refining nor
generalizing. For instance, Figure 5.25 depicts the two SDs sd1 and sd2. The SD
sd1 can be obtained by applying the interaction-deletion operation delIA1 to the SD
sd2. The system run ({a, b}, {foo, bar}, t) where t = (a, foo, b), (b, bar, a) is valid in
sd1 and not valid in sd2. This illustrates that interaction-addition operations are, in
general, not refining. On the other hand, the system run ({a, b}, {foo, bar, baz}, t) where
t = (a, foo, b), (a, baz, b), (b, bar, a) is valid in the SD sd2 and not valid in the SD sd1,
which shows that interaction-addition operations are, in general, not generalizing.

5.5 Sequence Diagram Modeling Language

The SD modeling language is defined as LSD = (MSD, SemSD, J·KSD) where MSD is the
set of all SDs (defined in Section 5.1), the semantic domain SemSD is defined as the set
of all system runs, and J·KSD maps each SD sd to the set of all system runs that are
valid in sd (defined in Section 5.2). We define the change operation suite OSD for the SD
modeling language as the set of all SD change operations defined in the previous sections.
The following sketches an algorithm for computing a change sequence to transform an
SD sd to another SD sd′:

1. Start with the empty sequence.

2. For each object that is tagged as complete in sd and not tagged as complete in sd′,
append a change operation for untagging the object as complete.

3. For each object that is tagged as visible in sd and not tagged as visible in sd′,
append a change operation for untagging the object as visible.

4. For each object that is tagged as initial in sd and not tagged as initial in sd′,
append a change operation for untagging the object as initial.

5. For each interaction in sd, append a change operation for deleting the interaction.

6. For each object in sd that is no object in sd′, append a change operation for
deleting the object.
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7. For each object in sd′ that is no object in sd, append a change operation for adding
the object.

8. For each object that is tagged as complete in sd′ and not tagged as complete in
sd, append a change operation for tagging the object as complete.

9. For each object that is tagged as visible in sd′ and not tagged as visible in sd,
append a change operation for tagging the object as visible.

10. For each object that is tagged as initial in sd′ and not tagged as initial in sd,
append a change operation for tagging the object as initial.

11. Append operations for constructing the sequence of diagram interactions of sd′.

The algorithm sketched by the eleven steps describes (disregarding the underspecifica-
tion concerning the order in which the operations are appended in each step) a function
∆SD : MSD × MSD → O∗SD that takes two SDs as inputs and outputs a change se-
quence of SD change operations. After applying the operations appended in the first
four steps, every object that is tagged as complete (respectively visible and initial) in sd
and not in sd′, is untagged as complete (respectively visible and initial). The operations
appended in the fifth step delete all interactions used in sd. The operations appended in
the sixth step delete all objects that are used in sd and not used in sd′. The operations
are applicable because the operations appended in the fifth step delete all interactions
between all objects of sd. Afterwards, step seven appends change operations for adding
all objects used in sd′ that are not used in sd. The operations appended in the steps
eight to ten tag all objects according to the tags used in sd′. Thus, after the application
of the change operations appended in the first ten steps, the resulting SD contains all
objects that sd′ contains. These objects are tagged in the same way as they are tagged
in sd′. The sequence of diagram interactions of the SD is the empty sequence. The oper-
ations appended in the eleventh step add interaction-addition operations such that the
sequence of diagram interactions of the resulting SD is equal to the sequence of diagram
interactions of the SD sd′. Therefore, the eleven steps sketch a function for computing
change sequences to change any SD to any other SD. From this, we can conclude that
the SD change operation suite OSD is complete for the SD modeling language LSD.

5.6 Related Work

This section focuses on related work concerning notions of refinement and procedures
for refinement checking (semantic differencing) for SD variants with precisely defined
semantics. We refer to [MW11] for a survey on different SD semantics.

Another trace semantics with another notion of refinement for an SD variant is pro-
posed in [LK11, LK14]. The proposed semantics distinguishes between the sending and
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the receiving of events. This leads to a more fine-grained semantics that includes in-
terleaving of interactions, which is not possible with the UML/P semantics [Rum16].
In UML/P SDs, there is an implicit ordering of the receiving and sending events: The
receiving event of an interaction always occurs directly after the corresponding sending
event and the sending event of an interaction always directly follows the receiving event
of the previous interaction. When assuming the absence of concurrency, the UML/P
semantics is more adequate. The notion of refinement introduced in [LK11, LK14] is
based on a simulation relation on traces and not on set inclusion as proposed in this the-
sis. The authors further present a conformance relation [LK14] that enables detecting
whether a successor SD version is a refinement (in the sense of [LK11, LK14]) of its pre-
decessor version in case lifelines and messages may have been renamed. The semantic SD
differencing approach presented in this thesis can easily be adapted to incorporate con-
formance relations by applying an initial matching between object and message names,
before applying the semantic differencing operator. The approach [LK11] is also con-
cerned with an SD variant that includes alternative fragments, critical regions, optional
fragments, and other fragment types. These are interesting extensions for UML/P SDs.
In [LK11], SDs may contain guard conditions, which are encoded as elements of traces in
the semantics of SDs. The above leads to a more complicated semantics of [LK11, LK14]
in comparison to the semantics used in this thesis. Although introducing a notion of
refinement, [LK11, LK14] present no automatic refinement checking (semantic differenc-
ing) procedure.

A safety-liveness semantics for UML 2.0 SDs is introduced in [GS05]. The approach is
concerned with advanced SD modeling elements such as (bounded) high-level SDs and
negative fragments. These are interesting extensions for UML/P SDs. The semantics
assumes asynchronous communication and distinguishes between the sending and the
receiving of messages. The approach translates SDs to Büchi automata capturing safety
and liveness properties encoded by the SDs. Therefore, the approach is concerned with
SDs modeling infinite traces, whereas the UML/P SD semantics is concerned with finite
traces. The approach targets at modeling non-terminating, reactive systems [GS05].
Refinement is defined via set inclusion on the languages accepted by the Büchi automata.
As set inclusion on the languages accepted by Büchi automata can be checked fully
automatically, reuse of well-known algorithms for this task is possible for refinement
checking and semantic differencing. Aside from stuttering and silent transitions, the
alphabets of the automata resulting from applying the translation are equal to the sets
of sending and receiving events of the underlying SDs. The approach assumes that the
language encoded by an SD is (ω-)regular. In contrast, the semantics of a UML/P SD is
not regular, as the set of possible interactions between objects is assumed to be infinite
(cf. Definition 5.3). Therefore, in cases where two SDs model different events on their
interactions, the semantics of [GS05] may be too restrictive for semantic differencing. In
contrast, the UML/P semantics assumes interactions using events not used in an SD,
between objects that are not constrained by stereotypes, to be unconstrained. With the
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semantics of [GS05], such interactions must not occur.
The semantics defined in [Stö03b] for SDs without special fragments is similar to the

UML/P semantics. In [Stö03b], SDs that correspond to the UML/P SD syntax without
stereotypes are called plain interaction fragments. Each plain interaction fragment is
defined by a partial order over a set of possible event occurrences. The semantics of
such an interaction fragment is then defined as the set of all sequentialization of the
partial order [Stö03b]. However, although concluding that the notion of refinement for
SDs needs to be discussed [Stö03b], in contrast to this thesis, the approach presents
no semantic differencing operator for SDs. The approach further defines a semantic
mapping for SDs with advanced combined fragments, e.g., for modeling parallelism,
optional occurrences of events, and alternative choices. As stated above, the extension
of UML/P SD modeling language with combined fragments is interesting future work.
In general, according to [Stö03b], the semantics of an SD is a pair of sets of valid and
invalid traces. In UML/P SDs, the set of invalid traces of an SD can be considered to
be the set of all traces of all system runs that are not valid in the SD. Thus, an UML/P
SD also implicitly defines a set of traces that are invalid in the SD.

In [Stö03a], the same author discusses the notion of refinement for SDs based on the
semantics presented in [Stö03b]. Refinement is defined as set inclusion on the sets of
valid and invalid traces modeled by SDs. In [Stö03b], an SD is a refinement of another
SD if the set of traces unconstrained by the former SD (possible traces that are neither
elements of the SD’s set of valid traces nor of the set of the SD’s invalid traces) is a subset
of the traces unconstrained by the latter SD and every valid (respectively invalid) trace
of the latter SD is also a valid (respectively invalid) trace of the former SD. In contrast,
the UML/P semantics is only concerned with valid traces and not with invalid traces.
Using the UML/P semantics, every trace corresponds to a system run that is valid in an
SD or to a system run that is not valid in the SD. Refinement of SDs in the sense of this
thesis corresponds to the transpose of the enrichment relation as defined in [Stö03a], i.e.,
an SD is a refinement of another SD, if the valid traces in the semantics of the former is
a subset of the valid traces in the semantics of the latter. The approach [Stö03a] does
not present an automatic method for refinement checking or semantic differencing.

The semantics presented in [HHRS05] also distinguishes between the sending and
the receiving of messages. In [HHRS05], the semantics of an SD is defined as a set
of interaction obligations, where each interaction obligation is a tuple of two disjoint
sets of positive and negative traces. Interaction obligations are used to describe the
required non-determinism of implementations. An implementation of an SD must satisfy
each interaction obligation in the semantics of the SD. Refinement is defined on two
levels [HHRS05]: An interaction obligation refines another interaction obligation iff the
set of positive (respectively negative) traces of the latter is a subset of the set of positive
(respectively negative) traces of the former SD. A SD is a refinement of another SD
iff each interaction obligation in the semantics of the latter SD refines at least one
interaction obligation in the semantics of the former SD. Thus, refinement is defined
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similar as in [Stö03a]. UML/P SDs are neither concerned with required non-determinism
nor with negative traces. In contrast to this thesis, [HHRS05] presents no semantic
differencing operator.

Modal Sequence Diagrams (MSD) are introduced in [HM08]. The MSD language is a
profile of the UML 2.0 SD language with different semantics. The MSD language adds
modal interaction fragments. Modal interaction fragments allow denoting (parts of) an
interaction as universal (hot) or existential (cold). With universal interaction fragments,
it is possible to specify that messages must be sent or that conditions must evaluate to
true under certain conditions (or in all runs). Existential fragments model that there are
system runs that satisfy the fragment, but not necessarily all system runs must satisfy the
fragment. The combination of existential and universal fragments inside a universal in-
teraction allows specifying conditions concerning when certain fragments are mandatory.
For example, the combination allows specifying that a certain fragment must occur in
case another fragment occurred before. Considering universal and existential fragments
in UML/P SDs is an interesting extension, which increases the expressiveness and en-
ables modeling of more complex situations. The semantic domain of MSDs represents
infinite system runs and their traces. The trace language of a universal MSD is defined
using an alternating weak word automaton. In contrast, UML/P SDs model finite sys-
tem runs and the semantic differencing operator constructs NFAs. MSDs also support
constraints, which are boolean expressions over attributes associated with participants
(objects), and the authors also describe the extension of MSDs with advanced constructs
such as loops, alternatives, breaks, and nested fragments. Considering constraints and
further advanced fragments is also an interesting extension for UML/P SDs.

The authors of [HM08] also introduce the notion of MSD specification. An MSD
specification is a set of modal SDs. The semantics is given by system models satisfying
an MSD specification, where a system model represents a set of possible runs. A system
model satisfies an MSD specification if (1) every possible run of the system model satisfies
every universal diagram in the specification and (2) every existential diagram in the
specification is satisfied by at least one of the possible runs. This thesis does not introduce
a notion of UML/P SD specification including sets of UML/P SDs and the semantic is
purely based on system runs and not on system models. However, UML/P SDs can
be interpreted to solely represent existential interaction fragments. In the notion of
[HM08], there are at least two meaningful semantics of sets of UML/P SDs concerning
the system models that satisfy the set. In some cases, it is meaningful to define that a
system model satisfies a set of UML/P SDs if for every UML/P SD contained in the set
there is a run of the system model that is valid in the SD. Thus, for each SD contained
in the set, the system model has a run that is valid in the SD. This represents that
the situation modeled in each SD can be achieved by at least one run of the system
model. This corresponds to the satisfaction of a set of existential MSDs. In other cases,
it is meaningful to define that a system model satisfies a set of UML/P if every run
of the system model is valid in at least one of the SDs contained in the set. In this
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case, the semantics of a set of UML/P SDs is defined as the union of the semantics of
the SDs contained in the set. Then, the SDs contained in the set model all different
alternatives concerning the possible system runs. Whether it is still possible to provide
a fully automatic semantic differencing procedure when adding the features of MSDs to
UML/P SDs is an interesting question for future work.
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Activity Diagrams

An activity diagram (AD) describes possible executions of an activity or a process [Stö05,
Esh06, vdA99, GRR10, KG10, MRR11c, MRR11b, Sug16, KR18b]. This thesis uses an
expressive variant of ADs with actions, and-fragments modeled with fork and join nodes,
and xor- as well as cyclic-fragments modeled with decision and merge nodes [KR18b].
The AD variant and the semantic differencing operator for ADs are based on our previ-
ous work [KR18b]. As a notational convention, this thesis uses the standard graphical
notations of the UML [OMG15].

Figure 6.1 depicts an AD that contains all AD modeling elements used in this thesis.
An action represents a single task that needs to be executed as part of an activity or
workflow. Control flow nodes are modeling elements for describing alternatives through
xor-fragments (decision, merge nodes), repeated executions of the same actions through
cyclic-fragments (decision, merge nodes), and for describing order-independent execution
branches through and-fragments (fork, join nodes) within an activity. The start of an
activity is marked with an initial node. A final node marks the end of an activity.
Transitions between nodes describe the control flow of an AD, i.e., how the execution of
an AD proceeds after visiting a node [KR18b].

For example, the AD depicted Figure 6.1 models the executions of actions to be
performed by employees of an insurance company in reaction to receiving a claim. The
activity starts at the initial node and ends at the final node. First, the claim is recorded.
Then, the claim is checked, which might require the employee to retrieve additional
data. As soon as enough data is available, the claim is settled or rejected. The cyclic-
fragment including the actions Check Claim and Retrieve Add. Data models the
circumstance of iteratively checking the claim and retrieving additional data until enough
data is available. If the claim is settled, the employee sends a confirmation, calculates
the loss amount, recalculates the customer contribution, and initiates the payout. The
execution of the action for calculating the loss amount is independent of the execution
of the action for recalculating the customer contribution. The and-fragment starting at
the inner fork node and ending at the inner join node models this circumstance. Every
individual arrow originating from a fork node introduces an execution branch that is
causally unrelated to the execution branches introduced by the other arrows originating
from the fork node. The action for calculating the loss amount can be executed before
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Figure 6.1: An AD adapted from [MR18] that contains all AD modeling elements.

the action for recalculating the customer contribution and vice versa. However, the join
node cannot be traversed before every execution branch introduced by the fork node
has been completely executed. If the claim is rejected, the employee either sends a
declinature or calls the customer. This circumstance is modeled by the xor-fragment
starting at the decision node D3 and ending at the merge node M3. When traversing
a decision node, exactly one execution branch starting at the decision node must be
executed. After either performing the actions for settling the claim or the actions for
rejecting the claim, the AD traverses the merge node M2, before the activity ends at the
final node.

This thesis formally defines the abstract syntax of ADs and an operational semantics
for ADs via a translation to finite automata based on our previous work [KR18b]. To
this effect, similar to related work [SO00, vdAHV02, VVL07], this thesis first introduces
the syntax of activity graphs. An activity graph (AG) is interpretable to be a possibly
unsound AD [vdAHV02, VVL07]. Subsequently, the set of ADs is defined as a subset of
the set of all AGs. The semantics of an AG is the set of traces (finite sequences of action
labels) that are described by the AG. For determining the traces, this thesis presents
an operational semantics for AGs based on a translation to NFAs. The denotational
semantics of an AG is then defined as the language recognized by the NFA obtained
from translating the AG.

In the following, Section 6.1 describes the syntax of AGs. Then, Section 6.2 presents
the semantics of AGs. Based on this, Section 6.3 presents a semantic differencing oper-
ator for AGs. Section 6.4 introduces AG change operations. Finally, Section 6.5 defines
the AD modeling language with a syntax and a semantics based on AGs.
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6.1 Activity Graph Syntax

The following first defines the syntax of activity graphs, which are interpretable as pos-
sibly unsound ADs [vdAHV02]. Every AD (defined in Section 6.5) is by construction
an AG but not vice versa. Based on previous work for determining the soundness of
ADs by means of single-entry-single-exit fragments [VVL07], we later define the syntax
of the AD language (i.e., the set of syntactically well-formed ADs, which are sound
AGs by construction) recursively by stating the smallest AD (axiom AD) and rules for
constructing more complex ADs via change operation applications.

An AG consists of action labels, nodes, action nodes, exactly one initial node, exactly
one final node, fork nodes, join nodes, decision nodes, merge nodes, and-fragments, xor-
fragments, cyclic-fragments, transitions, and a node labeling function. The abstract
syntax of AGs is defined as follows:

Definition 6.1. An AG is a tuple (L,N, t, AND,XOR,C, T, l) where

• L ⊆ UN is an alphabet of action labels,

• N ⊆ UN is a finite set of nodes,

• t : N → {A, i, f, F, J,D,M} is a node typing function,

• AND ⊆ N ×N where ∀(a, b) ∈ AND : t(a) = F ∧ t(b) = J contains tuples of fork
and join nodes defining and-fragments,

• XOR ⊆ D ×M where ∀(a, b) ∈ XOR : t(a) = D ∧ t(b) = M contains tuples of
decision and merge nodes defining xor-fragments,

• C ⊆ D ×M where ∀(a, b) ∈ C : t(a) = D ∧ t(b) = M contains tuples of decision
and merge nodes defining cyclic-fragments,

• T ⊆ N ×N is the transition relation,

• l : N → L ∪ {ε} is the node labeling function that is required to map exactly the
control-flow nodes to the empty word, i.e., ∀n ∈ N : l(n) = ε⇔ t(n) 6= A.

The following well-formedness rules apply:

• ∃a, b ∈ N : a 6= b ∧ t(a) = i ∧ t(b) = f , i.e., an initial and a final node exist.

• ∀a, b ∈ N : (t(a) = i ∧ a 6= b)⇒ t(b) 6= i, i.e., the initial node is unique.

• ∀a, b ∈ N : (t(a) = f ∧ a 6= b)⇒ t(b) 6= f , i.e., the final node is unique.

• |{(n, a) ∈ T | t(a) = i}| = 0, i.e., the initial node has no incoming transitions.

• |{(a, n) ∈ T | t(a) = i}| = 1, i.e., the initial node has one outgoing transition.
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• |{(a, n) ∈ T | t(a) = f}| = 0, i.e., the final node has no outgoing transitions.

• |{(n, a) ∈ T | t(a) = f}| = 1, i.e., the final node has one incoming transition.

In the following, AG denotes the set of all AGs. As notational convention, for an AG
ag = (L,N, t, AND,XOR,C, T, l) and all nodes n ∈ N ,

• δ+
ag(n)

def
= {(n, x) ∈ T | x ∈ N} denotes the set of transitions starting in n,

• δ−ag(n)
def
= {(x, n) ∈ T | x ∈ N} denotes the set of transitions ending in n.

• F (ag)
def
= {n ∈ N | t(n) = F} denotes the set of fork nodes of ag.

• J(ag)
def
= {n ∈ N | t(n) = J} denotes the set of join nodes of ag.

• D(ag)
def
= {n ∈ N | t(n) = D} denotes the set of decision nodes of ag.

• M(ag)
def
= {n ∈ N | t(n) = M} denotes the set of merge nodes of ag.

• A(ag)
def
= {n ∈ N | t(n) = A} denotes the set of action nodes of ag.

The AD hire1 depicted in Figure 6.2, for instance, can be formally defined by hire1
def
=

(L,N, t, AND,XOR,C, T, l) with

• labels L = {Register, Assign to Project, Get Wel. Package, Add to Website,
Manager Interview, Manager Report, Authorize Payment},

• nodes N = {R,ATP1, GWP,ATP2, ATW,MI,MR,AP,D1,M1, F1, J1, i, f},

• node typing function t : N → {A, i, f, F, J,D,M} with t(n) = A for all action
nodes n ∈ {R,ATP1, GWP,ATP2, ATW,MI,MR,AP}, t(i) = i for the initial
node i, t(f) = f for the final node f , t(n) = F for all fork nodes n ∈ {F1},
t(n) = J for all join nodes n ∈ {J1}, t(n) = D for all decision nodes n ∈ {D1},
t(n) = M for all merge nodes n ∈ {M1},

• parallel fragments AND = {(F1, J1)},

• xor-fragments XOR = {(D1,M1)},

• cyclic-fragments C = ∅,

• the transition relation T = {(i, R), (R,D1), (D1, ATP1), (ATP1,M1), (D1, GWP ),
(GWP,F1), (F1, ATP2), (F1, ATW ), (ATP2, J1), (ATW, J1), (J1,MI), (MI,MR),
(MR,M1), (M1, AP ), (AP, f)}, and

• labeling function l with l(R) = Register, l(ATP1) = Assign to Project, l(GWP ) =
Get Wel. Package, l(ATP2) = Assign to Project, l(ATW ) = Add to Website,
l(MI) = Manager Interview, l(MR) = Manager Report, l(AP ) = Authorize

Payment, and l(D1) = l(M1) = l(F1) = l(J1) = l(i) = l(f) = ε.
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Figure 6.2: Two activity diagrams adapted from [MRR11b].

6.2 Activity Graph Trace Semantics

This section defines a translation from AGs to NFAs. The NFA obtained from translating
an AG encodes the traces of actions modeled by the AG under the assumption that
exactly one action can be performed at a point in time. Multiple actions cannot be
performed simultaneously. Thus, and-fragments solely model independent execution
paths. Based on this, the trace semantics of an AG is defined as the language recognized
by the NFA obtained from translating the AG. If the possibility to execute multiple
actions simultaneously is required, defining and using a more fine-grained semantics
might be more adequate.

The actions of ADs naturally correspond to the transitions of NFAs because the actions
in ADs and the transitions in NFAs describe the behavior. Consequently, although rather
counterintuitive, the transitions of ADs correspond to states in NFAs.

The set of states of the NFA is the powerset of the set of transitions of the AG.
Using the powerset is necessary as AGs can reside in several transitions simultaneously
(a consequence of traversing a fork node). However, the reachable number of states is
often much smaller as the powerset and can be algorithmically easily computed. The
set of transition labels of the NFA is equal to the set of node labels of the AG. The
initial state of the NFA is the singleton set containing the transition that has the initial
AG node as the source node. The set of final states is the singleton set containing the
transition that has the final AG node as the target node.

The transition relation of the NFA is defined as the smallest set of transitions satisfying
two conditions. The first condition represents the AG’s behavior in case it executes a
node that is neither a join nor a fork node. If an action node is executed, then the AG

133



Chapter 6 Activity Diagrams

moves through the executed action via the action’s outgoing transition to the next node
while performing the action node’s label. The AG’s execution state with respect to other
nodes remains unchanged. Similarly, if the AG proceeds through a decision or merge
node, its state regarding the other nodes remains unchanged and no action is performed
(encoded in the NFA by the empty word ε). The second condition represents the AG’s
behavior in case it executes a fork or a join node: An AG can only proceed through a
join or fork node if its current state contains all nodes that have a transition to the node.
When the AG proceeds through a fork or a join node, it leaves all nodes that proceed
the node and enters all its successor nodes.

Definition 6.2. Let ag = (L,N, t, AND,XOR,C, T, l) be an AG. The NFA associated

with ag is defined as nfa(ag)
def
= (Q,Σ, δ, q0, F ) where

• Q = ℘(T ),

• Σ = L,

• q0 = {(a, n) ∈ T | t(a) = i},

• F = {{(n, a)} ⊆ T | t(a) = f}, and

• δ ⊆ Q× (Σ ∪ {ε})×Q is the smallest set satisfying the following conditions:

– Move other than fork or join:

∀X ⊆ T : ∀n1, n2, n3 ∈ N : ((n1, n2) ∈ X ∧ (n2, n3) ∈ T ∧ t(n2) /∈ {F, J})⇒
(X, l(n2), (X \ {(n1, n2)}) ∪ {(n2, n3)}) ∈ δ

– Move fork or join:

∀X ⊆ T : ∀n ∈ F (ag)∪J(ag) : (δ−ag(n) ⊆ X)⇒ (X, ε, (X\δ−ag(n))∪δ+
ag(n)) ∈ δ

The trace semantics traces(ag) of an AG ag is defined as the language recognized by

the NFA associated with the AG ag, i.e., traces(ag)
def
= L∗(nfa(ag)).

For example, Figure 6.3 depicts the trimmed NFA obtained from translating the AG
hire1, which is graphically illustrated in Figure 6.2 and formally defined in Section 6.1.
Figure 6.3 only depicts the states and transitions of the NFA that are reachable from the
initial state of the NFA. A possible trace of the AG is, for instance, the word Register,
Assign to Project, Authorize Payment ∈ traces(hire1).

Algorithm 1 is a simple procedure for translating AGs to NFAs. The algorithm takes
an AG as input and outputs the reachable part of the NFA associated with the AG. The
initial state of the automaton is initialized as the singleton set containing the transition
originating from the initial node (l. 1). The set of states is initialized as the singleton set
containing the initial state (l. 2). The transition relation and the final states are initial-
ized as empty sets (ll. 3-4). Then, the algorithm initializes the variable processedStates
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6.2 Activity Graph Trace Semantics

Algorithm 1 Computing the reachable part of the NFA associated with an AG.

Input: AG ag = (L,N, t, AND,XOR,C, T, l).
Output: The NFA nfa(ag) associated with the input AG ag.
1: define q0 ← {(s, t) ∈ T | t(s) = i} as subset of T
2: define Q← {q0} as subset of ℘(T )
3: define δ ← ∅ as subset of ℘(T )× (L ∪ {ε})× ℘(T )
4: define F ← ∅ as subset of ℘(T )
5: define processedStates← ∅ as subset of ℘(T )
6: define statesToProcess as empty stack of ℘(T )
7: statesToProcess.push(q0)
8: while statesToProcess not empty do
9: define currentState← statesToProcess.pop()

10: processedStates← processedStates ∪ {currentState}
11: if currentState ∈ {{(n, a)} ⊆ T | t(a) = f} then
12: F ← F ∪ {currentState}
13: end if
14: for all (n1, n2) ∈ currentState do
15: for all n3 ∈ N do
16: if (n2, n3) ∈ T ∧ t(n2) /∈ {F ∪ J} then
17: define trgState← (currentState \ {(n1, n2)}) ∪ {(n2, n3)}
18: Q← Q ∪ {trgState}
19: δ ← δ ∪ {(currentState, l(n2), trgState)}
20: if trgState /∈ processedStates then
21: statesToProcess.push(trgState)
22: end if
23: end if
24: end for
25: end for
26: for all n ∈ F (ag) ∪ J(ag) do
27: if δ−ag(n) ⊆ currentState then
28: define trgState← (currentState \ δ−ag(n)) ∪ δ+

ag(n)
29: Q← Q ∪ {trgState}
30: δ ← δ ∪ {(currentState, ε, trgState)}
31: if trgState /∈ processedStates then
32: statesToProcess.push(trgState)
33: end if
34: end if
35: end for
36: end while
37: return (Q,L, δ, q0, F )
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Figure 6.3: Reachable part of the NFA associated with hire1 (cf. Figure 6.2).

as a set for storing already processed states (l. 5). The variable statesToProcess is a
stack of states storing the states that still need to be processed (l. 6). First, the initial
state is pushed on the stack (l. 7). Then, while the stack of states to process is not empty
(l. 8), the algorithms pops the top element of the stack, stores it in variable currentState
(l. 9) and adds it to the set processedStates (l. 10). If the currentState is the singleton
set containing the transition to the final state, then the algorithm adds the state to the
set of final NFA states (ll. 11-13).

In the following for-loop (ll. 14-25), the algorithm constructs the NFA transitions
that correspond to the AG transitions that do not target fork or join nodes. These
transitions are added to the set of NFA transitions. For each transition contained in
the set represented by the currentState (l. 14) and for each node of the AG (l. 15),
the algorithm checks whether there exists an AG transition from the target state of the
transition contained in the state’s set to the AG node and if the AG node is neither a
fork nor a join node (l. 16). If the conditions are satisfied, then the algorithm adds the
corresponding transition as defined in Definition 6.2 (ll. 17-19) and adds the transition’s
target state to the set of NFA states. If the target state has not been processed by a
previous iteration of the algorithm, then the target state is pushed on the stack of states
to process (ll. 20-22). The following for-loop (ll. 26-35) constructs the NFA transitions
that correspond to the AG transitions that target fork or join nodes. The constructed
transitions are added to the transition relation of the NFA. For each fork and each join
node (l. 26), the algorithm checks whether all transitions targeting the node are contained
in the set of transitions represented by the currently handled state (l. 27). If this is the
case, then the corresponding transition is added to the set of NFA transitions as defined
in Definition 6.2 (ll. 28-30). The target state is also added to the set of NFA states
(l. 29). If the target state has not been processed by a previous algorithm iteration, then
it is pushed on the stack of states that are still to be processed (ll. 31-33). Finally, the
algorithm returns the computed NFA (l. 37). Figure 6.3 depicts the NFA obtained from
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applying Algorithm 1 the AG hire1, which is graphically illustrated in Figure 6.2 and
formally defined in Section 6.1.

6.3 Semantic Differencing of Activity Graphs

The semantic difference δ(ag1, ag2) from an AG ag1 to an AG ag2 is defined as the set of
traces of the AG ag1 that are no traces of the AG ag2, i.e., δ(ag1, ag2) = traces(ag1) \
traces(ag2). With the explicit mapping from AGs to NFAs, the reuse of well-known con-
structions from automata theory [HMU06] is possible. It holds that δ(ag1, ag2) = ∅ iff
traces(ag1) ⊆ traces(ag2), which is again equivalent to L∗(nfa(ag1)) ⊆ L∗(nfa(ag2)).
We can thus reuse well-known techniques for language inclusion checking and counterex-
ample generation for NFAs, which are two well-studied decidable problems.

For example, Figure 6.2 depicts two AGs from [MRR11b]. The AGs describe workflows
of a company to be executed when hiring new employees. The AG hire1 describes the
company’s original workflow. The AG hire2 describes a successor version. In the
original workflow, the employee is first registered. Then, the employee either directly
gets assigned a project before her payment is authorized, or the employee gets a welcome
package, before her contact data is added to the company website, she is assigned a
project, she is interviewed by the manager, and she gets a manager report, before her
payment is finally authorized. The actions for adding the employee to the company
website and assigning the employee to a project can be executed independently of each
other, i.e., there is no strict order in which the two actions have to be executed. The
company decides to explicate that new employees must receive keys to enter the building.
The company thus changes the workflow hire1 by adding the action labeled Assign
Keys as depicted in the bottom part of Figure 6.2. A manager wants to understand how
the syntactic changes impact the AG’s possible execution traces. Using our method for
semantic differencing reveals that there are traces of hire1 that are no traces of hire2
and vice versa. Thus, execution traces have been removed and new execution traces
have been added. The semantic differencing operator outputs that Register, Get Wel.
Package, Assign to Project, Add to Website, Manager Interview, Manager Report,
Authorize Payment is a possible execution trace of hire1 that is no execution trace of
hire2. This execution trace has been removed during the evolution of the workflow.
Vice versa, the semantic differencing operators presents an execution trace that includes
the action Assign Keys, which is possible in hire2 and not possible in hire1. This
execution trace has been added during the evolution from hire1 to hire2.

Figure 6.1 and Figure 6.4 depict the AGs claim1 and claim2 inspired by ADs
from [MR18]. The AGs model workflows to be performed in an insurance company
in response to an incoming claim. The AD claim1 models the company’s original
workflow. After some time, the company decides to modify the workflow to claim2. A
manager is interested in the semantic difference from the new workflow to the original
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Figure 6.4: An AD adapted from [MR18].

AG #AG nodes #AG trans. #NFA states #NFA trans.

ad1 8 8 8 8
ad2 6 6 6 6
hire1 14 15 15 16
hire2 15 17 19 24
claim1 23 27 32 42
claim2 21 24 29 38
claim3 31 38 53 79
claim4 27 32 41 57

Figure 6.5: The number of nodes and transitions of the AGs and the number of states and
transitions of the NFAs constructed from the AGs for semantic differencing.

workflow and vice versa. She thus uses our framework for semantic AG differencing.
The semantic differencing operators outputs that Record Claim, Check Claim, Reject
Claim, Send Declinature is a possible execution trace of the new workflow that is not
possible in the original workflow. Vice versa, the manager is interested if execution
traces have been removed during the evolution from claim1 to claim2. She thus uses
our framework again. The semantic differencing operator outputs that Record Claim,
Check Claim, Reject Claim, Send Declinature, Update Cust. Record, Close Claim is
a possible execution trace of claim1 that is not possible in claim2.

Semantic Differencing Implementation and Experiments

We implemented the semantic differencing operator for AGs to perform experimental
evaluations. The implementation is written in Java and uses the automaton language
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inclusion checking tool RABIT1 [ACC+11] for NFA language inclusion checking.

The implementation takes two AGs as inputs. It translates the AGs into NFAs ac-
cording to the translation described above. Then, it transforms the NFAs to equiv-
alent NFAs without ε-transitions by using a standard construction for eliminating ε-
transitions [HMU06]. Subsequently, it outputs the resulting NFAs in the BA format,
which is the input format of RABIT. Finally, the implementation uses the tool RABIT
for language inclusion checking of the NFAs. In case language inclusion does not hold,
RABIT provides a counterexample. The counterexample is returned as a diff witness.

We performed experimental evaluations with eight example AGs. Appendix D presents
the example AGs in detail. Figure 6.5 summarizes the sizes of the AGs in terms of the
numbers of their nodes and transitions as well as the numbers of states and transitions
of the NFAs resulting from translating the AGs. We executed the semantic differencing
operator for all pairs of example AGs that are thematically related to each other. All
experiments were executed on a laptop computer with an Intel Core i7-8650U CPU @
1.90GHz processor, 16GB RAM, and a Samsung PM981 512GB SSD hard drive using
Windows 10 and Java 1.8.0 192.

Figure 6.6 summarizes the computation times of the semantic differencing operator
and the computed diff witnesses for the input pairs. If no witness exists, i.e., refine-
ments holds, then the corresponding cell in the table contains the special symbol -. For
instance, the semantic differencing operator took 145ms to detect that the AG claim2
is a refinement of the AG claim3. The semantic differencing operator implementation
took 127ms to compute the diff witness C,A in the semantic difference from the AG ad1
to the AG ad2.

For the examples, the computation times range from 108ms to 283ms. We conclude
that the implementation handles the example AGs sufficiently quick. However, the
example AGs are relatively small in terms of the numbers of nodes and transitions
in the AGs. Therefore, the results are not generalizable to large AGs and real world
examples, especially because language inclusion checking between NFAs is, in general,
computationally hard.

6.4 Activity Graph Change Operations

This section presents change operations for AGs. Based on these, the following section
defines the syntax of the AD language and AD change operations. Most of the change
operations are neither refining nor generalizing. Although these change operations are
irrelevant for developers to constructively refine or generalize models, the change opera-
tions are necessary to obtain a complete change operation suite. The completeness of the
change operation suite is required for the model repair framework presented in Chapter 7

1http://languageinclusion.org/
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Figure 6.6: The time needed by the semantic differencing operator for semantic differ-
encing of the pairs of example AGs.
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6.4 Activity Graph Change Operations

No. Operation Ref. Gen.

1. Adding a label to an AG 3 3

2. Deleting an unused label from an AG 3 3

3. Inserting an action node between two succeeding nodes 7 7

4. deleting an action node and reconnecting the control flow 7 7

5. Inserting an xor-fragment between two succeeding nodes 7 7

6. Deleting an xor-fragment 7 7

7. Inserting an and-fragment between two succeeding nodes 7 7

8. Deleting an and-fragment 7 7

9. Inserting a cyclic-fragment between two succeeding nodes 7 7

10. Deleting a cyclic-fragment 7 7

11. Inserting a branch into a fragment 7 7

12. Deleting a branch from a fragment 7 7

Figure 6.7: Activity graph change operation properties.

and the framework’s instantiation presented in Chapter 8. If a change operation is re-
fining or generalizing, then it is possible to incorporate performance improvements into
algorithms that compute solutions (cf. Section 7.5) for special model repair problems as
introduced in Section 8.1.

Figure 6.7 overviews the change operations. The different change operations are in-
spired by previously existing change operations for ADs [MR15, MR18, KR18a] and
business process models [KGFE08, KGE09]. Adding a label to an AG (cf. No. 1) adds
an unused label to the set of labels of the AG. Label-addition operations are refactor-
ing as they neither add actions nor transitions to AGs. Deleting an unused label from
an AG (cf. No. 2) removes the label from the set of labels of the AG. As the label is
required to be unused in the AG, label-deletion operations are refactoring. Inserting
an action between a preceding and a succeeding node (cf. No. 3) reconnects the con-
trol flow from the preceding node to the inserted node and from the inserted node to
the succeeding node. Inserting an action between two succeeding nodes can completely
change the AG’s modeled traces. Similarly, deleting an action node (cf. No. 4) recon-
nects the control flow from the deleted node’s predecessor node to the deleted node’s
successor node. Operations that delete action nodes between succeeding nodes can com-
pletely change the traces modeled by an AG. Inserting an xor-fragment between two
succeeding nodes (cf. No. 5) inserts an xor-fragment containing exactly one action be-
tween the inserted decision node and the inserted merge node. Therefore, xor-fragment
insertion operations are neither refining nor generalizing. The operations for deleting
xor-fragments (cf. No. 6) are applicable iff there is exactly one action between the frag-
ment’s decision and merge nodes. Deleting the xor-fragment deletes the action, decision,
and merge nodes. The control flow is reconnected from the xor-fragment’s preceding
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Chapter 6 Activity Diagrams

node to the xor-fragment’s succeeding node. Thus, xor-fragment deletion operations are
neither refining nor generalizing. The operations for adding and-fragments (cf. No. 7)
and cyclic-fragments (cf. No. 9) are defined analogously to the change operations for
adding xor-fragments. Thus, they are neither refining nor generalizing. Similarly, the
operations for deleting and-fragments (cf. No. 8) and cyclic-fragments (cf. No. 10) are
defined analogously to the change operations for deleting xor-fragments. Therefore, they
are neither refining nor generalizing. Inserting an action into a fragment (cf. No. 11) adds
exactly one action that is connected to the fragment’s starting node and the fragment’s
ending node. This operation can completely change the traces of an AG. Analogously,
deleting an action from a fragment (cf. No. 12) deletes an action that is connected to the
fragment’s starting node and the fragment’s ending node. The transitions connecting
the deleted action are also deleted. As this operation can completely change the traces
of an AG, deleting an action from a fragment is neither refining nor generalizing.

6.4.1 Label-Addition Operations

Label-addition operations with signature �� ⇀ ��

�����

�,	, 
, �	�, ��, �, �, � 	∈ ��� ����� ⇔ � ∉ �

↦

�′, 	, 
, �	�, ��, �, �, � where �� � � ∪ ���
Application

Parameters

Explanation

Example

Let � ∈  ! be a name representing an action label.

The operation ����� adds the label � to the set of possible labels.

�����

Domain

�,	, 
, �	�, ��, �, �, �

foo bar foo bar

label-addition operation applications have no effect on the graphical concrete syntax

Figure 6.8: Label-addition operations addLk for all action labels k ∈ UN .

Figure 6.8 defines the label-addition operations. Each label-addition operation addLk
is parametrized with a name k ∈ UN representing an action label. A label-addition
operation is applicable to an AG iff the AG does not use the label k. The application of
the operation addLk to an AG adds the action label k to the set of labels of the AG. In
the example application (Figure 6.8), the label k is added to the AG.

As illustrated in Figure 6.8, the addition of a label to an AG does neither change the
set of nodes nor the set of transitions of the AG. Therefore, label-addition operations
are refactoring.

Proposition 6.1. Let addLk be a label-addition operation and let ag be an AG such
that addLk is applicable to ag. Then, traces(addLk(ag)) = traces(ag).
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6.4 Activity Graph Change Operations

Proof. Let ag be an AG and let addLk be a label-addition operation that is applicable
to ag. Then, every transition of addLk(ag) is also a transition of ag and vice versa.
Further, every node of addLk(ag) is also a node of ag and vice versa. Thus, every word
accepted by nfa(addLk(ag)) is also accepted by nfa(ag) and vice versa. Therefore,
traces(addLk(ag)) = traces(ag).

6.4.2 Label-Deletion Operations

Label-deletion operations with signature �� ⇀ ��

�����

�, 
, �, �
�, ��, �, �, � 	 ∈ ��� ����� ⇔ � ∈ � ∧ ∀� ∈ �: � � � �

Application

Parameters

Explanation

Example

Let � ∈ �� be a name representing an action label.

The operation ����� deletes the label � from the set of possible labels.

�����

Domain

foo bar foo bar

label-deletion operation applications have no effect on the graphical concrete syntax

↦

�′, 
, �, �
�, ��, �, �, � where �! " � ∖ $�%

�, 
, �, �
�, ��, �, �, �

Figure 6.9: Label-deletion operations delLk for all action labels k ∈ UN .

Figure 6.9 defines the label-deletion operations. Each label-deletion operation delLk
is parametrized with a name k ∈ UN representing an action label. A label-deletion
operation is applicable to an AG iff the set of labels of the AG contains the label and
no action of the AG is labeled with the label. The application of the operation delLk
to an AG removes the action label k from the set of labels of the AG. In the example
application in Figure 6.8, the label k is deleted from the AG.

As illustrated in Figure 6.9, the deletion of a label from an AG neither changes the
sets of nodes nor the set of transitions of the AG. Therefore, label-deletion operations
are refactoring.

Proposition 6.2. Let delLk be a label-deletion operation and let ag be an AG such that
delLk is applicable to ag. Then, traces(delLk(ag)) = traces(ag).

Proof. Let ag be an AG and let delLk be a label-deletion operation that is applicable
to ag. Then, every transition of delLk(ag) is also a transition of ag and vice versa.
Further, every node of delLk(ag) is also a node of ag and vice versa. Thus, every word
accepted by nfa(delLk(ag)) is also accepted by nfa(ag) and vice versa. Therefore,
traces(delLk(ag)) = traces(ag).
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6.4.3 Action-Insertion Operations

Action-insertion operations with signature �� ⇀ ��

�����,�,	,


�, �, , ���, ���, �, �, � 	 ∈ ��� �����,�,	,
 ⇔ �, � ∈ � ∧ � ∈ � ∧ � ∉ �

↦

�, �′, ′, ���, ���, �, �′, �′ where �! " � ∪ $�%
! " � ∪ $�: �%
�! " � ∖ �, � ∪ $ �, � , (�, �)%
�! " � ∪ $�: �%

Application

Parameters

Explanation

Example

Let �, �, � ∈ *+ be three names representing nodes and � ∈ *+ be a name representing an action label.

The operation �����,�,	,
 adds the action node � with label � between the node � and its succeeding node �.

�����,�,	,


Domain

�, �, , ���, ���, �, �, �

foo bar

node � node �

foo bar

node � node �

	�

node �

Figure 6.10: Action-insertion operations addAx,y,a,k for all node names x, y, a ∈ UN and
action labels k ∈ UN .

Figure 6.10 depicts the definition of the action-insertion operations. Each action-
insertion operation addAx,y,a,k is parametrized with three names x, y, a ∈ UN represent-
ing node names and a name k ∈ UN representing an action label. An action-insertion
operation is applicable to an AG iff the AG contains the nodes x and y, a transition
from the node x to the node y, the action label k, and the AG does not contain the node
a. The application of the operation addAx,y,a,k inserts the action node a labeled with k
between the nodes x and y. To this effect, the operation adds a transition from the node
x to the node a and a transition from the node a to the node y. The transition from the
node x to the node y is removed from the AG. In the example application (Figure 6.10),
the node a with label k is inserted between the nodes x and y.

As illustrated in Figure 6.10, the insertion of an action can completely change the
traces of an AG. For instance, foo, bar is a trace of the AG depicted on the left-hand
side in the example of Figure 6.10, but no trace of the AG depicted on the right-hand side.
The trace foo, k, bar is a trace of the AG depicted on the right-hand side, but no trace
of the AG depicted on the left-hand side. The semantics of the AGs are incomparable.

6.4.4 Action-Deletion Operations

Figure 6.11 defines the action-deletion operations. Each action-deletion operation delAa
is parametrized with a name a ∈ UN representing an action node. The action-deletion
operation is applicable to an AG iff the AG contains the action node a. The application
of the operation delAa deletes the action node a from the AG and reconnects the control
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6.4 Activity Graph Change Operations

Let � ∈ �� be a name representing an action node.

Action-deletion operations with signature �� ⇀ ��

�	
��

�,�, �, ���, ���, �, �, 
 	∈ ��� �	
�� ⇔ � � � �

↦

�, �′, �′, ���, ���, �, �′, 
′ where �� � � ∖ �� 
�� � � ∖ ��: � 
�� �					 � ∩ #�� $ ��%

∪ ',� ∈ � $ �	 	 ', � ∈ � ∧ �,� ∈ � 

� � ': 
 ' 	 	' ∈ �′ 

Application

Parameters

Explanation

Example

The operation �	
�� deletes the action node �.

�	
�)

Domain

�,�, �, ���, ���, �, �, 


foo barfoo bar	*

node �

Figure 6.11: Action-deletion operations delAa for all action node names a ∈ UN .

flow from the action node’s predecessor nodes to the action node’s successor nodes. To
this effect, the operation deletes the transitions originating from and leading to the node
a and adds a transition from the predecessor nodes of a to the successor nodes of a. In
the example application (Figure 6.11), the node a is deleted from the AG.

As illustrated in Figure 6.11, the deletion of an action from an AG can completely
change the traces of the AG. For instance, foo, k, bar is a trace of the AG depicted on
the left-hand side in the example of Figure 6.11, but no trace of the AG depicted on the
right-hand side. The trace foo, bar is a trace of the AG depicted on the right-hand side,
but no trace of the AG depicted on the left-hand side.

6.4.5 Xor-Fragment-Insertion Operations

Figure 6.12 defines the xor-fragment-insertion operations. Each xor-fragment-insertion
operation addXorx,y,d,m,a,k is parametrized with five node names x, y, d,m, a ∈ UN . The
node names x and y represent arbitrary connected nodes. The node name d represents a
decision node, the node name m represents a merge node, and the node name a represents
an action node. The parameter k represents an action label. An xor-fragment-insertion
operation is applicable to an AG iff the AG contains the nodes x and y, there exists a
transition from the node x to node y, the node names d,m, a are not used by the AG, and
the label k is contained in the set of labels of the AG. The application of the operation
addXorx,y,d,m,k inserts an xor-fragment with the decision node d and the merge node m
between the nodes x and y. The operation further adds the action node a with label k,
adds a transition from the decision node d to the action node a, and adds a transition
from the action node a to the merge node m. The operation adds a transition from the
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Xor-fragment-insertion operations with signature �� ⇀ ��

������	,�,�,,�,�

�,�, �, ���, ���, �, �, � 	∈ ��� ������	,�,�,,�,� ⇔ �, � ∈ � ∧ �,�, � ∉ � ∧ ! ∈ �

↦

�, �′, �′, ���, ���′, �, �′, �′ where �$ % � ∪ '�,�, �(
�$ % � ∪ '�: �, �: �,�:*(
���$ % ��� ∪ '+�,�,(
�$ % � ∖ �, � ∪ ' �, � , �, � , �,� , +�, �,(
�$ % � ∪ '�: .,�: ., �: !(

Application

Parameters

Explanation

Example

Let �, �, �,�, � ∈ /0 be node names with � 1 �, � 1 �, � 1 � and let ! ∈ /0 be an action label.

The operation ������	,�,�,,�,� inserts the xor-fragment +�,�, with action � labeled ! between � and �.

������	,�,�,,�,�

Domain

�, �, ���, ���, �, �, �

foo bar

node � node �

foo bar

node � node �

d m	!

node �

Figure 6.12: Xor-fragment-insertion operations addXorx,y,d,m,a,k for node names
x, y, d,m, a ∈ UN and action labels k ∈ UN .

node x to the node d and a transition from the node m to the node y to reconnect the
control flow. The transition from the node x to the node y is removed from the AG. In
the example application (Figure 6.12), an xor-fragment defined by the decision node d
and the merge node m with action a labeled k is added between the nodes x and y.

As illustrated in Figure 6.12, xor-fragment-insertion operations are neither refining
nor generalizing. For instance, foo, bar is a trace of the AG depicted on the left-hand
side in the example, but no trace of the AG depicted on the right-hand side. The trace
foo, k, bar is a trace of the AG depicted on the right-hand side, but no trace of the AG
depicted on the left-hand side. The sets of traces of the AGs are incomparable.

6.4.6 Xor-Fragment-Deletion Operations

Figure 6.13 defines the xor-fragment-deletion operations. Each xor-fragment-deletion
operation delXord,m,a is parametrized with a node name d ∈ UN representing a decision
node, a node name m ∈ UN representing a merge node, and a node name a ∈ UN
representing an action node. An xor-fragment-deletion operation is applicable to an AG
iff the AG contains the xor-fragment defined by the decision node d and the merge node
m and the fragment exactly contains the action node a, connected via transitions to the
nodes d and m. The application of the operation delXord,m,a deletes the xor-fragment
defined by the decision node d and the merge nodem and reconnects the control flow from
the decision node’s predecessor node to the merge node’s successor node. To achieve this,
the operation removes d, m, and a from the sets of nodes, removes the fragment from the
AG’s xor-fragments, removes the transition from the decision node’s predecessor node
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Xor-fragment-deletion operations with signature �� ⇀ ��

�����	
,�,

�,�, �, ���, ���, �, �, � 	∈ ��� �����	
,�, ⇔ �, � , �,� ∈ � ∧ � � � � ∧

�,� ∈ ��� ∧
∀� ∈ �: �, � ∈ � ⇒ � � � ∧
!∀� ∈ �: �,� ∈ � ⇒ � � �"

↦

�, �′, �′, ���, ���′, �, �′, �′ where �% � � ∖ '�,�, �(
�% � � ∖ '�: �, �:�,�:)(
���% � ��� ∖ '!�,�"(
�% � !� ∪ �, + 	 	 �, � , �, + ∈ �(" ∩ �% -�′
�% � �: � � 	 	� ∈ �′(

Application

Parameters

Explanation

Example

Let �,�, � ∈ ./ be names representing nodes.

The operation �����	
,�, deletes the xor-fragment !�,�" with action �.

Domain

�,�, �, ���, ���, �, �, �

�����	
,�,
foo barfoo bar

node �

d m	0

Figure 6.13: Xor-fragment-deletion operations delXord,m,a for node names d,m, a ∈ UN .

to the decision node, removes the transition from the decision node to the action node,
removes the transition from the action node to the merge node, removes the transition
from the merge node to its successor node, and adds a transition from the decision
node’s predecessor node to the merge node’s successor node. In the example application
(Figure 6.13), the xor-fragment defined by the decision node d and the merge node m
containing the action node a is removed and the control flow is reconnected, accordingly.

As illustrated in Figure 6.13, xor-fragment-deletion operations are neither refining nor
generalizing. For instance, foo, k, bar is a trace of the AG depicted on the left-hand
side in the example, but no trace of the AG depicted on the right-hand side. The trace
foo, bar is a trace of the AG depicted on the right-hand side, but no trace of the AG
depicted on the left-hand side. The sets of traces of the AGs are incomparable.

6.4.7 And-Fragment-Insertion Operations

Figure 6.14 defines the and-fragment-insertion change operations. Each and-fragment-
insertion operation addAndx,y,f,j,a,k is parametrized with five node names x, y, f, j, a ∈
UN and an action label k ∈ UN . The node names x and y represent arbitrary connected
nodes. The node name f represents a fork node name, the node name j represents a join
node name, and the node name a represents an action node name. An and-fragment-
insertion operation is applicable to an AG iff the AG contains the nodes x and y, there
exists a transition from the node x to node y, the node names f , j, and a are not used
in the AG, and the label k is contained in the set of labels of the AG. Applying the
operation addAndx,y,f,j,a,k inserts an and-fragment with the fork node f and the join

147



Chapter 6 Activity Diagrams

And-fragment-insertion operations with signature �� ⇀ ��

������	,�,�,,�,�

�,�, �, ���, ���, �, �, � 	∈ ��� ������	,�,�,,�,� ⇔ �, � ∈ � ∧  , !, � ∉ � ∧ # ∈ �

↦

�, �′, �′, ���′, ���, �, �′, �′ where �& ' � ∪ )�,�, �*
�& ' � ∪ )�: �,  : ,, !: -*
���& ' ��� ∪ ). , !/*
�& ' � ∖ �, � ∪ ) �,  ,  , � , �, ! , .!, �/*
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Application

Parameters

Explanation

Example

Let �, �,  , !, � ∈ 23 be node names with  4 !,  4 �, ! 4 � and let # ∈ 23 be an action label.

The operation ����5�	,�,�,,�,� inserts the and-fragment . , !/ with action � labeled # between � and �.

����5�	,�,�,,�,�

Domain

�,�, �, ���, ���, �, �, �

foo bar

node � node �

foo bar

node � node �

	#

node  node !

node �

Figure 6.14: And-fragment-insertion operations addAndx,y,f,j,a,k for node names
x, y, f, j, a ∈ UN and action labels k ∈ UN .

node j containing the action a labeled k between the nodes x and y. To this effect, the
operation adds the fork node f , the join node j, the and-fragment defined by the fork
and the join node, the action node a labeled k, a transition from the node x to the fork
node f , a transition from the fork node f to the action node a, a transition from the
action node a to the join node j, and a transition from the join node j to the node y.
The transition from the node x to the node y is removed from the AG. In the example
application (Figure 6.14), an and-fragment defined by the fork node f and the join node
j containing the action a labeled k is added between the nodes x and y.

And-fragment-insertion operations are neither refining nor generalizing. For instance,
foo, bar is a trace of the AG depicted on the left-hand side in Figure 6.14, but no trace
of the AG depicted on the right-hand side. The trace foo, k, bar is a trace of the AG
depicted on the right-hand side, but no trace of the AG depicted on the left-hand side.

6.4.8 And-Fragment-Deletion Operations

Figure 6.15 defines the and-fragment-deletion operations. Each and-fragment-deletion
operation delAndf,j,a is parametrized with a fork node name f ∈ UN , a join node name
j ∈ UN , and an action node name a ∈ UN . An and-fragment-deletion operation is
applicable to an AG iff the AG contains the and-fragment defined by the fork node f
and the join node j, and the fragment contains exactly the action node a. The application
of the operation delAndf,j,a deletes the and-fragment defined by the fork node f and
the join node j and reconnects the control flow from the fork node’s predecessor node
to the join node’s successor node. To this effect, the operation removes f , j, and a
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And-fragment-deletion operations with signature �� ⇀ ��

�������,
,�

�,, �, ��, ���, �, �, � 	∈ ��� �������,
,� ⇔ �, � , �, � ∈ � ∧ � � � � ∧

�, � ∈ �� ∧
∀ ∈ : �,  ∈ � ⇒  � � ∧
#∀ ∈ :  , � ∈ � ⇒  � �$

↦

�, ′, �′, ��′, ���, �, �′, �′ where ' �  ∖ )�, �, �*
�' � � ∖ )�: �, �: +, �: ,*
��' � �� ∖ )#�, �$*
�' � #� ∪  , . 	 	  , � , �, . ∈ �*$ ∩ ' 0′
�' �  : �  	 	 ∈ ′*

Application

Parameters

Explanation

Example

Let �, �, � ∈ 12 be names representing nodes.

The operation �������,
,� deletes the and-fragment #�, �$ with action �.

Domain

�,, �, ��, ���, �, �, �

�������,
,�
foo barfoo bar	3

node � node �

node �

Figure 6.15: And-fragment-deletion operations delAndf,j,a for node names f, j, a ∈ UN .

from the sets of nodes, removes the fragment from the AG’s and-fragments, removes the
transition from the fork node’s predecessor node to the fork node, removes the transition
from the fork node to the action node, removes the transition from the action node to
the join node, removes the transition from the join node to its successor node, and adds
transitions from the fork node’s predecessor nodes to the join node’s successor nodes. In
the example application (Figure 6.13), the and-fragment defined by the fork node f and
the join node j containing the action a is removed.

As illustrated in the example of Figure 6.15, and-fragment-deletion operations are
neither refining nor generalizing. For instance, foo, k, bar is a trace of the AG depicted
on the left-hand side in the example, but no trace of the AD depicted on the right-hand
side. The trace foo, bar is a trace of the AG depicted on the right-hand side, but no
trace of the AG depicted on the left-hand side.

6.4.9 Cyclic-Fragment-Insertion Operations

Figure 6.16 depicts the definition of the cyclic-fragment-insertion operations. Each
cyclic-fragment-insertion operation addCx,y,d,m,a,k is parametrized with five node names
x, y, d,m, a ∈ UN and an action label k ∈ UN . The node names x and y represent
arbitrary connected nodes. The node name d represents a decision node name, the node
name m represents a merge node name, and the node name a represents an action node
name. A cyclic-fragment-insertion operation is applicable to an AG iff the AG contains
the nodes x, y, there exists a transition from the node x to the node y, the node names
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Cyclic-fragment-insertion operations with signature �� ⇀ ��

�����,	,
,�,�,

�,�, �, ���, ���, �, �, � 	∈ ��� �����,	,
,�,�, ⇔ �, � ∈ � ∧ �,�, � ∉ � ∧  ∈ �

↦

�, �′, �′, ���, ���, �′, �′, �′ where �# $ � ∪ &�,�, �'
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Application

Parameters

Explanation

Example

Let �, �, �,�, � ∈ ./ be node names with � 0 �, � 0 �, � 0 � and let  ∈ ./ be an action label.

The operation �����,	,
,�,�, inserts the cyclic-fragment *�,�+ with action � labeled  between � and �.

Domain

�,�, �, ���, ���, �, �, �

�����,	,
,�,�,

foo bar

node � node �

foo bar

node � node �

m d

	 

node �

Figure 6.16: Cyclic-fragment-insertion operations addCx,y,d,m,a,k for node names
x, y, d,m, a ∈ UN and action labels k ∈ UN .

d, m, and a are not used in the AG, and the label k is contained in the set of labels of
the AG. Applying the operation addCx,y,d,m,a,k inserts a cyclic-fragment with the merge
node m and the decision node d containing the action a labeled k between the nodes x
and y. The operation adds the merge node m, the decision node d, the cyclic-fragment
defined by the merge and the decision node, the action node a, a transition from the
node x to the merge node m, a transition from the merge node m to the action node a,
a transition from the action node a to the decision node d, a transition from the decision
node d to the merge node m, and a transition from the decision node d to the node y.
The transition from the node x to the node y is removed from the AG. In the example
application depicted in Figure 6.16, a cyclic-fragment defined by the merge node m and
the decision node d containing the action a labeled k is added between the node x and
the node y.

As illustrated in Figure 6.16, cyclic-fragment-insertion operations are neither refining
nor generalizing. For instance, foo, bar is a trace of the AG depicted on the left-hand
side in the example, but no trace of the AG depicted on the right-hand side. The trace
foo, k, bar is a trace of the AG depicted on the right-hand side, but no trace of the AG
depicted on the left-hand side. The sets of traces of the AGs are incomparable.

6.4.10 Cyclic-Fragment-Deletion Operations

Figure 6.17 depicts the definition of the cyclic-fragment-deletion operations. Each cyclic-
fragment-deletion operation delCd,m,a is parametrized with a decision node name d ∈ UN ,
a merge node name m ∈ UN , and an action node name a ∈ UN . A cyclic-fragment-
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Cyclic-fragment-deletion operations with signature �� ⇀ ��

�����,
,�

�,, �, ��, ���, �, �, � 	∈ ��� �����,
,� ⇔ �,� , �, � , �,� ∈ � ∧ � � � � ∧

�,� ∈ � ∧
| �, � ∈ �	 	� � ��| � 2 ∧
| �, � ∈ �	 	� � ��| � 1 ∧
| �, � ∈ �	 	� � ��| � 1 ∧
| �, � ∈ �	 	� � ��| � 2

↦

�, ′, �′, ��, ���, �′, �′, �′ where $ �  ∖ &�,�, ��
�$ � � ∖ &�: �, �: �,�:(�
�$ � � ∖ &)�,�*�
�$ � )� ∪ �, � 	 	 �,� , �, � ∈ ��* ∩ $ -′
�$ � �: � � 	 	� ∈ ′�

Application

Parameters

Explanation

Example

Let �,�, � ∈ ./ be names representing nodes.

The operation �����,
,� deletes the cyclic-fragment )�,�* with action �.

Domain

�,, �, ��, ���, �, �, �

�����,
,�

foo bar

node � node �

foo bar

node � node �

m d

	0

node �

Figure 6.17: Cyclic-fragment-deletion operations delCd,m,a for node names d,m, a ∈ UN .

deletion operation is applicable to an AG iff the AG contains the cyclic-fragment defined
by the decision node d and the merge node m and the fragment exactly contains the
action a. This condition is ensured by requiring that d and m define a cyclic fragment,
the AD contains a transition from the merge node m to the action node a, a transition
from the action node a to the decision node d, a transition from the decision node d to
the merge node m, by requiring that the merge node has exactly two incoming transition
as well as exactly one outgoing transition, and by requiring that the decision node has
exactly one incoming transition and exactly two outgoing transitions. The application of
the operation delCd,m,a deletes the cyclic-fragment defined by the decision node d and the
merge node m and reconnects the control flow from the merge node’s predecessor node
to the decision node’s successor node. The operation removes d, m, and a from the sets
of nodes, removes the fragment from the AG’s cyclic-fragments, removes the transition
from the merge node’s predecessor node to the merge node, removes the transition from
the merge node to the action node, removes the transition from the action node to the
decision node, removes the transition from the decision node to the merge node, removes
the transitions from the merge node to its successor nodes, and adds transitions from
the merge node’s predecessor nodes to the decision node’s successor nodes.

In the example application depicted in Figure 6.17, the cyclic-fragment defined by the
decision node d and the merge node m containing the action a is removed. As illustrated
in the example of Figure 6.17, cyclic-fragment-deletion operations are neither refining
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nor generalizing. For instance, foo, k, bar is a trace of the AG depicted on the left-hand
side in the example, but no trace of the AG depicted on the right-hand side. The trace
foo, bar is a trace of the AG depicted on the right-hand side, but no trace of the AG
depicted on the left-hand side.

6.4.11 Fragment-Branch-Insertion Operations

The operation ������,� adds a transition from � to	 if 
�,	� defines an xor-, an and-, or a cyclic-fragment.

Fragment-branch-insertion operations with signature � ⇀ �

������,�

�,�, �, ���, ���, �, �, � 	 ∈ ��	 ������,� ⇔ �,	 ∈ ��� ∪ � ∪ ��� ∧ �,	 ∉ �

↦

�, �, �, ���, ���, �, �′, � where �" # � ∪ $ �,	 %
Application

Parameters

Explanation

Example

Let �,	 ∈ &' be node names.

Domain

�,�, �, ���, ���, �, �, �

������,�
foo barn mbaz foo barn mbaz

Figure 6.18: Fragment-branch-insertion operations addFBn,m for nodes n,m ∈ UN .

Figure 6.18 defines the fragment-branch-insertion operations. Each fragment-branch-
insertion operation addFBn,m is parametrized with two node names n,m ∈ UN . A
fragment-branch-insertion operation addFBn,m is applicable to an AG iff the AG con-
tains a fragment (n,m) and the AG contains no transitions from n to m. The application
of the operation adds the transition (n,m) to the AG. In the example depicted in Fig-
ure 6.18, the change operation inserts the transition (n,m) into the xor-fragment (n,m).

Fragment-branch-insertion operations are neither refining nor generalizing. For ex-
ample, foo, bar is a trace of the AG depicted on the right-hand side in the example of
Figure 6.18, but no trace of the AG depicted on the left-hand side. Thus, fragment-
branch-insertion operations are not refining. The trace foo, baz, bar is a trace of the
AG depicted on the left-hand side, but no trace of the other AG. The trace foo is a trace
of the AG ag1 depicted on the left-hand side of Figure 6.19 and no trace of the AG ag2
depicted on the right-hand side. The AG ag2 can be obtained from the AG ag1 by
applying a fragment-branch-insertion operation. Thus, fragment-branch-insertion oper-
ations are not generalizing.

6.4.12 Fragment-Branch-Deletion Operations

Figure 6.20 defines the fragment-branch-deletion operations. Each fragment-branch-
deletion operation delFBn,m is parametrized with two node names n,m ∈ UN . The node
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AG ag1

foo

AG ag2

foo

Figure 6.19: The AG ag2 can be obtained from the AG ag1 by applying a fragment-
branch-insertion operation. The AG ag1 can be obtained from the AG ag2
by applying a fragment-branch-deletion operation.

Fragment-branch-deletion operations with signature �� ⇀ ��

�����	,�

�,, �, ��, ���, �, �, � 	∈ ��� �����	,� ⇔ �,� ∈ ��� ∪ � ∪ �� ∧ �,� ∈ �

↦

�, , �, ��, ���, �, �′, � where ��  � ∖ "#�,�$%
Application

Parameters

Explanation

Example

Let �,�, ∈ &' be node names.

The operation �����	,� deletes the transition #�,�$ if #�,�$ defines an xor-, an and-, or a cyclic-fragment.

Domain

�,, �, ��, ���, �, �, �

�����	,�
foo barn mbazfoo barn mbaz

Figure 6.20: Fragment-branch-deletion operations delFBn,m for node names n,m ∈ UN .

names n and m represent a fragment defined by (n,m). The fragment-branch-deletion
operation delFBn,m is applicable to an AG iff the AG contains a fragment defined by
(n,m) and a transition from n to m. The application of the operation delFBn,m deletes
the the transition (n,m). In the example depicted in Figure 6.20, the change operation
deletes the transition (n,m).

Fragment-branch-deletion operations are neither refining nor generalizing. For exam-
ple, foo, bar is a trace of the AG depicted on the left-hand side in the example of Fig-
ure 6.20, but no trace of the AG depicted on the right-hand side. Thus, fragment-branch-
deletion operations are not generalizing. The AG ag2 depicted on the right-hand side
of Figure 6.19 is inconsistent. The AG ag1 depicted on the left-hand side is consistent.
The AG ag1 can be obtained from the AG ag2 by applying a fragment-branch-deletion
operation. Thus, fragment-branch-insertion operations are not refining.
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6.5 Activity Diagram Modeling Language

This section defines the AD language LAD = (MAD, SemAD, J·KAD) with a syntax based
on AGs as introduced in Section 6.1, a semantic mapping based on the AG semantics
presented in Section 6.2, and a complete change operation suite OAD based on the change
operations introduced in Section 6.4.

Let i, f ∈ UN with i 6= f be two arbitrary but fixed node names. The names are
used as unique identifiers for the initial and final nodes of ADs. The set of ADs MAD is
recursively defined as follows:

• The AG (∅, {i, f}, t, ∅, ∅, ∅, {(i, f)}, {i : ε, f : ε}) ∈MAD with t(i) = i and t(f) = f
is an AD.

• If ad ∈MAD is an AD and o is a label-addition-operation that is applicable to ad,
then o(ad) ∈MAD is an AD.

• If ad ∈MAD is an AD and o is an action-insertion operation that is applicable to
ad, then o(ad) ∈MAD is an AD.

• If ad ∈MAD is an AD and o is a xor-fragment-insertion operation that is applicable
to ad, then o(ad) ∈MAD is an AD.

• If ad ∈MAD is an AD and o is an and-fragment-insertion operation that is appli-
cable to ad, then o(ad) ∈MAD is an AD.

• If ad ∈MAD is an AD and o is a cyclic-fragment-insertion operation that is appli-
cable to ad, then o(ad) ∈MAD is an AD.

• If ad ∈ MAD is an AD and o is a fragment-branch-insertion operation that is
applicable to ad, then o(ad) ∈MAD is an AD.

• If ad ∈ MAD is an AD and o is a fragment-branch-deletion operation that is
applicable to ad, then o(ad) ∈MAD is an AD.

The semantic domain of the AD modeling language is defined as SemAD
def
= U∗N the

set of all possible action traces. The semantics of an AD ad ∈ MAD is defined as the
set JadKAD def

= traces(ag) of its traces. The set OAD of AD change operations is defined
as the smallest set that satisfies: if o is an AG change operation (cf. Section 6.4), then
p ∈ OAD is an AD change operation, where p is defined as follows:

p : MAD →MAD, ad :

{
o(ad), if ad ∈ dom(o) ∧ o(ad) ∈MAD

⊥, otherwise .
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The change operation suite OAD is complete for the AD modeling language LAD
because every AD change operation used in the recursive syntax definition for ADs has
an inverse:

Proposition 6.3. The change operation suite OAD is complete for the AD modeling
language LAD.

Proof. We first show that every AD change operation used in the recursive definition of
the AD syntax has an inverse, i.e., for each AD ad and each AD change operation o used
in the recursive definition of the AD syntax such that o is applicable to ad, there exists
an AD change operation p ∈ OAD such that p is applicable to o(ad) and p(o(ad)) = ad.
Let ad ∈MAD be an AD.

Let addLk with k ∈ UN be a label-addition operation that is applicable to ad. Then,
for the label-deletion operation delLk, it holds by the definitions of the operations that
addLk(ad) ∈ dom(delLk) and delLk(addLk(ad)) = ad.

Let addAx,y,a,k with x, y, a, k ∈ UN be an action-insertion operation that is applicable
to ad. Then, for the action-deletion operation delAa, it holds by the definitions of the
operations that addAx,y,a,k(ad) ∈ dom(delAa) and delAa(addAx,y,a,k(ad)) = ad.

Let addXorx,y,d,m,a,k with x, y, d,m, a, k ∈ UN such that d 6= m, d 6= a, and m 6=
a be a xor-fragment-insertion operation that is applicable to ad. Then, for the xor-
fragment-deletion operation delXord,m,a, it holds by the definitions of the operations that
addXorx,y,d,m,a,k(ad) ∈ dom(delXord,m,a) and delXord,m,a(addXorx,y,d,m,a,k(ad)) = ad.

Let addAndx,y,f,j,a,k with x, y, f, j, a, k ∈ UN such that f 6= j, f 6= a, and j 6= a
be an and-fragment-insertion operation that is applicable to ad. For the and-fragment-
deletion operation delAndf,j,a, it follows from the definitions of the operations that
addAndx,y,f,j,a,k(ad) ∈ dom(delAndf,j,a) and delAndf,j,a(addAndx,y,f,j,a,k(ad)) = ad.

Let addCx,y,d,m,a,k with x, y, d,m, a, k ∈ UN such that d 6= m, d 6= a, and m 6= a
be a cyclic-fragment-insertion operation that is applicable to ad. Then, for the cyclic-
fragment-deletion operation delCd,m,a, it holds by the definitions of the operations that
addCx,y,d,m,a,k(ad) ∈ dom(delCd,m,a) and delCd,m,a(addCx,y,d,m,a,k(ad)) = ad.

Let addFBn,m with n,m ∈ UN be a fragment-branch-insertion operation that is appli-
cable to ad. Then, for the fragment-branch-deletion operation delFBn,m, it holds that
addFBn,m(ad) ∈ dom(delFBn,m) and delFBn,m(addFBn,m(ad)) = ad.

Let delFBn,m with n,m ∈ UN be a fragment-branch-deletion operation that is appli-
cable to ad. Then, for the fragment-branch-insertion operation addFBn,m, it holds that
delFBn,m(ad) ∈ dom(addFBn,m) and addFBn,m(delFBn,m(ad)) = ad.

The above enables showing that the change operation suite OAD is complete for the
AD modeling language LAD: Let S

def
= (∅, {i, f}, t, ∅, ∅, ∅, {(i, f)}, {i : ε, f : ε}) ∈ MAD

where i, f ∈ UN denote the smallest AD. Let ad, ad′ ∈ MAD be two arbitrary ADs.
Then, by definition of the syntax of ADs, there exist sequences of change operations
t = o1, ..., on ∈ OAD with n ≥ 0 and u = p1, ..., pm ∈ OAD with m ≥ 0 such that
S.t = ad, S.u = ad′, and oj as well as pk are label-addition operations, action-insertion
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operations, xor-fragment-insertion operations, and-fragment-insertion operations, cyclic-
fragment-insertion operations, or fragment-branch-insertion operations for all 0 < j ≤ n
and 0 < k ≤ m. As each change operation oj for 0 < j ≤ n has an inverse operation,
there exists a change sequence v = q1, ..., qn with |v| = |t| such that (S . t) . v = S.
From the above, we conclude that ad . vu = ((S . t) . v) . u = S . u = ad′. As
ad and ad′ are chosen arbitrarily, this implies that there exists at least one function
∆AD : MAD ×MAD → O∗AD such that ∀ad, ad′ ∈MAD : ad .∆(ad, ad′) = ad′.

6.6 Related Work

In contrast to previous works on semantic differencing and model checking of ADs [Esh06,
MRR11b, MRR11c], the method presented in this thesis explicitly maps ADs to finite
automata. This thesis does not define an implicit mapping via a translation from ADs to
models in the input format of a model checker, which again encode finite automata having
a semantics based on recognized words. Through the explicit mapping, our translation
is less complex, which reduces implementation efforts.

Semantic differencing of ADs is introduced in [MRR11b]. In this approach, the input
ADs are translated to models in the input language of the SMV model checker [McM93]
using the translation described in [MRR11c]. These models then encode finite automata
that correspond to the ADs. The translation from ADs to SMV models is rather compli-
cated. Further, the translation steps from ADs to SMV models and from SMV models
to finite automata causes additional overhead compared to directly translating ADs to
finite automata. In contrast, the translation from ADs to finite automata presented in
this thesis is direct and simple. However, in contrast to our translation, the approach
presented in [MRR11b] supports immutable input variables and local variables over finite
domains as well as assignment expressions for changing the values of local variables on
actions and guards on transitions leaving decision nodes. Thus, although the translation
of [MRR11b] is more complex, the language supported by [MRR11b] is more expressive
as it supports variables. This thesis focuses on a direct and simple translation without
incorporating variables, although extending the approach of this thesis to support vari-
ables is straight forward: The algorithm for the translation from ADs to NFAs must
include a value assignment for the variables in the states of the resulting NFAs. When-
ever a transition that enters an action node is processed, the algorithm must evaluate
the assignment expressions of the action given the variable assignment of the currently
processed state as input and incorporate the resulting variable assignment in the target
state of the added NFA transition. Whenever a transition that leaves a decision node
is processed, the algorithm must evaluate the boolean guard of the transition and only
add the corresponding NFA transition and the corresponding NFA state if the guard
evaluates to true when given the variable assignment of the currently processed state
as input. Using variables increases the state space of the resulting NFA. Interesting
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future work is extending and implementing the translation of this thesis with variable
assignments and comparing the runtime of the resulting semantic differencing operator
with the runtime of the semantic differencing operator presented in [MRR11b].

The translation from ADs to SMV models of [MRR11b] is similar to a translation
defined in [Esh06]. The scope of [Esh06] is symbolic model checking of ADs, whereas
this thesis focuses on semantic differencing.

The framework presented in [MRR11b] has been extended in [MRR11g] for summariz-
ing elements in the semantic difference from one AD to another AD based on equivalence
classes defined on the set of possible traces. The idea is to present only one representa-
tive of an equivalence class to a user. The summarization technique is easily integrable
into the framework of this thesis. The framework presented in [MR18] can be used to
detect which syntactic changes between two different versions of an AD induce a con-
crete witness. The application to ADs, as presented in [MR18], is based on the semantic
differencing operator of [MRR11b]. Using the techniques of [MR18] with the semantic
differencing method presented in this thesis is directly possible.

Other direct translations from ADs and business process models to finite automata
focus on deadlock detection [Sug16, TSJ10]. However, the translations do not result
in automata that represent the set of execution traces of the input ADs. Further, the
translations are more complex than our translation. With minor adjustments, the trans-
lation of this thesis can also be used for deadlock detection by changing the accepting
states of the automaton resulting from translating an AD. Instead of choosing the final
automaton states as the automaton states that contain a transition with an accepting
AD state, one needs to choose the set of final automaton states as all states without
outgoing transitions that do not contain an AD transition that involves a final AD node.
Then, a run of the automaton ending in an accepting state represents an AD execution
that cannot proceed to an accepting state.

Other semantics definitions for ADs are based on Petri nets [Stö05], on the system
model [GRR10] for characterizing object-oriented systems as defined in [BCGR09], or
on the notion of step [KG10] inspired by the popular STATEMATE semantics for stat-
echarts [HN96]. In contrast, this thesis defines an operational semantics based on a
mapping to NFAs and a denotational semantics based on the languages recognized by
the resulting NFAs.
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Automatic Model Repairs
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Chapter 7

A Framework for Automatic Model Repairs

Analyzing the evolution of models is an important task in MDD. Many existing analy-
ses consider syntactic model evolution (e.g. [AP03, KKT11, KKT13, KGE09, KGFE08,
TELW14, TBK09] and focus on detecting the syntactic difference from a model to an-
other model. Semantic differencing approaches analyze the evolution of models with
respect to the changes in the meanings of models (e.g. [AHC+12, LMK14a, MRR11e,
LMK14b, MRR11b, BKRW17, FLW11, FALW14]). A few approaches combine syntactic
and semantic model evolution analyses [MR15, MR18, KR18b]. Combined approaches
focus on relating syntactic to semantic model differences.

There are well-accepted generic approaches for syntactic differencing that abstract
from concrete modeling languages (e.g., [AP03]). There are only a few generic approaches
for analyzing the semantic differences of models that abstract from concrete modeling
languages [FLW11, LMK14a, LMK14b]. Similarly, generic approaches that abstract from
concrete modeling languages and relate syntactic to semantic model differences rarely
exist [MR15, MR18, KR18b].

The syntax and the semantic mapping of each modeling language are usually tailored
towards a specific application domain. Developing new approaches to evolution manage-
ment for each newly emerging modeling language is expensive [KR18b]. Therefore, the
main advantage of generic approaches abstracting from concrete modeling languages is
that they provide general results that can be applied to multiple modeling languages.

Employing a general definition for the constituents of modeling languages and syn-
tactic changes (cf. Chapter 2) enables the development of generic analyses: Stating
generic assumptions on a modeling language and its change operations enables develop-
ing generic model evolution analyses for all concrete modeling languages satisfying the
assumptions [KR18b].

Models naturally evolve during their development due to changing requirements and
bug fixes. A model is changed with the intention to obtain an updated model satisfying
a specific property that the original model does not satisfy. A model evolution step is a
process of applying syntactic changes to a model such that the resulting model satisfies a
well-defined property. Refinement steps are typical examples for special model evolution
steps: A model refinement step is a process of applying syntactic changes to a model
such that the semantics of the original model subsumes the resulting model’s seman-
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tics. Refinement steps effectively remove underspecification from a model by eliminating
possible realizations. Model refinement steps are naturally performed when additional
information becomes available during the development process. Performing a refine-
ment step is, in general, error-prone and thus needs automated and meaningful support
for repair in case an intended refinement step yields an incorrect result, i.e., when the
resulting model contains bugs.

This chapter introduces sufficient conditions on modeling languages that enable the
fully automatic calculation of syntactic changes that transform a model to another model
satisfying a well-defined property (such as refinement, refactoring, or generalization). In
contrast to previous work, this chapter’s approach is

• independent of a concrete modeling language,

• independent of a concrete model property,

• computes shortest change sequences to maintain the developer’s intention behind
the model as much as possible, and

• does not assume that powerful model composition operators are available.

The method relies on partitioning the syntactic change operations applicable to each
model in equivalence classes and on excluding syntactic changes that are not part of a
shortest change leading to a model satisfying the property.

The idea of the partitioning is grounded in the intuition that the application of change
operations introducing names (elements of UN ) that are not used in a model often have
similar effects on the properties satisfied by the model. The application of one of the
change operations to the model yields a model that can be changed to a model satisfying
the property with equally many change operations as a model obtained from applying
another of the change operations to the model. This often enables to reduce the search
space for change sequences changing the model to a model that satisfies the property.
As models are usually finite structures using finitely many names, the sets of equivalent
change operations are often infinite, which often enables reducing an infinitely branch-
ing search space to a finitely branching search space by only considering one change
operation of each equivalence class. The main result is a generic and fully automatic
method to repair failed model evolution steps under intuitive assumptions. The assump-
tions require the availability of an automatic procedure to check the satisfaction of the
model property and the possibility to partition change operations into model-specific
and property-specific equivalence classes.

In the remainder of this chapter (if not stated otherwise), let L = (M,S, sem) be an
arbitrary modeling language and let O be a complete (cf. Definition 2.8, p. 20) change
operation suite for L.

This chapter builds upon the results of previously published work [KR18a] that is
specifically concerned with repairing failed model refinement steps. In the following,
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7.1 Motivating Examples in Context of Repairing Refinement

Section 7.1 recaps the problem of repairing failed model refinements and presents mo-
tivating examples for automatic model repairs in the context of repairing failed model
refinements and the concrete modeling languages presented in Part II. Afterwards,
Section 7.2 presents the general model repair problem that abstracts from a concrete
modeling language and a concrete property. Then, Section 7.3 introduces two proper-
ties for change operations. Based on this, Section 7.4 formalizes the assumptions that
enable the computation of repairing change sequences and presents algorithms for their
computation. Section 7.6 discusses whether the assumptions are reasonable with respect
to their applicability to concrete modeling languages. Section 7.8 presents related work.

7.1 Motivating Examples in Context of Repairing Refinement

This section motivates the usefulness of automatically repairing models by examples in
the context of repairing refinement.

Two different models may be syntactically very similar but semantically very different.
Vice versa, two models may be semantically equivalent but syntactically very different.
Syntactic differencing operators detect the syntactic differences of models but do not
compare the semantics of models. On the other hand, semantic differencing operators
detect whether there are semantic differences from a model to another model but do not
detect the syntactic model elements causing the existence of the semantic differences.
The state of the art provides little support for detecting which syntactic model elements
cause the existence of semantic differences from the model to another model.

A model refinement step is the evolution process of changing a model such that the
successor model version is a refinement of the predecessor version. Thus, applying a
refinement step removes underspecification concerning the system under development
by changing the model such that each realization of the successor version is also a
realization of the predecessor version. Refinement steps are naturally performed during
development processes in reaction to the receipt of additional information, such as a
new requirement or new insights obtained through the communication between different
stakeholders. At each stage during the development of a system, the available models
encode the information that is currently available. Every time new information becomes
available, the models are refined until, ultimately, a correct system implementation is
obtained. In general, refinement steps are error-prone. The state of the art provides
little support for repairing failed refinement steps:

• Syntactic differencing solely reveals the syntactic differences between models in
the form of change operations but does not provide information about semantic
properties such as refinement.

• Refinement calculi (e.g., in the contexts of interactive systems [Rum96, PR97,
PR99], feature models [BKL+16], or the modeling languages and their change
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operations presented in Part II) often define refining change operations and can
detect whether a model refines another model by checking whether there exists a
change sequence that transforms the former model to the other model and solely
contains refining change operations. Such calculi are usually sound but incomplete,
i.e., they never provide wrong answers, but they may fail to give an answer at all.

• Semantic differencing reveals whether there exist elements in the semantics of one
model that are not elements of the other model’s semantics and usually provide diff
witnesses. If a diff witness exists, the former model is no refinement of the latter
model. The provided witnesses facilitate developers in detecting the syntactic
model elements causing that the former model is not a refinement of the latter
model. However, the task of finding the syntactic elements causing the witness is
still manually performed by developers.

Applying automatic model repair in the context of refinement enables the automatic
computation of a change sequence that transforms one model to a refinement of another
model. On the one hand, the change sequence can be directly applied to the model
to obtain a refinement of the other model. On the other hand, the change sequence
provides valuable information for developers in terms of the syntactic model elements
that it affects. The affected elements can be investigated to identify the syntactic model
elements causing the semantic model differences: As the application of the sequence leads
to a refinement, some of the affected syntactic model elements must be “responsible“ for
the existence of semantic differences. Thus, the sequence can also provide additional
information to developers for manually repairing failed model refinement steps. Even
if the model is not intended to be a refinement of the other model, automatic model
repair facilitates developers in detecting the syntactic elements of the model that cause
the existence of semantic differences to the other model. This can increase developers’
understandings of model evolution steps.

The following sections motivate automatic repair of refinement by example using the
modeling languages presented in Part II.

7.1.1 Shortest Repair of a Failed Activity Diagram Refinement Step

Figure 7.1 depicts two ADs taken from [KR18a] and inspired by [KGE09, KGFE08]. A
manager of an insurance company wants to improve the efficiency of processing incoming
claims. Therefore, the manager models the workflow that needs to be executed by em-
ployees on the receipt of incoming claims with the AD claim3. This AD represents the
executions that are reasonable from the manager’s perspective. It is highly underspec-
ified as it, for example, permits multiple different possibilities regarding the execution
of actions after rejecting a claim. The manager hands the AD over to an employee.
The task of the employee is to refine the workflow to exclude executions that are not
reasonable from her perspective.
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Figure 7.1: Two ADs taken from [KR18a] and inspired by [KGE09, KGFE08] modeling
workflows in the context of an insurance company.

The employee edits the workflow modeled with the AD calim3 and obtains the AD
claim4. She informs the manager about the changes. The manager wants to verify the
correctness of the changes. To this effect, she uses semantic differencing (cf. Section 6.3).
The semantic differencing operator presents a witness proving that the successor version
claim4 is not a refinement of its predecessor version claim3. The manager decides to
identify the error causing non-refinement for preparing a suggestion to repair the model.
For this task, she uses automatic model repair as presented in this thesis. The model
repair framework outputs that the application of at least two change operations (cf. Sec-
tion 6.5) is required to change the AD claim4 to a refinement of the AD claim3. More
detailedly, the framework outputs that removing the action node A1 labeled Payout and
afterwards adding an action node labeled Payout between the nodes J1 and the action
node A2 labeled Send Confirmation in the AD claim4 yields a consistent AD that
refines the AD claim3. The change sequence delAA1, addAJ1,A2,A1,Payout containing the
two AD change operations (cf. Section 6.5) that encode the changes is a shortest change
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Figure 7.2: Two TSPAs adapted from similar automata presented in [KR18b] that ini-
tially appeared in [Rin14].

sequence that repairs the AD claim4 towards refining the AD claim3. The manager
considers the changes to be correct and consults the employee. It turns out that payouts
should be definitely executed after calculating the exact loss amount and recalculating
the customer contribution. Finally, the manager applies the fully automatically calcu-
lated change sequence to claim4 and obtains the final AD, which is a refinement of the
AD claim3.

7.1.2 Shortest Repair of a Time-Synchronous Port Automaton to Achieve
the Satisfaction of a Requirement

Figure 7.2 depicts two TSPAs that are inspired by similar automata presented in [Rin14,
KR18b]. The TSPAs impl and spec model behaviors of a simple mobile robot. The
robot is equipped with a motor for steering its two left wheels and a motor for steering
its two right wheels. It is further equipped with an emergency button and a button
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(bump sensor) that indicates whether it hit a wall. Each of the two TSPAs has the
two input channels emgStp and bump as well as the two output channels lMot and
rMot. Messages received via channel emgStp indicate whether the emergency button is
pressed. Similarly, messages received via the channel bump indicate whether the bump
sensor is pressed. The input channels are of type {ξ,PRESSED}. The message ξ indicates
that a button is not pressed, i.e., no signal is present. The message PRESSED indicates
that a button is pressed. The robot steers its motors by sending messages via its output
channels lMot and rMot. Both channels are of type {ξ,STOP,FORWARD,BACKWARD}.
Sending the message FORWARD via one of the output channels indicates that the motor
should make its corresponding wheels drive forward. Vice versa, sending the message
BACKWARD via one of the output channels indicates that the motor should make its
corresponding wheels drive backward. The robot’s task is to drive forward until hitting
a wall. When hitting a wall, the robot should drive a little backward, turn in any
direction, and drive forward again. As long as the emergency button is pressed, the
robot should stop moving. A developer initially modeled the robot’s behaviors with the
TSPA impl (cf. Figure 7.2).

The developer receives a new requirement during the development process: When the
robot is turned on, the robot should not start moving until its bump sensor has been
pressed. The developer decides to check whether the implementation already satisfies
the new specification. Thus, the developer models the specification with the TSPA spec
(cf. Figure 7.2). The semantics of the TSPA spec contains all possible behaviors where
the robot does not start moving until the bump sensor has been pressed. Therefore,
the implementation satisfies the specification iff the TSPA impl is a refinement of the
TSPA spec. To check this property, the developer uses semantic differencing (cf. Sec-
tion 3.3). The semantic differencing operator outputs that there exist behaviors of the
TSPA impl that are no behaviors of the TSPA spec. Thus, the implementation does
not satisfy the specification. Therefore, the developer uses our framework to repair the
implementation towards satisfying the specification automatically. Our framework cal-
culates a shortest change sequence that transforms the TSPA impl to a TSPA that
satisfies the specification modeled with the TSPA spec. It outputs that first adding a
transition looping in state idle labeled emg1 and then removing the transition from
state idle to state stopped labeled emg1 are changes that transform the TSPA impl
to a TSPA that refines the TSPA spec. More precisely, the framework outputs that the
change sequence addTidle,idle,emg1, delTidle,stopped,emg1 containing two TSPA change
operations (cf. Section 3.5) is a shortest change sequence that changes the TSPA impl
to a TSPA that refines the TSPA spec. The developer applies the fully automatically
calculated change sequence to the TSPA impl and obtains a TSPA that is a correct
implementation with respect to the specification modeled with the TSPA spec.
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Figure 7.3: Two FDs adapted from [MR18, KR18b] and inspired by a similar FD example
from [MR15].

7.1.3 Understanding a Feature Diagram Evolution Step

Figure 7.3 depicts two FDs that are adapted from [MR18, KR18b] and are inspired by a
similar example from [CW07]. The FDs model the possible configurations of the engine
and locking systems of a car. The FD car1 is the original version modeled by the car
development team.

During the car development process, the team receives a new requirement and addi-
tionally decides to change the model to increase its understandability. The development
team changes the FD car1 to the FD car2. The change increasing the model’s un-
derstandability is the change of the type of the group of the feature engine. In car1,
the feature engine has an or-group that represents the possible engine configurations.
Simultaneously selecting both features of the group represents a hybrid engine. In car2,
the feature hybrid is explicitly added to the group and the type of the group is changed
to xor. Therefore, in car2, it must be explicitly selected whether a configuration of the
car consists of an electric engine, a gas engine, or a hybrid engine. The changed require-
ments state that the phone and fingerprint locking systems can be chosen simultaneously
and that the phone locking system must be selected when the fingerprint locking system
is selected.
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Another engineer, who has not been involved in the change process, wants to under-
stand the changes performed by the development team. She uses semantic differencing.
The semantic differencing operator outputs that there are configurations of the FD car2
containing the features hybrid and fingerprint that are no configurations of the FD
car1. The configurations {car,engine,gas,locking,phone,fingerprint} and
{car,engine,hybrid}, for instance, are valid in car2 and not valid in car1. The
engineer is interested in which syntactic elements of the FD car2 cause the semantic
differences. She thus uses our framework for automatic model repairs. The framework
outputs that excluding the feature hybrid from its group and adding an excludes con-
straint between the features phone and fingerprint are changes that change the
FD car2 to a consistent FD that has no semantic differences to the FD car1. More
precisely, the framework outputs that exclGrphybrid, addXphone,fingerprint is a shortest
change sequence of FD change operations that transforms the FD car2 to a consistent
FD that is a refinement of the FD car1. With this information, the engineer under-
stands that the changes affecting the features hybrid, phone, and fingerprint are
responsible for the existence of semantic differences from the FD car2 to the FD car1.
With this information, she examines the FDs and understands that configurations rep-
resenting hybrid engine systems must now explicitly contain the feature hybrid and
that the phone and fingerprint locking systems can now be chosen simultaneously.

7.1.4 Understanding the Semantic Differences between Sequence Diagrams

Figure 7.4 depicts two SDs inspired by similar SDs from [ABH+17]. The SDs model
excerpts of the communication between objects in a software system implementing a
service robot. The situations modeled by the SDs are different. In the situation modeled
with the SD rob4, the robot should deliver the item wd40 to the room r4222. After
computing a plan for performing the task, the object actionExecuter is instructed to
make the robot move to the room r4222 via action moveTo(r4222). The execution
of the action fails, which is indicated by the interaction between the actionExecuter
object and the controller object via the action ACTION_FAILED. The SD rob5
models a situation where the execution of an action is aborted by a user.

A developer wants to understand if there are differences concerning the system runs
that are valid in the SDs modeling the different situations. Thus, she uses semantic
differencing. The semantic differencing operators outputs that there are system runs
that are valid in rob4 and not valid in rob5. Vice versa, the semantic differencing
operator outputs that there are system runs that are valid in rob5 and not valid in
rob4. The developer is interested in the syntactic model elements of the SD rob5
that cause the semantic differences to the SD rob4. She uses our framework for auto-
matic model repairs. The framework outputs that adding an interaction from the object
actionExecuter to the object controller with action ACTION_FAILED after the
interaction with the action moveTo(r4222) changes the SD rob5 to an SD that re-
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Figure 7.4: Two SDs adapted inspired by similar SDs from [ABH+17].

fines the SD rob4. More precisely, the framework outputs that the change sequence
addIA7,actionExecuter,ACTION_FAILED,controller containing exactly one SD change oper-
ation is a shortest change sequence that transforms the SD rob5 to a refinement of
the SD rob4. With this information, she understands that the interactions between
the actionExecuter and the controller objects for indicating that the action ex-
ecution is not successful are different in the two scenarios. Vice versa, the developer
is interested in the syntactic model elements of the SD rob4 that cause the seman-
tic differences to the SD rob5. She thus uses our framework for automatic model
repairs. The framework outputs that at least two changes are required to change the
SD rob4 to a refinement of the SD rob5. The first change is the addition of the in-
teraction (ui,abortAction(),actionExecuter) between the interactions with the
actions plan and moveTo(r4222). The second change is the addition of the inter-
action (actionExecuter,ACTION_ABORTED,controller) after the last interaction
modeled in the SD. More precisely, the framework outputs that the change sequence
addIA5,ui,abortAction(),actionExecuter, addIA8,actionExecuter,ACTION_ABORTED,controller

is a shortest change sequence containing two SD change operations that changes the
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SD rob4 to an SD that is a refinement of the SD rob5. With this information, the
developer understands that users must initiate action abortions.

7.2 Model Repair Problems

This section introduces the notion of model repair problem, which is independent of a
concrete modeling language, a concrete change operation suite, and a concrete property.

A model property is a characteristic of models that each model either satisfies or not.
Thus, we represent properties over the models of a modeling language as a subset of the
set of models. With this encoding, a model satisfies the property iff it is an element of the
subset representing the property. A property is accomplishable iff the set representing
the property is not empty, i.e., there exists at least one model that satisfies the property.

Definition 7.1. A property P of the models of L is a set P ⊆ M . The property P is
said to be accomplishable iff P 6= ∅. The complement property of P is denoted P and
defined as P

def
= M \ P .

If L is clear from the context, we simply say that P is a model property instead of
saying that P is a property of the models of L. For each model m ∈M , we write P (m)
and say that the model m satisfies the property P iff m ∈ P .

An example model property is refinement of a concrete model. For instance, let
L = (M,S, sem) be a modeling language. Then, for every m ∈ M , the model property
Pm = {n ∈ M | ∅ 6= sem(n) ⊆ sem(m)} contains all consistent models of the modeling
language L that are refinements of the model m. Stated differently, a model n ∈ M
satisfies the property Pm iff n is consistent and n is a refinement of m.

For a model and a model property, we study sufficient conditions that enable the
computation of a change sequence such that applying the sequence to the model results
in a model that satisfies the property. This motivates the notion of change sequence that
repairs a model towards satisfying a property:

Definition 7.2. A change sequence t ∈ O∗ repairs a model m ∈M towards satisfying a
model property P ⊆M iff m . t ∈M ∧ P (m . t).

Intuitively, the application of a change sequence that repairs a model towards satisfying
a property to the model results in a model that satisfies the property.

For example, Figure 7.5 depicts the two FDs fd1 and fd2. For the remainder of this
chapter, we define the model property R

def
= {m ∈ MFD | ∅ 6= JmKFD ⊆ Jfd1KFD}. The

model property R contains all consistent FDs that refine the FD fd1. In this example,
the following holds:

• The change sequence ε does not repair the FD fd2 towards satisfying R because
fd2 . ε = fd2 and fd2 is not a refinement of fd1.
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Figure 7.5: The FD fd2 does not refine the FD fd1.

• The change sequence t = delFB, opt2manC does not repair the FD fd2 towards
satisfying R because the FD fd2 . t does not satisfy the property R.

• The change sequence addXA,A does not repair fd2 towards satisfying R because
fd2 . addXA,A is inconsistent.

• The change sequence delFX does not repair fd2 towards satisfying R because
fd2 . delFX /∈M .

• The change sequence u = opt2manB, delFC repairs the FD fd2 towards satisfying
R because the FD fd2 . u satisfies the property R.

• Another change sequence that repairs the FD fd2 towards satisfying R is v =
opt2manB because fd2 . v satisfies the property R.

Developers usually define a model with a precise intuition and syntactic elements that
support to understand the model’s meaning in the context in which the model is used.
For a repairing change sequence to be useful, the application of the change sequence
should result in a model that keeps this intention as much as possible. This motivates
the notion of shortest repairing change sequence:

Definition 7.3. A change sequence t ∈ O∗ is a shortest change sequence that repairs
a model m ∈ M towards satisfying a property on models P ⊆ M iff the following two
conditions are satisfied:

1. m . t ∈M ∧ P (m . t) and

2. ∀u ∈ O∗ : (m . u ∈M ∧ P (m . u))⇒ |t| ≤ |u|.

The first condition in Definition 7.3 states that t must be a sequence that repairs the
model towards satisfying the property. The second condition states that the length of
every change sequence that repairs the model towards satisfying the property must be
greater than or equal to the length of the change sequence t. There must not exist a
shorter change sequence that repairs the model towards satisfying the property.
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Figure 7.6: Schematic illustration of the relations between models, model properties, and
change operations.

Figure 7.6 schematically illustrates the relations between models, model properties,
and change operations. The properties P and its complement property P partition the
set of all models into two sets. The nodes in the graph depicted in Figure 7.6 represent the
models contained in the sets representing the properties. Dashed lines between the nodes
represent the effects of applying change operations. For instance, applying the change
operation o1 to the model m yields the model m′. In Figure 7.6, The change sequence
o1, o2, o3 is a change sequence that repairs the model m towards satisfying the property
P . Similarly, o1, o2, o3, o4 is also a change sequence that repairs the model m towards
satisfying the property P . However, both of these change sequences are not shortest
change sequences that repair m towards satisfying P because the change sequence o1, o5

is a shorter change sequence that repairs m towards satisfying P . The change sequence
o1, o2 is not a change sequence that repairs the model m towards satisfying the property
P because m . o1, o2 /∈ P .

In the FD example (cf. Figure 7.5), the following holds:

• The change sequence ε is not a shortest change sequence that repairs the FD fd2
(cf. Figure 7.5) towards satisfying the model property R because ε is not a change
sequence that repairs fd2 towards satisfying R.

• Although u = opt2manB, delFC is a change sequence that repairs fd2 towards
satisfying R, the change sequence is not a shortest change sequence that repairs
fd2 towards satisfying R.

• The change sequence opt2manB is a shortest change sequence that repairs fd2
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towards satisfying R because it repairs fd2 towards satisfying R and there exists
no shorter change sequence that repairs fd2 towards satisfying R.

If the change operation suite for a modeling language is complete, then a change
sequence that repairs a model towards satisfying a property exists iff the property is
accomplishable, i.e., there exists at least one model that satisfies the property. Thus, if
a change operation suite is complete and a property is accomplishable, then it is always
possible to find a change sequence that repairs any model towards satisfying the property.

Proposition 7.1. Let m ∈ M be a model and P ⊆ M be a property on models. There
exists a sequence t ∈ O∗ that repairs m towards satisfying P iff P is accomplishable.

Proof. Let m ∈M be a model and P ⊆M be a property on models.

”⇒”: Assume there exists a change sequence t ∈ O∗ that repairs m towards satisfying
P . Then, by definition of repairing change sequence, it holds for n

def
= m . t that n ∈ M

and P (n). Thus, n ∈ P , which implies that P is accomplishable.

”⇐”: Assume P is accomplishable. Then, there exists a model r ∈ M with P (r).
As O is complete, there exists a change sequence t ∈ O∗ such that m . t = r. As by
assumption P (r) and as m . t = r, it holds that t repairs m towards satisfying P .

Proposition 7.1 reveals that a repairing sequence always exists if there exists a model
that satisfies the property and the underlying change operation suite is complete. Vice
versa, the proposition also reveals that repairing sequences never exist if the property is
not accomplishable. The following formally defines the notions of model repair problem,
model repair problem instance, solution of a model repair problem, and shortest solution
of a model repair problem:

Definition 7.4. A model repair problem is a tuple P = (L, O, P ) where

• L = (M,S, sem) is a modeling language,

• O is a complete change operation suite for L, and

• P ⊆M is an accomplishable model property.

A model repair problem instance is a tuple (P,m) where P = (L, O, P ) with L =
(M,S, sem) is a model repair problem and m ∈M is a model. A change sequence t ∈ O∗
is called a solution for a model repair problem instance (P,m) with P = (L, O, P ) iff t is
a change sequence that repairs the model m towards satisfying the property P . A change
sequence t ∈ O∗ is called a shortest solution for a model repair problem instance (P,m)
with P = (L, O, P ) iff t is a shortest change sequence that repairs the model m towards
satisfying the property P .

For instance, in the FD example, the following holds:
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• Q def
= (LFD, OFD, R) is a model repair problem for the FD modeling language LFD

with the change operation suite OFD and the property R containing all consistent
FDs that refine the FD fd1 (cf. Figure 7.5).

• (Q,fd2) is an instance of the model repair problem Q.

• As t = opt2manB is a shortest change sequence that repairs fd2 towards satisfying
the property R, the change sequence t is a shortest solution for the model repair
problem instance (Q,fd2).

Definition 7.4 requires that the properties of model repair problems are accomplishable
because Proposition 7.1 revealed that model repair problems with unaccomplishable
properties are not meaningful: If the property of a model repair problem were not
accomplishable, then there would not exist a solution for any instance of the model
repair problem. Vice versa, the requirement for realizability guarantees that there exist
solutions for all instances of the model repair problem:

Proposition 7.2. There exists a solution for every model repair problem instance.

Proof. Let I = (P,m) be model repair problem instance where P = (L, O, P ). By
definition P is accomplishable and O is complete. Using Proposition 7.1, this implies
that there exists a change sequence t that repairs m towards satisfying P . By the
definition of solutions for model repair problem instances, t is a solution for I.

The overall goal is the development of an algorithm that is capable of computing
shortest solutions for all instances of an arbitrary but fixed model repair problem. There
may exist multiple shortest solutions for a model repair problem instance. However, it
directly follows by definition that all shortest solutions have the same lengths.

Proposition 7.3. Let I = (P,m) with P = (L, O, P ) be a model repair problem instance.
If t, u ∈ O∗ are two shortest solutions for I, then |t| = |u|.

Proof. Let I = (P,m) with P = (L, O, P ) be a model repair problem instance. Suppose
towards a contradiction there exist two shortest solutions t, u ∈ O∗ for I with |t| 6= |u|.
Without loss of generality, assume |t| > |u|. This contradicts the assumption that t is a
shortest solution for I because u is also a solution for I and |u| < |t|.

In the following, to reduce notational overhead, for each model repair problem P, we
introduce the function dP : M → N, which maps each model m ∈M to the length dP(m)
of all shortest solutions for the model repair problem instance (P,m). The function
dP is well-defined because all instances of each model repair problem have a solution
(cf. Proposition 7.2) and all shortest solutions for each instance of the model repair
problem have the same lengths (cf. Proposition 7.3).

For instance, for the FD example, the following holds:
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• dQ(fd2) = 1 because t = opt2manB with |t| = 1 is a shortest solution for the
model repair problem instance (Q,fd2).

• dQ(fd1) = 0 because ε with |ε| = 0 is a shortest solution for the model repair
problem instance (Q,fd1).

7.3 Change Operation Properties

Usually, infinitely many change operations are applicable to each model, which hampers
the computation of solutions for model repair problems. To tackle this challenge, this
section introduces a method for partitioning all change operations applicable to a model
into equivalence classes. Section 7.4 shows that automatically computing a shortest
solution is possible if the set of equivalence classes is finite for each model.

Syntactically very similar models may satisfy very different properties. Vice versa,
syntactically very different models may satisfy the same property. For instance, let fd′

be an arbitrary FD. Further, let fd be an FD that is a refinement of fd′. Applying a single
root-rename operation to fd may yield an FD that is syntactically very similar to fd, but
not a refinement of fd. In contrast, every FD obtained from applying arbitrary many
feature-addition operations to fd is also a refinement of FD because feature-addition
operations are refining. Applying many feature-addition operations to fd yields an FD
that still refines the FD fd′ and is syntactically very different from fd.

As many different models may satisfy the same property, there may exist multiple
(even infinitely many) solutions for a model repair problem instance. There are usually
infinitely many different change operations applicable to each model of a modeling lan-
guage. This hampers the computability of shortest solutions for model repair problem
instances as individually testing whether the application of any of the infinitely many
applicable change operations yields a model satisfying the property might not terminate.
Therefore, reducing the search space for shortest solutions is necessary.

Let I = (P,m) be a model repair problem instance. In many cases, it is possible to
determine from the definition of two change operations o, p, whether for each shortest
solution for (P, o(m)), there exists a solution of the same length for (P, p(m)) and vice
versa. Then, there exists a shortest solution for (P,m) that starts with o iff there
exists a shortest solution for (P,m) that starts with p because otherwise the lengths
of the shortest solutions for (P, o(m)) would be different to the lengths of the shortest
solutions for (P, p(m)). This property can be used to reduce the search space for shortest
solutions: It suffices to determine whether a shortest solution starts either with o or with
p to conclude whether there exists a shortest solution that starts with o or p.

For instance, let (Q, fd) be an FD refinement repair problem instance where fd is
an arbitrary FD, and let o = addFp,f as well as p = addFp,g be two feature-addition
operations that are applicable to fd where f, g are two features not used in fd and
p is a feature that is used in fd. Then, for every shortest solution t for (Q, o(fd)),
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that induce an equally long shortest solution for a model repair problem
instance using the model m.

there exists a solution u for (Q, p(fd)) with |t| = |u|: Let t be a shortest solution for
(Q, o(fd)). The change sequence u is constructed by exchanging every change operation
in t affecting the feature f (respectively g) by a change operation of the same type
that affects the feature g (respectively f) instead of the feature f (respectively g). For
instance, a feature-deletion operation delFf is replaced by the feature-deletion operation
delFg and an implies constraint addition operation addIf,g is replaced by the operation
addIg,f . Then, the FD o(fd) . t can be obtained from the FD p(fd) . u by replacing the
feature f (if it exists) by the feature g and replacing the feature g (if it exists) by the
feature f in p(fd) . u. Therefore, the valid configurations of o(fd) . t can be obtained
from the valid configurations of p(fd) . u by replacing the feature f (if it exists) in each
valid configuration of p(fd) . u by the feature g and replacing the feature g (if it exists)
in each valid configuration of p(fd) . u by the feature f . Let C be a configuration that
is valid in p(fd) . u. From the above, it follows that the configuration C ′ obtained from
replacing the feature f (if it exists) in C of by the feature g and replacing the feature
g (if it exists) in C by the feature f is valid in o(fd) . t. As o(fd) . t is a refinement
of fd, the configuration C ′ is also valid in fd. As the features f and g are not used in
fd, this implies with Proposition 4.1 that the configuration C is valid in fd. We can
conclude that every valid configuration of p(fd) . u is also a valid configuration of fd.
Analogously, it is possible to show that for every shortest solution u for (Q, p(fd)), there
exists a solution t for (Q, o(fd)) with |t| = |u|. The two change operations induce an
equally long shortest solution for the corresponding model repair problem.

Two change operations o, o′ induce an equally long shortest solution for a model repair
problem instance (P,m) iff the lengths of the shortest solutions for the model repair
problem (P, o(m)) are equal to the lengths of the shortest solutions for the model repair
problem (P, o′(m)). This situation is sketched in Figure 7.7. The two change operations
o and o′ may change the model m to different models. However, for every shortest change
sequence t that repairs the model obtained from applying o to m, there exists a shortest
change sequence t′ that repairs the model obtained from applying o′ to m such that
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|t| = |t′| and vice versa. The relation is formally captured by the following definition:

Definition 7.5. Let I = (P,m) where P = (L, O, P ) with L = (M,S, sem) be a model
repair problem instance. Two change operations o, o′ ∈ O induce an equally long shortest
solution for I iff o(m), o′(m) /∈M or o(m), o′(m) ∈M ∧ dP(o(m)) = dP(o′(m)).

We write o ∼I o′ iff o, o′ ∈ O induce an equally long shortest solution for the model
repair problem instance I. For o, o′ ∈ O, we write o 6∼I o′ iff o ∼I o′ is not satisfied.

Every two change operations that are not applicable to a model induce an equally
long shortest solution for the model repair problem instance. If o is a change operation
that is applicable to a model and o′ is a change operation that is not applicable to the
model, then o and o′ do not induce an equally long shortest solution of the corresponding
model repair problem instance. Two change operations o, o′ ∈ O that are applicable to
the model m ∈ M of a model repair problem instance (P,m) induce an equally long
shortest solution for the instance iff the length dP(o(m)) of the shortest solutions for
repairing the model o(m) is equal to the length dP(o′(m)) of the shortest solutions for
repairing the model o′(m). Therefore, for each shortest change sequence that repairs
the model o(m), it is possible to find a change sequence of equal length that repairs the
model o′(m) and vice versa.

For example, for the model repair problem instance I = (Q,fd2), the following holds:

• opt2manB ∼I addIA,B because dQ(opt2manB(fd2)) = 0 = dQ(addIA,B(fd2)).

• opt2manB 6∼I delFC because 0 = dQ(opt2manB(fd2)) 6= dQ(delFC(fd2)) = 1.

• addFC,f ∼I addFC,g where f, g are two features neither used in fd1 nor in fd2
because of the argumentation above.

Each induce equally long shortest solution relation depends on a repair problem in-
stance. Thus, for every model repair problem for a modeling language with an infinite
set of models, there are infinitely many induce equally long shortest solution relations,
one for each instance of the problem. Each of these relations is an equivalence relation:

Proposition 7.4. Let I be a model repair problem instance. The relation ∼I is an
equivalence relation.

Proof. Let I = (P,m) where P = (L, O, P ) with L = (M,S, sem) be a model repair
problem instance.

Reflexivity: Let o ∈ O. If o(m) /∈ M , then it directly follows by Definition 7.5 that
o ∼I o. If o(m) ∈M , then dP(o(m)) = dP(o(m)) and, thus, o ∼I o.

Symmetry: Let o, o′ ∈ O. Assume o ∼I o′ holds. Then, it holds that o(m), o′(m) /∈M
or o(m), o′(m) ∈ M ∧ dP(o(m)) = dP(o′(m)). Rearrangement yields the equivalent
formulation o′(m), o(m) /∈ M or o′(m), o(m) ∈ M ∧ dP(o′(m)) = dP(o(m)). Using
Definition 7.5, it holds that o′ ∼I o.
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Transitivity: Let o, o′, o′′ ∈ O. Assume it holds that o ∼I o′ and o′ ∼I o′′. Then, the
following two statements hold:

1. o(m), o′(m) /∈M or o(m), o′(m) ∈M ∧ dP(o(m)) = dP(o′(m)) and

2. o′(m), o′′(m) /∈M or o′(m), o′′(m) ∈M ∧ dP(o′(m)) = dP(o′′(m)).

It holds that o(m) /∈ M ⇔ o′(m) /∈ M and o′(m) /∈ M ⇔ o′′(m) /∈ M . Thus, if
o(m) /∈ M or o′(m) /∈ M or o′′(m) /∈ M , then o(m), o′(m), o′′(m) /∈ M , which implies
with Definition 7.5 that o ∼I o′′. Assume o(m), o′(m), o′′(m) ∈ M . Then, it holds
that dP(o(m)) = dP(o′(m)) and dP(o′(m)) = dP(o′′(m)). This implies that dP(o(m)) =
dP(o′′(m)). As further o(m), o′′(m) ∈M , we obtain with Definition 7.5 that o ∼I o′′.

Let I = (P,m) where P = (L, O, P ) be a model repair problem instance and let

o ∈ O be a change operation. We denote by [o]I
def
= {o′ ∈ O | o ∼I o′} the equivalence

class of o under ∼I . Further, for each set of change operations Q ⊆ O, we denote by
Q/ ∼I

def
= {[o]I | o ∈ Q} the quotient of Q under ∼I .

For instance, in the FD example with the model repair problem instance I = (Q,fd2),
the following holds:

• opt2manB, addIA,B ∈ [opt2manB]I = [addIA,B]I .

• [opt2manB]I 6= [delFC ]I .

• {[opt2manB]I} = {opt2manB}/∼I= {addIA,B}/∼I= {opt2manB, addIA,B}/∼I .

As each induce equally long shortest solution relation is an equivalence relation, the re-
lation’s equivalence classes partition the set of all change operations. Figure 7.8 schemat-
ically illustrates the partitioning. The equivalence classes are pairwise disjoint. Each
equivalence class may contain infinitely many change operations. The set of partitions
can also be infinite.

As all change operations in the same class induce an equally long shortest solution,
it is possible to reduce the search space for shortest solutions for model repair problem
instances. All operations in the same class induce shortest solutions of the same lengths.
Thus, it suffices to check whether a single operation of an equivalence class is the first
element of a shortest solution to determine whether all operations of the equivalence
class are the first elements of a shortest solution. The partitioning into the equivalence
classes is especially useful as the set of operations in the same equivalence class may
be infinite, whereas there may be only finitely many different classes. The following
formally shows that considering a single representative of each equivalence class suffices:

Proposition 7.5. Let I = (P,m) where P = (L, O, P ) be a model repair problem
instance and let o, o′ ∈ O be two change operations with o ∼I o′. Then, there exists a
shortest solution t for I with |t| > 0 and t.0 = o iff there exists a shortest solution u for
I with |u| > 0 and u.0 = o′.
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Figure 7.8: Schematic representation of the quotient of the set of all change operations
under the equivalence relation ∼I where I is a model repair problem instance.

Proof. Let I = (P,m) where P = (L, O, P ) be a model repair problem instance and let
o, o′ ∈ O be two change operations with o ∼I o′. As ∼I is symmetric, it suffices to show
one direction of the proposition. Assume there exists a shortest solution t for I with
|t| > 0 and t.0 = o. As o ∼I o′, there exists a change sequence u such that |u| = |t| − 1
and m . (o′ : u) ∈M and m . (o′ : u) ∈ P . As |o′ : u| = 1 + |u| = |t| and |t| is a shortest
solution for I, Proposition 7.3 guarantees that o′ : u is also a shortest solution for I.

A change operation may never be part of any shortest solution for a model repair
problem instance. It is often possible to determine whether a change operation is not
part of a shortest solution from the type of the change operation.

For instance, the FD consistency property contains all FDs that are consistent. In
this case, we can already determine from the property that shortest solutions for repair
problem instances using the property never start with operations that add an excludes
constraint from the root feature to itself: If the operation is applied, one of the following
operations must remove the excludes constraint because otherwise the resulting model
would not be consistent. Thus, every solution for the instance starting with the change
operation that adds the excludes constraint can be shortened by removing the change
operation adding the excludes constraint and the change operation that removes the
excludes constraint. Thus, change sequences starting with the operation adding the
excludes constraint are never shortest solutions for the repair problem instances using
the consistency property. The operation delays the solution for the instance.
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Figure 7.9: Schematic representation of a change operation that delays the solution for
a model repair problem instance using the model m.

This situation is schematically illustrated in Figure 7.9. The length of a shortest change
sequence t that repairs the original model m is smaller than or equal to the length of a
shortest change sequence that repairs the model o(m) obtained from applying the change
operation o. Thus, shortest change sequences that repair the model m never start with
the change operation o.

Definition 7.6. Let I = (P,m) where P = (L, O, P ) be a model repair problem instance.
A change operation o ∈ O delays the solution for the instance I iff for all shortest
solutions t ∈ O∗ for I it holds that |t| > 0⇒ t.0 6= o.

The set of all change operations that delay the solution for a model repair problem
instance I is denoted by DelI .

Intuitively, a change operation delays the solution for a model repair problem instance
iff no shortest solution for the instance starts with the change operation. Stated differ-
ently, every change sequence that starts with a change operation that delays the solution
for the instance is never a shortest solution for the instance. Therefore, on the one hand,
change operations that delay the solution for a model repair problem instance can be
safely ignored during an iterative approach to computing a shortest solution for the in-
stance. On the other hand, change operations that do not delay the solution for a model
repair problem instance are always part of a shortest solution for the instance.

For instance, for the model repair problem instance I = (Q,fm2) in the FD example,
the following holds:

• delFC ∈ DelI delays the solution for I because dQ(delFC) > 0 and the change
sequence t = opt2manB with |t| = 1 is a shortest solution for I.

• delFX ∈ DelI delays the solution for I because delFX is not applicable to fm2,
which implies that there exists no shortest solution for I that starts with delFX.

• opt2manB /∈ DelI does not delay the solution for I because the change sequence
solely containing the change operation opt2manB is a shortest solution for I.
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All change operations that do not delay the solution for a model repair problem in-
stance induce an equally long shortest solution for the instance:

Proposition 7.6. Let I = (P,m) where P = (L, O, P ) be a model repair problem
instance. If o, o′ ∈ O with o, o′ ∈ O \DelI are two change operations that do not delay
the solution for the instance I, then o ∼I o′.

Proof. Let I = (P,m) where P = (L, O, P ) be a model repair problem instance. Assume
o, o′ ∈ O with o, o′ ∈ O \DelI are two change operations that do not delay the solution
for the instance I. As the change operations o, o′ ∈ O \DelI do not delay the solution
for the instance I, there exist shortest solutions t, u ∈ O∗ for I such that |t| > 0 and
t.0 = o and |u| > 0 and u.0 = o′. This especially implies that o(m), o′(m) ∈M . Suppose
towards a contradiction that o 6∼I o′ holds. This implies that dP(o(m)) 6= dP(o′(m)).
Without loss of generality, assume dP(o(m)) > dP(o′(m)). As t is a shortest solution for
I and t.0 = o, it must especially hold that |t| = 1+dP(o(m)) because otherwise |t| would
be no shortest solution for I. Analogously, as u is a shortest solution for I and u.0 = o′, it
must especially hold that |u| = 1+dP(o′(m)) because otherwise |u| would be no shortest
solution for I. From this, we can derive |t| = 1 + dP(o(m)) > dP(o′(m)) + 1 = |u|.
Thus, |t| > |u|, which contradicts that t and u are both shortest solutions for I because
Proposition 7.3 guarantees that all shortest solutions for I have the same lengths.

The equivalence class of change operations that do not delay the solution for a model
repair problem instance is exactly the equivalence class of all change operations that are
the first elements of at least one shortest solution for the instance. Thus, if a change
operation does not delay the solution for an instance, then it is not equivalent to any
change operation that delays the solution for the instance.

Proposition 7.7. Let I = (P,m) where P = (L, O, P ) be a model repair problem
instance. If o, o′ ∈ O are change operations with o ∈ DelI and o′ /∈ DelI , then o 6∼I o′.

Proof. Let I = (P,m) where P = (L, O, P ) be a model repair problem instance. Assume
o, o′ ∈ O are change operations with o ∈ DelI and o′ /∈ DelI . As o′ /∈ DelI , there exists
a shortest solution t ∈ O∗ for I such that |t| > 0 ∧ t.0 = o′. This especially implies that
o′(m) ∈ M . Suppose towards a contradiction that o ∼I o′ holds. Then, by definition of
∼I and as o′(m) ∈ M , it holds that o(m) ∈ M and dP(o(m)) = dP(o′(m)). As t is a
shortest solution for I and t.0 = o′, it holds that dP(o′(m)) = |t| − 1 because otherwise
t would be no shortest solution for I. With dP(o′(m)) = dP(o(m)), the above implies
that there exists a change sequence u with |u| = dP(o(m)) = |t| − 1 such that o : u is
a solution for I. As |o : u| = 1 + |t| − 1 = |t| and as t is a shortest solution for I, it
holds that o : u is also a shortest solution for I. This contradicts the assumption that
o ∈ DelI delays the solution for I.
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7.4 Computing Shortest Repairing Change Sequences

This section presents two assumptions for model repair problems. If a model repair
problem satisfies the assumptions, then automatically computing a shortest solution for
each instance of the model repair problem is possible.

Computing a shortest solution is reduced to applying a finite search in a finitely branch-
ing, infinite, rooted tree. Based on the assumptions, this section presents algorithms for
the computation of shortest solutions. As the computational complexity of computing
shortest solutions is high (as discussed in the following Section 7.5), several performance
improvements and algorithm variants are presented and discussed.

The first assumption is obvious: An automatic method to check whether a model of
the model repair problem’s modeling language satisfies the model property P ⊆M under
consideration must be available (i.e., the property P must be decidable). If there did not
exist such an automatic method, then it would not be possible to automatically check
whether a change sequence is a solution for an instance of the model repair problem.

The second assumption demands the availability of an algorithm that computes a
function mapping models to finite sets of change operations. The function is required to
map each model to a finite set of change operations containing at least one representative
of the equivalence class of a change operation that does not delay the solution for the
model repair problem instance corresponding to the model. From a methodological
viewpoint, the function has to be implemented by a developer and is used as input for
the procedures that compute shortest solutions for model repair problems.

This assumption is equivalent to the assumption that the function maps each model
to a finite set of change operations containing at least one change operation that does
not delay the solution for the model repair problem instance corresponding to the model.
However, determining an operation that does not delay the solution for the model repair
problem instance is methodologically more complicated: If computing an operation that
does not delay the solution for the model repair problem instance was easily possible,
then solutions for model repair problem instances would be interpretable to be known a
priori and, thus, would be effectively computable. In most cases, it is methodologically
easier to determine the change operations that delay solutions for model repair problem
instances, before partitioning the other change operations into the equivalence classes of
change operations that induce equally long shortest solutions.

Determining a change operation that does not delay the solution for a model repair
problem instance requires a priori knowledge of a definitive solution for the model repair
problem instance. In contrast, determining a subset of the change operations that delay
the solution for a model repair problem instance and partitioning the other applicable
change operations into the equivalence classes only requires knowledge of the solution
space and not of a definitive solution. The second assumption demands the availability
of a repair-representative function:
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Definition 7.7. Let P = (L, O, P ) be a model repair problem. A P-repair-representative
function is a function R : M → ℘fin(O) satisfying (R(m)/∼I)∪ (DelI/∼I) = O/∼I for
all instances I = (P,m) of P.

For all models m ∈ M , the set R(m) contains at least one representative of the
equivalence class of change operations that do not delay the repair of the model m
towards satisfying the property P . Although the set of change operations O is usually
infinite in practice, the finite sets R(m) can often be analytically determined because
of symmetries induced by the syntax of modeling languages. For instance, two models
may be syntactically different (but in some sense symmetric concerning their syntax)
and semantically equivalent.

An alternative characterization of repair-representative functions is the following: If
the set of change operations that do not delay the solution for a model repair problem
instance is not empty, then the function maps the model of the instance to a finite set
containing at least one change operation that does not delay the solution for the instance.

Proposition 7.8. Let P = (L, O, P ) be a model repair problem. A function R : M →
℘fin(O) is a P-repair-representative function iff DelI 6= O ⇒ R(m)∩ (O \DelI) 6= ∅ for
every instance I = (P,m) of P.

Proof. Let P = (L, O, P ) be a model repair problem and let R : M → ℘fin(O) be a
function.

”⇒”: Let I = (P,m) be an instance of P and assume R is a P-repair-representative
function. Then, it holds that (R(m)/∼I) ∪ (DelI/∼I) = O/∼I . Assume it holds that
DelI 6= O. This implies that there exists a change operation o ∈ (O \ DelI). By
Proposition 7.7, this implies o 6∼I d for all d ∈ DelI . Thus, [o]I /∈ DelI/∼I . Therefore,
as o ∈ O and (R(m)/∼I) ∪ (DelI/∼I) = O/∼I and [o]I /∈ DelI/∼I , there must exists
a change operation o′ ∈ R(m) such that [o′]I = [o]I . As ∼I is transitive and o′ ∼I o
and o 6∼I d for all d ∈ DelI , it holds that o′ 6∼I d for all d ∈ DelI because otherwise if
o′ ∼I d hold for some d ∈ DelI , then o ∼I d would also hold. As o′ 6∼I d for all d ∈ DelI ,
it especially holds that o′ /∈ DelI because ∼I is reflexive. Therefore, o′ ∈ O \DelI . As
o′ ∈ R(m) and o′ ∈ O \DelI , we can conclude that R(m) ∩ (O \DelI) 6= ∅.

”⇐”: AssumeDelI 6= O ⇒ R(m)∩(O\DelI) 6= ∅ holds for every instance I = (P,m) of
P. Let I = (P,m) be an instance of P. We need to show that (R(m)/∼I)∪(DelI/∼I) =
O/∼I holds. If DelI = O, then (R(m)/∼I)∪(DelI/∼I) = (R(m)/∼I)∪(O/∼I) = O/∼I
is satisfied. Assume DelI 6= O. Then, by assumption R(m) ∩ (O \DelI) 6= ∅ holds. Let
o ∈ R(m) ∩ (O \ DelI) be a change operation. Then, as o ∈ R(m), it holds that
R(m)/∼I⊇ {[o]I}. Further, as o ∈ O \ DelI and all operations that do not delay
the solution for I are in the same equivalence class (cf. Proposition 7.6), it holds that
{[o]I} = (O \DelI)/∼I . From the above, we can derive O/∼I⊇ R(m)/∼I ∪DelI/∼I⊇
{[o]I}∪DelI/∼I= (O\DelI)/∼I ∪DelI/∼I= ((O\DelI)∪DelI)/∼I= O/∼I . As O/∼I⊇
R(m)/∼I ∪DelI/∼I⊇ O/∼I , we can conclude that R(m)/∼I ∪DelI/∼I= O/∼I .
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Figure 7.10: Schematic illustration of a repair-representative function mapping the model
m to a set of change operations.

Thus, if the set of change operations that do not delay the solution for an instance
is not empty, then a repair-representative function maps the model of the instance to
a set that contains at least one change operation that does not delay the solution for
the instance. Vice versa, every function from models to finite sets of change operations
that maps every model to a set containing at least one change operation that does not
delay the solution for the corresponding model repair problem instance, if one exists, is
a repair-representative function for the corresponding model repair problem.

Figure 7.8 depicts the quotient of the set of all change operations under the ∼I equiv-
alence relation, where I = (P,m) is a model repair problem instance. The set of equiv-
alence classes may be infinite. In this case, the repair-representative function cannot
map the model m to at least one representative of each equivalence class because repair-
representative functions must map models to finite sets of change operations. However,
the repair-representative function does not necessarily map the model to a set contain-
ing at least one representative of each equivalence class. In case the model satisfies the
property, then the repair-representative function may map the model to any finite set
of change operations. Otherwise, it suffices that the function maps the model to a set
containing at least one element of the equivalence class of change operations that do
not delay the solution for the instance I. Figure 7.10 illustrates this condition. The
repair-representative function maps the model m to a finite set of change operations
that contains at least one representative of the equivalence class containing the change
operations that do not delay the solution for the model repair problem instance.
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The following reveals that it requires to consider change operations from the setsR(m)
for computing shortest solutions for model repair problem instances.

Proposition 7.9. Let I = (P,m) where P = (L, O, P ) be a model repair problem
instance and let R be a P-repair-representative function. There exists a shortest solution
t ∈ O∗ for I with t.i ∈ R(m . t↓i) for all i ∈ N with 0 ≤ i < |t|.

Proof. Let P = (L, O, P ) be a model repair problem and letR be a P-repair-representative
function.

We show a more general property: For all d ∈ N and for all instances (P,m) of P, if
there exists a shortest solution t for I with |t| = d, then there exists a shortest solution
u for I with |u| = |t| and u.i ∈ R(m . u↓i) for all i ∈ N with 0 ≤ i < |u|. The proof is
by induction over the lengths of shortest solutions for model repair problem instances:

d = 0: Let I = (P,m) be an instance of P. Assume there exists a solution t for I with
|t| = 0. As t = ε, the statement is satisfied for u = ε.

Induction hypothesis: Let n ∈ N. Assume the statement holds for all change sequences
t with |t| ≤ n.

d = n + 1: Let I = (P,m) be an instance of P. Assume there exists a shortest
solution t for I with |t| = n + 1. As t is a shortest solution for I and |t| > 0, using
Definition 7.6, we have that t.0 /∈ DelI . Thus, [t.0]I /∈ DelI/∼I . Therefore, [t.0]I ∈
R(m)/∼I because [t.0]I ∈ O/∼I and R(m)/∼I ∪DelI/∼I= O/∼I . Now let o ∈ R(m)
such that [o]I = [t.0]I . As t.0 and o induce an equally long shortest solution for I and |t|
is a shortest solution for I, there exists a shortest change sequence v that repairs o(m)
towards satisfying P with |v| = |t|−1. Thus, v is a shortest solution for the model repair
problem instance (P, o(m)) with |v| = |t| − 1.

Using the induction hypothesis, we obtain that there exists a shortest solution w for
(P, o(m)) with |w| = |v| and w.i ∈ R(o(m) . w↓ i) for all i ∈ N with 0 ≤ i < |w|.

In conclusion, we have that |o&w| = 1+|w| = 1+|v| = |t| and (o&w).i ∈ R(m.(o&w)↓
i) for all i ∈ N with 0 ≤ i < |o&w|. As further o&w is a solution for I with |o&w| = |t|
and as t is a shortest solution for I, o&w is also a shortest solution for I.

Using Proposition 7.9, it is possible to reduce the search of shortest solution for a
model repair problem instance to a search in a rooted tree:

Definition 7.8. Let I = (P,m) where P = (L, O, P ) be a model repair problem instance
and let R be a P-repair-representative function. The change sequence search tree T (R, I)

induced by R and I is defined as T (R, I)
def
= (V, r, E) with

• nodes V = {t ∈ O∗ | m . t ∈M ∧ t.i ∈ R(m . t↓i) for all i ∈ N with 0 ≤ i < |t|},

• root r = ε, and

• edges E = {(v, w) ∈ V × V | ∃o ∈ R(m . v) : v&o = w}.
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Figure 7.11: Schematic representation of a change sequence search tree for a repair prob-
lem instance that uses the model m.

The nodes of the tree represent change sequences that are obtained from concatenating
change operations that are elements of the sets in the image of the repair-representative
function. The change sequence represented by a node must be applicable to the model
repair problem instance’s model. The root node is the empty sequence. Two nodes
v, w ∈ V are connected in the tree iff the concatenation of the sequence v with a change
operation contained in R(m . v) is equal to w.

Figure 7.11 schematically illustrates a change sequence search tree for a model repair
problem instance that uses the modelm. The nodes of the tree are change sequences. The
root of the tree is the empty sequence. The children of a node t are exactly the change
sequences obtained from appending a change operation contained in the set R(m. t) to
the change sequence t. Thus, for every element contained in R(m . t), the node t has
one child node. As the repair-representative function R is required to map every model
to a finite set, every node has finitely many children.

The tree T (R, I) is guaranteed to contain a finite path from the root to a node that
encodes a shortest solution for the model repair problem instance I:

Proposition 7.10. Let I = (P,m) where P = (L, O, P ) be a model repair problem
instance and let R be a P-repair-representative function. The tree T (R, I) = (V, r, E)
contains a finite path from the root r to a node t ∈ V that is a shortest solution for I.

Proof. Let I = (P,m) where P = (L, O, P ) be a model repair problem instance and let
R be a P-repair-representative function. Let T (R, I) = (V, r, E) be the change sequence
search tree induced by R and I.

Then, Proposition 7.9 guarantees that there exists a shortest solution t ∈ O∗ for I
with t.i ∈ R(m. t↓i) for all i ∈ N with 0 ≤ i < |t|. As t is a solution for I, it holds that
m . t ∈M and, thus, it especially holds that m . t↓i ∈M for all i ∈ N with 0 ≤ i ≤ |t|.
Using Definition 7.8, the above implies that m . t↓i ∈ V for all i ∈ N with 0 ≤ i ≤ |t|.

As t.i ∈ R(m . t↓i) for all i ∈ N with 0 ≤ i < |t| and m . t↓i ∈ V for all i ∈ N with
0 ≤ i ≤ |t|, using Definition 7.8, we obtain that (t↓i, t↓(i + 1)) ∈ E for all 0 ≤ i < |t|.
Therefore, there exists a path from the root r = ε to the node t in T (R, I).
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The length of a shortest solution for a model repair problem instance is an upper
bound for the length of a rooted finite path in the tree to a node that encodes a shortest
solution for the instance. Nevertheless, there could be infinitely many finite rooted paths
in the tree with a length shorter than or equal to the length of a shortest solution. This
would hamper the computation of shortest solutions. In the following, we show that
the number of finite rooted paths in the tree with a length shorter than or equal to
an arbitrary but fixed bound is always finite. Change sequence search trees are always
finitely branching:

Proposition 7.11. Let I = (P,m) be a model repair problem instance and let R be a
P-repair-representative function. The tree T (R, I) is finitely branching.

Proof. Let I = (P,m) where P = (L, O, P ) be a model repair problem instance and
let R be a P-repair-representative function. Let T (R, I) = (V, r, E) be the change
sequence search tree induced by R and I. Let v ∈ V be a node of the tree T (R, I). By
Definition 7.8, the set of nodes connected via an edge with source node v is given by
out = {w ∈ V | ∃o ∈ R(m . v) : v&o = w}. As the set R(x) is finite for all x ∈ M , the
set out is also finite. We can conclude that T (R, I) is finitely branching.

As change operation suites are required to be countable, change sequence search trees
always have a countable number of nodes.

Proposition 7.12. Let I = (P,m) be a model repair problem instance and let R be a
P-repair-representative function. The tree T (R, I) has a countable number of nodes.

Proof. Let I = (P,m) where P = (L, O, P ) be a model repair problem instance, let
R be a P-repair-representative function and let T (R,m) = (V, r, E) be the change
sequence search tree induced by R and I. By assumption, every change operation
suite for every modeling language is countable (cf. Section 2.2). Therefore, especially
the change operation suite O is countable. As the set of finite sequences over a countable
set is countable, the set O∗ of all change sequences over O is countable. As every subset
of a countable set is countable and as by construction V ⊆ O∗, we can conclude that V
is countable.

As change sequence search trees are always finitely branching and always have a count-
able number of nodes, the number of paths in the tree T (RP ,m) with a length shorter
than or equal to an arbitrary but fixed natural number is finite.

Proposition 7.13. Let I = (P,m) be a model repair problem instance and let R be a
P-repair-representative function. For all d ∈ N, the number of rooted paths of length at
most d in T (R,m) is finite.

Proof. Let I = (P,m) where P = (L, O, P ) be a model repair problem instance, let R
be a P-repair-representative function. Further, let d ∈ N and T (R,m) = (V, r, E) be
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the change sequence search tree induced by R and I. We define the subtree S of the tree
T (R,m) as follows: S

def
= (V ′, r, E′) where V ′ = {t ∈ V | |t| ≤ d} and E′ = E ∩ (V ′×V ′).

By construction, the set of rooted paths in the tree S is equal to the set of rooted
paths of length at most d in T (R,m). Suppose towards a contradiction that the set of
rooted paths in T (R,m) of length at most d is infinite. This implies that the tree S is
infinite. However, the tree S is finitely branching because E′ ⊆ E and T (R,m) is finitely
branching (cf. Proposition 7.13). Further, the set of nodes of S is countable because
V ′ ⊆ V and V is countable. (cf. Proposition 7.12). Hence, by König’s Lemma [Kön27],
the tree S contains an infinite branch. Let p = v0, v1, ... be an infinite branch of the tree
S. By definition of the set E′, it holds that vi @ vi+1 for all i ∈ N. Thus, |vi| < |vi+1|
for all i ∈ N. As p is infinite and the length of successor nodes in p is monotonically
increasing, it holds that |vj | > d for all j ∈ N with j > d. This contradicts that p is an
infinite branch of S because |vd+1| > d and, therefore, vd+1 /∈ V ′ = {t ∈ V | |t| ≤ d}.

As the number of rooted paths of every arbitrary but fixed length in every change
sequence search tree is finite (cf. Proposition 7.13), it is possible to enumerate all change
sequences encoded by the nodes of the tree up to every arbitrary but fixed length. The
search tree is guaranteed to contain a solution (cf. Proposition 7.10). Therefore, we
can iteratively enumerate all change sequences in the search tree in increasing lengths
and eventually find a shortest solution. The first solution that is found in this way is
guaranteed to be a shortest solution. If it were not a shortest solution, then the sketched
procedure would have found a shorter solution in a previous iteration.

7.5 Algorithms for Computing Shortest Solutions

Algorithm 2 depicts an algorithm for computing shortest solutions for model repair
problem instances. It takes a model repair problem instance and a repair-representative
function for the corresponding model repair problem as inputs. The algorithm imple-
ments a depth-first iterative-deepening (DFID) search [Kor85] for change sequence search
trees. It searches the change sequence search tree induced by the problem instance and
the representative function for a shortest solution for the instance. To this effect, the
algorithm iteratively enumerates all change sequences encoded by the nodes of the search
tree in increasing lengths. The variable currentLengthBound (l. 1) stores the bound
of the length of sequences enumerated in the current iteration. In the body (ll. 3-15)
of the outer loop (ll. 2-16), the algorithm performs a bounded depth-first search on the
change sequence search tree. The algorithm aborts the search in a branch as soon as
the length of the branch exceeds the current bound as specified by the value assigned
to the variable currentLengthBound. At the end of the outer loop, the value stored in
the variable currentLengthBound is increased by one (l. 16). For the depth-first search,
the variable S (l. 3) is a stack that stores the explored nodes, from which further paths
have to be explored. The search starts in the root node ε (l. 4). The algorithm uses
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Algorithm 2 Computing a shortest solution for a model repair problem instance.

Input: A model repair problem instance I = (P,m) where P = (L, O, P ) and a P-
repair-representative function R.

Output: Shortest solution t ∈ O∗ for I.
1: define currentLengthBound← 0 as positive integer
2: loop
3: define S as empty stack of O∗

4: S.push(ε)
5: while S not empty do
6: t← S.pop()
7: if m . t ∈M ∧ P (m . t) then
8: return t
9: end if

10: if m . t ∈M ∧ |t| < currentLengthBound then
11: for all o ∈ R(m . t) do
12: S.push(t&o)
13: end for
14: end if
15: end while
16: currentLengthBound← currentLengthBound+ 1
17: end loop

the inner loop (ll. 5-15) to explore all nodes encoding change sequences having a length
that is smaller than the current bound. To this effect, the algorithm first fetches the
most recently explored node (l. 6). If this node represents a solution for the model repair
problem instance (ll. 7-9), then the algorithm returns the change sequence encoded by
the node (l. 8). Otherwise, if the length of the node is smaller than the current bound
(ll. 10-14), the algorithm proceeds as follows: It concatenates all change operations rele-
vant from the current node with respect to the repair-representative function (ll. 11-13)
to the sequence encoded by the current node and pushes the resulting change sequences
on the stack S (l. 12). The algorithm terminates as soon as it finds a shortest solution for
the model repair problem instance. The algorithm always terminates because the change
sequence search tree is guaranteed to contain a rooted path to a node that represents a
shortest solution for the model repair problem instance (cf. Proposition 7.10).

Algorithm 2 returns the first shortest solutions that it finds. If the computation
of all shortest solutions is required, the algorithm can be easily adapted as follows:
The algorithm initializes a variable as a set of change sequences containing all shortest
solutions. As soon as the algorithm finds the first shortest solution, it adds the solution
to the set stored in the variable and continues the search with respect to the current
length bound. The algorithm adds every further solution found in the current length
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bound to the set. After visiting all nodes reachable with respect to the current bound, the
algorithm returns the set stored in the variable instead of increasing the current length
bound. The computation of all shortest solutions is interesting if there are further metrics
available that measure which of these solutions is best to be presented to an engineer or
for the direct application to repair the input model. Such metrics may be highly specific
to the model repair problem, the model to repair, the modeling language, and the use
case for which the repairing sequences are computed. We leave the development of such
metrics for future work.

7.5.1 Algorithm Performance

Search tree algorithms are usually analyzed along three dimensions (e.g., [Kor85]): Space
complexity, time complexity, and optimality. The space complexity measures the amount
of space used by the algorithm. The time complexity measures the number of operations
the algorithm requires during its executions. Optimality asks whether the algorithm
always finds an optimal solution on termination. Algorithm 2 is a DFID [Kor85] tree
search algorithm. The algorithm is guaranteed to always find shortest solutions, if at least
one exists (cf. [Kor85]). Solutions for model repair problem instances are guaranteed to
exist (cf. Proposition 7.10). The space complexity of the algorithm is O(d) where d is the
length of a shortest solution for the model repair problem instance given as input. Thus,
the space complexity is linear in the length of a solution [Kor85]. The running time of the
DFID algorithm is O(bd) where b is the branching factor of the search tree and d is the
depth of the nodes encoding the shortest solutions [Kor85]. For the algorithm, we assume
the availability of an implementation of the repair representative-function R and neglect
the implementation’s running time. The DFID algorithm is asymptotically optimal
among the class of brute-force search algorithms [Kor85] in terms of space complexity,
time complexity, and optimality. Therefore, there do not exist brute-force algorithms
for searching the change sequence search tree for a shortest solution for a model repair
problem instance with better asymptotic properties than the DFID algorithm. However,
the algorithm can be enhanced with several performance improvements, as discussed in
the following.

From a theoretical viewpoint, it is also possible to provide an algorithm for computing
a shortest solution by implementing a breadth-first search [Kor85]. Such an algorithm
would also always terminate (as by Proposition 7.10 solutions are guaranteed to exist)
and its running time would also be O(bd) where b is the branching factor of the search
tree and d is the depth of the nodes encoding the shortest solution. However, the space
complexity of the breadth-first search algorithm would also be O(bd). This is a critical
drawback compared to the DFID search algorithm, which only has a space complexity
of O(d). Thus, this section solely focuses on DFID search algorithms.
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7.5.2 Checking Change Operation Properties

In subsequent iterations of the outer loop of Algorithm 2 (cf. ll.2-17), the algorithm
checks multiple times whether the application of the same change sequence results in a
model that satisfies the property of the model repair problem (Algorithm 2, l. 7). As
checking the property is usually computationally expensive (such as refinement checking),
redundant property checks should be avoided as much as possible. This is achievable by
not checking whether a change sequence yields a model that satisfies the property if the
change sequence’s length is less than or equal to the bound for the length (value stored
in the variable currentLengthBound) of a previous iteration.

A change operation may, by construction, always change every model satisfying a
property to a model that also satisfies the property. For example, if the property P
contains all models that refine a model m, then the application of a refining operation
to a refinement of m always yields a refinement of m. The change operation preserves
the property:

Definition 7.9. Let L = (M,S, sem) be a modeling language, O be a change operation
suite for L, and P ⊆ M be a model property. A change operation o ∈ O is called
P -preserving iff ∀m ∈ dom(o) : P (m)⇒ P (o(m)).

Vice versa, a change operation might never change a model, which does not satisfy
a property, to a model that satisfies the property. For example, assume the property
P contains all models that are a refinement of a model m. Then, the application of a
generalizing operation to a model that is not a refinement of m always yields a model that
is not a refinement of m. Thus, the change operation is P -preserving, i.e., it preserves
the complement property of the property refinement. If a change sequence does not
repair a model towards satisfying a property, then every change sequence obtained from
prolonging the sequence with a change operation that preserves the complement property
is no change sequence that repairs the model towards satisfying the property, either.

Proposition 7.14. Let L = (M,S, sem) be a modeling language, m ∈ M be a model,
P ⊆ M be a model property, and t ∈ O∗ be a change sequence with m . t ∈ M and
m . t /∈ P . If o ∈ O is P -preserving and m . t ∈ dom(o), then m . (t&o) /∈ P .

Proof. Let L, m, P , and t be given as above. Assume o ∈ O is P -preserving and
m . t ∈ dom(o). As m . t /∈ P , it holds that m . t ∈ P . Therefore, as o is P -preserving,
it holds that m . (t&o) = o(m . t) ∈ P .

Unnecessary property checks are avoidable by omitting the property satisfaction checks
for every change sequence that originates from appending a change operation that pre-
serves the complement property to a sequence, which does not repair the original model.
Incorporating this into the algorithm requires a procedure for checking whether a change
operation preserves the complemented model property. To obtain a performance im-
provement, the check should be computationally inexpensive, as it is frequently executed.
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Algorithm 3 Computing a shortest solution for a model repair problem instance with
considering change operation properties.

Input: A model repair problem instance I = (P,m) where P = (L, O, P ) and a P-
repair-representative function R.

Output: Shortest solution t ∈ O∗ for I.
1: define currentLengthBound← 0 as positive integer
2: loop
3: define S as empty stack of O∗

4: S.push(ε)
5: while S not empty do
6: t← S.pop()
7: if |t| >= currentLengthBound then
8: if |t| = 0 ∨ (|t| > 0 ∧ last(t) is not P -preserving) then
9: if m . t ∈M ∧ P (m . t) then

10: return t
11: end if
12: end if
13: else if m . t ∈M then
14: for all o ∈ R(m . t) do
15: S.push(t&o)
16: end for
17: end if
18: end while
19: currentLengthBound← currentLengthBound+ 1
20: end loop

Algorithm 3 depicts a revised version of Algorithm 2 that incorporates the improve-
ments described above. The differences to the original algorithm (ll. 7,8,12,13,17) are
highlighted in blue. In contrast to Algorithm 2, the Algorithm 3 solely checks whether a
change sequence repairs the input model in case the sequence’s length is equal to the cur-
rent bound for the lengths of explored change sequences (l. 7). If the length of a change
sequence is smaller than the bound (l. 13), then the algorithm behaves as Algorithm 2.
Before checking whether the currently explored change sequence repairs the input model,
the algorithm checks whether the change operation, which has been most recently ap-
pended to the current change sequence, preserves the complement of the model repair
problem’s property (l. 8). If this is the case, then Proposition 7.14 guarantees that the
change sequence is not a solution for the model repair problem instance because the
prefix of the change sequence without the last operation is also not a solution for the
instance (otherwise it had been returned in the previous iteration).
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7.5.3 Propagating Properties Implying the Complement Model Property

In case a model does not satisfy a property, procedures for checking the property often
yield witnesses that describe reasons why the model does not satisfy the property. For
example, the semantic differencing operators described in Part II yield diff witnesses,
which are concrete elements in the semantics of one model and no elements of the another
model’s semantics. More generally, the witnesses are interpretable to be properties that
include all models that have a semantics containing the witness. If a model satisfies the
witness property, then the model is also not a refinement of the model for which the
witness was calculated. Therefore, the witness property implies the complement of the
refinement property.

Definition 7.10. A model property P implies a model property P ′ iff P ⊆ P ′.

A property P implies a property P ′ iff it is guaranteed that every model that satisfies
P also satisfies P ′. It may be computationally less expensive to check whether a model
satisfies a property that implies another property than checking whether the model satis-
fies the latter property. During the exploration of the change sequence search tree, if the
property checking procedure yields a property that implies the complement of the prop-
erty that is to be satisfied, then the implying property can be propagated to subsequent
iterations for checking whether the newly explored models satisfy the implying property.
If a newly explored model satisfies the implying property, then the model is also guar-
anteed to not satisfy the property of the model repair problem. In case that checking
the implying property is computationally less expensive than checking the property of
the model repair problem, the propagation yields performance improvements.

Algorithm 4 is an algorithm obtained from incorporating the witness propagation into
Algorithm 2. The relevant changes (ll. 2,9-17) are highlighted in blue. In Algorithm 4,
the variable complImplProp stores the current property that implies the complement
of the model repair problem’s property (l. 2). The property variable complImplProp
stores the disjunction of all computed properties that imply the complement of the model
repair problem’s property. The variable complImplProp is initialized as the property
false, represented by the empty set of models. No model satisfies this property, which
implies that it implies all other properties.

Before checking whether the model obtained from applying the currently processed
change sequence to the input model satisfies the model repair problem property, the
algorithm checks whether the model does not satisfies the property that implies the
complement of the model repair problem’s property (l. 9). If the model does not satisfy
this property, then it may satisfy the property of the model repair problem. Other-
wise, the model is guaranteed to not satisfy the model repair problem’s property. Algo-
rithm 4 stores the result from applying the property satisfaction check in the variable
checkingResult (l. 10). The value of the variable is either a model property that im-
plies the complement of the model repair problem property or the special value X. The
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Algorithm 4 Computing a shortest solution for a model repair problem instance with
considering properties implying the complement model property as witnesses.

Input: A model repair problem instance I = (P,m) where P = (L, O, P ) and a P-
repair-representative function R.

Output: Shortest solution t ∈ O∗ for I.
1: define currentLengthBound← 0 as positive integer
2: define complImplProp← ∅ as property of the models of L
3: loop
4: define S as empty stack of O∗

5: S.push(ε)
6: while S not empty do
7: t← S.pop()
8: if |t| = 0 ∨ (|t| > 0 ∧ last(t) is not P -preserving) then
9: if m . t ∈M ∧m . t /∈ complImplProp then

10: define checkingResult as model property or X
11: checkingResult← checkProperty(P, m . t)
12: if checkingResult = X then
13: return t
14: else
15: complImplProp← complImplProp ∪ checkingResult
16: end if
17: end if
18: end if
19: if m . t ∈M ∧ |t| < currentLengthBound then
20: for all o ∈ R(m . t) do
21: S.push(t&o)
22: end for
23: end if
24: end while
25: currentLengthBound← currentLengthBound+ 1
26: end loop

special value X represents a successful property check, i.e., that the checked model sat-
isfies the property. The algorithm performs the property check by using the function
CheckProperty (l. 11), which takes the model repair problem property and the model
obtained from applying the currently processed sequence to the input model as inputs.
The function CheckProperty is problem-specific and is required to produce X iff the
model satisfies the property. Otherwise, if the model does not satisfy the property, the
function CheckProperty is required to output a property that implies the complement
of the model repair problem property. If the property check is successful (l. 12), then the
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algorithm returns the currently processed change sequence (l. 13). Otherwise, it updates
the value stored in the variable complImplProp to the disjunction of its current value
and the property computed by the function CheckProperty (ll. 14-16).

7.5.4 Detecting Previously Explored Models

Two different change sequences may transform a model into the same model. If the
change sequences of multiple nodes change the original model to the same model, then
it suffices to continue the search in the node encoding the change sequence with the
shortest length among all these sequences:

Proposition 7.15. Let I = (P,m) where P = (L, O, P ) be a model repair problem
instance and let t, u ∈ O∗ be two change sequences. If m . t = m . u and |t| < |u|, then
for all shortest solutions v ∈ O∗ for I, it holds that u is not a prefix of v.

Proof. Let m ∈M be a model, P ⊆M be a property on models, and let t, u ∈ O∗ be two
change sequences. Assume m. t = m. u and |t| < |u|. Suppose towards a contradiction
there exists a shortest change sequence v repairing m towards satisfying the property P
such that u is a prefix of v. Let s ∈ O∗ such that v = u&s. The sequence s exists because
u is a prefix of v. As by assumption m.t = m.u, we have that m.t&s = m.u&s. Thus,
t&s is a change sequence that repairs m towards satisfying the property P because u&s
is a change sequence that repairs m towards satisfying P and m . t&s = m . u&s. This
contradicts the assumption that v is a shortest change sequence that repairs m towards
satisfying the property P because |v| = |u&s| = |u|+ |s| > |t|+ |s| = |t&s| and t&s is a
change sequence that repairs m towards satisfying P .

There are different possibilities for extending the algorithm to avoid the expansion of
change sequences that are not prefixes of shortest solutions.

One possibility is to store the models obtained from applying already discovered change
sequences together with the lengths of the already explored sequences in a set. When-
ever a change sequence is newly discovered, it is possible to check whether the change
sequence changes the original model to a model that is contained in the set and to
check whether the length of the sequence that previously discovered the model is smaller
than or equal to the length of the currently processed sequence. If this is the case,
then the discovered change sequence is guaranteed to be not a prefix of a shortest solu-
tion (cf. Proposition 7.15). Thus, the expansion of the branch of the sequence can be
aborted. While this variant preserves optimality and guarantees that change sequences
corresponding to models that have already been discovered by shorter sequences are
never expanded, the change drastically increases the algorithm’s space complexity. If b
is the branching factor of the subtree of depth d ∈ N of the complete change sequence
search tree, then the algorithm has to store O(bd) models after exploring depth d in the
worst case. Therefore, this variant is infeasible for model repair problem instances that
induce large change sequence search trees.
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Algorithm 5 Computing a shortest solution for a model repair problem instance, while
storing previously explored models.

Input: A model repair problem instance I = (P,m) where P = (L, O, P ) and a P-
repair-representative function R.

Output: Shortest solution t ∈ O∗ for I.
1: define currentLengthBound← 0 as positive integer
2: define complImplProp← ∅ as property of the models of L
3: loop
4: define exploredWithLength← ∅ as set of M ×N
5: define S as empty stack of O∗

6: S.push(ε)
7: while S not empty do
8: t← S.pop()
9: if m . t ∈M ∧ ∀(e, l) ∈ exploredWithLength : (e 6= m . t ∨ |l| > |t|) then

10: exploredWithLength← (exploredWithLength\{m.t}×N)∪{(m.t, |t|)}
11: if |t| = 0 ∨ (|t| > 0 ∧ last(t) is not P -preserving) then
12: if m . t ∈M ∧m . t /∈ complImplProp then
13: define checkingResult as model property or X
14: checkingResult← checkProperty(P, m . t)
15: if checkingResult = X then
16: return t
17: else
18: complImplProp← complImplProp ∪ checkingResult
19: end if
20: end if
21: end if
22: if m . t ∈M ∧ |t| < currentLengthBound then
23: for all o ∈ R(m . t) do
24: S.push(t&o)
25: end for
26: end if
27: end if
28: end while
29: currentLengthBound← currentLengthBound+ 1
30: end loop

Algorithm 5 is a revised version of Algorithm 4 that stores previously explored models
and the lengths of the shortest explored change sequences that change the input model
to the explored models. The most relevant changes (ll. 4,9,10,27) are highlighted in
blue. The algorithm additionally initializes the variable exploredWithLength storing
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a set of tuples of models and natural numbers (l. 4). In each iteration, each tuple
(e, l) ∈ exploredWithLength represents the information that the model e has been
previously explored by a change sequence and that l is the length of the shortest explored
change sequence that changes the input model to e. Whenever the algorithm processes
a change sequence, it checks whether the model obtained from applying the change
sequence to the input model has already been explored by a shorter change sequence
in a previous iteration (l. 9). If this is the case, the algorithm aborts the search in the
branch encoded by the change sequence and processes the next recently explored change
sequence. Otherwise, it is possible that the branch encoded by the currently processed
change sequence contains a shortest solution. Then, the algorithm updates the content of
the variable exploredWithLength by adding the information that the currently processed
change sequence is the shortest explored change sequence that changes the input model
to the model obtained from applying the change sequence (l. 10).

Another possibility to abort searches in branches that do not contain a shortest solu-
tion includes checking whether the syntactic difference to a model obtained from applying
a newly discovered change sequence to the original model is shorter than the newly dis-
covered change sequence. If this is the case, then the newly discovered change sequence
is not a prefix of a shortest solution (cf. Proposition 7.15). Therefore, the algorithm can
abort expanding the branch corresponding to the change sequence. This change to the
algorithm preserves optimality and does not increase its space complexity. However, it
might be the case that the algorithm for computing the syntactic difference does not
produce a shortest change sequence that transforms one model to another model for any
two input models. Then, the algorithm may expand branches of change sequences that
transform the original model to a model that has been already obtained from applying
a shorter discovered change sequence. Therefore, this change does not guarantee that
the search in branches of change sequences transforming the original model to an al-
ready discovered model are always aborted. The change also requires the availability of
a syntactic differencing operator.

It is also possible to check whether a true prefix of the currently processed change
sequence changes the original model to the same model as the currently processed se-
quence. In this case, the newly discovered sequence is not a prefix of a shortest solution
(cf. Proposition 7.15). Incorporating this change preserves the optimality and the space
complexity of the algorithm. After the change, the search space often decreases by an
exponential factor. For instance, the algorithm obtained from incorporating the change
detects whenever an inverse operation of the previously appended change operation is
appended to the currently explored sequence. In this case, it aborts the search in the
branch corresponding to the sequence. While this change does not change the space com-
plexity of the algorithm, it does not guarantee that the resulting algorithm always aborts
the search in branches that correspond to models that have been previously obtained
from applying shorter explored change sequences.

Incorporating the check between the currently processed change sequence and the
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Algorithm 6 Computing a shortest solution for a model repair problem instance, while
checking whether the syntactic difference to a model is shorter than the currently pro-
cessed sequences and checking whether a model has already been explored by a prefix of
the currently processed change sequence.

Input: A model repair problem instance I = (P,m) where P = (L, O, P ) and a P-
repair-representative function R.

Output: Shortest solution t ∈ O∗ for I.
1: define currentLengthBound← 0 as positive integer
2: define complImplProp← ∅ as property of the models of L
3: loop
4: define S as empty stack of O∗

5: S.push(ε)
6: while S not empty do
7: t← S.pop()
8: if m . t ∈M ∧ |∆(m,m . t)| ≥ |t| ∧ ∀p @ t : m . p 6= m . t then
9: if |t| = 0 ∨ (|t| > 0 ∧ last(t) is not P -preserving) then

10: if m . t ∈M ∧m . t /∈ complImplProp then
11: define checkingResult as model property or X
12: checkingResult← checkProperty(P, m . t)
13: if checkingResult = X then
14: return t
15: else
16: complImplProp← complImplProp ∪ checkingResult
17: end if
18: end if
19: end if
20: if m . t ∈M ∧ |t| < currentLengthBound then
21: for all o ∈ R(m . t) do
22: S.push(t&o)
23: end for
24: end if
25: end if
26: end while
27: currentLengthBound← currentLengthBound+ 1
28: end loop

syntactic difference as well as the check between the currently processed change sequence
and its prefixes into Algorithm 4 yields Algorithm 6. The most important changes
(ll. 8,25) are highlighted in blue. Whenever the algorithm starts processing a recently
explored change sequence, it performs two checks (l. 8): At first, the algorithm checks
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whether the length of the syntactic difference is smaller than the length of the currently
processed sequence. Then, the algorithm checks whether a true prefix of the currently
processed change sequence changes the input model to the same model as the currently
processed sequence. If at least one of the checks is successful, then the currently processed
sequence is not a prefix of a shortest solution for the model repair problem instance
(cf. Proposition 7.15). Therefore, if at least one of the checks is successful, the algorithm
aborts the search in the branch of the change sequence search tree encoded by the
currently processed sequence. Otherwise, Algorithm 6 behaves as Algorithm 4 (ll. 9-24).

7.6 Applicability and Development Methodology

This section discusses the applicability of the framework for automatic model repairs.

Proposition 7.16. There exists a P-repair-representative function for every model re-
pair problem P.

Proof. Let P = (L, O, P ) where L = (M,S, sem) be a model repair problem. For every
instance I = (P,m) of P, let tm be an arbitrary shortest solution for I. Proposition 7.2
guarantees the existence of these solutions. We define the function R as follows:

R : M → ℘fin(O),m :

{
∅, if tm = ε

{tm.0}, if tm 6= ε.

The function R is an oracle with perfect information. If the model of an instance of
the model repair problem satisfies the property, then the function maps the model to
the empty set. Otherwise, the function maps the model to exactly one change operation
that does not delay the solution for the instance. Let I = (P,m) be an instance of P.
Assume DelI 6= O. Then, it holds that the shortest solution tm is not equal to the empty
sequence, i.e., tm 6= ε. Therefore, R(m) = {tm.0}. As tm is a shortest solution for I,
tm.0 does not delay the solution for I and, thus, R(m) ∩ (O \DelI) 6= ∅.

From the above, we can conclude that R satisfies DelI 6= O ⇒ R(m)∩ (O \DelI) 6= ∅
for every instance I = (P,m) of P. By Proposition 7.8, this implies that R is a P-repair-
representative function.

Thus, repair-representative functions always exist for all model repair problems. If
an algorithm computing the repair-representative function for a model repair problem is
available, then the algorithms presented in Section 7.5 can be used to fully automatically
compute shortest solutions for all instances of the model repair problem. Therefore, the
primary methodological challenge for developers is the identification and implementation
of the repair-representative function.

The default process for the development of a repair-representative function for a con-
crete model repair problem is as follows: The developer restricts her view to an arbitrary

200



7.6 Applicability and Development Methodology

but fixed instance of the model repair problem. Then, she tries to derive properties of the
(arbitrary but fixed) instance for obtaining results for all instances of the model repair
problem. The developer first identifies a subset of the change operations applicable to the
model of the instance that are guaranteed to delay the solution for the instance. These
change operations do not need to be analyzed further. If the set of remaining change
operations is infinite, then the developer tries to identify infinite sets of change opera-
tions in the set that pairwise induce an equally long shortest solution for the instance.
If the identified sets divide the remaining change operations into finitely many parti-
tions, then the developer can designate an arbitrary element from each of the sets and
define the repair representative function: the model of the problem instance is mapped
to the finite set containing the designated elements. In this case, as the model repair
problem instance was chosen arbitrarily, the developer identified a repair-representative
function. Otherwise, if the identified sets divide the remaining change operations into
infinitely many partitions, then the developer reapplies the complete process with the
goal to refine the identified sets of change operations.

The possibility to partition the non-delaying change operations into finitely many
equivalence classes of change operations inducing an equally long shortest solution de-
pends on whether sufficiently many change operations have been previously character-
ized to delay the solution. Thus, if the identified set of change operations that delay
the solution is too small, then it might be impossible to partition the set of remaining
change operations into finitely many equivalence classes of change operations inducing
an equally long shortest solution. The set of equivalence classes may be infinite:

Proposition 7.17. There exists a model repair problem instance I = (P,m) where
P = (L, O, P ) such that O/∼I is infinite.

Proof. We define the simple modeling language Z = (Z,Z, sem) where each model is an
integer m ∈ Z, the semantic domain is the set of integers Z, and the semantic mapping
maps each model to the singleton set containing the model, i.e., semZ(m)

def
= {m} for all

m ∈ Z. The property P = {0} ⊆ Z is defined as equality to the model 0 ∈ Z of Z.

We define the change operation suite O
def
= {addk | k ∈ N} ∪ {dec} for Z where

dec(m) = m − 1 for all m ∈ Z and addk(m) = m + k for all m ∈ Z, k ∈ N. The
change operation suite O contains infinitely many change operations. The operation dec
decreases a model by one. For every natural number k ∈ N, the operation addk adds
the value k to a model. It is easy to see that O is complete.

We define the model repair problem P = (Z,O, P ) and an instance I = (P, 1). The
set of equivalence classes of change operations inducing equally long shortest solutions
for I is infinite: Let k ∈ N. Then, it holds that addk(1) = 1 + k. It is easy to see that
a shortest solution for the model repair problem instance I = (P, addk(1)) is given by
the change sequence t = deck+1, which contains the change operation dec exactly k + 1
times. We can conclude that for all k ∈ N, it holds that dP(addk(1)) = k+1. Therefore,
addk 6∼I addl for all l, k ∈ N with l 6= k. As further c∗P(dec(1)) = 0 6= c∗P(addk(1)) for
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all k ∈ N, it holds that dec 6∼I addk for all k ∈ N. We can conclude that all pairs of
change operations from the infinite set O do not induce equally long shortest solutions
for I, which implies that O/∼I is infinite.

Developers might be unsure about the possibility to partition the change operations
that have not been characterized to delay the solution. Nevertheless, as the following
shows, specifically designed change operation suites guarantee that the partitioning is
always possible. If every change operation has an inverse, then for every problem in-
stance, every subset of the change operation suite can be partitioned into finitely many
sets, each containing change operations that pairwise induce an equally long shortest
solution for the instance.

Proposition 7.18. Let I = (P,m) where P = (L, O, P ) be a model repair problem
instance. If for all change operations o ∈ O, there exists a change operation i ∈ O that
is an inverse of o, then O/∼I is finite.

Proof. Let I = (P,m) where P = (L, O, P ) be a model repair problem instance. Assume
for all change operations o ∈ O, there exists a change operation i ∈ O that is an inverse
of o. By Proposition 7.2, there exists a shortest solution t ∈ O∗ for I. Let o ∈ O be
a change operation and let i ∈ O be the inverse of o. If o(m) ∈ M , then it holds that
c∗P(o(m)) ≤ |i : t| = |t| + 1 because o(m) . (i : t) = m . t and P (m . t). Therefore, for
every change operation o ∈ O, it holds that o(m) /∈M or o(m) ∈M ∧c∗P(o(m)) ≤ 1+ |t|.
Therefore, ∼I has at most 2 + |t| many equivalence classes, i.e., |O/∼I | ≤ 2 + |t|.

Therefore, if every change operation has an inverse, it is always possible to divide the
change operations that have not been characterized as delaying into finitely many sets
of change operations inducing an equally long shortest solution.

7.7 Composing Model Repair Problems

Complex model properties can be composed of multiple simpler model properties by
using the basic set operations for unifying, intersecting, and complementing the sets
representing the properties.

The composition of properties by using the basic set operations can be lifted to model
repair problems for the same modeling language and the same change operations suite.
For example, if (L, O, P1) and (L, O, P2) are model repair problems, P1 6= ∅, and P1∩P2 6=
∅, then (L, O, P1 ∪ P2), (L, O, P1), and (L, O, P1 ∩ P2) are also model repair problems.

The composition can be further lifted to model repair problem instances that use
the same model. The complement of a model repair problem instance (P,m) where
P = (L, O, P ) is defined as (P ′,m) where P ′ = (L, O, P ). The union of two model repair
problem instances (P1,m) and (P2,m) is defined as (P,m) where P = (L, O, P1 ∪ P2).
The intersection of two model repair problem instances is defined analogously.
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In general, the identification of equivalent change operations under “induce equally
long shortest solution relations“ and the identification of change operations that delay
solutions is not trivial. Therefore, in case a model repair problem is a composition of
two simpler model repair problems, it would be beneficial to be able to derive properties
of the change operations in the context of the composed model repair problem from the
properties of the change operations in the contexts of the simpler model repair prob-
lems. This would facilitate developers in constructing repair-representative functions for
complex model repair problems that are composed of simpler model repair problems.

However, this section shows that it is, in most cases, not possible to derive properties
of change operations in the context of a model repair problem that is composed of simpler
model repair problems from the properties of the change operations in the contexts of
the simpler model repair problems. Further, in most cases, it is not possible to derive
a repair-representative function for a model repair problem that is composed of simpler
model repair problems from the repair-representative functions for the simpler problems.
The cases where derivations are possible are methodologically of little interest.

In the following, Section 7.7.1 is concerned with deriving whether a change operation
delays the solution for an instance of a composed model repair problem. Section 7.7.2
discusses the derivation of change operations that induce equally long shortest solu-
tions for instances of composed model repair problems. Subsequently, Section 7.7.3 is
concerned with the derivation of repair-representative functions.

7.7.1 Derivation of Operations that Delay Solutions

If a change operation does not delay the solution for an instance of a model repair
problem, then it is guaranteed to delay the solution for the complement of the instance.

Proposition 7.19. Let P = (L, O, P ) where L = (M,Sem, sem) be a model repair
problem. Assume that P = (L, O, P ) is a model repair problem. Then, for all change
operations o ∈ O and all models m ∈M , it holds that o /∈ Del(P,m) ⇒ o ∈ Del(P,m).

Proof. Let L = (M,Sem, sem), P and P be given as above. Let o ∈ O be a change
operation and let m ∈ M be a model. Assume o /∈ Del(P,m). As o /∈ Del(P,m), it holds

that m /∈ P . Therefore, m ∈ P . Thus, ε is a shortest solution for the model repair
problem instance (P,m). Therefore, o delays the solution for the instance (P,m).

However, change operations that do not delay the solution for a model repair problem
instance are usually not directly identified during the development of repair-representative
functions (cf. Section 7.6). Therefore, Proposition 7.19 can be rarely applied and is
methodologically of little interest for the development of repair-representative functions.
In general, the methodologically more interesting other direction of the statement in
Proposition 7.19 does not hold. It is not possible to determine whether a change opera-
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Figure 7.12: Illustration of the models, the properties, and the change operations used
in the proofs of Proposition 7.20, Proposition 7.23, and Proposition 7.24.

tion delays the solution for a model repair problem instance from the information that
the change operation delays the solution for the instance’s complement.

Proposition 7.20. There exists a model repair problem P = (L, O, P ) where L =
(M,Sem, sem), a model m ∈M , and a change operation o ∈ O such that P = (L, O, P )
is a model repair problem and o ∈ Del(P,m) ∧ o ∈ Del(P,m).

Proof. We define L def
= (M,M, sem) where M = {m,m1,m2}, sem(x) = ∅ for all x ∈M ,

O
def
= {o, o′} where o

def
= {m : m1,m1 : m,m2 : m}, o′ def

= {m : m2}, and P = {m,m1}. The
first part of Figure 7.12 illustrates the models, the change operations, and the model
properties. It is easy to verify that P = (L, O, P ) and P = (L, O, P ) are model repair
problems and that o ∈ Del(P,m) ∧ o ∈ Del(P,m).

If a change operation delays the solution for two model repair problem instances using
the same model, then the operation also delays the solution for the union of the instances.

Proposition 7.21. Let P1 = (L, O, P1) and P2 = (L, O, P2) be model repair problems
where L = (M,Sem, sem). Let P = (L, O, P1 ∪ P2). Then, for all change operations
o ∈ O and all models m ∈M , it holds that o ∈ Del(P1,m) ∩Del(P2,m) ⇒ o ∈ Del(P,m).

Proof. Let L = (M,Sem, sem), P1, P2, and P be given as above. Let o ∈ O be a change
operation and let m ∈ M be a model. Assume o ∈ Del(P1,m) ∩ Del(P2,m). Suppose
towards a contradiction that o /∈ Del(P,m). Then, there exists a shortest solution t ∈ O∗
for (P,m) such that |t| > 0 and t.0 = o. By definition of solution, it must hold that
m . t ∈ P1 or m . t ∈ P2. Without loss of generality, assume m . t ∈ P1. Then, t is
also a solution for (P1,m). However, as t.0 ∈ Del(P1,m), it holds that t is not a shortest
solution for (P1,m). Thus, there exists a solution v for (P1,m) such that |v| < |t|. As v
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is a solution for (P1,m), it holds that m.v ∈ P1 and, thus, v is also a solution for (P,m).
However, this contradicts that t is a shortest solution for (P,m) because |v| < |t|.

Analogously, if a change operation does not delay the solution for two model repair
problem instances using the same model, then the operation does not delay the solution
for the union of the instances.

Proposition 7.22. Let P1 = (L, O, P1) and P2 = (L, O, P2) be model repair problems
where L = (M,Sem, sem). Let P = (L, O, P1 ∪ P2). Then, for all change operations
o ∈ O and all models m ∈M , it holds that o /∈ Del(P1,m)∧o /∈ Del(P2,m) ⇒ o /∈ Del(P,m).

Proof. Let L = (M,Sem, sem), P1, P2, and P be given as above. Let o ∈ O be a
change operation and let m ∈ M be a model. Assume o /∈ Del(P1,m) ∧ o /∈ Del(P2,m).
Then, there exist change sequences t, u ∈ O∗ such that t.0 = o and u.0 = o and t is a
shortest solution for (P1,m) and u is a shortest solution for (P2,m). Suppose towards
a contradiction that o ∈ Del(P,m). This implies that t and u are not shortest solutions
for (P,m) because t.0 = u.0 = o. Thus, there exists a solution v ∈ O∗ for (P,m) such
that |v| < |t| and |v| < |u|. As v is a solution for (P,m), it holds that m . v ∈ P1

or m . v ∈ P2. Without loss of generality, assume m . v ∈ P1. Then, v is a solution
for (P1,m). However, this contradicts that t is a shortest solution for (P1,m) because
|v| < |t|.

Proposition 7.21 and Proposition 7.22 are not transferable to the context of intersecting
model repair problem instances. If a change operation delays the solution for two model
repair problem instances using the same model, then the change operation does not
necessarily delay the solution for the intersection of the instances.

Proposition 7.23. There exist model repair problems P1 = (L, O, P1), P2 = (L, O, P2)
where L = (M,Sem, sem), a model m ∈ M , and a change operation o ∈ O such that
P = (L, O, P1 ∩ P2) is a model repair problem and o ∈ Del(P1,m) ∧ o ∈ Del(P2,m) ∧ o /∈
Del(P,m).

Proof. We define L def
= (M,M, sem) where M = {m,m1,m2,m3}, sem(x) = ∅ for all

x ∈ M , O
def
= {o, o′} where o

def
= {m : m1,m1 : m2,m2 : m1,m3 : m}, o′ def

= {m : m3,m1 :

m}, P1
def
= (L, O, {m,m2}), and P2

def
= (L, O, {m2,m3}). The second part of Figure 7.12

illustrates the outlined circumstance. It is easy to verify that P = (L, O, {m2}) is a
model repair problem and o ∈ Del(P1,m) ∧ o ∈ Del(P2,m) ∧ o /∈ Del(P,m).

Analogously, if a change operation does not delay the solution for two model repair
problem instances using the same model, then the change operation does not necessarily
not delay the solution for the intersection of the instances.
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Proposition 7.24. There exist model repair problems P1 = (L, O, P1), P2 = (L, O, P2)
where L = (M,Sem, sem), a model m ∈ M , and a change operation o ∈ O such that
P = (L, O, P1 ∩ P2) is a model repair problem and o /∈ Del(P1,m) ∧ o /∈ Del(P2,m) ∧ o ∈
Del(P,m).

Proof. We define L def
= (M,M, sem) where M = {m,m1,m2,m3,m4,m5}, sem(x) = ∅ for

all x ∈ M , O
def
= {o, o′, o′′} where o

def
= {m : m1,m1 : m2,m2 : m1,m3 : m1,m4 : m5,m5 :

m4}, o′
def
= {m : m4,m1 : m,m4 : m}, o′′ def

= {m1 : m3}, P1
def
= (L, O, {m2,m5}), and P2

def
=

(L, O, {m3,m5}). The third part of Figure 7.12 illustrates the outlined circumstance.
It is easy to verify that P = (L, O, {m5}) is a model repair problem and that o /∈
Del(P1,m) ∧ o /∈ Del(P2,m) ∧ o ∈ Del(P,m) holds.

7.7.2 Derivation of Operations that Induce Equally Long Shortest Solutions

If two change operations induce equally long shortest solutions for a model repair problem
instance, then the change operations do not necessarily induce an equally long shortest
solution for the complement of the instance. Similarly, they do not necessarily not induce
an equally long shortest solution for the complement of the instance.

Proposition 7.25. For each of the following statements, there exists a modeling lan-
guage L = (M,Sem, sem), a change operation suite O, a model repair problem P =
(L, O, P ), a model m ∈M , and two change operations o, o′ ∈ O such that P = (L, O, P )
is a model repair problem and the statement is satisfied:

1. o ∼(P,m) o
′ ∧ o 6∼(P,m) o

′.

2. o ∼(P,m) o
′ ∧ o ∼(P,m) o

′.

Proof. Proof of 1: We define L def
= (M,M, sem) where M = {m,m1,m2}, sem(m) = ∅

for all m ∈ M , O
def
= {o, o′} where o

def
= {m : m1,m1 : m2,m2 : m}, o′ def

= {m : m2}, and

P
def
= {m1,m2}. The first part of Figure 7.13 illustrates the models, the change operations,

and the model properties. It is easy to verify that P = (L, O, P ) and P = (L, O, P ) are
model repair problems and that o ∼(P,m) o

′ ∧ o 6∼(P,m) o
′.

Proof of 2: We define L def
= (M,M, sem) where M = {m,m1}, sem(m) = ∅ for all

m ∈ M , O
def
= {o, o′} where o

def
= {m : m1,m1 : m}, o′ def

= {m : m1}, and P = {m1}. The
second part of Figure 7.13 illustrates the models, the change operations, and the model
properties. It is easy to verify that P = (L, O, P ) and P = (L, O, P ) are model repair
problems and that o ∼(P,m) o

′ ∧ o ∼(P,m) o
′.

If two change operations induce an equally long shortest solution for two model repair
problem instances using the same model, then they also induce an equally long shortest
solution for the union of the instances.
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Proposition 7.26. Let P1 = (L, O, P1) and P2 = (L, O, P2) be model repair problems
where L = (M,Sem, sem). Let P = (L, O, P1 ∪ P2). Then, for all change operations
o ∈ O and all models m ∈M , it holds that (o ∼(P1,m) o

′ ∧ o ∼(P2,m) o
′)⇒ o ∼(P,m) o

′.

Proof. Let L = (M,Sem, sem), O, P1, P2, and P be given as above. Let o, o′ ∈ O be two
change operations and let m ∈M be a model. Assume o ∼(P1,m) o

′ ∧ o ∼(P2,m) o
′ holds.

Then, it holds that o(m), o′(m) /∈ M or o(m), o′(m) ∈ M ∧ dP1(o(m)) = dP1(o′(m)) ∧
dP2(o(m)) = dP2(o′(m)). If o(m), o′(m) /∈M , then it holds by definition that o ∼(P,m) o

′.
Assume o(m), o′(m) ∈M ∧ dP1(o(m)) = dP1(o′(m))∧ dP2(o(m)) = dP2(o′(m)). Without
loss of generality, assume that dP1(o(m)) = dP1(o′(m)) ≤ dP2(o(m)) = dP2(o′(m)).

In the following, we show that dP1(o(m)) = dP(o(m)) = dP(o′(m)) = dP1(o′(m)),
which directly implies that o ∼(P,m) o′. As dP1(o(m)) is the length of all shortest
solutions for (P1, o(m)) and as P1 ⊆ P , it holds that the lengths of the shortest solutions
for (P, o(m)) are bounded by dP1(o(m)), i.e., dP(o(m)) ≤ dP1(o(m)). Suppose towards
a contradiction that dP(o(m)) 6= dP1(o(m)). Then, dP(o(m)) < dP1(o(m)). Thus,
there exists a change sequence t ∈ O∗ with o(m) . t ∈ P1 ∪ P2 and |t| < dP1(o(m)). If
o(m).t ∈ P1, then t is also a solution for (P1, o(m)), which contradicts that dP1(o(m)) is
the length of all shortest solutions for (P1, o(m)) because |t| < dP1(o(m)). If o(m) . t ∈
P2, then t is also a solution for (P2, o(m)), which contradicts with |t| < dP1(o(m))
and dP1(o(m)) ≤ dP2(o(m)) that dP2(o(m)) is the length of all shortest solutions for
(P2, o(m)). Analogously, one can show that dP(o′(m)) = dP1(o′(m)).

The other direction does not hold. It is possible that two change operations do not
induce equally long shortest solutions for two model repair problem instances, although
they induce an equally long shortest solution for the union of the instances.

Proposition 7.27. There exist a modeling language L = (M,Sem, sem), a change
operation suite O, model repair problems P1 = (L, O, P1), P2 = (L, O, P2) a model m ∈
M , and two change operations o, o′ ∈ O such that o 6∼(P1,m) o

′∧o 6∼(P2,m) o
′∧o ∼(P,m) o

′

where P = (L, O, P1 ∪ P2).

Proof. We define L def
= (M,M, sem) where M = {m,m1,m2}, sem(x) = ∅ for all

x ∈ M , O
def
= {o, o′} where o

def
= {m : m1,m1 : m}, o′ def

= {m : m2,m2 : m}, P1 =
(L, O, {m,m1}), and P2 = (L, O, {m,m2}). The third part of Figure 7.13 illustrates
the models, the change operations, and the model properties. It is easy to verify that
P = (L, O, {m,m1,m2}) is a model repair problem and that o 6∼(P1,m) o

′ ∧ o 6∼(P2,m)

o′ ∧ o ∼(P,m) o
′.

It is not possible to conclude whether two change operations induce an equally long
shortest solution for the intersection of two model repair problem instances from the
information whether the two change operations induce an equally long shortest solution
for the instances. If two change operations induce equally long shortest solutions for
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Figure 7.13: Illustration of the models, the properties, and the change operations used
in the proofs of Proposition 7.25, Proposition 7.27, and Proposition 7.28.

two model repair problem instances, then they do not necessarily induce an equally
long shortest solution for the intersection of the instances. Vice versa, if two change
operations do not induce equally long shortest solution for two model repair problem
instances, then they do not necessarily not induce an equally long shortest solution for
the intersection of the instances.

Proposition 7.28. For each of the following statements, there exist a modeling language
L = (M,Sem, sem), a change operation suite O, model repair problems P1 = (L, O, P1),
P2 = (L, O, P2), a model m ∈ M , and two change operations o, o′ ∈ O such that P =
(L, O, P1 ∩ P2) is a model repair problem and the statement is satisfied:

1. o ∼(P1,m) o
′ ∧ o ∼(P2,m) o

′ ∧ o 6∼(P,m) o
′.

2. o 6∼(P1,m) o
′ ∧ o 6∼(P2,m) o

′ ∧ o ∼(P,m) o
′.

Proof. Proof of 1: We define L def
= (M,M, sem) where M = {m,m1,m2,m3}, sem(x) = ∅

for all x ∈ M , O
def
= {o, o′} where o

def
= {m : m1,m1 : m,m2 : m3,m3 : m2}, o′

def
= {m :

m2,m2 : m}, P1
def
= (L, O, {m1,m2,m3}), and P2

def
= (L, O, {m,m3}). The fourth part of

Figure 7.13 illustrates the models, the change operations, and the model properties. It
is easy to verify that P = (L, O, {m3}) is a model repair problem and that o ∼(P1,m)

o′ ∧ o ∼(P2,m) o
′ ∧ o 6∼(P,m) o

′.
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Proof of 2: We define L def
= (M,M, sem) where M = {m,m1,m2}, sem(x) = ∅ for all

x ∈M , O
def
= {o, o′} where o

def
= {m : m1,m1 : m}, o′ def

= {m : m2,m2 : m}
P1 = (L, O, {m,m1}), and P2 = (L, O, {m,m2}). The fifth part of Figure 7.13 il-

lustrates the models, the change operations, and the model properties. It is easy to
verify that P = (L, O, {m}) is a model repair problem and that o 6∼(P1,m) o

′ ∧ o 6∼(P2,m)

o′ ∧ o ∼(P,m) o
′ holds.

7.7.3 Repair-Representative Function Derivation

It is possible to construct a repair-representative function for the union of two model
repair problems from repair-representative functions for the two problems. The con-
structed function maps each model to the union of the sets of change operations that
are related to the model by the other two repair-representative functions.

Proposition 7.29. Let L = (M,Sem, sem) be a modeling language and let P1 =
(L, O, P1), P2 = (L, O, P2) be model repair problems. If R1 is a P1-repair-representative
function and R2 is a P2-repair-representative function, then R : M → ℘fin(O) with

∀m ∈M : R(m)
def
= R1(m) ∪R2(m) is a (L, O, P1 ∪ P2)-repair-representative function.

Proof. Let L, P1 = (L, O, P1), and P2 = (L, O, P2) be given as above. Let R1 be a
P1-repair-representative function and let R2 be a P2-repair-representative function. We
define the function R : M → ℘fin(O) with ∀m ∈ M : R(m)

def
= R1(m) ∪ R2(m). Let

P def
= (L, O, P1 ∪ P2) and let m ∈M be an arbitrary model.

By Proposition 7.9, there exist change sequences t, u ∈ O∗ such that t is a shortest
solution for (P1,m) with t.i ∈ R1(m.t↓i) for all i ∈ N with 0 ≤ i < |t| and u is a shortest
solution for (P2,m) with u.i ∈ R2(m . t↓i) for all i ∈ N with 0 ≤ i < |u|. Without loss
of generality, assume |t| ≤ |u|. As t is a solution for (P1,m), and P1 ⊆ P1 ∪ P2, it holds
that t is also a solution for (P,m). Thus, it holds that dP(m) ≤ |t|.

Suppose towards a contradiction that t is not a shortest solution for (P,m). Then,
there exists a solution v for (P,m) such that |v| < |t|. As v is a solution for (P,m),
it holds that m . v ∈ M ∧ m . v ∈ P1 ∪ P2. If m . v ∈ P1, then t would not be a
shortest solution for (P,m) because |v| < |t|. If m. v ∈ P2, then it would hold that v is
a solution for (P2,m), which would imply that |u| < |v| and contradict the assumption
that |t| < |u| as |v| < |t|. We can conclude that t is a shortest solution for (P,m).

If t = ε, then DelI = O because t is a shortest solution for I. If t 6= ε, then
t.0 /∈ DelI because t is a shortest solution for I. Thus, DelI 6= O and t.0 ∈ O \ DelI .
As further t.0 ∈ R1(m) and R(m) = R1(m) ∪ R2(m), it holds that t.0 ∈ R(m). Thus,
t.0 ∈ R(m) ∩ (O \ DelI). We can conclude that DelI 6= O ⇒ R(m) ∩ (O \ DelI) 6= ∅
holds. As the model m was chosen arbitrarily, we can conclude, it holds that DelI 6=
O ⇒ R(m) ∩ (O \DelI) 6= ∅ for every instance (P,m) of P. Using Proposition 7.8, we
obtain that R is a P-repair-representative function.
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Figure 7.14: Illustration of the models, the properties, and the change operations used
in the proof of Proposition 7.30.

However, using the constructed repair-representative function to compute shortest
solutions for instances of the union of two model repair problems is methodologically
of little interest. The proof of Proposition 7.29 shows that the shortest solution for
an instance of the union is equal to the shortest solution for one of the corresponding
instances of the original model repair problems. Therefore, it is possible to compute
shortest solutions for instances of the union by individually computing shortest solutions
for the corresponding instances of the original problems.

Methodologically more interesting is the construction of a repair-representative func-
tion for the intersection of two model repair problems. In general, the construction used
in Proposition 7.29 cannot be used to construct repair-representative functions for the
intersection of model repair problems.

Proposition 7.30. There exist a modeling language L = (M,Sem, sem), model repair
problems P1 = (L, O, P1) and P2 = (L, O, P2), a P1-repair-representative function R1,
and a P2-repair-representative function R2 such that (L, O, P1 ∩ P2) is a model repair

problem and R : M → ℘fin(O) with ∀m ∈ M : R(m)
def
= R1(m) ∪ R2(m) is not a

(L, O, P1 ∩ P2)-repair representative function.

Proof. We define L def
= (M,M, sem) where M = {m,m1,m2,m3}, sem(x) = ∅ for all

x ∈ M , O
def
= {o, o′, o′′} where o

def
= {m : m1,m1 : m,m2 : m,m3 : m}, o′ def

= {m :

m2}, o′′
def
= {m : m3}, P1

def
= (L, O, {m1,m3}), and P2

def
= (L, O, {m2,m3}). Figure 7.14

illustrates the models, the change operations, and the model properties.

It is easy to verify that P = (L, O, {m3}) is a model repair problem, R1
def
= {m :

{o},m1 : ∅,m2 : {o},m3 : ∅} is a P1-repair-representative function, and R2
def
= {m :

{o′},m1 : {o},m2 : ∅,m3 : ∅} is a P2-repair-representative function. However, R : M →
℘fin(O) with ∀x ∈ M : R(x)

def
= R1(x) ∪ R2(x), i.e., R = {m : {o, o′},m1 : {o},m2 :

{o},m3 : ∅} is not a P-repair-representative function because o′′ /∈ R(m).

If R is a repair-representative function and F is a function that maps each model to
a finite superset of the set of change operations related to the model by the function R,
then F is also a repair-representative function.
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Proposition 7.31. Let L = (M,Sem, sem) be a modeling language and P = (L, O, P )
be a model repair problem. If R is a P-repair-representative function, then each function
F : M → ℘fin(O) with ∀m ∈M : R(m) ⊆ F (m) is a P-repair-representative function.

Proof. Let L = (M,Sem, sem) and P = (L, O, P ) be given as above. Let R be a P-
repair-representative function and let F : M → ℘fin(O) with ∀m ∈M : R(m) ⊆ F (m).

As R is a P-repair-representative function, by Proposition 7.8, it holds that DelI 6=
O ⇒ R(m)∩(O\DelI) 6= ∅ for every instance I = (P,m) of P. As R(m) ⊆ F (m) for all
m ∈M , it holds that DelI 6= O ⇒ F (m)∩ (O \DelI) 6= ∅ for every instance I = (P,m)
of P. Using Proposition 7.8, we obtain that F is a P-repair-representative function.

Thus, there is no general construction for a repair-representative function for the
intersection of two model repair problems from the repair-representative functions for
the two problems where the constructed function maps each model to a subset of the
union of the sets of change operations related to the model by the repair-representative
functions for the two problems. If there were such a general construction, then the
function constructed in the proof of Proposition 7.30 would be a repair-representative
function of the model repair problem constructed in the proof of Proposition 7.30.

7.8 Related Work and Discussion

Syntactic differencing approaches (e.g. [AP03, KKT11, KKT13, KGE09, KGFE08,
TELW14, TBK09]) are not concerned with the semantic changes of models caused by
the application of syntactic changes. However, syntactic differencing approaches provide
a fundamental basis for frameworks facilitating to detect the syntactic changes causing
the non-satisfaction of properties in the form of change operations.

Semantic differencing (e.g. [MRR11a]) reveals the semantic differences of models but
is not concerned with syntactic differences. If the semantic difference from one model
to another model is not empty, semantic differencing approaches usually provide diff
witnesses. Each diff witness is an element in the semantics of one of the models that
is not an element in the semantics of the other model. However, semantic differencing
neither reveals the syntactic differences that cause the witnesses nor reveals the syntactic
differences causing that one of the models is not a refinement of the other model. In
general, it is not a trivial task to manually detect all syntactic differences causing the
existence of a concrete witness or causing that the semantic difference from one model
to another model is not empty.

Diffuse [MR15, MR18] is a language-independent framework that combines seman-
tic with syntactic differencing. This thesis and the Diffuse framework share the same
fundamental definition of modeling language. However, the representation of syntac-
tic differences is different in Diffuse and the framework of this thesis. In this thesis,
syntactic differences are represented by sequences of change operations. In the Diffuse
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framework, syntactic differences are represented by partially ordered sets of change op-
erations [MR18]. Nevertheless, the framework of this thesis and Diffuse can be combined
with little effort. Every sequentialization of a set of change operations is a change se-
quence. Vice versa, every change sequence is interpretable as a totally ordered set of
change operations.

Diffuse introduces the notions of necessary, exhibiting, and sufficient sets of change
operations [MR18]. Each of the three notions relates two models, a diff witness, and
a concrete syntactic difference from one of the models to the other model to a subset
of the syntactic difference. Combining our work with Diffuse may be interesting. On
the one hand, it might be possible to lift the three notions to abstract from a concrete
syntactic difference. For instance, it might be interesting to compute whether there exists
a generally necessary change operation that must be applied to cause the existence of a
concrete witness. On the other hand, Diffuse is tailored towards determining syntactic
changes causing a concrete property. The concrete property is the containment of a diff
witness in the semantics of a model. Generalizing Diffuse to abstract from the property
of interest is an interesting future work direction.

Diffuse enables determining which change operations of a concrete syntactic difference
should not be applied to prevent the existence of a specific witness. However, this
analysis does not reveal how to obtain a refinement. The analyses enabled by Diffuse
are backward-oriented. In contrast, our approach is forward-oriented and computes
what needs to be done to obtain a model that satisfies a concrete property (such as, for
example, refinement).

The model repair framework presented in this thesis is a generalization of our previous
work [KR18a]. In [KR18a], we presented equivalences for change operations in the
context of repairing failed model refinements. The framework [KR18a] is tailored towards
model refinement properties. In this thesis, we generalized the framework for repairing
models towards satisfying arbitrary properties. This thesis further presents algorithms
with performance improvements, whereas the previous work suggests [KR18a] to use a
simple breadth-first search. This thesis further examines the compositionality of model
repair problems, which is is not tackled in [KR18a].

Non-enumerative semantic differencing approaches [FLW11] compute aggregated de-
scriptions that summarize semantic differences (not necessarily all) from one model to
another model. Non-enumerative approaches have been applied to feature models and
automata [FLW11] as well as to class diagrams [FALW14]. As an aggregated descrip-
tion may encode more information than a single witness, it is more suited to manually
detect the syntactic elements causing the models’ semantic differences than a single
witness. The aggregated description describing the semantic difference facilitates the
manual detection of syntactic changes required to repair refinement. However, also with
existing non-enumerative approaches, the computation of syntactic changes that repair
refinement is not automated. Our previous work [KR18a] and the framework presented
in this thesis aims at automation. Further, non-enumerative semantic differencing ap-
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proaches are tailored towards semantic differencing. Hence, in general, they cannot
be used to detect syntactic elements causing the non-satisfaction of arbitrary proper-
ties. The framework presented in this thesis focuses on generality by abstracting from a
concrete property. It might be interesting future work to generalize non-enumerative se-
mantic differencing towards abstracting from semantic differences to consider arbitrary
properties. It could be interesting to develop a framework that facilitates computing
aggregated descriptions causing the non-satisfaction of arbitrary but fixed properties.

Automatic software repair aims at automatically repairing software bugs [Rin08, Har10,
Mon18, WCW+18, GMM19]. It focuses on fixing bugs in GPL source code. The bugs are
encoded by a specification encoding expected behaviors, for instance, given by a formal
specification (e.g., [Wei06]) or test cases (e.g., [WNLGF09, LGDVFW12, WCW+18]).
The goal of automatic software repair is the automatic computation of a patch (syntactic
changes) for a program to eliminate bugs. Automatic software repair frameworks can
be obviously interpreted as model repair problems. The models are all possible GPL
programs. The properties are encoded by the formal specifications or the test cases.
Computing patches for automatically repairing programs and computing solutions for
model repair problems are both search activities [Har10] that can be categorized into the
field of search-based software engineering [Har07, Har10]. Existing approaches for au-
tomatic program repair are usually not tailored towards completeness: The approaches
may not find a change to the program that repairs the bugs, although there exists a
program that does not contain the bugs [WNLGF09, WCW+18]. For instance, some
approaches reduce the infinite search space by only considering changes that are based
on already existing structures in the code (e.g., [WNLGF09]) or by bounding the depth
of the search space (e.g., [WCW+18]). In contrast, the approach of this thesis targets at
completeness and is based on partitioning the set of change operations applicable to a
model into equivalence classes to reduce the search space. If the set of equivalence classes
is finite, then automatic computation of repairing changes is possible by only consider-
ing finitely many representatives per model. Applying the change operation partitioning
to methods for automatic software repair is interesting future work for decreasing the
search space to achieve further performance improvements.

The model repair framework presented in this thesis can be interpreted to generalize
classical planning problems [GNT16]. A classical planning problem consists of a planning
domain, an initial state, and a goal. A planning domain consists of a set of states, a
finite set of actions, and a state transition function. The state transition function is a
partial function that maps a state and an action to a state. It describes the effect of
applying actions in a state in terms of the state reached when applying a given action
in a given state. The goal encodes a set of states. A solution for a planning problem is
a sequence of actions that transforms the initial state to a state that satisfies the goal.
When transferring the notions to the framework of this thesis, the set of all models is the
analog to the set of states. The set of change operations is the analog to the set of actions.
Properties are the analogs to goals. While the set of actions is required to be finite in
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classical planning problems, the framework of this thesis does not assume that the set
of actions is finite. Computability of shortest solutions is achieved via partitioning the
set of change operations applicable to models into equivalence classes. The equivalence
classes may be different for different models. The search space may consist of infinitely
many change operations, whereas only finitely many change operations are considered
for each model.
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Chapter 8

Concrete Instantiations of the Model
Repair Framework

This chapter presents instantiations of the model repair framework presented in Chap-
ter 7 with the modeling languages presented in Part II and refinement, generalization,
and refactoring properties.

Developers can use shortest change sequences for repairing refinements to detect the
syntactic modeling elements that are responsible for the existence of semantic differences
from one model to another model. If the former model is intended to be a refinement of
the latter model, then the automatically computed changes can be applied to the former
model to definitely obtain a refinement of the other model.

Solving a generalization model repair problem is especially useful when comparing
models that represent underspecified specifications. Then, the computed change se-
quences facilitate developers in understanding why one specification does not imply the
other specification and vice versa.

Computing solutions for refactoring model repair problems facilitates the repair of
failed model refactorings. Developers often change models to increase the models’ in-
ternal representation with respect to the understandability of the model in the context
of its development project. Refactoring steps can fail. Shortest solutions for refactoring
model repair problems can support developers in detecting the syntactic model elements
causing that the successor model version is no refactoring of its predecessor version. The
changes can also be applied for changing the model resulting from a failed refactoring
step to a refactoring of the original model.

Section 8.1 introduces the refines, generalizes, and refactors model repair problems.
Afterwards, Section 8.2, Section 8.3, Section 8.4, and Section 8.5 instantiate the auto-
matic model repair framework with the TSPA, FD, SD, and AD modeling languages.

8.1 Refines, Generalizes, and Refactors Model Repair Problems

This section defines abbreviations for model properties and model repair problems us-
ing the properties refinement, generalization, and refactoring. This reduces notational
overhead in the remainder of this chapter.
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Definition 8.1. Let L = (M,Sem, sem) be a modeling language, O be a complete change
operation suite for L, and m ∈M be a consistent model.

• The refines property for the modeling language L and the model m is defined as
P⊆(L,m)

def
= {n ∈M | ∅ 6= sem(n) ⊆ sem(m)}).

• The generalizes property for the modeling language L and the model m is defined
as P⊇(L,m)

def
= {n ∈M | sem(m) ⊆ sem(n)}).

• The refactors property for the modeling language L and the model m is defined as
P=(L,m)

def
= {n ∈M | sem(n) = sem(m)}).

• The refines problem for the modeling language L, the change operation suite O,
and the model m is defined as P⊆(L, O,m)

def
= (L, O, P⊆(L,m)).

• The generalizes problem for the modeling language L, the change operation suite
O, and the model m is defined as P⊇(L, O,m)

def
= (L, O, P⊇(L,m)).

• The refactors problem for the modeling language L, the change operation suite O,
and the model m is defined as P=(L, O,m)

def
= (L, O, P=(L,m)).

The models satisfying a refines property are required to be consistent. This reflects the
intention that inconsistent models without realizations are not useful. The consistency
requirement is not necessary for generalizes and refactors model repair problems. If a
model is consistent, then all models that are generalizations or refactorings of the model
are also consistent.

Proposition 8.1. Let L = (M,Sem, sem) be a modeling language, O be a complete
change operation suite for L, and m ∈ M be a consistent model. Then, P⊆(L, O,m),
P⊇(L, O,m), and P=(L, O,m) are model repair problems.

Proof. Let L, O, and m be given as above. As the model m is required to be consistent, it
directly follows by definition that m ∈ P⊆(L,m), m ∈ P⊇(L,m), and m ∈ P=(L,m).

If a model is not a refinement of another model and a change operation is refactor-
ing, then the application of the change operation to the former model yields a model
that is not a refinement of the other model, either. Generalizing change operations do
not preserve the complement properties of refines properties because they may change
inconsistent models to consistent refinements of other models. Refining change oper-
ations preserve the complement properties of generalizes properties. If a model is not
a refactoring of another model, then any refactoring of the former model is also not a
refactoring of the latter model.

Proposition 8.2. Let L = (M,Sem, sem) be a modeling language, O be a change
operation suite for L, m ∈ M be a consistent model, and o ∈ O be a change operation.
The following statements hold:
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1. If o is refactoring, then o is P⊆(L,m)-preserving.

2. If o is generalizing and ∀m ∈M : sem(m) 6= ∅, then o is P⊆(L,m)-preserving.

3. If o is refining, then o is P⊇(L,m)-preserving.

4. If o is refactoring, then o is P=(L,m)-preserving.

Proof. Let L, O, m, and o be given as above. Let n ∈M be a model.
Proof of 1) Assume o is refactoring, n ∈ P⊆(L,m), and n ∈ dom(o). Then, sem(n) = ∅

or there exists w ∈ sem(n) such that w /∈ sem(m). If sem(n) = ∅, then it holds that
∅ = sem(n) = sem(o(n)) as o is refactoring. Therefore, o(n) ∈ P⊆(L,m). If there exists
w ∈ sem(n) such that w /∈ sem(m), then it holds that sem(n) = sem(o(n)) as o is
refactoring. Thus, w ∈ sem(o(n)). Therefore, o(n) ∈ P⊆(L,m).

Proof of 2) Assume o is generalizing, ∀m ∈ M : sem(m) 6= ∅ holds, n ∈ P⊆(L,m),
and n ∈ dom(o). Then, sem(n) = ∅ or there exists w ∈ sem(n) such that w /∈ sem(m).
As ∀m ∈ M : sem(m) 6= ∅ holds, it especially holds that sem(n) 6= ∅. Thus, there
must exist w ∈ sem(n) such that w /∈ sem(m). As o is generalizing, it holds that
sem(n) ⊆ sem(o(n)) and, thus, w ∈ sem(o(n)). Therefore, o(n) ∈ P⊆(L,m).

Proof of 3) Assume o is refining, n ∈ P⊇(L,m), and n ∈ dom(o). Then, there exists
w ∈ sem(m) such that w /∈ sem(n). As o is refining, it holds that sem(o(n)) ⊆ sem(n)
and, thus, w /∈ sem(o(n)). Therefore, o(n) ∈ P⊇(L,m).

Proof of 4) Assume o is refactoring, n ∈ P=(L,m), and n ∈ dom(o). Then, sem(o(n)) =
sem(n) 6= sem(m), which implies that o(n) ∈ P=(L,m).

As discussed in Section 7.5, checking whether a change operation implies the com-
plement of a model repair problem’s property can be incorporated into algorithms for
computing shortest solutions for instances of the model repair problem.

To avoid notational overhead in the remainder of this chapter, we assume that the
models used in model repair problems are consistent without explicitly stating it.

8.2 Instantiations with the Time-Synchronous Port Automaton
Language

This section instantiates the model repair framework with the refines, generalizes, and
refactors properties and the TSPA modeling language LPA = (MPA, SemPA, J·KPA)
presented in Chapter 3.

Infinitely many state-addition, input-channel-addition, and output-channel-addition
operations are applicable to each TSPA. In contrast, every TSPA only contains finitely
many states and finitely many channels. The types of all channels are finite. There-
fore, only finitely many state-deletion, transition-addition, transition-deletion, channel-
deletion, and initial-state-change operations are applicable to each TSPA.
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Therefore, it suffices to partition the state-addition and channel-addition operations
that are applicable to a TSPA with respect to the property of a concrete model repair
problem. The partitioning is similar for all instances of the three model repair problems
for the TSPA language.

Section 8.2.1 presents a change operation partitioning for TSPA refinement repair
problem instances. Section 8.2.2 presents a change operation partitioning for TSPA
generalization repair problem instances. Afterwards, Section 8.2.3 presents a change op-
eration partitioning for TSPA refactoring repair problem instances. Finally, Section 8.2.4
presents a repair-representative function for the TSPA model repair problems.

8.2.1 Time-Synchronous Port Automaton Refinement Repair

This section presents a change operation partitioning for the TSPA modeling language
and the TSPA refinement repair problem.

Let A and A′ be two TSPAs. Then, for all states x, y that are not used in A, the
operations addSx and addSy induce an equally long shortest solution for the model
repair problem instance I = (P⊆(LPA, OPA, A′), A). State names do not influence the
communication histories of a TSPA. For every shortest change sequence t that repairs
addSx(A), it is possible to construct a change sequence u of the same length |u| = |t|
such that u repairs addSy(A). The TSPAs addSx(A) . t and addSy(A) . u solely differ
in the naming of their states. The TSPA addSx(A) . t can be obtained from the TSPA
addSy(A) . u by renaming the state x (if it exists) to y and renaming the state y (if it
exists) to x in addSy(A) . u. Vice versa, the TSPA addSy(A) . u can be obtained from
the TSPA addSx(A) . t by renaming the state x (if it exists) to y and renaming the
state y (if it exists) to x in addSx(A) . t. As the naming of states does not influence
the communication histories in the semantics of TSPAs, the TSPAs addSx(A) . t and
addSy(A) . u have equal semantics. Thus, if the TSPA addSx(A) . t is a consistent
refinement of the TSPA A′, the TSPA addSy(A).u is also a consistent refinement of A′.

Proposition 8.3. Let A = (I,O, S, ι, δ) and A′ = (I ′, O′, S′, ι′, δ′) be two TSPAs. Fur-
ther, let I = (P, A) be an instance of the model repair problem P = P⊆(LPA, OPA, A′).
For all state names x, y ∈ UN \ S, it holds that addSx ∼I addSy.

Proof. (Sketch.) Let A, A′, P, and I be given as above. Let x, y ∈ UN \ S be two state
names. Let t ∈ O∗PA be a shortest change sequence that repairs the TSPA addSx(A)
towards satisfying P⊆(LPA, A′). We define the change sequence u ∈ O∗PA of length
|u| = |t| as the change sequence obtained from the sequence t via replacing each change
operation in t affecting the state x with a change operation of the same type affecting y,
instead, and vice versa. A change operation adding a transition from the state x to the
state y with label a, for instance, is replaced by a change operation adding a transition
from the state y to the state x with label a.
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By construction of the change sequence u, the TSPA addSx(A) . t can be obtained
from the TSPA addSy(A) . u via renaming the state x (if it exists) to y and renaming
the state y (if it exists) to x in addSy(A) . u. Vice versa, the TSPA addSy(A) . u can
be obtained from the TSPA addSx(A) . t via renaming the state x (if it exists) to y and
renaming the state y (if it exists) to x in addSx(A) . t.

As the TSPAs addSx(A). t and addSy(A).u solely differ in the naming of their states
and state names do not affect the communication histories in the semantics of a TSPA,
the two TSPAs are semantically equivalent. Therefore, as addSx(A) . t is by assumption
a consistent refinement of A′, the TSPA addSy(A) . u is also a consistent refinement of
A′. From the above, we can conclude dP(addSx(A)) ≥ dP(addSy(A)).

Analogously, we can show that for every shortest change sequence t ∈ O∗PA that repairs
addSy(A) towards satisfying P⊆(LPA, A′), there exists a change sequence u ∈ O∗PA with
|u| = |t| that repairs addSx(A) towards satisfying P⊆(LPA, A′). From this, we can
conclude dP(addSx(A)) ≤ dP(addSy(A)).

From dP(addSx(A)) ≥ dP(addSy(A)) and dP(addSx(A)) ≤ dP(addSy(A)), we can
conclude that dP(addSx(A)) = dP(addSy(A)). Thus, addSx and addSy induce an equally
long shortest solution for I.

Let A and A′ be two TSPAs. Then, for each channel c that is not used in A′, the oper-
ation addICc delays the solution for I = (P⊆(LPA, OPA, A′), A). A necessary condition
for a TSPA to refine another TSPA is that the former does not use channels that are
not used by the latter. If the former TSPA used a channel not used by the latter TSPA,
then no communication history of the former TSPA would be a communication history
of the latter TSPA. If t is a change sequence that repairs A and starts with a change
operation that adds the input channel c, then the channel c added by t.0 needs to be
removed by a channel-deletion operation contained in t because otherwise A . t would
be no refinement of A′. A shorter change sequence that repairs A can be obtained from
the change sequence t by deleting the channel-addition and channel-deletion operations,
before modifying the change operations in between the two operations such that they
do not affect the channel c anymore.

Proposition 8.4. Let A = (I,O, S, ι, δ) and A′ = (I ′, O′, S′, ι′, δ′) be two TSPAs. Fur-
ther, let I = (P, A) be an instance of the model repair problem P = P⊆(LPA, OPA, A′).
For every channel c ∈ C \ (I ′ ∪O′), it holds that addICc delays the solution for I.

Proof. (Sketch.) Let A, A′, P, and I be given as above. Let c ∈ C \(I ′∪O′) be a channel
name. Let t ∈ O∗PA be a change sequence that repairs addICc(A) towards satisfying
P⊆(LPA, A′).

Then, the change sequence t must contain the channel deletion operation delCc: Sup-
pose towards a contradiction that t does not contain the change operation delCc. Then,
the TSPA addICc(A).t contains the channel c. Therefore, every communication history
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of addICc(A) . t is no communication history of A′ because A′ does not contain the
channel c. This contradicts the assumption that addICc(A) . t is a refinement of A′.

Let i ∈ N with 0 ≤ i < |t| be the smallest index such that t.i = delCc. Let u ∈ O∗PA
with |u| = |t| − 1 be the change sequence obtained from the change sequence t by
deleting the channel deletion operation at position i and removing the mappings from
the channel c in the channel valuations that are used by the first i change operations in t.
The change sequence addTs,t,{c:ε,d:ε}, addSx, delCc, addSy, addTx,y,{d:ε}, remTs,t,{d:ε}, for
instance, is changed to addTs,t,{d:ε}, addSx, addSy, addTx,y,{d:ε}, remTs,t,{d:ε}.

By construction of u, it holds that addICc(A) . t = A . u and |u| < |t|. As t repairs
addICc towards satisfying P⊆(LPA, A′), this implies that u repairs A towards satisfying
P⊆(LPA, A′). Therefore, for every change sequence t ∈ O∗PA that repairs addICc(A)
towards satisfying P⊆(LPA, A′), there exists a change u ∈ O∗PA with |u| < |t| such that
u repairs A towards satisfying P⊆(LPA, A′). Thus, addICc delays the solution for I.

Let A and A′ be two TSPAs. Then, for each channel c that is not used in A′, the
operation addOCc delays the solution for I = (P⊆(LPA, OPA, A′), A). The reason is
similar to the reason for input-channel-addition operations adding a channel that is not
used in A′.

Proposition 8.5. Let A = (I,O, S, ι, δ) and A′ = (I ′, O′, S′, ι′, δ′) be two TSPAs. Fur-
ther, let I = (P, A) be an instance of the model repair problem P = P⊆(LPA, OPA, A′).
For every channel c ∈ C \ (I ′ ∪O′), it holds that addOCc delays the solution for I.

Proof. The proof is analogous to the proof for Proposition 8.4.

8.2.2 Time-Synchronous Port Automaton Generalization Repair

This section presents a change operation partitioning for the TSPA modeling language
and the TSPA generalization repair problem.

Let A and A′ be two TSPAs. Then, for all states x, y that are not used in A, the
operations addSx and addSy induce an equally long shortest solution for the model
repair problem instance I = (P⊇(LPA, OPA, A′), A). The reason for this is similar to
the reason for the equivalence in the context of TSPA refinement model repair problems
(cf. Section 8.2.1). The names of states do not directly influence the communication
histories of TSPAs.

Proposition 8.6. Let A = (I,O, S, ι, δ) and A′ = (I ′, O′, S′, ι′, δ′) be two TSPAs. Fur-
ther, let I = (P, A) be an instance of the model repair problem P = P⊇(LPA, OPA, A′).
Then, for all state names x, y ∈ UN \ S, it holds that addSx ∼I addSy.

Proof. The proof is analogous to the proof of Proposition 8.3.
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Let A and A′ be two TSPAs. Then, for each channel c that is not used in A′, the oper-
ation addICc delays the solution for I = (P⊇(LPA, OPA, A′), A). The reason is similar to
the reason in the context of TSPA refinement model repair problems (cf. Section 8.2.1).
A necessary condition for a TSPA to generalize another TSPA is that the former does
not use channels that are not used by the latter. If the former TSPA used a channel
not used by the latter, then no communication history of the latter TSPA would be a
communication history of the former TSPA. From every change sequence t that repairs
A and starts with a change operation that adds the input channel c, it is possible to
construct a shorter change sequence that repairs A.

Proposition 8.7. Let A = (I,O, S, ι, δ) and A′ = (I ′, O′, S′, ι′, δ′) be two TSPAs. Fur-
ther, let I = (P, A) be an instance of the model repair problem P = P⊇(LPA, OPA, A′).
For every channel c ∈ C \ (I ′ ∪O′), it holds that addICc delays the solution for I.

Proof. The proof is analogous to the proof for Proposition 8.4.

Let A and A′ be two TSPAs. Then, for each channel c that is not used in A′, the
operation addOCc delays the solution for I = (P⊇(LPA, OPA, A′), A). The reason is
similar to the reason for input-channel-addition operations adding a channel that is not
used in A′.

Proposition 8.8. Let A = (I,O, S, ι, δ) and A′ = (I ′, O′, S′, ι′, δ′) be two TSPAs. Fur-
ther, let I = (P, A) be an instance of the model repair problem P = P⊇(LPA, OPA, A′).
For every channel c ∈ C \ (I ′ ∪O′), it holds that addOCc delays the solution for I.

Proof. The proof is analogous to the proof for Proposition 8.4.

8.2.3 Time-Synchronous Port Automaton Refactoring Repair

This section presents a change operation partitioning for the TSPA modeling language
and the TSPA refactoring repair problem.

Let A and A′ be two TSPAs. Then, for all states x, y that are not used in A, the
operations addSx and addSy induce an equally long shortest solution for the model repair
problem instance I = (P=(LPA, OPA, A′), A). The reason is similar to the reasons in the
contexts of TSPA refinement repair problems (cf. Section 8.2.1) and TSPA generalization
repair problems (cf. Section 8.2.2).

Proposition 8.9. Let A = (I,O, S, ι, δ) and A′ = (I ′, O′, S′, ι′, δ′) be two TSPAs. Fur-
ther, let I = (P, A) be an instance of the model repair problem P = P=(LPA, OPA, A′).
For all state names x, y ∈ UN \ S, it holds that addSx ∼I addSy.

Proof. The proof is analogous to the proof for Proposition 8.3.
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Let A and A′ be two TSPAs. Then, for each channel c that is not used in A′, the oper-
ation addICc delays the solution for I = (P=(LPA, OPA, A′), A). The reason is similar to
the reasons in the contexts of TSPA refinement model repair problems (cf. Section 8.2.1)
and TSPA generalization model repair problems (cf. Section 8.2.2).

Proposition 8.10. Let A = (I,O, S, ι, δ) and A′ = (I ′, O′, S′, ι′, δ′) be two TSPAs. Fur-
ther, let I = (P, A) be an instance of the model repair problem P = P=(LPA, OPA, A′).
For every channel c ∈ C \ (I ′ ∪O′), it holds that addICc delays the solution for I.

Proof. The proof is analogous to the proof for Proposition 8.4.

Let A and A′ be two TSPAs. Then, for each channel c that is not used in A′, the oper-
ation addOCc delays the solution for I = (P=(LPA, OPA, A′), A). The reason is similar
to the reasons in the contexts of TSPA refinement repair problems (cf. Section 8.2.1)
and TSPA generalization repair problems (cf. Section 8.2.2).

Proposition 8.11. Let A = (I,O, S, ι, δ) and A′ = (I ′, O′, S′, ι′, δ′) be two TSPAs. Fur-
ther, let I = (P, A) be an instance of the model repair problem P = P=(LPA, OPA, A′).
For every channel c ∈ C \ (I ′ ∪O′), it holds that addOCc delays the solution for I.

Proof. The proof is analogous to the proof for Proposition 8.4.

8.2.4 Repair-Representative Function and Example Applications

From the argumentations in Section 8.2.1, Section 8.2.2, and Section 8.2.3, we can con-
clude that it is possible to use the same repair-representative function for the TSPA
refinement, generalization, and refactoring repair problems using the same models. For
each TSPA A ∈MPA, we can construct the repair-representative function RA : MPA →
℘fin(OPA) for each of the TSPA model repair problems as follows: The function RA
maps each TSPA to the set containing

• all state-deletion, transition-addition, transition-deletion, channel-deletion, and
initial-state-change operations that are applicable to the TSPA,

• all state-addition, input-channel-addition, and output-channel-addition operations
that have not been partitioned in Section 8.2.1, Section 8.2.2, and Section 8.2.3
and are applicable to the TSPA,

• exactly one arbitrary but fixed operation of each equivalence class of the state-
addition, input-channel-addition, and output-channel-addition operations identi-
fied in Section 8.2.1, Section 8.2.2, and Section 8.2.3.

For example, Figure 8.1 depicts an excerpt of the change sequence search tree for
computing a shortest solution for a TSPA generalization repair problem instance. The
TSPA aut1 is the model of the instance. The property of the generalization repair
problem contains all TSPAs that are generalizations of the TSPA aut2.
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Figure 8.1: Two simple TSPAs and an excerpt of the change sequence search tree for
computing a shortest solution for a TSPA generalization repair problem.

8.2.5 Implementation and Experiments

We implemented the model repair algorithms for the TSPA modeling language to perform
experimental evaluations. The implementation is written in Java and uses the semantic
differencing operator implementation presented in Section 3.3.

We performed experimental evaluations by executing the algorithms for computing
shortest solutions for TSPA refinement repair problem instances using the seven exam-
ple TSPAs presented in Appendix A. The purpose of the experiments is twofold. The
first purpose is testing whether computing shortest repairing sequences is feasible for
the example TSPA refinement repair problem instances. The second purpose is to com-
pare the performances of the different algorithms in the context of the example TSPA
refinement repair problems.

Heuristic for Witness Computation

The computational complexity of semantic differencing of TSPAs is high and the algo-
rithms often execute the semantic differencing operator. To achieve performance im-
provements, we implemented a heuristic for fast witness computation.

The heuristic checks whether a TSPA A does not refine another TSPA B by searching
a short diff witness. To this effect, the heuristic checks whether there exists a prefix of
a behavior of A that is not a prefix of any behavior of B. The lengths of the checked
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prefixes is bounded by the number of states in A. If the heuristic finds such a prefix,
it proceeds by finding the prefix of an execution that produces the behavior with the
prefix. After determining the prefix of the execution, the algorithm proceeds by searching
a path that starts in the last state of the computed prefix of the execution and contains
a cycle in the TSPA A. Composing the computed prefix of the behavior with the labels
of the transitions on the path containing a cycle yields an ultimately periodic word that
is a behavior in the semantic difference from A to B. If the heuristic successfully finds
a witness, then A is not a refinement of B. However, if the heuristic does not find
a diff witness, it is not guaranteed that A is not a refinement of B. In this case, we
use the sound and complete semantic differencing operator for TSPAs as introduced in
Section 3.3.

The function SemDiffHeuristically defined in Algorithm 7 is the heuristic for
computing short diff witnesses. The function takes two TSPAs A and B as inputs. It
either outputs a diff witness w ∈ δ(A,B) or the special symbol nil if no prefix of a diff
witness of length smaller than or equal to the number of states in A exists. The function
enumerates all paths of transitions starting in the initial state of A with a length smaller
than or equal to the number of states in A. To this effect, the function executes an
DFID search. For each path, it checks whether there exists a behavior in B having the
prefix of the behavior encoded by the path as prefix. In the following algorithms, src(t)
denotes the source state of a transition t, trg(t) denotes the target state of a transition
t, and lt(w) denotes the last element of a finite sequence w.

The function iterates over all integers i that are smaller than or equal to the number
of states in A (ll. 2-24). In each iteration, it checks the execution paths of length equal
to i. In the loop, the function initializes the variable can as an empty stack of sequences
of transitions of A (l. 3). The stack can contains the execution path candidates that
are to be processed. Then, the function pushes the sequences of length one containing
the transitions originating from the initial state on the stack can (ll. 4-6). While the
candidate stack is not empty (ll. 7-23), the function iteratively pops a candidate cur
from the stack can (l. 8), checks the prefix of the behavior encoded by the candidate
(ll. 9-17), and explores new candidates (ll. 19-21).

If the length of the current candidate cur is equal to the length i of the currently
checked candidates (l. 9), the function checks the currently processed transition sequence
(ll. 10-17). Therefore, it constructs the behavior prefix encoded by the currently pro-
cessed transition sequence and stores the result in the variable behPrefix (ll. 10-13).
Afterwards, the function checks whether the sequence stored in variable behPrefix is
a prefix of a behavior of B by checking whether the set of states reachable by B via
processing the sequence is empty (l. 14). For computing the set of reachable states, it
calls the function PossibleStatesAfterInput (l. 14). If the set is empty, then there
does not exist a behavior of B that has the sequence as a prefix. In this case, the func-
tion calls the function BehaviorStartingIn (l. 15) to compute a behavior starting
in the target state of the last transition contained in the currently processed transition
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Algorithm 7 Heuristic for computing a diff witness contained in the semantic difference
from a TSPA A to a TSPA B.
Input: Two TSPAs A = (Σ, S, ι, δ) and B.
Output: A behavior w ∈ δ(A,B) or the special symbol nil.
1: function SemDiffHeuristically(A,B)
2: for all i ∈ N with i < |S| in increasing value do
3: define can as empty stack of δ∗

4: for all t ∈ {(s, a, t) ∈ δ | s = ι} do
5: can.push(t) . push sequence of length one containing transition t
6: end for
7: while can not empty do
8: cur ← can.pop()
9: if |cur| = i then

10: define behPrefix← ε as empty sequence
11: for all (s, a, t) ∈ cur in ascending order do
12: behPrefix← behPrefix&a
13: end for
14: if PossibleStatesAfterInput(B, behPrefix) = ∅ then
15: (np, p) = BehaviorStartingIn(A, trg(lt(cur)))
16: return behPrefix&np&p∞

17: end if
18: else
19: for all t ∈ {(s, a, t) ∈ δ | s = trg(lt(cur))} do
20: can.push(cur&t)
21: end for
22: end if
23: end while
24: end for
25: return nil
26: end function

sequence. This function returns a tuple (np, p) of channel assignment sequences where
np models a non-period part of a behavior and p models the periodic part of the be-
havior. The behavior np&p∞ is a behavior of the TSPA obtained from the TSPA A
by changing the initial state to the target state of the last transition contained in the
currently processed sequence. Therefore, the sequence behPrefix&np&p∞ is a behavior
of A that is not a behavior of B. The function returns this sequence (l. 16).

In case the length of the currently processed sequence is not equal to the currently
checked length i, the algorithm computes new candidates that are added to the candidate
stack (ll. 19-21). Therefore, the function iterates over all transitions starting in the target

225



Chapter 8 Concrete Instantiations of the Model Repair Framework

Algorithm 8 Computing the set of states reachable by a TSPA after processing a finite
prefix of a behavior.

Input: A TSPA A = (Σ, S, ι, δ) and a finite sequence of channel assignments b.
Output: The set of states reachable by A after processing b.
1: function PossibleStatesAfterInput(A, b)
2: define curStates← {ι} as set of S
3: for all v ∈ b in ascending order do
4: define newCurStates← ∅ as set of S
5: for all (s, a, t) ∈ δ do
6: if s ∈ curStates ∧ a = v then
7: newCurStates← newCurStates ∪ {t}
8: end if
9: end for

10: curStates← newCurStates
11: end for
12: return curStates
13: end function

state of the last transition contained the currently processed transition sequence (l. 19).
For each of these transition, the algorithm pushes the result from concatenating the
transition to the currently processed transition sequence on the stack (l. 20). If no diff
witness is found, the function returns the special symbol nil (l. 25).

The function PossibleStatesAfterInput is depicted in Algorithm 8. The func-
tion takes a TSPA A and a finite sequence of channel assignments b as inputs. It outputs
the set of states reachable by A after processing b. To this effect, the function simulates
all runs of the TSPA A that are possible when processing the sequence of channel assign-
ments b. The function initializes the variable curStates as the singleton set containing
the initial state of the TSPA (l. 2). Afterwards, it iterates over the channel assignments
in b in ascending order (ll. 3-11) and iteratively computes the sets of possible states reach-
able by processing the channel assignments in b up to the currently processed channel
assignment v (ll. 4-10). To this effect, it initializes the variable newCurStates as the
empty set (l. 4). Then, the function iterates over all possible transitions of the TSPA
(ll. 5-9). The function adds the target state of each transition that starts in one of
the states contained in the set curStates and is labeled with the currently processed
channel assignment v (l. 6) to the set newCurStates (l. 7). After iterating through all
transitions, the set newCurStates contains all states reachable by the TSPA after pro-
cessing the prefix of the sequence b up to and including the currently processed channel
assignment v. Therefore, after the loop, the algorithm sets the variable curStates to
the value of the variable newCurStates (l. 10) and proceeds with the following channel
assignment contained in b. After processing the complete sequence, the function returns
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Algorithm 9 Computing the non-periodic and the periodic part of a behavior of a
TSPA starting in a given state.

Input: A TSPA A = (Σ, S, ι, δ) and a state i ∈ S.
Output: A tuple (np, p) of finite sequences of channel assignments representing the

behavior np&p∞ of the TSPA A when starting in state i.
1: function BehaviorStartingIn(A, i)
2: define visited← {i} as set of S
3: define toProcess as FIFO queue of δ∗

4: for all t ∈ {(s, a, t) ∈ δ | s = i} do
5: toProcess.add(t)
6: end for
7: while toProcess not empty do
8: define cur ← toProcess.poll() as element of δ∗

9: define (s, a, t)← lt(cur) as element of δ
10: for all i ∈ N with i < |cur| in increasing value do
11: define (u, b, v)← cur.i
12: if u = t then
13: define np← ε as sequence of channel assignments
14: define p← ε as sequence of channel assignments
15: for all j ∈ N with j < |cur| in increasing value do
16: define (w, c, x)← cur.j as element of δ
17: if j < i then
18: np← np&c
19: else
20: p← p&c
21: end if
22: end for
23: return (np, p)
24: end if
25: end for
26: for all t ∈ {(u, b, c) ∈ δ | u = t} do
27: toProcess.add(cur&t)
28: end for
29: end while
30: end function

the set curStates (l. 12).

The function BehaviorStartingIn is depicted in Algorithm 9. It takes a TSPA
A and a state i of A as inputs. The function outputs a tuple (np, p) of finite sequences
of channel assignments such that np&p∞ is a behavior of A when starting in the state
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i. The function executes a breadth-first search in the TSPA A starting in the state i
to compute a path in A that contains a cycle. First, it initializes the set visited as the
singleton set containing the state i (l. 2). This set stores the states visited during the
breadth-first search. Then, the function initializes the variable toProcess as en empty
first-in-first-out queue of sequences of transitions of the TSPA A (l. 3). The queue stores
the sequences of transitions encoding explored paths that need to be expanded during
the breadth-first search. All sequences of length one containing a transition starting
in the state i are initially added to the queue (ll. 4-6). While the queue toProcess is
not empty (l. 7), the function executes the breadth-first search (ll. 8-29). In the loop,
the function polls the first element of the queue toProcess and stores the result in the
variable cur (l. 8). The transition sequence stored in the variable cur is expanded in
the current iteration of the loop. To this effect, the function retrieves the last transition
(s, a, t) of the sequence (l. 9). Then, it iterates over all integers that are smaller than the
length of the sequence cur (ll. 10-25). For each of these integers i, the function retrieves
the i-th transition (u, b, v) of the sequence cur (l. 11) and checks whether u = t (l. 12),
i.e., it checks whether the target state of the last transition is equal to the starting
state of the i-th transition. If this is the case, the function found a cycle and partitions
the discovered transitions in the non-periodic part defining the sequence np and the
periodic part defining the sequence p (l. 13-23). Otherwise, the function iterates over
all transitions starting in the target state t of the last transition (ll. 26-28) and adds
the result from appending the transition to the currently processed sequence cur to the
queue (l. 27). For determining the non-periodic and the periodic parts (ll. 13-23), the
function first initializes the variables np and p as empty sequences of channel assignments
(ll. 13-14). Then, the function iterates over all integers j that are smaller than the length
of the currently processed sequence cur (ll. 15-22) and retrieves the j-th transition of
the sequence cur (l. 16). If the integer j is smaller than the integer i (l. 17), the j-th
transition is not part of the cycle and the algorithm appends the label of the transition
to the non-periodic part (l. 18). Otherwise (l. 19), the transition is part of the cycle
and the function appends the label of the transition to the periodic part (l. 20). After
iterating over all transitions, the function returns the tuple (np, p) (l. 23).

As every TSPA is consistent, the implementation of a consistency checking procedure
for the TSPA modeling language is not necessary.

Proposition 8.12. Every TSPA is consistent.

Proof. Let A = (Σ, S, ι, δ) where Σ = (I,O) be a TSPA. For each state s ∈ S let
(us, as, vs) ∈ δ be an arbitrary but fixed transition with us = s. The transitions exist be-
cause A is by definition reactive. We recursively define the execution e = s0, θ0, s1, θ1, ...
of A by s0 = ι, si = vsi−1 for all i ∈ N with i > 0, and θi = asi for all i ∈ N. Then, by
construction, e is an execution of A. Therefore, JAKPA 6= ∅ holds.

Including the heuristic for diff witness computation yields Algorithm 10 for checking
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Algorithm 10 Checking whether the TSPA A is a consistent refinement of the TSPA
B including a heuristic for diff witness computation.

Input: Two TSPAs A and B.
Output: X, if A is a refinement of B. Otherwise, w ∈ δ(A,B).
1: w ← SemDiffHeuristically(A,B)
2: if w 6= nil then
3: return w
4: end if
5: return SemTSPADiff(A, B)

whether a TSPA A is a consistent refinement of a TSPA B. First, the algorithm tries
to heuristically compute a diff witness in the semantic difference from A to B by calling
the function SemDiffHeuristically (l. 1). If the function found a witness (l. 2),
then the algorithm returns the witness (l. 3). Otherwise, the algorithm returns the result
from calling the function SemTSPADiff (l. 5). The function is required to return X, if
A refines B. Otherwise, the function is required to return a diff witness contained in the
semantic difference from A to B. For the implementation of the function SemTSPADiff,
we use the semantic differencing operator for TSPAs presented in Section 3.3. Each diff
witness w returned by Algorithm 10 is easily translatable to the property P = {m ∈
MPA | w ∈ JmKPA} containing all models containing this witness in their semantics.
This property implies the complement of the consistently refines property.

Search Space Restrictions

For pragmatic reasons, to increase the performance of the algorithms, we restrict the
search spaces of the TSPA refinement repair problems as described in the following.

We do not consider transition-addition operations adding transitions with a label that
is not used on any transition of the repair problem’s model. This restriction is reasonable
because any behavior caused by any execution visiting a transition with a label not used
in the repair problem’s model cannot be a behavior of the repair problem’s model.

For each currently processed model, we focus on operations for modifying the parts of
the model producing the computed witness for the semantic difference from the model
to the repair problem’s model. As the witness is contained in the semantics of the
processed model, there exists an execution of the model that causes the witness. Thus,
at least one transition visited during the execution must be deleted from the model to
eliminate the existence of the witness in the semantics of the model. However, it is
not necessarily possible to directly delete one of the transitions as the deletion could
cause that the resulting TSPA is not reactive. Therefore, adding a transition before
deleting the transition is sometimes necessary to preserve the reactivity of intermediately
computed TSPAs. If the deletion is not directly possible, we consider transition-addition
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Time
Model Problem Algo. 2 Algo. 3 Algo. 4 Algo 5 Algo. 6

mod4Ctr threeCtr 154ms 141ms 141ms 119ms 123ms
threeCtr mod4Ctr 682ms 626ms 459ms 432ms 481ms
reset threeCtr TO TO TO OOM TO
reset mod4Ctr TO TO TO OOM TO
impl spec 1458ms 289ms 288ms 1152ms 410ms
spec impl TO TO TO OOM TO
aut1 aut2 566ms 528ms 124ms 161ms 145ms
aut2 aut1 445ms 365ms 250ms 230ms 252ms

Figure 8.2: The execution times of Algorithm 2 - Algorithm 6 when given the TSPA
refinement repair problem instances as inputs.

operations adding a transition from the source state of the execution’s transition such
that the transition’s input channel assignment equals the input channel assignment of
the transition of the execution. Otherwise, if the transition-deletion operation is already
applicable, we do not consider any transition-addition operations adding transitions
originating from the transition’s source state. For each processed model, among all the
applicable transition-deletion and transition-addition operations, we do only consider
the operations described above.

Experiments

We performed experimental evaluations with the seven example TSPAs presented in
Appendix A. For each pair of thematically related TSPAs where one of the TSPAs is not
a refinement of the other TSPA, we executed the algorithms presented in Section 7.5 to
compute solutions for the corresponding refinement repair problems. For testing whether
intermediately computed TSPAs satisfy the refines property, we used Algorithm 10 for
refinement checking.

All experiments were executed on a laptop computer with an Intel Core i7-8650U CPU
@ 1.90GHz processor, 16GB RAM, and a Samsung PM981 512GB SSD hard drive using
Windows 10 and Java 1.8.0 192.

Figure 3.4 summarizes the computation times of the algorithms. We have set a time-
out of 15 minutes for each computation. Timeouts are indicated by TO. During three
experiments, Java reported an OutOfMemoryError, which is indicated by OOM. For
instance, Algorithm 2 took 154ms to compute a solution for the model repair problem
instance (P⊆(LPA, OPA,threeCtr),mod4Ctr), i.e., to compute a sequence t ∈ OPA
such that ∅ 6= Jmod4Ctr . tKPA ⊆ JthreeCtrKPA. In the cases where the algorithms
terminated, the computation times range from 119ms to 1458ms. Figure 8.3 depicts the
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Model Problem Solution

mod4Ctr threeCtr addT3,inc3,3, delT3,inc3,0

threeCtr mod4Ctr addT3,inc3,0, delT3,inc3,3

impl spec addTstopped,stp,idle, delTstopped,emgOff2,driving
aut1 aut2 addTs,{i:ξ,o:ξ},s, delTs,{i:ξ,o:1},s,

addTt,{i:ξ,o:1},t, delTt,{i:ξ,o:ξ},t,

aut2 aut1 addTon,{i:ξ,o:1},on, delTon,{i:ξ,o:ξ},on,

addToff,{i:ξ,o:ξ},off, delToff,{i:ξ,o:1},off

Figure 8.3: The shortest solutions computed by Algorithm 4 for the TSPA refinement
repair problem instances.

solutions computed by Algorithm 4 for the inputs where the computations terminated.

Algorithm 3 was faster than Algorithm 2 and Algorithm 4 was at least as fast as
Algorithm 3 for all computations that did not time out. In three cases, Algorithm 5 was
faster than Algorithm 4. In the other two cases, Algorithm 4 was faster than Algorithm 5.
This might be because the computed solutions are short and storing already visited
models as well as checking whether a currently processed model was already visited
causes additional overhead. Algorithm 4 was faster than Algorithm 6 in four cases. This
might be because the computed solutions are short and checking the prefixes of currently
processed change sequences causes additional overhead in Algorithm 6.

We conclude that the algorithms handle the small examples, where only short repairing
sequences are required, sufficiently quick. However, the algorithms do not scale well
for inputs where long repairing sequences are required. This is not surprising as the
running times of the algorithms are exponential in the lengths of the shortest solutions
(cf. Section 7.5.1). For all computations where the algorithms timed out, more than 20
changes are required to repair the models.

8.3 Instantiations with the Feature Diagram Language

This section instantiates the model repair framework with the FD modeling language
LFD = (MFD, SemFD, J·KFD) presented in Chapter 4 and the refines, generalizes, and
refactors model repair problems.

Infinitely many feature-addition and root-renaming operations are applicable to each
FD. In contrast, every FD only contains finitely many features. For this reason, only
finitely many feature-deletion, implies-constraint-addition, implies-constraint-deletion,
excludes-constraint-addition, excludes-constraint-deletion, or-group-creation, xor-to-or-
conversion, or-to-xor-conversion, mandatory-to-optional, optional-to-mandatory, feature-
group-insertion, and feature-group-exclusion operations are applicable to each FD. The
computation of the change operations described above that are applicable to an FD is a
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straight-forward task.
Therefore, it suffices to partition the feature-addition and root-renaming operations

that are applicable to an FD with respect their properties in the context of a model
repair problem. The partitioning is similar for all instances of the three model repair
problems for the FD language.

Section 8.3.1 presents a change operation partitioning for FD refinement repair prob-
lem instances. Then, Section 8.3.2 presents a change operation partitioning for FD
generalization repair problem instances. Afterwards, Section 8.3.3 presents a change op-
eration partitioning for FD refactoring repair problem instances. Finally, Section 8.3.4
presents a repair-representative function for the FD model repair problems.

8.3.1 Feature Diagram Refinement Repair

This section presents a change operation partitioning for the FD modeling language and
the FD refinement repair problem.

Let fd1 and fd2 be two FDs. Then, for all features f, g that are neither used in fd1 nor
in fd2, the operations rnmRootf and rnmRootg induce an equally long shortest solution
for the model repair problem instance I = (P⊆(LFD, OFD, fd2), fd1). Intuitively, for
every shortest change sequence t that repairs rnmRootf (fd1), it is possible to construct
a change sequence u of the same length |u| = |t| that repairs rnmRootg(fd1). The FD
rnmRootf (fd1).t constrains the feature f in the same way as the FD rnmRootg(fd1).u
constrains the feature g. Vice versa, the FD rnmRootf (fd1) . t constrains the feature
g in the same way as the FD rnmRootg(fd1) . u constrains the feature f . The valid
configurations of rnmRootg(fd1) . u can be obtained from the valid configurations of
rnmRootf (fd1) . t by exchanging the features f and g in the valid configurations of
rnmRootf (fd1) . t. As the features f and g are not used in the FD fd2, the FD fd2

does not constrain the features f and g. Therefore, as rnmRootf (fd1).t is by assumption
a consistent refinement of fd2, the FD rnmRootg(fd1).u is also a consistent refinement
of fd2. A similar argumentation shows that for every shortest change sequence t that
repairs rnmRootg(fd1), it is possible to construct a change sequence u of the same length
|u| = |t| that repairs rnmRootf (fd1).

Proposition 8.13. Let fdi = (Fi, Ei, ri,Mi, Ori, Xori, Ii, Xi) for i ∈ {1, 2} be two FDs.
Let I = (P, fd1) be an instance of the model repair problem P = P⊆(LFD, OFD, fd2).
Then, for all features f, g ∈ UN \ (F1 ∪ F2), it holds that rnmRootf ∼I rnmRootg.

Proof. (Sketch.) Let fdi for i ∈ {1, 2}, P, and I be given as above. Let f, g ∈ UN \
(F1 ∪ F2) be two features that are neither used in fd1 nor in fd2. As f, g /∈ F1, the
operations rnmRootf and rnmRootg are applicable to fd1. Assume t ∈ O∗FD is a
shortest change sequence that repairs rnmRootf (fd1) towards satisfying P⊆(LFD, fd2).
We define u ∈ O∗FD as the change sequence of length |u| = |t| obtained from t by replacing
each change operation in t affecting f by a change operation of the same type affecting
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g and vice versa. An implies-constraint-addition operation adding an implies constraint
from f to g, for instance, is replaced by an implies-constraint-addition operation adding
an implies constraint from g to f , i.e., “f implies g“ is replaced by “g implies f“.

By construction of the change sequence u, the FD rnmRootf (fd1) . t can be obtained
from the FD rnmRootg(fd1).u by renaming the feature f (if it exists) to g and renaming
the feature g (if it exists) to f in rnmRootg(fd1).u. Vice versa, the FD rnmRootg(fd1).
u can be obtained from the FD rnmRootf (fd1).t by renaming the feature f (if it exists)
to g and renaming the feature g (if it exists) to f in rnmRootf (fd1) . t.

The feature f is constrained in rnmRootf (fd1) . t in the same way the feature
g is constrained in rnmRootg(fd1) . u. Vice versa, the feature g is constrained in
rnmRootf (fd1) . t in the same way the feature f is constrained in rnmRootg(fd1) . u.
The valid configurations of rnmRootg(fd1).u can be obtained from the valid configura-
tions of rnmRootf (fd1). t via replacing the feature f by the feature g and replacing the
feature g by the feature f in the valid configurations of rnmRootf (fd1).t. Analogously,
it is possible to obtain the valid configurations of rnmRootf (fd1) . t from the valid
configurations of rnmRootg(fd1) . u. This especially implies that rnmRootg(fd1) . u is
consistent because rnmRootf (fd1) . t is consistent.

Let c be a valid configuration of rnmRootg(fd1).u. Then, the above implies that the
configuration c′ obtained from c by replacing the feature f in c (if it exists in c) by the
feature g and replacing the feature g in c (if it exists in c) by the feature f is a valid
configuration of rnmRootf (fd1) . t. As the FD rnmRootf (fd1) . t is by assumption
a consistent refinement of fd2, the configuration c′ is also a valid configuration of fd2.
As the features f, g are not used by fd2, using Proposition 4.1, we obtain that the
validity of c′ in fd2 implies that c′ ∪ {f, g} is valid in fd2. As c ⊆ c′ ∪ {f, g} and
f, g are not used in fd2, this again implies with Proposition 4.1 that c is valid in fd2.
Therefore, rnmRootg(fd1) . u is a consistent refinement of fd2. We can conclude that
dP(rnmRootf (fd1)) ≥ dP(rnmRootg(fd1)).

Analogously, we can show that for every shortest change sequence t that repairs
rnmRootg(fd1) towards satisfying P⊆(LFD, fd2), there exists a change sequence u with
|u| = |t| such that u repairs rnmRootf (fd1) towards satisfying P⊆(LFD, fd2). Therefore,
dP(rnmRootf (fd1)) ≤ dP(rnmRootg(fd1)).

As it holds that dP(rnmRootf (fd1)) ≥ dP(rnmRootg(fd1)) and it further holds that
dP(rnmRootf (fd1)) ≤ dP(rnmRootg(fd1)), we can conclude that dP(rnmRootf (fd1)) =
dP(rnmRootg(fd1)). Thus, rnmRootf and rnmRootg induce an equally long shortest
solution for I.

Similarly, feature-addition operations that add features not used in the FDs induce
equally long shortest solutions for FD refinement model repair problem instances. Let
fd1 and fd2 be two FDs and let p be an arbitrary feature used in fd1. Then, for
all features f, g that are neither used in fd1 nor in fd2, the operations addFp,f and
addFp,g induce an equally long shortest solution for the model repair problem instance
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I = (P⊆(LFD, OFD, fd2), fd1). The reason for this is similar to the reason for the
equivalence of root renaming operations: For every shortest change sequence t that
repairs addFp,f (fd1), it is possible to construct a change sequence u of the same length
|u| = |t| that repairs addFp,g(fd1). The FD addFp,f (fd1) . t constrains the feature f in
the same way as the FD addFp,g(fd1) . u constrains the feature g. Vice versa, the FD
addFp,f (fd1).t constrains the feature g in the same way as the FD addFp,g(fd1)(fd1).u
constrains the feature f . The valid configurations of addFp,g(fd1) . u can be obtained
from the valid configurations of addFp,f (fd1) . t by exchanging the features f and g
in the valid configurations of addFp,f (fd1) . t. As the features f and g are not used
in the FD fd2, the FD fd2 does not constrain the features f and g. Therefore, as
addFp,f (fd1).t is by assumption a consistent refinement of fd2, the FD addFp,g(fd1).u
is also a consistent refinement of fd2. A similar argumentation shows that for every
shortest change sequence t that repairs addFp,g(fd1), it is possible to construct a change
sequence u of the same length |u| = |t| that repairs addFp,f (fd1).

Proposition 8.14. Let fdi = (Fi, Ei, ri,Mi, Ori, Xori, Ii, Xi) for i ∈ {1, 2} be two FDs
and let p ∈ F1 be a feature of fd1. Further, let I = (P, fd1) be an instance of the model
repair problem P = P⊆(LFD, OFD, fd2). Then, for all features f, g ∈ UN \ (F1 ∪ F2), it
holds that addFp,f ∼I addFp,g.

Proof. The proof is analogous to the proof for Proposition 8.13.

8.3.2 Feature Diagram Generalization Repair

This section presents a change operation partitioning for the FD modeling language and
the FD generalization repair problem.

Let fd1 and fd2 be two FDs. Then, for all features f, g that are neither used in fd1

nor in fd2, the operations rnmRootf and rnmRootg induce an equally long solution for
the model repair problem instance I = (P⊇(LFD, OFD, fd2), fd1). From each shortest
change sequence t that repairs the FD rnmRootf (fd1), it is possible to construct a change
sequence u of same length |u| = |t| that repairs the FD rnmRootg(fd1). The change
sequence u is constructed in the same way as in the context of the FD refinement repair
problem (cf. Section 8.3.1). If there existed a configuration c that is valid in fd2 and not
valid in rnmRootg(fd1).u, then the configuration c′ obtained from the configuration c by
exchanging the feature f (if it exists in c) with the feature g and exchanging the feature g
(if it exists in c) with the feature f would not be valid configuration of rnmRootf (fd1).t.
However, c′ would be a valid configuration of fd2 because the configuration c is valid in
fd2 and fd2 neither restricts the feature f nor the feature g. This would contradict the
assumption that rnmRootf (fd1) . t is a generalization of fd2.

Proposition 8.15. Let fdi = (Fi, Ei, ri,Mi, Ori, Xori, Ii, Xi) for i ∈ {1, 2} be two FDs.
Let I = (P, fd1) be an instance of the model repair problem P = P⊇(LFD, OFD, fd2).
Then, for all features f, g ∈ UN \ (F1 ∪ F2), it holds that rnmRootf ∼I rnmRootg.
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Proof. (Sketch.) Let fdi for i ∈ {1, 2}, P, and I be given as above. Let f, g ∈ UN \ (F1∪
F2) be two features neither used in fd1 nor in fd2. As f, g /∈ F1, the operations rnmRootf
and rnmRootg are applicable to fd1. Assume t ∈ O∗FD is a shortest change sequence
that repairs rnmRootf (fd1) towards satisfying P⊇(LFD, fd2). We define u ∈ O∗FD as the
change sequence of length |u| = |t| obtained from t by replacing each change operation
in t affecting f by a change operation of the same type affecting g and vice versa.

By construction of the change sequence u, the FD rnmRootf (fd1) . t can be obtained
from the FD rnmRootg(fd1).u by renaming the feature f (if it exists) to g and renaming
the feature g (if it exists) to f in rnmRootg(fd1).u. Vice versa, the FD rnmRootg(fd1).
u can be obtained from the FD rnmRootf (fd1).t by renaming the feature f (if it exists)
to g and renaming the feature g (if it exists) to f in rnmRootf (fd1) . t.

The feature f is constrained in rnmRootf (fd1) . t in the same way the feature
g is constrained in rnmRootg(fd1) . u. Vice versa, the feature g is constrained in
rnmRootf (fd1) . t in the same way the feature f is constrained in rnmRootg(fd1) . u.
Therefore, the valid configurations of rnmRootg(fd1) .u can be obtained from the valid
configurations of rnmRootf (fd1) . t via replacing the feature f by the feature g and
replacing the feature g by the feature f in the valid configurations of rnmRootf (fd1). t.
Analogously, it is possible to obtain the valid configurations of rnmRootf (fd1) . t from
the valid configurations of rnmRootg(fd1) . u.

Let c ∈ Jfd2KFD be a valid configuration of fd2. As by assumption rnmRootf (fd1). t
is a generalization of fd2, the configurations c is also valid in rnmRootf (fd1) . t.

Suppose towards a contradiction that c is not valid in rnmRootg(fd1) . u. Then, it
follows from the above that the configuration c′ obtained from c by replacing the feature
f in c (if it exists in c) by the feature g and replacing the feature g in c (if it exists in
c) by the feature f is not a valid configuration of rnmRootf (fd1) . t. But as f, g /∈ F2,
the features f and g are unconstrained in fd2 and, therefore, Proposition 4.1 guarantees
with c ∈ Jfd2KFD that c′ ∈ Jfd2KFD, which stands with c′ /∈ JrnmRootf (fd1) . tKFD in
contradiction to the assumption that rnmRootf (fd1) . t is a generalization of fd2. We
can conclude dP(rnmRootf (fd1)) ≥ dP(rnmRootg(fd1)).

Analogously, we can show that for every shortest change sequence t that repairs
rnmRootg(fd1) towards satisfying P⊇(LFD, fd2), there exists a change sequence u with
|u| = |t| such that u repairs rnmRootf (fd1) towards satisfying P⊇(LFD, fd2). From
this, we can conclude dP(rnmRootf (fd1)) ≤ dP(rnmRootg(fd1)).

As it holds that dP(rnmRootf (fd1)) ≥ dP(rnmRootg(fd1)) and it further holds that
dP(rnmRootf (fd1)) ≤ dP(rnmRootg(fd1)), we can conclude that dP(rnmRootf (fd1)) =
dP(rnmRootg(fd1)). Thus, rnmRootf and rnmRootg induce an equally long shortest
solution for I.

Similarly, feature-addition operations that add features not used in the FDs induce
equally long shortest solutions for FD generalization model repair problem instances.
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Proposition 8.16. Let fdi = (Fi, Ei, ri,Mi, Ori, Xori, Ii, Xi) for i ∈ {1, 2} be two FDs
and let p ∈ F1 be a feature of fd1. Further, let I = (P, fd1) be an instance of the model
repair problem P = P⊇(LFD, OFD, fd2). Then, for all features f, g ∈ UN \ (F1 ∪ F2), it
holds that addFp,f ∼I addFp,g.

Proof. The proof is analogous to the proof for Proposition 8.15.

8.3.3 Feature Diagram Refactoring Repair

This section presents a change operation partitioning for the FD modeling language and
the FD refactoring repair problem.

Root-renaming operations changing the root to a feature not used in the FDs induce
equally long shortest solutions for FD refactoring model repair problem instances.

Proposition 8.17. Let fdi = (Fi, Ei, ri,Mi, Ori, Xori, Ii, Xi) for i ∈ {1, 2} be two FDs.
Let I = (P, fd1) be an instance of the model repair problem P = P=(LFD, OFD, fd2).
Then, for all features f, g ∈ UN \ (F1 ∪ F2), it holds that rnmRootf ∼I rnmRootg.

Proof. The proof is a combination of the proofs for Proposition 8.13 and Proposition 8.15.

Similarly, feature-addition operations adding features not used in the FDs induce
equally long shortest solutions for FD refactoring model repair problem instances.

Proposition 8.18. Let fdi = (Fi, Ei, ri,Mi, Ori, Xori, Ii, Xi) for i ∈ {1, 2} be two FDs
and let p ∈ F1 be a feature of fd1. Further, let I = (P, fd1) be an instance of the model
repair problem P = P=(LFD, OFD, fd2). Then, for all features f, g ∈ UN \ (F1 ∪ F2), it
holds that addFp,f ∼I addFp,g.

Proof. The proof is analogous to the proof for Proposition 8.17.

8.3.4 Example Repair-Representative Function and Application

From the argumentations im Section 8.3.1, Section 8.3.2, and Section 8.3.3, we can
conclude that it is possible to use the same repair-representative function for the FD
refinement, generalization, and refactoring repair problems using the same models. For
each fd ∈ MFD, we can construct the repair-representative function Rfd : MFD →
℘fin(OFD) for each of the FD model repair problems using the FD fd as follows: The
function Rfd maps each FD to the set containing

• all feature-deletion, implies-constraint-addition, implies-constraint-deletion, xor-
to-or-conversion, or-to-xor conversion, excludes-constraint-addition, optional-to-
mandatory, excludes-constraint-deletion, or-group-creation, mandatory-to-optional,
feature-group-insertion, feature-group-exclusion operations that are applicable to
the FD,
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Figure 8.4: Two simple FDs and an excerpt of the change sequence search tree for com-
puting a shortest solution for an FD refinement repair problem.

• all root-renaming and feature-addition, operations that are not partitioned in Sec-
tion 8.3.1, Section 8.3.2, and Section 8.3.3 and are applicable to the FD, and

• exactly one arbitrary but fixed change operation of each equivalence class of the
root-renaming and feature-addition operations identified in Section 8.3.1, Sec-
tion 8.3.2, and Section 8.3.3.

For example, Figure 8.4 depicts an excerpt of the change sequence search tree for
computing a shortest solution for an FD refinement repair problem instance. The FD
fd3 is the model of the instance. The property of the refinement repair problem contains
all consistent FDs that refine the FD fd4.

8.3.5 Implementation and Experiments

We implemented the model repair algorithms for the FD modeling language to perform
experimental evaluations. The implementation is written in Java and uses the semantic
differencing operator implementation presented in Section 4.3.

We performed experimental evaluations by executing the algorithms for computing
shortest solutions for FD refinement repair problem instances using the ten example
FDs presented in Appendix B. The purpose of the experiments is twofold. The first
purpose is testing whether computing shortest repairing sequences is feasible for the
example FD refinement repair problem instances. The second purpose is comparing the
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Algorithm 11 Heuristic for computing configurations in the semantics of an FD.

Input: An FD fd = (F,E, r,M,Or,Xor, I,X).
Output: A set C ⊆ JfdKFD of configurations in the semantics of fd.
1: function ExplicitConfigs(fd)
2: define configs← SubtreeConfigs(r, fd) as set of configurations
3: configs← {C ∈ configs | ∀(a, b) ∈ I : a ∈ C ⇒ b ∈ C}
4: configs← {C ∈ configs | ∀(a, b) ∈ X : a ∈ C ⇒ b /∈ C}
5: return configs
6: end function

performances of the different algorithms in the context of the example FD refinement
repair problems.

Heuristics for Consistency Checking and Witness Computation

The computational complexity of semantic differencing and consistency checking is high.
Further, the algorithms often execute the semantic differencing operator and consistency
checks. To achieve performance improvements, we implemented heuristics for fast wit-
ness computation and consistency checking.

For checking whether an FD fd is a refinement of an FD fd′, the heuristic first
computes all configurations that are valid in fd and solely contain features that are used
in fd. Then, the heuristic checks whether one of these configurations is not valid in
fd′. If this is the case, then the configuration is a diff witness contained in the semantic
difference from fd to fd′. However, even if all configurations in the set are also valid in
fd′, the semantic difference from fd to fd′ might be not empty. Thus, if no diff witness
is found as described above, we use the semantic differencing operator as presented in
Section 4.3 for executing a sound and complete refinement check. The computed set of
configurations is also used for checking whether fd is consistent. By Proposition 4.2,
an FD is consistent iff there exists a configuration that is valid in the FD and solely
contains features that are used in the FD. Thus, the computed set is not empty iff the
FD fd is consistent.

The function ExplicitConfigs defined in Algorithm 11 is the function for comput-
ing all configurations that are valid in an FD and solely contain features that are used in
the FD. The function takes an FD as input. It outputs a finite subset of the semantics of
the FD. Initially, it computes the set of all configurations that satisfy the child feature
and group constraints of the FD and solely contain features that are used in the FD
(l. 2). To this effect, the function calls the function SubtreeConfigs. The computed
set of configurations is stored in the variable configs. The computed configurations do
not necessarily satisfy the implies and excludes constraints of the FD. Therefore, the
function proceeds with filtering all configurations not satisfying the implies and excludes
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Algorithm 12 Computing the explicitly modeled configurations of a subtree of an FD
while ignoring cross-tree constraints.

Input: An FD fd = (F,E, r,M,Or,Xor, I,X) and a feature p ∈ F .
Output: Configurations of the subtree of fd starting at the feature p when ignoring

cross-tree constraints.
1: function SubtreeConfigs(p, fd)
2: define configs← {{p}} as set of configurations
3: for all (a, b) ∈ {(a, b) ∈ E | a = p ∧ ∀(c,G) ∈ Or ∪Xor : b /∈ G} do
4: define bConfigs← SubtreeConfigs(b, fd) as set of configurations
5: if (a, b) ∈M then
6: configs← {A ∪B | A ∈ configs ∧B ∈ bConfigs}
7: else
8: configs← configs ∪ {A ∪B | A ∈ configs ∧B ∈ bConfigs}
9: end if

10: end for
11: for all (a,G) ∈ {(a,G) ∈ Or | a = p} do
12: define oldConfigs← configs as set of configurations
13: configs← ∅
14: for all S ⊆ G with S 6= ∅ do
15: define subsetConfigs← oldConfigs as set of configurations
16: for all c ∈ S do
17: define cConfigs← SubtreeConfigs(c, fd)
18: subsetConfigs← {A ∪B | A ∈ subsetConfigs ∧B ∈ cConfigs}
19: end for
20: configs← configs ∪ subsetConfigs
21: end for
22: end for
23: for all (a,G) ∈ {(a,G) ∈ Xor | a = p} do
24: define oldConfigs← configs as set of configurations
25: configs← ∅
26: for all c ∈ G do
27: define cConfigs← SubtreeConfigs(c, fd)
28: configs← configs ∪ {A ∪B | A ∈ oldConfigs ∧B ∈ cConfigs}
29: end for
30: end for
31: return configs
32: end function

constraints from the set stored in the variable configs (ll. 3,4). Finally, the function
returns the set of computed configurations (l. 5).
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Algorithm 13 Checking whether an FD is inconsistent.

Input: An FD fd = (F,E, r,M,Or,Xor, I,X).
Output: true, if fd contains an excludes constraint between features that obviously

are core features of fd. Otherwise, false.
1: function CoreInconsistent(fd)
2: define core← ComputeCore(fd) as set of features
3: for all (a, b) ∈ X do
4: if a ∈ core ∧ b ∈ core then
5: return true
6: end if
7: end for
8: return false
9: end function

The function SubTreeConfigs defined in Algorithm 12 takes a feature p and a
feature diagram fd as inputs. It recursively computes the set of all configurations that
satisfy the child feature and group constraints between the features in the subtree of
the feature diagram fd starting at the feature p. The computed configurations solely
contain features that are used in the subtree. Initially, the function initializes the variable
configs as a singleton set containing the configuration solely containing the feature p
(l. 2). This represents that the feature p must be selected if the subtree starting at
feature p is selected. Afterwards, the function iterates over all edges of the tree starting
at p (ll. 3-10) that do not end at a feature participating in a group. Thus, the loop
iterates over all edges targeting an optional or mandatory child feature of p. In the
loop, the function computes the configurations obtained when recursively calling the
function with the child feature and the FD as parameters and stores the result in the
variable bConfigs (l. 4). If the child feature is a mandatory child (l. 5), then the set
of computed configurations stored in configs is updated to the pairwise union of the
sets of configurations contained in the sets configs and bConfigs (l. 6). Applying this
operation represents that the child feature must be selected when its parent p is selected.
Otherwise (ll. 7-9), the child feature is an optional child of its parent. In this case, the
variable configs is set to the union of the set stored in the variable and the pairwise union
of the sets of configurations contained in the sets configs and bConfigs (l. 8). Applying
this operation represents that the child feature can (but may not) be selected when its
parent p is selected. Afterwards, the function iterates over all or-groups (ll. 11-22) and
over all xor-groups (ll. 23-30) of the FD fd. In the bodies of the loops, the function
updates the set of configurations stored in the variable configs with respect to choosing
different subsets of the features participating in the groups. The update processes are
similar to the update process for the mandatory and optional child features. Finally, the
function returns the value stored in the variable configs (l. 31).
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Algorithm 14 Computing features that are part of the core of an FD.

Input: An FD fd = (F,E, r,M,Or,Xor, I,X).
Output: A set of features C that is a subset of the set of all core features of fd.
1: function ComputeCore(fd)
2: define core← {r} as set of features
3: define S as empty stack of features
4: S.push(r)
5: while S not empty do
6: define cur ← S.pop() as feature
7: for all (a, b) ∈M do
8: if a = cur ∧ b /∈ core then
9: core← core ∪ {b}

10: S.push(b)
11: end if
12: end for
13: for all (a,G) ∈ Or ∪Xor do
14: if a = cur ∧ |G| = 1 ∧G 6⊆ core then
15: core← core ∪G
16: S.pushAll(G)
17: end if
18: end for
19: for all (a, b) ∈ I do
20: if a = cur ∧ b /∈ core then
21: define p← b as feature
22: while p 6= r do
23: if p /∈ core then
24: core← core ∪ {p}
25: S.push(p)
26: end if
27: p← parent(p)
28: end while
29: end if
30: end for
31: end while
32: return core
33: end function

The heuristic for checking whether an FD is consistent relies on computing features
that are obviously core features [BSRC10] of the FD, before checking whether there exists
an excludes constraint between two of the core features. A feature is a core feature of
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Algorithm 15 Checking whether the FD fd is a consistent refinement of the FD fd′

including heuristics for diff witness computation and checking consistency.

Input: Two FDs fd = (F,E, r,M,Or,Xor, I,X) and fd′.
Output: inconsistent, if fd is inconsistent. Otherwise, X, if fd refines fd′ and fd

is consistent. Otherwise, w ∈ δ(fd, fd′), if fd is consistent and δ(fd, fd′) 6= ∅.
1: if CoreInconsistent(fd) then
2: return inconsistent
3: end if
4: define configs← ExplicitConfigs(fd) as set of configurations
5: if configs = ∅ then
6: return inconsistent
7: end if
8: for all C ∈ configs do
9: if C /∈ Jfd′KFD then

10: return C
11: end if
12: end for
13: return SemFDDiff(fd, fd′)

an FD iff every valid configuration of FD contains the feature [BSRC10]. For example,
the root feature of an FD is a core feature of the FD.

The function CoreInconsistent defined in Algorithm 13 computes features that
are obviously core features of an FD, before checking whether an excludes constraint
between the computed core features is not satisfied. To this effect, it initializes the
variable core and sets its value to the result from calling the function ComputeCore
(l. 2). The set core contains core features of the input FD. Afterwards, it iterates over
all excludes constraints of the FD (ll. 3-7) and checks whether two of the core features
exclude each other (l. 4). If this is the case, the function returns true (l. 5). Otherwise,
the function returns false (l. 8).

The function ComputeCore is defined in Algorithm 14. It recursively computes the
set of all features that must be chosen because of mandatory child feature constraints,
group constraints induced by groups containing a single feature, and requires constraints.
First, it initializes the variable core as the singleton set containing the root feature (l. 2).
Afterwards, it initializes the variable S as an empty stack of features (l. 3), before it
pushes the root feature on the stack (l. 4). In the following loop (ll. 5-31), the function
computes core features of the FD and adds them to the set stored in the variable core.
The stack S contains the features that are still to be processed for computing the core
features. It contains core features that may have dependencies to other core features.
While the stack is not empty (l. 5), the function pops the first element of the stack
(l. 6) and stores the value in the variable cur. Afterwards, it adds all features that
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Time
Model Problem Algo. 2 Algo. 3 Algo. 4 Algo 5 Algo. 6

car car1 218ms 231ms 157ms 207ms 346ms
car1 car 48s 48s 1808ms 6017ms 3667ms
car1 car2 46s 46s 1764ms 6292ms 3154ms
car2 car1 186ms 182ms 178ms 233ms 233ms
tablet1 tablet2 TO TO 32s 1m 52s 50s
tablet1 tablet3 TO TO 1m 45s TO 2m 43s
tablet2 tablet1 212ms 235ms 201ms 440ms 298ms
tablet2 tablet3 200ms 195ms 192ms 348ms 243ms
tablet3 tablet1 243ms 274ms 186ms 368ms 275ms
tablet3 tablet2 177ms 194ms 172ms 317ms 220ms
fd1 fd2 8s 10s 362ms 1131ms 961ms
fd1 fd3 105ms 98ms 136ms 196ms 126ms
fd1 fd4 112ms 105ms 106ms 198ms 198ms
fd2 fd1 849ms 768ms 145ms 140ms 253ms
fd2 fd4 115ms 102ms 101ms 170ms 189ms
fd3 fd1 1542ms 1433ms 171ms 215ms 326ms
fd3 fd2 1m 7s 1m 1s 2169ms 2202ms 4002ms
fd3 fd4 102ms 94ms 110ms 138ms 175ms
fd4 fd2 15s 12s 1186ms 1326ms 2792ms
fd4 fd3 112ms 91ms 94ms 104ms 194ms

Figure 8.5: The execution times of Algorithm 2 - Algorithm 6 when given the FD refine-
ment repair problem instances as inputs.

belong to the core because of mandatory child dependencies with parent cur (ll. 7-12),
group dependencies with parent cur (ll. 13-18), and requires constraint dependencies of
requires constraints starting at cur (ll.19-30) to the set core. After the execution of the
outer loop (ll. 5-31), the variable core stores a set of features that are core features of
fd. Finally, the function returns this set (l. 32).

Including the heuristics for diff witness computation and consistency checking yields
Algorithm 15 for checking whether an FD fd is a consistent refinement of an FD fd′.
Initially, the algorithm heuristically checks whether the features of the core exclude
each other by calling the function CoreInconsistent (l. 1). If this is the case, the
algorithm returns the special value inconsistent (l. 3). Otherwise, the algorithm
computes the explicitly modeled configurations of the input FD by calling the function
ExplicitConfigs and stores the result in the variable configs (l. 4). The set stored
in the variable configs is empty iff the FD fd is inconsistent. In this case (l. 5), the
algorithm returns the special value inconsistent. Otherwise, the algorithm iterates
over the configurations of the set stored in the variable configs (ll. 8-12). For each
configuration, the algorithm checks whether it is valid in fd′. If the configuration is not
valid in fd′, then it is a diff witness contained in the semantic difference from fd to fd′.
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Model Problem Solution

car car1 exclGrphybrid, addXfingerprint,fingerprint

car1 car addXfingerprint,fingerprint, addXgas,gas, addFfingerprint,hybrid
car1 car2 addXfingerprint,fingerprint, addXgas,gas, addFfingerprint,hybrid
car2 car1 exclGrphybrid, addXfingerprint,fingerprint

tablet1 tablet2 addXcellular,cellular, addFcellular,dis12, addFcellular,256GB
tablet1 tablet3 addXP200,P200, addFP200,dis12, addFP200,256GB
tablet2 tablet1 addXdis12,dis12

tablet2 tablet3 addX64GB,64GB

tablet3 tablet1 addIprocessor,64GB
tablet3 tablet2 addX256GB,256GB

fd1 fd2 addXC,C, addFA,E, opt2manE
fd1 fd3 exclGrpC
fd1 fd4 exclGrpB
fd2 fd1 addFC,D
fd2 fd4 man2optE, exclGrpB
fd3 fd1 addFB,D, addXB,D

fd3 fd2 addFB,E, opt2manE, addFB,C, addXB,C

fd3 fd4 addFB,C, opt2manC
fd4 fd2 opt2manB, rnmRootE, addFE,C, addXE,C

fd4 fd3 opt2manB

Figure 8.6: The shortest solutions computed by Algorithm 4 for the FD refinement repair
problem instances.

In this case, the algorithm returns the configuration (l. 10). Otherwise, the algorithm
returns the result from calling the function SemFDDiff (l. 13). The function is required
to return X, if fd is a refinement of fd. Otherwise, the function is required to return a
diff witness contained in the semantic difference from fd to fd′. For the implementation
of the function SemFDDiff, it is possible to use the sound and complete semantic
differencing operator for FDs presented in Section 4.3. If Algorithm 15 returns a diff
witness, this witness is easily translatable to the model property containing all models
containing this witness in their semantics. This property implies the complement of the
consistently refines property.

Experiments

We performed experimental evaluations with ten example FDs. Appendix B presents
the example FDs in detail. For each pair of thematically related FDs where one of
the FDs is not a refinement of the other FD, we executed the algorithms presented
in Section 7.5 to compute solutions for the corresponding refinement repair problems.
For testing whether intermediately computed FDs satisfy the refines property, we used
Algorithm 15 for consistency and refinement checking.
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All experiments were executed on a laptop computer with an Intel Core i7-8650U CPU
@ 1.90GHz processor, 16GB RAM, and a Samsung PM981 512GB SSD hard drive using
Windows 10 and Java 1.8.0 192.

Figure 8.5 summarizes the computation times of the algorithms. We have set a time-
out of 15 minutes for each computation. In Figure 3.4, timeouts are indicated by TO.
For instance, Algorithm 2 took 218ms to compute a solution for the model repair prob-
lem instance (P⊆(LFD, OFD,car1),car), i.e., to compute a sequence t ∈ OPA such
that ∅ 6= Jcar . tKPA ⊆ Jcar1KPA. In the cases where the algorithms terminated, the
computation times range from 91ms to 2m 43s. Algorithm 4 successfully computed so-
lutions for all instances in at most 1m 45s. Figure 8.3 depicts the solutions computed
by Algorithm 4 for the input FDs where the computations terminated.

Algorithm 2 and Algorithm 3 have performed about equally well. In all cases where the
length of the computed solutions is longer than two, Algorithm 4 performed better than
the other algorithms. Thus, in the most cases, Algorithm 4 was faster than Algorithm 5
and Algorithm 6. This might be because the computed solutions are short and the
additional computations in Algorithm 5 and Algorithm 6 cause additional overhead.

We conclude that the algorithms handle the small examples, where only short repairing
sequences are required, sufficiently quick. However, the algorithms do not scale well
for inputs where long repairing sequences are required. In one case, three algorithms
timed out and the fastest algorithm took 1m 45s for computing a solution. This is not
surprising as the running times of the algorithms are exponential in the lengths of the
shortest solutions (cf. Section 7.5.1).

8.4 Instantiations with the Sequence Diagram Language

This section instantiates the model repair framework with the refines, generalizes, and
refactors properties and the SD modeling language LSD = (MSD, SemSD, J·KSD) pre-
sented in Chapter 5.

Infinitely many object-addition and action-addition operations are applicable to each
SD. In contrast, every SD only contains finitely many objects and finitely many ac-
tions. Thus, only finitely many object-deletion, tag-object-as-complete, untag-object-
as-complete, tag-object-as-visible, untag-object-as-visible, tag-object-as-initial, untag-
object-as-initial, interaction-addition, and interaction-deletion operations are applicable
to each SD.

Therefore, it suffices to partition the object-addition and action-addition operations
that are applicable to an SD with respect to the property of a concrete model repair
problem. The partitioning is similar for all instances of the three model repair problems
for the SD language.

Section 8.4.1 presents a change operation partitioning for SD refinement repair prob-
lem instances. Then, Section 8.4.2 presents a change operation partitioning for SD
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generalization repair problem instances. Afterwards, Section 8.4.3 presents a change op-
eration partitioning for SD refactoring repair problem instances. Finally, Section 8.4.4
presents a repair-representative function for the SD model repair problems.

8.4.1 Sequence Diagram Refinement Repair

This section presents a change operation partitioning for the SD modeling language and
the SD refinement repair problem.

Let sd and sd′ be two SDs. Then, for all objects o, p that are neither used in sd nor
in sd′, the operations addOo and addOp induce an equally long shortest solution for the
model repair problem instance I = (P⊆(LSD, OSD, sd′), sd). For every shortest change
sequence t that repairs addOo(sd), it is possible to construct a change sequence u of the
same length |u| = |t| such that u repairs addOp(sd). The SD addOo(sd).t constrains the
object o in the same way the SD addOp(sd) . u constrains the object p and vice versa.
Dually, the SD addOp(sd).u constrains the object o in the same way the SD addOo(sd).t
constrains the object p and vice versa. The system runs that are valid in addOp(sd) . u
can be obtained from the system runs that are valid in addOo(sd) . t by exchanging all
occurrences of the object o with p and exchanging all occurrences of the object p with o
in the system runs that are valid in addOo(sd) . t. As the objects o and p are not used
in sd′, the SD equally constrains the interactions of both objects (due to other tagged
objects). Therefore, as addOo(sd) . t is by assumption a consistent refinement of sd′

and sd′ equally constrains the interactions of the objects o and p, addOp(sd) is also a
consistent refinement of sd′.

Proposition 8.19. Let sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′) be two

SDs. Let I = (P, sd) be an instance of the model repair problem P = P⊆(LSD, OSD, sd′).
Then, for all objects o, p ∈ UN \ (O ∪O′), it holds that addOo ∼I addOp.

Proof. (Sketch.) Let sd, sd′, P, and I be given as above. Let o, p ∈ UN \ (O ∪ O′)
be two object names. Let t ∈ O∗SD be a shortest change sequence that repairs the SD
addOo(sd) towards satisfying P⊆(LSD, sd′). We define the change sequence u ∈ O∗SD of
length |u| = |t| as the change sequence obtained from the sequence t via replacing each
change operation in t affecting the object o with the change operation of the same type
affecting the object p, instead, and vice versa. A change operation adding an interaction
from the object o to the object p with action a at position i, for instance, is replaced by
a change operation adding an interaction from the object p to the object o with action
a at position i.

By construction of the change sequence u, the SD addOo(sd) . t can be obtained from
the SD addOp(sd) . u via renaming the object o (if it exists) to p and renaming the
object p (if it exists) to o in addOp(sd) . u. Vice versa, the SD addOp(sd) . u can be
obtained from the SD addOo(sd) . t via renaming the object o (if it exists) to p and
renaming the object p (if it exists) to o in addOo(sd). t. Thus, the object o (respectively
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p) is constrained in the SD addOo(sd). t in the same way the object p (respectively o) is
constrained in addOp(sd) . u and vice versa. This especially implies that addOp(sd) . u
is consistent because addOo(sd) . t is consistent.

Let (Obj,Act, τ) be a system run that is valid in addOp(sd) . u. The above implies
that the system run (Obj′, Act, τ ′) obtained from (Obj,Act, τ) by replacing the object
o in each interaction of τ and in the set of object O by the object p and replacing the
object p in each interaction of τ and in the set of objects O by the object o is valid
in addOo(sd) . t. As addOo(sd) . t is a consistent refinement of sd′, the system run
(Obj′, Act, τ ′) is also a system run of sd′. As the interactions of the objects o and p are
equally constrained in sd′ (by objects tagged with stereotypes) because the objects are
not used in sd′, the system run (Obj,Act, τ) must also be a valid in sd′. From the above,
we can conclude dP(addOo(sd)) ≥ dP(addOp(sd)).

Analogously, we can show that for every shortest change sequence t ∈ O∗SD that repairs
addOp(sd) towards satisfying P⊆(LSD, sd′), there exists a change sequence u ∈ O∗SD
with |u| = |t| that repairs addOo(sd) towards satisfying P⊆(LSD, sd′). From this, we can
conclude dP(addOo(sd)) ≤ dP(addOp(A)).

From dP(addOo(sd)) ≥ dP(addOp(A)) and dP(addOo(sd)) ≤ dP(addOp(A)), we can
conclude that dP(addOo(sd)) = dP(addOp(A)). Thus, addOo and addOp induce an
equally long shortest solution for I.

Let sd and sd′ be two SDs. Then, for all actions a, b that are neither used in sd
nor in sd′, the operations addActa and addActb induce an equally long shortest solution
for the model repair problem instance I = (P⊆(LSD, OSD, sd′), sd). For every shortest
change sequence t that repairs addActa(sd), it is possible to construct a change sequence
u of the same length |u| = |t| such that u repairs addActb(sd). The SD addActa(sd) . t
constrains the interactions with the action a in the same way the SD addActb(sd) . u
constrains the interactions with the action b and vice versa. Dually, the SD addActb(sd).
u constrains the interactions with the action a in the same way the SD addActa(sd) . t
constrains the interactions with the action b and vice versa. The system runs that
are valid in addActb(sd) . u can be obtained from the system runs that are valid in
addActa(sd) . t by exchanging all occurrences of the action a with the action b and
exchanging all occurrences of the action b with the action a in the system runs that
are valid in addActa(sd) . t. As the actions a and b are not used in sd′, the SD equally
constrains the interactions with the actions a and b. Therefore, as the SD addActa(sd).t
is by assumption a consistent refinement of the SD sd′ and sd′ equally constrains the
interactions with the actions a and b, it holds that the SD addActb(sd) . u is also a
consistent refinement of the SD sd′.

Proposition 8.20. Let sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′) be two

SDs. Let I = (P, sd) be an instance of the model repair problem P = P⊆(LSD, OSD, sd′).
Then, for all actions a, b ∈ UN \ (A ∪A′), it holds that addActa ∼I addActb.
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Proof. (Sketch.) Let sd, sd′, P, and I be given as above. Let a, b ∈ UN \ (A ∪ A′) be
two action labels that are neither used in sd nor in sd′. Assume t ∈ O∗SD is a shortest
change sequence that repairs addActa(sd) towards satisfying P⊆(LSD, sd′). We define
the change sequence u of length |t| as the change sequence obtained from the sequence t
via replacing each change operation in t affecting the action a with a change operation
of the same type that affects the action b, instead, and vice versa. A change operation
adding an interaction from the object o to the object p with action a at position i, for
instance, is replaced by a change operation adding an interaction from the object o to
the object p with action b at position i.

As addActa and addActb are applicable to sd, the SD sd does not contain any inter-
actions with actions a or b. Therefore, by construction of the change sequence u, the
SD addActa(sd) . t can be obtained from the AD addActb(sd) . u via exchanging all
occurrences of the action a in the SD addActb(sd) . u with the action b and exchanging
all occurrences of the action b with the action a. Vice versa, the SD addActb(sd) . u can
be obtained from the SD addActa(sd) . t via exchanging the actions a and b.

Therefore, if (Obj,Act, τ) is a system run in the semantics of addActa(sd) . t, then
the system run (Obj,Act′, τ ′) obtained from the system run (Obj,Act, τ) by replacing
all occurrences of a by b and all occurrences of b by a in τ and Act is a system run in the
semantics of addActb(sd) .u and vice versa. This especially implies that addActb(sd) .u
is consistent because addActa(sd) . t is consistent.

Let (Obj,Act, τ) be a system run that is valid in addActb(sd) . u. The above implies
that the system run (Obj,Act′, τ ′) obtained from (Obj,Act, τ) by replacing the action a
in each interaction of τ and in the set of actions Act by the action b and replacing the
action b in each interaction of τ and in the set of actions Act by the action a is valid in
addActa(sd) . t. As addActa(sd) . t is a refinement of sd′, the system run (Obj,Act′, τ ′)
is also valid in sd′. As the interactions with the action a and b are equally constrained
in sd′ (by objects tagged with stereotypes) because the actions are not used in sd′, the
system run (Obj,Act, τ) must also be valid in sd′. From the above, we can conclude
dP(addActa(sd)) ≥ dP(addActb(sd)).

Analogously, we can show that for every shortest change sequence t ∈ O∗SD that repairs
addActb(sd) towards satisfying P⊆(LSD, sd′), there exists a change sequence u ∈ O∗SD
with |u| = |t| that repairs addActa(sd) towards satisfying P⊆(LSD, sd′). From this, we
can conclude dP(addActa(sd)) ≤ dP(addActb(A)).

From dP(addActa(sd)) ≥ dP(addActb(sd)) and dP(addActa(sd)) ≤ dP(addActb(A)),
we can conclude that dP(addActa(sd)) = dP(addActb(sd)). Thus, addActa and addActb
induce an equally long shortest solution for I.

Proposition 8.21. Let sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′) be two

SDs. Let I = (P, sd) be an instance of the model repair problem P = P⊆(LSD, OSD, sd′).
Let objects o, p ∈ O be objects, a, b ∈ A be actions, and i ∈ N with 0 ≤ i < |d| be an
index. If ∀j ∈ N with 0 ≤ j < |d′|, it holds that d′.j 6= (o, ) addIAa ∼I addActb.
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8.4.2 Sequence Diagram Generalization Repair

This section presents a change operation partitioning for the SD modeling language and
the SD generalization repair problem.

Let sd and sd′ be two SDs. Then, for all objects o, p that are neither used in sd
nor in sd′, the operations addOo and addOp induce an equally long shortest solution
for the model repair problem instance I = (P⊇(LSD, OSD, sd′), sd). For every shortest
change sequence t that repairs addOo(sd), it is possible to construct a change sequence
u of the same length |u| = |t| such that u repairs addOp(sd). The change sequence u
is constructed in the same way as for SD refinement repair problems (cf. Section 8.4.1).
The system runs that are valid in addOp(sd) . u can be obtained from the system runs
that are valid in addOo(sd) . t by exchanging all occurrences of the object o with p and
exchanging all occurrences of the object p with o in the system runs that are valid in
addOo(sd) . t. As the objects o and p are not used in sd′, the SD equally constrains the
interactions of both objects. As addOo(sd) . t is by assumption a generalization of sd′

and sd′ equally constrains the interactions of the objects o and p, addOp(sd) is also a
generalization of sd′.

Proposition 8.22. Let sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′) be two

SDs. Let I = (P, sd) be an instance of the model repair problem P = P⊇(LSD, OSD, sd′).
Then, for all objects o, p ∈ UN \ (O ∪O′), it holds that addOo ∼I addOp.

Proof. (Sketch.) Let sd, sd′, P, and I be given as above. Let o, p ∈ UN \ (O ∪ O′)
be two object names. Let t ∈ O∗SD be a shortest change sequence that repairs the SD
addOo(sd) towards satisfying P⊇(LSD, sd′). We define the change sequence u ∈ O∗SD of
length |u| = |t| as the sequence obtained from t via replacing each change operation in
t affecting the object o with the change operation of the same type affecting p, instead,
and vice versa. A change operation adding an interaction from the object o to the object
p with action a at position i, for instance, is replaced by a change operation adding an
interaction from the object p to the object o with action a at position i.

By construction of the change sequence u, the SD addOo(sd) . t can be obtained from
the SD addOp(sd) . u via renaming the object o (if it exists) to p and renaming the
object p (if it exists) to o in addOp(sd) . u. Vice versa, the SD addOp(sd) . u can be
obtained from the SD addOo(sd) . t via renaming the object o (if it exists) to p and
renaming the object p (if it exists) to o in addOo(sd). t. Thus, the object o (respectively
p) is constrained in the SD addOo(sd) . t in the same way the object p (respectively o)
is constrained in addOp(sd) . u. Therefore, if (Obj,Act, τ) is valid in addOo(sd) . t, then
the system run (Obj′, Act, τ ′) obtained from the system run (Obj,Act, τ) via exchanging
the object o in the interactions of τ and in the set Obj with the object p and exchanging
the object p with the object o is valid in addOp(sd) . u.

Let (Obj,Act, τ) be a system run that is valid in sd′. As the objects o and p are not
used in the SD sd′, the SD sd′ equally constrains the interactions of the objects o and
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p (due to objects that are possibly tagged in sd′). Let (Obj′, Act, τ ′) be the system run
obtained from the system run (Obj,Act, τ) by replacing the object o in the interactions
of τ and in the set of object Obj by the object p and replacing the object p in the
interactions and in the set Obj by the object o. As sd′ equally constrains the objects p
and o and as (Obj,Act, τ) is valid in sd′, the system run (Obj′, Act, τ ′) is valid in sd′.

As (Obj′, Act, τ ′) is valid in sd′ and addOo(sd). t is a generalization of sd′, the system
run (Obj′, Act, τ ′) is also valid in addOo(sd) . t. From the above, it follows that the
system run (Obj,Act, τ) (obtained from (Obj′, Act, τ ′) via exchanging the object o in the
interactions of τ ′ and in the set Obj′ with the object p and exchanging the object p with
the object o) is valid in addOp(sd).u. We can conclude dP(addOo(sd)) ≥ dP(addOp(sd)).

Analogously, we can show that for every shortest change sequence t ∈ O∗SD that repairs
addOp(sd) towards satisfying P⊇(LSD, sd′), there exists a change sequence u ∈ O∗SD
with |u| = |t| that repairs addOo(sd) towards satisfying P⊇(LSD, sd′). From this, we can
conclude dP(addOo(sd)) ≤ dP(addOp(sd)).

From dP(addOo(sd)) ≥ dP(addOp(sd)) and dP(addOo(sd)) ≤ dP(addOp(sd)), we can
conclude that dP(addOo(sd)) = dP(addOp(sd)). Thus, addOo and addOp induce an
equally long shortest solution for I.

Let sd and sd′ be two SDs. Then, for all actions a, b that are neither used in sd nor in
sd′, the operations addActa and addActb induce an equally long shortest solution for the
model repair problem instance I = (P⊇(LSD, OSD, sd′), sd). For every shortest change
sequence t that repairs addActa(sd), it is possible to construct a change sequence u of
the same length |u| = |t| such that u repairs addActb(sd). The change sequence u is
constructed in the same way as for SD refinement repair problems (cf. Section 8.4.1).
The system runs that are valid in addAb(sd) . u can be obtained from the system runs
that are valid in addAa(sd) . t by exchanging all occurrences of the action a with the
action b and exchanging all occurrences of the action b with the action a in the system
runs that are valid in addActa(sd) . t. As the actions a and b are not used in sd′, the SD
equally constrains the interactions with the actions a and b. Therefore, as addAa(sd) . t
is by assumption a generalization of sd′ and sd′ equally constrains the interactions with
the actions a and b, addAb(sd) is also a generalization of sd′.

Proposition 8.23. Let sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′) be two

SDs. Let I = (P, sd) be an instance of the model repair problem P = P⊇(LSD, OSD, sd′).
Then, for all actions a, b ∈ UN \ (A ∪A′), it holds that addActa ∼I addActb.

Proof. (Sketch.) Let sd, sd′, P, and I be given as above. Let a, b ∈ UN \ (A ∪ A′) be
two actions that are neither used in sd nor in sd′. Assume t ∈ O∗SD is a shortest change
sequence that repairs addActa(sd) towards satisfying P⊇(LSD, sd′). We define the change
sequence u of length |u| = |t| as the change sequence obtained from the sequence t via
replacing each change operation in t affecting the action a with a change operation of
the same type that affects the action b, instead, and vice versa. A change operation
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adding an interaction from the object o to the object p with action a at position i, for
instance, is replaced by a change operation adding an interaction from the object o to
the object p with action b at position i.

As addActa and addActb are applicable to sd, the SD sd does not contain any inter-
actions with the action a or b. Therefore, by construction of the change sequence u,
the SD addActa(sd) . t can be obtained from the AD addActb(sd) . u via exchanging all
occurrences of the action a in the SD addActb(sd) . u with the action b and exchanging
all occurrences of the action b with the action a. Vice versa, the SD addActb(sd) . u can
be obtained from the SD addActa(sd) . t via exchanging the actions a and b.

Therefore, if (Obj,Act, τ) is a system run in the semantics of addActa(sd). t, then the
system run (Obj,Act′, τ ′) obtained from (Obj,Act, τ) by replacing all occurrences of a
with b in τ and Act′ and replacing all occurrences of b with a in τ and Act′ is a trace in
the semantics of addActb(sd) . u and vice versa.

Let (Obj,Act, τ) be a system run that is valid in sd′. As the actions a and b are not
used in the SD sd′, the SD sd′ equally constrains all interactions with the actions a or
b (due to objects that are possibly tagged in sd′). Let (Obj,Act′, τ ′) be the system run
obtained from the system run (Obj,Act, τ) by replacing the action a in the interactions
of τ and in the set Act by the action b and replacing the action b in the interactions of
τ and in the set Act by the action a. As sd′ equally constrains the interactions with the
actions a and b and as (Obj,Act, τ) is valid in sd′, the system run (Obj,Act′, τ ′) is valid
in sd′.

As (Obj,Act′, τ ′) is valid in sd′ and addActa(sd) . t is a generalization of sd′, the
system run (Obj,Act′, τ ′) is also valid in addActa(sd). t. From the above, it follows that
the system run (Obj,Act, τ) (obtained from (Obj,Act′, τ ′) via exchanging the action
a in the interactions of τ ′ and in the set Act with the action b and exchanging the
action b with the action a) is valid in addActb(sd) . u. From this, we can conclude
dP(addActa(sd)) ≥ dP(addActb(sd)).

Analogously, we can show that for every shortest change sequence t ∈ O∗SD that repairs
addActb(sd) towards satisfying P⊇(LSD, sd′), there exists a change sequence u ∈ O∗SD
with |u| = |t| that repairs addActa(sd) towards satisfying P⊇(LSD, sd′). From this, we
can conclude dP(addActa(sd)) ≤ dP(addActb(A)).

From dP(addActa(sd)) ≥ dP(addActb(sd)) and dP(addActa(sd)) ≤ dP(addActb(A)),
we can conclude that dP(addActa(sd)) = dP(addActb(sd)). Thus, addActa and addActb
induce an equally long shortest solution for I.

8.4.3 Sequence Diagram Refactoring Repair

This section presents a change operation partitioning for the SD modeling language and
the SD refactoring repair problem.

Let sd and sd′ be two SDs. Then, for all objects o, p that are neither used in sd
nor in sd′, the operations addOo and addOp induce an equally long shortest solution
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for the model repair problem instance I = (P=(LSD, OSD, sd′), sd). The reason is a
combination of the reasons for the equivalences in the contexts of SD refinement repair
problems (cf. Section 8.4.1) and SD generalization repair problems (cf. Section 8.4.2).

Proposition 8.24. Let sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′) be two

SDs. Let I = (P, sd) be an instance of the model repair problem P = P=(LSD, OSD, sd′).
Then, for all objects o, p ∈ UN \ (O ∪O′), it holds that addOo ∼I addOp.

Proof. The proof is a combination of the proofs for Proposition 8.19 and Proposition 8.22.

Let sd and sd′ be two SDs. Then, for all actions a, b that are neither used in sd
nor in sd′, the operations addActa and addActb induce an equally long shortest solution
for the model repair problem instance I = (P=(LSD, OSD, sd′), sd). The reason is a
combination of the reasons for the equivalences in the contexts of SD refinement repair
problems (cf. Section 8.4.1) and SD generalization repair problems (cf. Section 8.4.2).

Proposition 8.25. Let sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′) be two

SDs. Let I = (P, sd) be an instance of the model repair problem P = P=(LSD, OSD, sd′).
Then, for all actions a, b ∈ UN \ (A ∪A′), it holds that addActa ∼I addActb.

Proof. The proof is a combination of the proofs for Proposition 8.20 and Proposition 8.23.

8.4.4 Repair-Representative Function and Example Applications

From the argumentations in Section 8.4.1, Section 8.4.2, and Section 8.4.3, we can con-
clude that it is possible to use the same repair-representative function for the SD re-
finement, generalization, and refactoring repair problems using the same models. For
each SD sd ∈ MSD, we can construct the repair-representative function Rsd : MSD →
℘fin(OSD) for each of the SD model repair problems as follows: The function Rsd maps
each SD to the set containing

• all tag-object-as-complete, untag-object-as-complete, untag-object-as-visible, untag-
object-as-initial, tag-object-as-visible, object-deletion, interaction-addition, tag-
object-as-initial, interaction-deletion, operations that are applicable to the SD,

• all object-addition and action-addition operations that have not been partitioned
in Section 8.4.1, Section 8.4.2, and Section 8.4.3 and are applicable to the SD,

• exactly one arbitrary but fixed change operation of each equivalence class of the
object-addition and action-addition operations identified in Section 8.4.1, Sec-
tion 8.4.2, and Section 8.4.3.
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Figure 8.7: Two simple SDs and an excerpt of the change sequence search tree for com-
puting a shortest solution for an SD refinement repair problem.

For example, Figure 8.7 depicts an excerpt of the change sequence search tree for
computing a shortest solution for an SD refinement repair problem instance. The SD
sd1 is the model of the instance. The property of the refinement repair problem contains
all consistent SDs that are refinements of the SD sd2.

8.4.5 Implementation and Experiments

We implemented the model repair algorithms for the SD modeling language to perform
experimental evaluations. The implementation is written in Java and uses the semantic
differencing operator implementation presented in Section 5.3.

We performed experimental evaluations by executing the algorithms for computing
shortest solutions for SD refinement repair problem instances using the seven example
SDs presented in Appendix C. The purpose of the experiments is twofold. The first
purpose is testing whether computing shortest repairing sequences is feasible for the
example SD refinement repair problem instances. The second purpose is comparing the
performances of the different algorithms in the context of the example SD refinement
repair problems.
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Algorithm 16 Checking whether the SD sd is a refinement of the SD sd′ including a
heuristic for diff witness computation.

Input: Two SDs sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′).

Output: A system run r ∈ δ(sd, sd′) if δ(sd, sd′) 6= ∅. Otherwise, the special symbol X
if sd is a refinement of sd′.

1: if |d| < |d′| then
2: return (O,A, d)
3: else if |d| = |d′| ∧ d 6= d′ then
4: return (O,A, d)
5: else if (O,A, d) /∈ Jsd′KSD then
6: return (O,A, d)
7: end if
8: return SemSDDiff(sd, sd′)

Heuristic for Witness Computation

The computational complexity of semantic differencing of SDs is high and the algorithms
often execute the semantic differencing operator. To achieve performance improvements,
we implemented a heuristic for fast witness computation. The heuristic compares the
lengths of sequences of diagram interactions and relies on the following observations.

Proposition 8.26. Let sd = (O,Oc, Ov, Oi, A, d) and sd′ = (O′, O′c, O
′
v, O

′
i, A
′, d′) be

two SDs. Then, the following statements hold:

1. If |d| < |d′|, then r ∈ δ(sd, sd′) where r = (O,A, d).

2. If |d| = |d′| and d 6= d′, then r ∈ δ(sd, sd′) where r = (O,A, d).

Proof. Let sd and sd′ be given as above.

Proof of 1.: Assume |d| < |d′|. Then, by definition of SD semantics, it holds that
r = (O,A, d) ∈ JsdKSD. As |d| < |d′|, it must hold that r /∈ Jsd′KSD because, by
definition of SD semantics, r ∈ Jsd′KSD would imply that |d| ≥ |d′|.

Proof of 2.: Assume |d| = |d′| and d 6= d′. Then, by definition of SD semantics, it
holds that r = (O,A, d) ∈ JsdKSD. As |d| = |d′| and d 6= d′ it holds that r /∈ Jsd′KSD

because, by definition of SD semantics, r ∈ Jsd′KSD would imply that d = d′ as d′ is the
only trace of all systems runs in the semantics of sd′ with traces of length |d′|.

Algorithm 16 is the semantic differencing algorithm including the heuristic. The al-
gorithm takes two SDs sd and sd′ as inputs. For checking whether sd is a refinement of
sd′, the heuristic compares the sequences of diagram interactions of the SDs according to
Proposition 8.26 (ll. 1,3). If one of the conditions stated in Proposition 8.26 is satisfied,
the algorithm returns the corresponding diff witness (ll. 2,4). Then, for fast diff witness
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computation, the algorithm checks whether the system run containing exactly the ob-
jects and diagram interactions as the SD sd is valid in sd′ (l. 5). As shown in the proof
of Proposition 8.26, this system run is guaranteed to be an element of the semantics
of sd. If the system run is not an element of the semantics of sd′, then the algorithm
returns it as a diff witness (l. 6). Finally, if the algorithm does not heuristically find
a diff witness, it returns the result from calling the function SemSDDiff (l. 8). The
function is required to return X if sd is a refinement of sd′. Otherwise, the function is
required to return a diff witness contained in the semantic difference from sd to sd′. For
the evaluation, we use the semantic differencing operator implementation presented in
Section 5.3. Each diff witness w returned by Algorithm 16 can easily be transformed
to the property {m ∈ MSD | w ∈ JmKSD} containing all models containing the witness
w in their semantics. As every SD is consistent, it is not necessary to include a SD
consistency check in Algorithm 16.

Proposition 8.27. Every SD is consistent.

Proof. Let sd = (O,Oc, Ov, Oi, A, d) be an SD. By definition of SD semantics, it directly
follows that (O,A, d) ∈ JsdKSD.

Search Space Restrictions

For pragmatic reasons, to increase the performance of the algorithms, we further restrict
the search spaces as follows.

We consider only interaction-addition operations adding interactions that either occur
in one of the models or involve an action that does not occur in any interaction of the
models. We do not consider interaction-addition operations that would cause the model
obtained from applying a currently processed change sequence to contain the interac-
tion more often than the repair problem’s model. These restrictions are appropriate
because the application of other interaction-addition operations would result in models
that impose different or stronger constraints than the model of the repair problem.

For any model obtained from applying a currently processed change sequence, if there
exist interactions occurring in the repair problem’s model that do not occur in the
current model, then we do not consider interaction-addition operations different from
the operations for adding these interactions. This restriction is reasonable because the
repaired model must contain the interactions occurring in the repair problem’s model as
these interactions are required to occur in the traces of the system runs in the semantics.

For the same reason, if the set of actions of a model obtained from applying a currently
processed change sequence does not contain an action that is used in the sequence of
diagram interactions of the repair problem’s model, then we solely consider an action-
addition operator for adding such an action.

For each model resulting from applying a currently processed change sequence, we only
consider operations for tagging objects in the model that are also tagged accordingly in
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Time
Model Problem Algo. 2 Algo. 3 Algo. 4 Algo 5 Algo. 6

sd1 sd2 3576ms 1245ms 1011ms 634ms 1021ms
sd2 sd1 250ms 224ms 228ms 232ms 374ms
rob1 rob3 6886ms 3468ms 1898ms 1972ms 3505ms
rob1 rob4 1041ms 526ms 525ms 539ms 872ms
rob1 rob5 627ms 625ms 669ms 680ms 1140ms
rob2 rob1 559ms 549ms 26s 18s 33s
rob2 rob3 3867ms 2374ms 1500ms 1343ms 2301ms
rob2 rob4 748ms 706ms TO 12m 22s TO
rob2 rob5 3269ms 3096ms TO TO TO
rob3 rob1 790ms 510ms 28s 19s 30s
rob3 rob4 1185ms 604ms TO 9m 16s TO
rob3 rob5 2754ms 3065ms TO TO TO
rob4 rob1 500ms 535ms 551ms 526ms 552ms
rob4 rob2 757ms 480ms 505ms 464ms 473ms
rob4 rob3 11s 6879ms 2081ms 2239ms 2790ms
rob4 rob5 642ms 653ms 1156ms 1065ms 1419ms
rob5 rob1 538ms 1074ms 922ms 950ms 1025ms
rob5 rob2 522ms 731ms 708ms 897ms 1022ms
rob5 rob3 11s 8902ms 3684ms 4127ms 4374ms
rob5 rob4 591ms 584ms 599ms 1060ms 974ms

Figure 8.8: The execution times of Algorithm 2 - Algorithm 6 when given the SD refine-
ment repair problem instances as inputs.

the model of the repair problem. This restriction is reasonable because the application
of other tagging operations would result in models that impose different or stronger
constraints than the model of the repair problem.

Experiments

We performed experimental evaluations with seven example SDs. Appendix C presents
the example SDs in detail. For each pair of thematically related SDs where one of
the SDs is not a refinement of the other SD, we executed the algorithms presented
in Section 7.5 to compute solutions for the corresponding refinement repair problems.
For testing whether intermediately computed SDs satisfy the refines property, we used
Algorithm 16 for refinement checking.

All experiments were executed on a laptop computer with an Intel Core i7-8650U CPU
@ 1.90GHz processor, 16GB RAM, and a Samsung PM981 512GB SSD hard drive using
Windows 10 and Java 1.8.0 192.

Figure 8.8 summarizes the computation times of the algorithms. We have set a timeout
of 15 minutes for each computation. In Figure 3.4, timeouts are indicated by TO.
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For instance, Algorithm 2 took 3567ms to compute a solution for the model repair
problem instance (P⊆(LSD, OSD,sd2),sd1), i.e., to compute a sequence t ∈ OPA such
that ∅ 6= Jsd1 . tKPA ⊆ Jsd2KPA. In the cases where the algorithms terminated, the
computation times range from 224ms to 12m 22s. Algorithm 3 successfully computed
solutions for all instances in at most 8902ms. Figure 8.9 depicts the solutions computed
by Algorithm 3 for the input SDs. Figure 8.9 uses the abbreviations for action and object
names that are introduced in Figure 5.10 (cf. p. 106) to save space.

In the most cases, Algorithm 3 and Algorithm 2 have performed about equally well. In
two cases, Algorithm 2 took 11s to calculate solutions, whereas Algorithm 3 took less than
one second in both cases. In all but two cases where the lengths of the computed solutions
was greater than three, Algorithm 3 performed better than the other algorithms. Each
of the algorithms Algorithm 4 - Algorithm 6 timed out for at least one of the inputs.
The algorithms Algorithm 2 and Algorithm 3 did not time out for any input and took at
most 8902ms for computing a solution. We conclude that Algorithm 2 and Algorithm 3
are best to compute solutions for the SD refinement repair problem instances.

The algorithms handle the small examples, where only short repairing sequences are
required, sufficiently quick. However, the running times of the algorithms are exponential
in the lengths of the shortest solutions (cf. Section 7.5.1). Thus, the algorithms might
not scale well for larger SDs.

8.5 Instantiations with the Activity Diagram Language

This section instantiates the model repair framework with the refines, generalizes, and
refactors properties and the AD modeling language LAD = (MAD, SemAD, J·KAD) pre-
sented in Chapter 6.

Infinitely many label-addition, action-insertion, xor-fragment-insertion, and-fragment-
insertion, and cyclic-fragment-insertion operations are applicable to each AD. However,
only finitely many label-deletion, action-deletion, xor-fragment-deletion, and-fragment-
deletion, cyclic-fragment-deletion, fragment-branch-insertion as well as fragment-branch-
deletion operations are applicable to an AD. Computing the applicable operations for
an AD is straight-forward.

Thus, it suffices to partition the label-addition, action-insertion, xor-fragment-insertion,
and-fragment-insertion, and cyclic-fragment-insertion operations applicable to each AD
into finitely many equivalence classes with respect to an AD model repair problem.

Section 8.5.1 presents a change operation partitioning for AD refinement repair prob-
lem instances. Then, Section 8.5.2 presents a change operation partitioning for AD
generalization repair problem instances. Afterwards, Section 8.5.3 presents a change op-
eration partitioning for AD refactoring repair problem instances. Finally, Section 8.5.4
presents a repair-representative function for the AD model repair problems.

257



Chapter 8 Concrete Instantiations of the Model Repair Framework

M
o
d
el

P
ro

b
le

m
S
o
lu

ti
on

s
d
1

s
d
2

a
d
d
I
A

2
,b
,f
o
o
,a
,a
d
d
O
V
a

s
d
2

s
d
1

a
d
d
I
A

0
,a
,f
o
o
,b

r
o
b
1

r
o
b
3

a
d
d
O
C
c

r
o
b
1

r
o
b
4

a
d
d
A
ct
a
f
,a
d
d
I
A

7
,a
e
,a
f
,c

r
o
b
1

r
o
b
5

a
d
d
A
ct
a
b
,a
d
d
A
ct
a
a
,a
d
d
I
A

7
,a
e
,a
b
,c
,a
d
d
I
A

5
,u
i
,a
a
,a
e

r
o
b
2

r
o
b
1

a
d
d
A
ct
g
s
,a
d
d
A
ct
s
,a
d
d
O
sp
,a
d
d
I
A

2
,s
p
,s
,p
l
,a
d
d
I
A

2
,p
l
,g
s
,s
p

r
o
b
2

r
o
b
3

a
d
d
O
C
c

r
o
b
2

r
o
b
4

a
d
d
A
ct
a
f
,a
d
d
A
ct
g
s
,a
d
d
A
ct
s
,a
d
d
I
A

5
,a
e
,a
f
,c
,a
d
d
O
s
p
,a
d
d
I
A

2
,s
p
,s
,p
l
,a
d
d
I
A

2
,p
l
,g
s
,s
p

r
o
b
2

r
o
b
5

a
d
d
A
ct
a
b
,a
d
d
A
ct
g
s
,a
d
d
A
ct
s
,a
d
d
A
ct
a
a
,a
d
d
I
A

5
,a
e
,a
b
,c
,a
d
d
I
A

3
,u
i
,a
a
,a
e
,a
d
d
O
s
p
,a
d
d
I
A

2
,s
p
,s
,p
l
,a
d
d
I
A

2
,p
l
,g
s
,s
p

r
o
b
3

r
o
b
1

a
d
d
A
ct
g
s
,a
d
d
A
ct
s
,a
d
d
O
s
p
,a
d
d
I
A

2
,s
p
,s
,p
l
,a
d
d
I
A

2
,p
l
,g
s
,s
p

r
o
b
3

r
o
b
4

a
d
d
A
ct
a
f
,a
d
d
A
ct
g
s
,a
d
d
A
ct
s
,a
d
d
I
A

5
,a
e
,a
f
,c
,a
d
d
O
s
p
,a
d
d
I
A

2
,s
p
,s
,p
l
,a
d
d
I
A

2
,p
l
,g
s
,s
p

r
o
b
3

r
o
b
5

a
d
d
A
ct
a
b
,a
d
d
A
ct
g
s
,a
d
d
A
ct
s
,a
d
d
A
ct
a
a
,a
d
d
I
A

5
,a
e
,a
b
,c
,a
d
d
I
A

3
,u
i
,a
a
,a
e
,a
d
d
O
s
p
,a
d
d
I
A

2
,s
p
,s
,p
l
,a
d
d
I
A

2
,p
l
,g
s
,s
p

r
o
b
4

r
o
b
1

a
d
d
A
ct
a
s
,a
d
d
I
A

7
,a
e
,a
s
,c

r
o
b
4

r
o
b
2

a
d
d
A
ct
a
s
,a
d
d
I
A

7
,a
e
,a
s
,c

r
o
b
4

r
o
b
3

a
d
d
A
ct
a
s
,a
d
d
I
A

6
,a
e
,a
s
,c
,a
d
d
O
C
c

r
o
b
4

r
o
b
5

a
d
d
A
ct
a
b
,a
d
d
A
ct
a
a
,a
d
d
I
A

7
,a
e
,a
b
,c
,a
d
d
I
A

5
,u
i
,a
a
,a
e

r
o
b
5

r
o
b
1

a
d
d
A
ct
a
s
,a
d
d
I
A

8
,a
e
,a
s
,c

r
o
b
5

r
o
b
2

a
d
d
A
ct
a
s
,a
d
d
I
A

8
,a
e
,a
s
,c

r
o
b
5

r
o
b
3

a
d
d
A
ct
a
s
,a
d
d
I
A

7
,a
e
,a
s
,c
,a
d
d
O
C
c

r
o
b
5

r
o
b
4

a
d
d
A
ct
a
f
,a
d
d
I
A

8
,a
e
,a
f
,c

Figure 8.9: The shortest solutions computed by Algorithm 3 for the SD refinement repair
problem instances.
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8.5 Instantiations with the Activity Diagram Language

8.5.1 Activity Diagram Refinement Repair

This section presents a change operation partitioning for the AD modeling language and
the AD refinement repair problem.

Let ad and ad′ be two ADs, (a, b) be a transition of ad and c be an action label of
ad. Then, for all node names d, e that are not used in ad, the operations addAa,b,d,c
and addAa,b,e,c induce an equally long shortest solution for the model repair problem
instance I = (P⊆(LAD, OAD, ad′), ad). The reason for this is that node names do not
influence the traces in the semantics of ADs. For every shortest change sequence t that
repairs addAa,b,d,c(ad), it is possible to construct a change sequence u of the same length
|u| = |t| that repairs addAa,b,e,c(ad). The ADs addAa,b,d,c(ad) . t and addAa,b,e,c(ad) . u
solely differ in the naming of their nodes. More precisely, the AD addAa,b,d,c(ad) . t can
be obtained from the AD addAa,b,e,c(ad) . u by renaming the node d (if it exists) to e
and renaming the node e (if it exists) to d in addAa,b,e,c(ad) . u. Analogously, the ad
addAa,b,e,c(ad) . u can be obtained from the AD addAa,b,d,c(ad) . t. As node names do
not directly influence the traces in the semantics of ADs, the ADs have equal semantics.

Proposition 8.28. Let ad = (L,N, t, AND,XOR,C, T, l) and ad′ = (L′, N ′, t′, AND′,
XOR′, C ′, T ′, l′) be two ADs, (a, b) ∈ T be a transition of ad, and c ∈ L be an action
label of ad. Further, let I = (P, ad) be an instance of the model repair problem P =
P⊆(LAD, OAD, ad′). Then, for all names d, e ∈ UN\N , it holds addAa,b,d,c ∼I addAa,b,e,c.

Proof. (Sketch.) Let ad, ad′, (a, b), c, P,and I be given as above. Let d, e ∈ UN \N be
two node names that are not used in ad. Assume t ∈ O∗AD is a shortest change sequence
that repairs addAa,b,d,c(ad) towards satisfying P⊆(LAD, ad′). We define u as the change
sequence of length |u| = |t| obtained from t by replacing each change operation in t
affecting the node d by the change operation of the same type affecting the node e,
instead, and vice versa. A change operation for adding an action node x labeled y
between d and another node n, for instance, is replaced by a change operation adding
the action node x labeled y between the node e and the node n. Change operations that
do not affect the nodes e and d, such as label addition operations, are left unchanged.

By construction of the change sequence u, the AD addAa,b,d,c(ad) . t can be obtained
from the AD addAa,b,e,c(ad).u by renaming the node d in addAa,b,e,c(ad).u (if it exists)
to e and renaming the node e in addAa,b,e,c(ad) . u (if it exists) to d. Vice versa, the AD
addAa,b,e,c(ad) . u can be obtained from the AD addAa,b,d,c(ad) . t by applying the same
renaming in addAa,b,d,c(ad) . t.

As the ADs addAa,b,e,c(ad).u and addAa,b,d,c(ad).t solely differ in the naming of their
nodes and node names do not affect the traces in the semantics of ADs, the two ADs
are semantically equivalent. Therefore, as the AD addAa,b,d,c(ad) . t is by assumption
a consistent refinement of the AD ad′, the AD addAa,b,e,c(ad) . u is also a consistent
refinement of the AD ad′. From the above, we can conclude that dP(addAa,b,d,c(ad)) ≥
dP(addAa,b,e,c(ad)) holds.
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Chapter 8 Concrete Instantiations of the Model Repair Framework

Analogously, we can show that for every shortest change sequence t ∈ O∗AD that repairs
addAa,b,e,c(ad) towards satisfying P⊆(LAD, ad′), there exists a change sequence u ∈ O∗AD
with |u| = |t| such that u repairs addAa,b,d,c(ad) towards satisfying P⊆(LAD, ad′). From
this, we can conclude that dP(addAa,b,d,c(ad)) ≤ dP(addAa,b,e,c(ad)).

Therefore, from dP(addAa,b,d,c(ad)) ≥ dP(addAa,b,e,c(ad)) and dP(addAa,b,d,c(ad)) ≤
dP(addAa,b,e,c(ad)), we can conclude dP(addAa,b,d,c(ad)) = dP(addAa,b,e,c(ad)). Thus,
addAa,b,d,c and addAa,b,e,c induce an equally long shortest solution for I.

Let ad and ad′ be two ADs. Then, for all action labels a, b that are neither used in
ad nor in ad′, the operations addLa and addLb induce an equally long shortest solution
for the model repair problem instance I = (P⊆(LAD, OAD, ad′), ad). For every shortest
change sequence t that repairs addLa(ad), it is possible to construct a change sequence
u of the same length |u| = |t| such that u repairs addLb(ad). The ADs addLa . t and
addLb . u solely differ in the labeling of their action nodes. Every node in addLa(ad) . t
that is labeled with a is labeled with b in addLb(ad) . u and vice versa. Similarly, every
node in addLb(ad) . u that is labeled with a is labeled with b in addLa(ad) . t and vice
versa. Thus, for every trace in the semantics of addLa(ad) . t, the trace obtained from
replacing each occurrence of a by b and replacing each occurrence of b by a in the trace
is a trace in the semantics of addLb(ad) . u and vice versa. As the AD ad′ does neither
use the action label a nor the action label b, its semantics does not contain any trace
that uses one of the labels. As further addLa(ad). t is a consistent refinement of ad′, the
semantics of the AD addLa(ad) . t does not contain any trace using the labels, either.
Therefore, the ADs addLa(ad) . t and addLb(ad) . u must be semantically equivalent,
which implies that addLb(ad) . u is a consistent refinement of ad′.

Proposition 8.29. Let ad = (L,N, t, AND,XOR,C, T, l) and ad′ = (L′, N ′, t′, AND′,
XOR′, C ′, T ′, l′) be two ADs. Further, let I = (P, ad) be an instance of the model repair
problem P = P⊆(LAD, OAD, ad′). Then, for all labels a, b ∈ UN \ (L ∪ L′), it holds that
addLa ∼I addLb.

Proof. (Sketch.) Let ad, ad′, P, and I be given as above. Let a, b ∈ UN \ (L ∪ L′) be
two action labels that are neither used in ad nor in ad′. Assume t ∈ O∗AD is a shortest
change sequence that repairs addLa(ad) towards satisfying P⊆(LAD, ad′). We define the
change sequence u of length |t| as the change sequence obtained from the sequence t via
replacing each change operation in t affecting the action label a with a change operation
of the same type that affects the label b, instead, and vice versa. A change operation
inserting an action with label a between two succeeding nodes, for instance, is replaced
by a change operation inserting the same action with label b between the same nodes.

As addLa and addLb are applicable to ad, the AD ad cannot contain any actions labeled
a or b. Therefore, by construction of the change sequence u, the AD addLa(ad).t can be
obtained from the AD addLb(ad).u via changing the label of each action in addLb(ad).u
that is labeled with a to b and changing the label of each action that is labeled with b
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to a. Vice versa, the AD addLb(ad) . u can be obtained from the AD addLa(ad) . t via
applying the same relabeling.

Therefore, if τ is a trace in the semantics of addLa(ad) . t, then the trace τ ′ obtained
from replacing all occurrences of a by b and all occurrences of b by a in τ is a trace in
the semantics of addLb(ad).u and vice versa. This especially implies that addLb(ad).u
is consistent because addLa(ad) . t is consistent.

Suppose towards a contradiction that addLb(ad) . u is not a refinement of ad′. Then,
there exists a trace τ in the semantics of addLb(ad) . u that is not an element of the
semantics of ad′. From the above, it follows that the trace τ ′ obtained from replacing
all occurrences of a by b and all occurrences of b by a in τ is a trace in the semantics of
addLa(ad).t. As addLa(ad).t is a refinement of ad′ and the action labels a and b do not
exist in ad′, the trace τ ′ does neither contain a nor b. Therefore, τ = τ ′. However, this
contradicts that τ ′ is not an element of the semantics of ad′ because τ ′ is an element of
the semantics of addLa(ad) . t and addLa(ad) . t is a refinement of ad′. From the above,
we can conclude that dP(addLa(ad)) ≥ dP(addLb(ad)).

Analogously, we can show that for every shortest change sequence t ∈ O∗AD that repairs
addLb(ad) towards satisfying P⊆(LAD, ad′), there exists a change sequence u ∈ O∗AD with
|u| = |t| such that u repairs addLa(ad) towards satisfying P⊆(LAD, ad′). From this, we
can conclude that dP(addLa(ad)) ≤ dP(addLb(ad)).

Therefore, from dP(addLa(ad)) ≥ dP(addLb(ad)) and dP(addLa(ad)) ≤ dP(addLb(ad)),
we can conclude dP(addLa(ad)) = dP(addLb(ad)). Thus, addLa and addLb induce an
equally long shortest solution for I.

Let ad and ad′ be two ADs, (x, y) be a transition of ad and k be an action label
of ad. Then, for all node names d,m, a, e, n, b that are neither used in ad nor in ad′

such that d,m, a as well as e, n, b are pairwise different, the operations addXorx,y,d,m,a,k
and addXorx,y,e,n,b,k induce an equally long shortest solution for the model repair prob-
lem instance I = (P⊆(LAD, OAD, ad′), ad). The reason for this is similar to the reason
for the equivalences in the context of action-addition operations. Node names do not
influence the traces in the semantics of ADs. For every shortest change sequence t
that repairs addXorx,y,d,m,a,k(ad), it is possible to construct a change sequence u of the
same length |u| = |t| that repairs addXorx,y,e,n,b,k(ad). The ADs addXorx,y,d,m,a,k(ad) .
t and addXorx,y,e,n,b,k(ad) . u solely differ in the naming of their nodes. The AD
addXorx,y,d,m,a,k(ad) . t can obtained from the AD addXorx,y,e,n,b,k(ad) .u by renaming
the node d (if it exists) to e, renaming the node m (if it exists) to n, and renaming
the node a (if it exists) to b. Analogously, the ad addXorx,y,e,n,b,k . u can be obtained
from the AD addXorx,y,d,m,a,k . t by renaming the nodes. As the names of nodes do not
influence the traces in the semantics of ADs, the ADs have equal semantics.

For analogous reasons, and-fragment-addition operations (respectively cyclic-fragment-
addition operations) adding and-fragments (respectively cyclic fragments) containing
actions with the same label between the same nodes are equivalent.

261



Chapter 8 Concrete Instantiations of the Model Repair Framework

Proposition 8.30. Let ad = (L,N, t, AND,XOR,C, T, l) and ad′ = (L′, N ′, t′, AND′,
XOR′, C ′, T ′, l′) be two ADs, let (x, y) ∈ T be a transition of ad, and let k ∈ L be an
action label of ad. Further, let I = (P, ad) be an instance of the model repair problem
P = P⊆(LAD, OAD, ad′). Then, for all node names d,m, a, e, n, b ∈ UN \N with d 6= m,
d 6= a, m 6= a, e 6= n, e 6= b, n 6= b, the following statements hold:

• addXorx,y,d,m,a,k ∼I addXorx,y,e,n,b,k.

• addAndx,y,d,m,a,k ∼I addAndx,y,e,n,b,k.

• addCx,y,d,m,a,k ∼I addCx,y,e,n,b,k.

Proof. The proofs are analogous to the proof for Proposition 8.28.

8.5.2 Activity Diagram Generalization Repair

This section presents a change operation partitioning for the AD modeling language and
the AD generalization repair problem.

Let ad and ad′ be two ADs, (a, b) be a transition of ad and c be an action label of
ad. Then, for all node names d, e that are not used in ad, the operations addAa,b,d,c
and addAa,b,e,c induce an equally long shortest solution for the model repair problem
instance I = (P⊇(LAD, OAD, ad′), ad). The reason for this is is similar to the reason for
the equivalence in the context of AD refinement repair problems. Action node names do
not influence the traces in the semantics of ADs. For every shortest change sequence t
that repairs addAa,b,d,c(ad), it is possible to construct a change sequence u of the same
length |u| = |t| that repairs addAa,b,e,c(ad). The change sequence u is constructed in
the same way as for AD refinement repair problems (cf. Section 8.5.1). Thus, the ADs
addAa,b,d,c(ad) . t and addAa,b,e,c(ad) . u have equal semantics. As addAa,b,d,c(ad) . t is
by assumption a generalization of ad′, the AD addAa,b,e,c(ad) . u is also a generalization
of the AD ad′.

Proposition 8.31. Let ad = (L,N, t, AND,XOR,C, T, l) and ad′ = (L′, N ′, t′, AND′,
XOR′, C ′, T ′, l′) be two ADs, (a, b) ∈ T be a transition of ad, and c ∈ L be an action
label of ad. Further, let I = (P, ad) be an instance of the model repair problem P =
P⊇(LAD, OAD, ad′). Then, for all names d, e ∈ UN\N , it holds addAa,b,d,c ∼I addAa,b,e,c.

Proof. The proof is analogous to the proof for Proposition 8.28.

Let ad and ad′ be two ADs. Then, for all action labels a, b that are neither used in
ad nor in ad′, the operations addLa and addLb induce an equally long shortest solution
for the model repair problem instance I = (P⊇(LAD, OAD, ad′), ad). For every shortest
change sequence t that repairs addLa(ad), it is possible to construct a change sequence
u of the same length |u| = |t| such that u repairs addLb(ad). The change sequence u is
constructed in the same way as for AD refinement repair problems (cf. Section 8.5.1).
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For every trace in the semantics of addLa(ad). t, the trace obtained from replacing each
occurrence of a by b and replacing each occurrence of b by a in the trace is a trace in the
semantics of addLb(ad) . u and vice versa. As the AD ad′ does neither use the action
label a nor the action label b, its semantics does not contain any trace that uses one of
the labels. If there did exist a trace in the semantics of ad′ that is not a trace in the
semantics of addLb(ad) . u, then this trace would not be an element in the semantics of
addLa(ad) . t. This would contradict that addLa(ad) . t is a generalization of ad′.

Proposition 8.32. Let ad = (L,N, t, AND,XOR,C, T, l) and ad′ = (L′, N ′, t′, AND′,
XOR′, C ′, T ′, l′) be two ADs. Further, let I = (P, ad) be an instance of the model repair
problem P = P⊇(LAD, OAD, ad′). Then, for all labels a, b ∈ UN \ (L ∪ L′), it holds that
addLa ∼I addLb.

Proof. (Sketch.) Let ad, ad′, P, and I be given as above. Let a, b ∈ UN \ (L ∪ L′) be
two action labels that are neither used in ad nor in ad′. Assume t ∈ O∗AD is a shortest
change sequence that repairs addLa(ad) towards satisfying P⊇(LAD, ad′). We define the
change sequence u of length |t| as the change sequence obtained from the sequence t via
replacing each change operation in t affecting the action label a with a change operation
of the same type that affects the label b, instead, and vice versa. A change operation
inserting an action with label a between two succeeding nodes, for instance, is replaced
by a change operation inserting the same action with label b between the same nodes.

As addLa and addLb are applicable to ad, the AD ad cannot contain any actions labeled
a or b. Therefore, by construction of the change sequence u, the AD addLa(ad).t can be
obtained from the AD addLb(ad).u via changing the label of each action in addLb(ad).u
that is labeled with a to b and changing the label of each action that is labeled with b
to a. Vice versa, the AD addLb(ad) . u can be obtained from the AD addLa(ad) . t via
applying the same relabeling

Therefore, if τ is a trace in the semantics of addLa(ad) . t, then the trace τ ′ obtained
from replacing all occurrences of a by b and all occurrences of b by a is a trace in
the semantics of addLb(ad) . u and vice versa. Suppose towards a contradiction that
addLb(ad).u is not a generalization of ad′. Then, there exists a trace τ in the semantics
of ad′ that is no element of the semantics of addLb(ad) . u. As addLa(ad . t) is by
assumption a generalization of ad′, the trace τ is also an element of the semantics of
addLa(ad . t). From the above, it follows that the trace τ ′ obtained from replacing all
occurrences of a by b and all occurrences of b by a in τ is a trace in the semantics of
addLb(ad).u. As τ is an element of the semantics of ad′ and the action labels a and b do
not exist in ad′, the trace τ ′ does neither contain a nor b. Therefore, τ = τ ′. However,
this contradicts that τ is not an element of the semantics of addLb(ad) . u because τ ′

is an element of the semantics of addLb(ad) . u and τ = τ ′. From the above, we can
conclude that dP(addLa(ad)) ≥ dP(addLb(ad)).

Analogously, we can show that for every shortest change sequence t ∈ O∗AD that repairs
addLb(ad) towards satisfying P⊇(LAD, ad′), there exists a change sequence u ∈ O∗AD with
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|u| = |t| such that u repairs addLa(ad) towards satisfying P⊇(LAD, ad′). From this, we
can conclude that dP(addLa(ad)) ≤ dP(addLb(ad)).

Therefore, from dP(addLa(ad)) ≥ dP(addLb(ad)) and dP(addLa(ad)) ≤ dP(addLb(ad)),
we can conclude dP(addLa(ad)) = dP(addLb(ad)). Thus, addLa and addLb induce an
equally long shortest solution for I.

For similar reasons as for AD refinement repair problems, xor-fragment-addition oper-
ations (respectively and-fragment-addition operations and cyclic-fragment addition op-
erations) adding xor-fragments (respectively and-fragments and cyclic-fragments) con-
taining actions with the same label between the same nodes are equivalent.

Proposition 8.33. Let ad = (L,N, t, AND,XOR,C, T, l) and ad′ = (L′, N ′, t′, AND′,
XOR′, C ′, T ′, l′) be two ADs, let (x, y) ∈ T be a transition of ad, and let k ∈ L be an
action label of ad. Further, let I = (P, ad) be an instance of the model repair problem
P = P⊇(LAD, OAD, ad′). Then, for all node names d,m, a, e, n, b ∈ UN \N with d 6= m,
d 6= a, m 6= a, e 6= n, e 6= b, n 6= b, the following statements hold:

• addXorx,y,d,m,a,k ∼I addXorx,y,e,n,b,k.

• addAndx,y,d,m,a,k ∼I addAndx,y,e,n,b,k.

• addCx,y,d,m,a,k ∼I addCx,y,e,n,b,k.

Proof. The proofs are analogous to the proof for Proposition 8.28.

8.5.3 Activity Diagram Refactoring Repair

This section presents a change operation partitioning for the AD modeling language and
the AD refactoring repair problem.

Let ad and ad′ be two ADs, (a, b) be a transition of ad and c be an action label of
ad. Then, for all node names d, e that are not used in ad, the operations addAa,b,d,c
and addAa,b,e,c induce an equally long shortest solution for the model repair problem
instance I = (P=(LAD, OAD, ad′), ad). The reason for this is similar to the reason for
the equivalence in the contexts of AD refinement model repair problems (cf. Section 8.5.1)
and AD generalization model repair problems (cf. Section 8.5.2). Action node names do
not influence the traces in the semantics of ADs.

Proposition 8.34. Let ad = (L,N, t, AND,XOR,C, T, l) and ad′ = (L′, N ′, t′, AND′,
XOR′, C ′, T ′, l′) be two ADs, (a, b) ∈ T be a transition of ad, and c ∈ L be an action
label of ad. Further, let I = (P, ad) be an instance of the model repair problem P =
P=(LAD, OAD, ad′). Then, for all names d, e ∈ UN\N , it holds addAa,b,d,c ∼I addAa,b,e,c.

Proof. The proof is analogous to the proof for Proposition 8.28.
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Let ad and ad′ be two ADs. Then, for all action labels a, b that are neither used in
ad nor in ad′, the operations addLa and addLb induce an equally long shortest solution
for the model repair problem instance I = (P=(LAD, OAD, ad′), ad). The reason is a
combination of the reasons for the equivalences of the operations in the contexts of AD
refinement repair problems (cf. Section 8.5.1) and AD generalization repair problems
(cf. Section 8.5.2).

Proposition 8.35. Let ad = (L,N, t, AND,XOR,C, T, l) and ad′ = (L′, N ′, t′, AND′,
XOR′, C ′, T ′, l′) be two ADs. Further, let I = (P, ad) be an instance of the model repair
problem P=(LAD, OAD, ad′). Then, for all labels a, b ∈ UN \ (L ∪ L′), it holds that
addLa ∼I addLb.

Proof. The proof is a combination of the proofs for Proposition 8.29 and Proposition 8.32.

For the same reasons as for AD refinement and generalization repair problems, xor-
fragment-addition operations (respectively and-fragment-addition operations and cyclic-
fragment addition operations) adding xor-fragments (respectively and-fragments and
cyclic-fragments) containing actions with the same label between the same nodes induce
equally long shortest solutions.

Proposition 8.36. Let ad = (L,N, t, AND,XOR,C, T, l) and ad′ = (L′, N ′, t′, AND′,
XOR′, C ′, T ′, l′) be two ADs, let (x, y) ∈ T be a transition of ad, and let k ∈ L be an
action label of ad. Further, let I = (P, ad) be an instance of the model repair problem
P = P=(LAD, OAD, ad′). Then, for all node names d,m, a, e, n, b ∈ UN \N with d 6= m,
d 6= a, m 6= a, e 6= n, e 6= b, n 6= b, the following statements hold:

• addXorx,y,d,m,a,k ∼I addXorx,y,e,n,b,k.

• addAndx,y,d,m,a,k ∼I addAndx,y,e,n,b,k.

• addCx,y,d,m,a,k ∼I addCx,y,e,n,b,k.

Proof. The proofs are analogous to the proof for Proposition 8.28.

8.5.4 Repair-Representative Function and Example Applications

From the argumentations in Section 8.5.1, Section 8.5.2, and Section 8.5.3, we can con-
clude that it is possible to use the same repair-representative function for the AD refine-
ment, generalization, and refactoring repair problems using the same models. For each
ad ∈MAD, we can construct the repair-representative functionRad : MAD → ℘fin(OAD)
for each of the AD model repair problems as follows: The function Rad maps each AD
to the set containing
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• all label-deletion, action-deletion, xor-fragment-deletion, and-fragment-deletion,
cyclic-fragment-deletion, fragment-branch-insertion, and fragment-branch-deletion
operations that are applicable to the AD,

• all label-addition, action-insertion, xor-fragment-insertion, and-fragment-insertion,
and cyclic-fragment-insertion operations that have not been partitioned in Sec-
tion 8.5.1, Section 8.5.2, and Section 8.5.3 and are applicable to the AD,

• exactly one arbitrary but fixed change operation of each equivalence class of the
label-addition, action-insertion, cyclic-fragment-insertion, xor-fragment-insertion,
and and-fragment-insertion operations identified in Section 8.5.1, Section 8.5.2,
and Section 8.5.3.

For example, Figure 8.10 depicts an excerpt of the change sequence search tree for
computing a shortest solution for an AD refactoring repair problem instance. The AD
ad1 is the model of the instance. The property of the refactoring repair problem contains
all ADs that are refactorings of the AD ad2.

8.5.5 Implementation and Experiments

We implemented the model repair algorithms for the AD modeling language to perform
experimental evaluations. The implementation is written in Java and uses the semantic
differencing operator implementation presented in Section 6.3.

We performed experimental evaluations by executing the algorithms for computing
shortest solutions for AD refinement repair problem instances using the eight example
ADs presented in Appendix D. The purpose of the experiments is twofold. The first
purpose is testing whether computing shortest repairing sequences is feasible for the
example AD refinement repair problem instances. The second purpose is comparing the
performances of the different algorithms in the context of the example AD refinement
repair problems.

Heuristic for Witness Computation

The computational complexity of semantic differencing of ADs is high and the algorithms
often execute the semantic differencing operator. To achieve performance improvements,
we implemented a heuristic for fast witness computation.

The heuristic relies on quickly computing short diff witnesses contained in the semantic
difference from an AD ad to an AD ad′. It translates the input ADs to their associated
NFAs and searches for a word accepted by nfa(ad) that is not accepted by nfa(ad′).
Such a word is a trace contained in the semantic difference form ad to ad′. The heuristic
solely considers words with a length smaller than or equal to an arbitrary but fixed upper
bound. For the evaluation, we solely consider words of length at most eight.
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Figure 8.10: Two simple ADs and an excerpt of the change sequence search tree for
computing a shortest solution for an AD refactoring repair problem.

Algorithm 17 is the heuristic for the witness computation. It takes two NFAs A and
B and a natural number n ∈ N as inputs. It outputs a word w ∈ L∗(A) \ L∗(B) if there
exists a sequence s of consecutive transitions in A with |s| ≤ n starting in the initial
state such that the word encoded by s is not contained in the language recognized by B.
Otherwise, the algorithm outputs the special symbol nil. In Algorithm 17, lt(w) denotes
the last element of a finite sequence w. The algorithm executes a DFID search in the
NFA A for finding a word accepted by A of length at most n that is not accepted by
the NFA B. To this effect, it iterates over all natural numbers i that are smaller than
or equal to n in increasing value (ll. 1-26). In each iteration (ll. 2-25), the algorithm
checks whether there exists a word of length at most i that is accepted by A and not
accepted by B. In the loop, the algorithm initializes the variable can as an empty stack
of transitions of A (l. 2). Afterwards, the algorithm pushes the sequences of length one
containing exactly the transitions starting in the initial state on the stack can (ll. 3-5).
While the stack can is not empty (l. 6), the algorithm checks the explored sequences of
transitions that have been pushed on the stack cur (ll. 7-24). Therefore, the algorithm
pops the most recently explored transition sequence from the stack on stores the result
in the variable cur (l. 7). If the length of the transition sequence is equal to the current
length bound i (l. 8), the algorithm checks whether the transition sequence is a run on
a word that is accepted by A and not accepted by B (ll. 9-18). First, it fetches the last
transition contained in the transition sequence (l. 9). If the transition sequence ends in
a final state of the NFA A (l. 10), then the NFA accepts the word corresponding to the

267



Chapter 8 Concrete Instantiations of the Model Repair Framework

Algorithm 17 Checking whether the NFA A accepts a word of length at most n that
is not accepted by the NFA B.

Input: Two NFAs A = (S,Σ, δ, i, F ) and B = (S′,Σ′, δ′, i′, F ′) and an integer n ∈ N.
Output: A word w ∈ L∗(A)\L∗(B) if there exists a sequence s of consecutive transitions

in A with |s| ≤ n starting in the initial state such that the word encoded by s is not
contained in the language recognized by B. Otherwise, the special symbol nil.

1: for all i ∈ N with i ≤ n in increasing value do
2: define can as empty stack of δ∗

3: for all t ∈ {(u, a, v) ∈ δ | u = i} do
4: can.push(t)
5: end for
6: while can not empty do
7: define cur ← can.pop() as element of δ∗

8: if |cur| = i then
9: define (u, a, v)← lt(cur) as element of δ

10: if v ∈ F then
11: define w ← ε as empty word
12: for all (u, a, v) ∈ cur in ascending order do
13: w ← w&a
14: end for
15: if w /∈ L∗(B) then
16: return w
17: end if
18: end if
19: else
20: define (u, a, v)← lt(cur) as element of δ
21: for all t ∈ {(w, b, x) ∈ δ | w = v} do
22: can.push(cur&t)
23: end for
24: end if
25: end while
26: end for
27: return nil

transition sequence. In this case, the algorithm checks whether the NFA B also accepts
this word (ll. 11-17). To this effect, the algorithm constructs the word w corresponding
to the transition sequence (ll. 11-14). Afterwards, it checks whether the NFA B accepts
the word w (l. 15). If B does not accept the word, then the algorithm returns the word
w as a diff witness (l. 16). If the currently processed sequence is smaller than the current
length bound i, the algorithm proceeds by prolonging the currently processed sequence
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cur with the transitions starting in the target state of the last transition contained in
cur (ll. 20-23). For this task, it fetches the last transition contained in the sequence
cur (l. 20). Then, it iterates over all transitions starting in the target state of the
last transition (l. 21). The concatenation of each of these transitions to the currently
processed sequence is pushed on the stack of candidates can (l. 22). If no witness of
length at most n is found, the algorithm returns the special symbol nil (l. 27).

In the algorithms for computing repairing sequences, we first use the heuristic for
checking whether one of the ADs is a refinement of the other AD by using the NFAs
associated to the ADs as inputs. If the heuristic does not find a diff witness, we use the
semantic differencing operator introduced in Section 6.3 for checking whether the AD is
a refinement of the other AD. Whether an AG is consistent can be checked by checking
whether the language accepted by the NFA associated to the AG is empty.

Search Space Restrictions

For pragmatic reasons, to increase the performance of the algorithms, we further restrict
the search space as follows.

If an operation would add an action node such that the word constructed by concate-
nating the label of this node with the label of a next successive action node does not
appear as the word of two successive actions or as the word obtained from concatenating
the labels of two actions contained in different branches of the same and-fragment in the
model of the repair problem, then we do not consider this operation. Vice versa, if the
word constructed by concatenating the label of a predecessor action node with the label
of the added action does not appear as the concatenation of the labels of two successive
actions or as the word obtained from concatenating the labels of two actions contained
in different branches of the same and-fragment in the repair problem’s model, then we do
not consider the operation adding the action. These restrictions are appropriate because
otherwise there could be traces in the semantics of the AD that result from the existence
of the added action and are no traces of the repair problem’s model.

Similarly, we do not consider operations adding actions into branches of and-fragments
where the concatenation of the action label with the label of an action of another branch
of the same fragment does not appear as the concatenation of the labels of two successive
actions or as the word obtained from concatenating the labels of two actions contained
in different branches of the same and-fragment in the repair problem’s model.

We do only consider fragment-addition operations adding a fragment containing an
action that is also contained in a fragment of the same type of the repair problem’s
model. This restriction avoids unnecessary branching and decreases the resulting model’s
complexity regarding the depths of nested fragments.

We do only consider fragment-addition operations adding a fragment containing an
action where the number of fragments including the added action in the resulting model
is not greater than the greatest number of fragments in the repair problem’s model
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containing an action with the same label. This restriction avoids unnecessary complexity
regarding the depths of nested fragments.

We do not consider any label-addition operations adding labels that are not used in
the repair problem’s model because no trace of the repair problem’s model contains this
action label.

If the repair problem’s model contains actions having a label that is not used in the
currently processed model, then we solely consider a label-addition operation adding
one of the labels. This restriction is reasonable because the repaired model must usually
contain an action labeled with the unused label because the existence of an action with
the label in the repair problem’s model causes the existence of a trace in the semantics
of the model that uses the label. If the addition of the label is not necessary because the
repaired model does not contain an action using the label, then the operation can easily
be removed from the computed repairing sequence. Similarly, if the currently processed
model contains actions labeled with a label not used in the repair problem’s model,
then we solely consider an operation for deleting one of the actions. This restriction is
reasonable because the repaired model must not contain actions labeled with a label not
used in the repair problem’s model because the existence of the action causes a trace in
the semantics of the model that is not a trace in the semantics of the repair problem’s
model. We do not consider any label-deletion operations as these delay the repair.

Experiments

We performed experimental evaluations with seven example ADs. Appendix D presents
the example ADs in detail. For each pair of thematically related ADs where one of
the ADs is not a refinement of the other AD, we executed the algorithms presented in
Section 7.5 to compute solutions for the corresponding refinement repair problems. For
testing whether intermediately computed ADs satisfy the refines property, we used the
semantic differencing operator including the heuristic as presented in Section 8.5.5.

All experiments were executed on a laptop computer with an Intel Core i7-8650U CPU
@ 1.90GHz processor, 16GB RAM, and a Samsung PM981 512GB SSD hard drive using
Windows 10 and Java 1.8.0 192.

Figure 8.11 summarizes the computation times of the algorithms. During two experi-
ments, Java reported an OutOfMemoryError, which is indicated by OOM in Figure 3.4.
For instance, Algorithm 2 took 268ms to compute a solution for the model repair prob-
lem instance (P⊆(LSD, OSD,hire2),hire1), i.e., to compute a sequence t ∈ OPA such
that ∅ 6= Jhire1 . tKPA ⊆ Jhire2KPA. In the cases where the algorithms terminated,
the computation times range from 211ms to 8m 12s. Algorithm 2 successfully computed
solutions for all instances in at most 6m 8s. Figure 8.12 depicts the solutions computed
by Algorithm 2 for the input ADs.

Algorithm 5 produced an OutOfMemoryError for two of the inputs. The other
algorithms computed solutions for all inputs. Algorithm 2 performed better than Algo-
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Time
Model Problem Algo. 2 Algo. 3 Algo. 4 Algo 5 Algo. 6

hire1 hire2 268ms 417ms 360ms 246ms 454ms
hire2 hire1 211ms 335ms 408ms 270ms 373ms
claim1 claim2 3m 44s 4m 44s 4m 52s OOM 4m 13s
claim1 claim3 1507ms 3282ms 2485ms 3081ms 1451ms
claim1 claim4 6m 8s 8m 12s 7m 12s OOM 6m 54s
claim2 claim1 280ms 450ms 262ms 266ms 271ms
claim2 claim4 1079ms 2093ms 847ms 1143ms 854ms
claim3 claim1 631ms 1095ms 695ms 1149ms 656ms
claim3 claim2 1796ms 2615ms 1564ms 2854ms 3480ms
claim3 claim4 47s 52s 8454ms 13s 12s
claim4 claim1 1511ms 2205ms 1372ms 2392ms 2269ms
claim4 claim2 4m 30s 4m 25s 3m 13s 4m 36s 3m 19s
claim4 claim3 7890ms 6272ms 1825ms 3341ms 2342ms
ad1 ad2 309ms 340ms 324ms 497ms 319ms
ad2 ad1 514ms 717ms 317ms 557ms 334ms

Figure 8.11: The execution times of Algorithm 2 - Algorithm 6 when given the AD
refinement repair problem instances as inputs.

rithm 3 in all but two cases. Algorithm 2 performed better than Algorithm 4 in eight
out of 15 cases. In no case Algorithm 5 or Algorithm 6 performed significantly better
than all of the other algorithms.

The algorithms handle the small examples, where only short repairing sequences are
required, sufficiently quick. However, the algorithms do not scale well for inputs where
many changes are required. For one instance, the fastest algorithm needed 6m 8s to
compute a solution. In general, the running times of the algorithms are exponential in
the lengths of the shortest solutions (cf. Section 7.5.1).
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Figure 8.12: The solutions computed by Algorithm 2 for the AD refinement repair prob-
lem instances.
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Chapter 9

Conclusion and Future Work

This chapter concludes the thesis. Section 9.1 summarizes the main results of this thesis.
Afterwards, Section 9.2 presents recommendations for future work.

9.1 Summary and Main Results

Figure 9.1 overviews the formal frameworks and the most important concepts that have
been presented in this thesis.

Chapter 2 presented a general framework for defining modeling languages by unifying
previous works. Each modeling language consists of a set of models, a semantic domain,
and a semantic mapping. The set of models is an abstract representation of the modeling
language’s syntax. The semantic domain is a set containing elements of a well-understood
mathematical structure (e.g., sequences, sets, functions). The elements of the semantic
domain are mathematical abstractions of possible realizations of models. The semantic
mapping defines the meaning of models. It relates each model to a set of elements from
the semantic domain. Each element in the semantics of a model is interpretable to be
a possible realization of the model. The semantic difference from a model to another
model are all elements in the semantics of the former model that are not elements in
the semantics of the latter model. Each such element is called a diff witness from the
former model to the latter model. A semantic differencing operator for a modeling
language is an automatic procedure that takes two models as input and outputs a finite
set of diff witnesses from one of the models to other model. A model is a refinement
of another model, if the semantic difference from the former model to the latter model
is empty. Analogously, a model is a generalization of another model, if each element
in the semantics of the latter model is also an element of the semantics of the former
model. Two models are refactorings of each other, if their semantics are equal. Model
evolution possibilities are described by change operations. Each change operation is
a partial function mapping models to models. Sets of change operations are called
change operation suites. Change operation suites can be used to describe all evolution
possibilities of the models of a modeling language. A change operation suite is complete
for a modeling language, if every model of the language can be transformed to any other
model of the language via applying change operations from the change operation suite.
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Automatic Model Repair

• Model property

• Repairing change sequence

• Induce equally long shortest solution relation

• Delays the repair relation

• Repair-representative function

• Change sequence search tree

Automatic Model Repair Instantiations

• Refinement repair

• Generalization repair

• Refactoring repair

Modeling Language

• Syntax

• Semantic domain

• Semantic mapping

• Semantic difference

• Semantic differencing operator

• Diff witness

• Refinement, generalization, refactoring

• Change operation

• Change operation suite

• Syntactic difference

• Refining, generalizing, refactoring

Time-Synchronous Port Automata

x

Feature Diagrams Sequence Diagrams

Activity Diagrams

instantiates

extends

Figure 9.1: Overview of the framework developed in this thesis.

A syntactic difference from a model to another model is a sequence of change operations
where the application of the sequence’s change operations in order to the former model
yields the latter model. A change operation is refining if its application to a model
is guaranteed to yield a model that is a refinement of the former model. Generalizing
and refactoring change operations are defined analogously. The following four chapters
instantiated the general framework for with four concrete modeling languages.

Chapter 3 presented the TSPA modeling language. The models are automata de-
scribing the behaviors of reactive components participating in interactive systems. The
transitions of a TSPA describe the reactions of the automaton in response to receiving
messages via its input channels in terms of its internal state changes and the messages
emitted by the automaton via its output channels. The semantic domain contains all
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possible communication histories. Each communication history describes infinite streams
of messages emitted via output channels in reaction to the receipt of infinite streams of
messages received via input channels. The semantic mapping maps each automaton to
the set of all communication histories that it describes. The semantic differencing oper-
ator is based on a translation to BAs. Each infinite word accepted by the BA resulting
from translating a TSPA encodes a communication history of the TSPA. Thus, each
word accepted by the BA resulting from translating a TSPA that is not a word accepted
by the BA resulting from translating another TSPA encodes a communication history
of the former TSPA that is not a communication history of the latter TSPA. This en-
ables reducing semantic differencing of TSPAs to language inclusion checking for BAs.
Chapter 3 further presented a complete change operation suite for the TSPA modeling
language. For each change operation, it was analyzed whether it is refining, generalizing,
or refactoring.

Chapter 4 presented a FD modeling language. The set of models is the set of all
well-formed FDs. The semantic domain is the set of all possible feature configurations.
Each feature configuration is a finite set of features. The semantic mapping is based
on an open-world assumption and differs from the usual semantic mapping for FDs.
Each FD is mapped to the set of all configurations that are valid in the FD. With the
semantics presented in this thesis, the configurations of a FD may contain features that
are not used in the FD. Features that are not used in a feature diagram are considered
to be unconstrained by the FD. This implies that the semantics of each FD is an infinite
set when assuming an infinite universe of features. The main enabler for the semantic
differencing operator for the FD modeling language is the following observation: A FD
is a refinement of another FD iff each configuration that is valid in the former FD and
solely contains features that are used in at least one of the two FDs is also valid in the
latter FD. As each FD only contains a finite set of features, it suffices to check whether
one of finitely many configuration is valid in the one FD and not valid in the other
FD. It is possible to provide an implementation of the semantic differencing procedure
via a reduction to the satisfiability problem for propositional formulas. Chapter 4 also
presented a complete change operation suite for the FD modeling language. For each
change operation, it was analyzed whether it is refining, generalizing, or refactoring.

Chapter 5 presented a SD modeling language. The set of models is the set of all
well-formed SDs. The semantic domain is the set of all possible system runs. Each
system run describes a finite trace of interactions between objects. Each interaction
consists of a source object, a target object, and an action. The semantic mapping maps
each SD to the set of all systems runs that are valid in the SD. Systems runs that are
valid in a SD may contain interactions using actions between objects that are not used
in the SD. If the set of possible objects or the set of possible actions is infinite, then
there exists an SD where the set of all traces of all valid system runs of the SD is not
representable by a regular language. Nevertheless, the semantic differencing operator is
based on a reduction to language inclusion between NFAs. The main enabler for the
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semantic differencing operator is the observation that it suffices to search a regular set
of traces of systems runs for a trace of a system run that is valid in one SD and not
valid in another SD to conclude whether refinement holds. The semantic differencing
operator takes two SDs as input, constructs two NFAs and checks whether the language
recognized by one of the NFAs is a subset of the language recognized by the other NFA.
In case language inclusion holds, the former sequence diagram is a refinement of the
other SD. Otherwise, there exists a system run that is valid in the former SD and not
valid in the other SD. Chapter 5 also presented a complete change operation suite for the
SD modeling language. For each change operation, it was analyzed whether the change
operation is refining, generalizing, or refactoring.

Chapter 6 presented an AD modeling language. The set of models is the set of all
well-formed ADs. The semantic domain is the set of all possible finite execution traces.
The semantic mapping maps each AD to all finite execution traces that it explicitly
describes. The definition of the semantics of ADs is based on a translation from ADs
to NFAs. The semantics of an AD is defined as the language recognized by the NFA
resulting from translating the AD. This enables reducing semantic differencing of ADs
to language inclusion checking between NFAs. Chapter 6 further presented a complete
change operation suite for the AD modeling language. For each change operation, we
analyzed whether it is refining, generalizing, or refactoring.

Chapter 7 presented a theoretical and language-independent framework for automatic
model repairs. The framework extends the framework for defining modeling languages
introduced in Chapter 2. Properties of models are represented by the sets of models that
satisfy the property. A change sequence repairs a model towards satisfying a property,
if the application of the change sequence’s change operations in order yields a model
that satisfies the property. The set of change operations applicable to a model is usually
infinite. This hampers the automatic computation of repairing sequences. Therefore,
Chapter 7 introduced equivalence relations for partitioning the change operations that
are applicable to models. Each equivalence relation depends on a model and a property.
A repair-representative function for a (non-empty) property is a function that maps
each model to a finite set of change operation containing at least one element from a
special equivalence class that depends on the model and the property. For each model,
each repair representative function induces a change sequence search tree. The change
sequence search tree is a possibly infinite, finitely branching, rooted tree, which contains
a node that encodes a change sequence that repairs the model towards satisfying the
property. Thus, it is possible to reduce the search for a repairing change sequence to a
search in a finitely branching rooted tree that is guaranteed to contain a solution.

Chapter 8 illustrated the applicability of the framework for automatic model repairs.
It instantiated the model repair framework with the four modeling languages presented
in Chapter 3 - Chapter 6 and the properties refinement, generalization, and refactoring.
The performance of different algorithms for computing solutions for refinement repair
problem instances using models of the TSPA, FD, SD, and AD modeling languages were
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experimentally evaluated. No algorithm performed best for all instances. Therefore, it
seems to depend on the instance which of the algorithms performs best.

We conclude that it is possible to develop semantic differencing operators for vari-
ous modeling languages with heterogeneous semantics. The instantiations of the model
repair framework further demonstrated the possibility to develop non-trivial automatic
model evolution analyses relating the syntax of models with their semantics. This opens
interesting future work directions as discussed in the following section.

9.2 Possible Future Work Directions

A possible future work direction is the development of semantic differencing operators for
more concrete modeling languages. Candidates for this task are the different languages
contained in the UML [OMG15] and the SysML [OMG17]. The results of this thesis
indicate that the development of semantic differencing operators for these modeling
languages could be possible when choosing adequate semantics.

Existing syntactic and semantic differencing approaches and combinations of syn-
tactic and semantic differencing are limited to comparing exactly two models of the
same language. However, describing a complex system with a single model is imprac-
tical [HKR+07]. Therefore, in MDD, complex systems are usually modeled by a set of
models, often by using heterogeneous languages [Rum13] as, for example, provided by
the UML. Each model describes a different viewpoint on the system under development.
To this effect, model composition is an important concept to achieve modularity and
to enable independent parallel system development [Rum13]. The semantics of a set of
models is then obtained by adequately composing the semantics of the models contained
in the system. As the semantics of the complete system is composed of the semantics of
the individual models, two different systems of models may be semantically equivalent,
although the individual models of the two systems are pairwise semantically different.
This phenomenon occurs, because each model in the system is part of the context of
each other model. Currently, most semantic differencing operators do not consider the
context of models. Based on the fundamental definition of modeling language, a possible
future work direction is the development of a theoretically grounded framework for com-
posing models and for lifting modeling languages with adequate composition operators
to system modeling languages as described above. It could be possible to compose the
semantic and the syntactic differencing operators for the individual languages to obtain
semantic and syntactic differencing operators for composed modeling languages. This
yields great benefits for developing analyses for systems of models as the syntax and
semantics of system modeling languages are significantly more complex than the syntax
and the semantics of the languages from which they originate.
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gels. Detection of Semantically Equivalent Fragments for Business Pro-

286



Bibliography

cess Model Change Management. In IEEE International Conference on
Services Computing, pages 57–64. IEEE, 2010.

[GMM19] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic Soft-
ware Repair: A Survey. IEEE Transactions on Software Engineering,
45(1):34–67, January 2019.

[GNT16] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning and
Acting. Cambridge University Press, 2016.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata.
Technical Report TUM-I9533, TU Munich, 1995.
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Appendix A

Time-Synchronous Port Automata for
Experimental Evaluations

This appendix presents the TSPAs used in the experimental evaluations for the TSPA se-
mantic differencing operator and the model repair instantiations for the TSPA language.
The TSPAs are presented in the common graphical notation.

Figure A.1 depicts the three TSPAs mod4Ctr, threeCtr, and reset modeling the
behaviors of a binary counters. The TSPAs depicted in Figure A.1 are also used as
examples in Section 3.3.

Figure A.2 depicts two simple TSPAs. The TSPAs aut1 and aut2 depicted in Fig-
ure A.2 are also used as examples in Section 8.2.4.

Figure A.3 the two TSPAs impl and spec modeling the behaviors of a mobile robot.
The TSPAs are also used as examples in Section 7.1.2.
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Nop0 {inc: �, res: �, lsb: �,msb: �}
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nop2 {inc: �, res: �, lsb: �,msb: �}

nop3 {inc: �, res: �, lsb: �,msb: �}

inc0 {inc: �, res: �, lsb: �,msb: �}

inc1 {inc: �, res: �, lsb: �,msb: �}

inc2 {inc: �, res: �, lsb: �,msb: �}

inc3 {inc: �, res: �, lsb: �,msb: �}

r1 {inc: �, res: �, lsb: �,msb: �}
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Figure A.1: Three TSPAs modeling the behaviors of binary counters.

301



Appendix A Time-Synchronous Port Automata for Experimental
Evaluations

TSPA aut1

� ��: 1 / �: 1

s t

�: 1 / �: �

�: � / �: 1 �: � / �: �

TSPA aut2

� ��: 1 / �: 1

on off

�: 1 / �: �

�: � / �: � �: � / �: 1

Figure A.2: Two simple TSPAs.
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fwd {emgStp ∶ �,       bump ∶ �,       lMot ∶ FORWARD,  rMot ∶ FORWARD}

stp {emgStp ∶ �,       bump ∶ �,       lMot ∶ STOP,     rMot ∶ STOP}

left1 {emgStp ∶ �,       bump ∶ PRESSED, lMot ∶ FORWARD,  rMot ∶ STOP}

left2 {emgStp ∶ �,       bump ∶ �,       lMot ∶ FORWARD,  rMot ∶ STOP}

bmpBwd {emgStp ∶ �,       bump ∶ PRESSED, lMot ∶ BACKWARD, rMot ∶ BACKWARD}

emgOff1 {emgStp ∶ �,       bump ∶ PRESSED, lMot ∶ FORWARD,  rMot ∶ FORWARD}
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emg1 {emgStp ∶ PRESSED, bump ∶ �,       lMot ∶ STOP,     rMot ∶ STOP}

emg2 {emgStp ∶ PRESSED, bump ∶ PRESSED, lMot ∶ STOP,     rMot ∶ STOP}

anyBump Any possible input/output combination where bump ∶ PRESSED

* Any possible input/output combination

TSPA impl
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stp, emg1
*
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Figure A.3: Two TSPAs modeling the behaviors of a mobile robot.
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Appendix B

Feature Diagrams for Experimental
Evaluations

This appendix presents the FDs used in the experimental evaluations for the FD semantic
differencing operator and the model repair instantiations for the FD language. The FDs
are presented in the common graphical notation.

Figure B.1 depicts three FDs modeling the valid configurations of a car. The FD car
is also used as an example in Section 4.1. The FDs car1 and car2 are also used as
examples in Section 7.1.3.

Figure B.2 depicts three FDs modeling the valid configurations of a tablet computer.
The three FDs are also used as examples in Section 4.3.

Figure B.3 depicts four FDs using all syntactic FD modeling elements. The FDs fd1
and fd2 are also used as examples in Section 4.3. The FDs fd3 and fd4 are also used
as examples in Section 8.3.4.
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Figure B.1: Three FDs modeling the valid configurations of a car.
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Figure B.2: Three FDs modeling the valid configurations of a car.
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Figure B.3: Four FDs modeling using all syntactic FD modeling elements.
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Appendix C

Sequence Diagrams for Experimental
Evaluations

This appendix presents the SDs used in the experimental evaluations for the SD semantic
differencing operator and the model repair instantiations for the SD language. The SDs
are presented in the common graphical notation.

Figure C.1 depicts two simple FDs. The FDs sd1 and sd2 depicted in Figure C.1 are
also used as an example in Section 8.4.4.

Figure C.2 depicts five SDs modeling the the interactions between objects in a software
system implementing a mobile service robot. The three SDs rob1, rob2, and rob3 are
also used as examples in Section 5.3. The SDs rob4 and rob5 are also used as examples
in Section 7.1.

SD sd1

a

foo

b

bar

baz

SD sd2

≪initial≫

a

bar

b

foo

baz

Figure C.1: Two simple SDs.
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Figure C.2: Five SDs modeling the interactions between objects in a software system
implementing a mobile service robot.
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Appendix D

Activity Diagrams for Experimental
Evaluations

This appendix presents the ADs used in the experimental evaluations for the AD seman-
tic differencing operator and the model repair instantiations for the AD language. The
ADs are presented in the common graphical notation.

Figure D.1 depicts two simple ADs. The ADs ad1 and ad2 depicted in Figure D.1
are also used as an example in Section 8.5.4.

Figure D.2 depicts the two ADs hire1 and hire2. The ADs depicted in Figure D.2
are also used as an example in Section 6.1 and Section 6.2.

Figure D.3 and Figure D.4 depict four ADs modeling workflows for handling incom-
ing claims in an insurance company. The ADs claim1 and claim2 are also used as
examples in Section 6.1 and Section 6.3. The ADs claim3 and claim4 are also used
as examples in Section 7.1.1.

B C

C

B

C

AD ad1 AD ad2

A

node A

node C

M1

node B

node J1

node f

Figure D.1: Two simple ADs.
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Figure D.2: Two ADs modeling workflows for registering new employees.
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Figure D.3: The ADs claim1 and claim2 model workflows for handling incoming
claims in an insurance company.
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74

delIf,g Implies-constraint-deletion operation deleting an im-
plies constraint from feature f to feature g

75

man2optf Mandatory-to-optional-conversion operation making
the mandatory feature f optional

81

opt2manf Optional-to-mandatory-conversion operation making
the optional feature f mandatory

82

or2xorp,G Or-to-xor-conversion operation converting or-group
G of feature p to an xor-group

80

createOrf Or-group creation operation creating an or-group
containing feature f

78

rnmRootf Root-rename operation renaming the root to f 85
xor2orp,G Xor-to-or-conversion operation converting xor-group

G of feature p to an or-group
79

P⊇(L, O,m) Generalizes problem for the modeling language L, the
change operation suite O, and the model m

216

P⊇(L,m) Generalizes property for the modeling language L
and the model m

216

[o]I Equivalence class of change operation o under ∼I 179
Q/ ∼I Quotient of set of change operations Q under ∼I 179
o ∼I o′ Change operations o and o′ induce an equally long

shortest solution for the model repair problem in-
stance I

178

o 6∼I o′ Change operations o and o′ do not induce an equally
long shortest solution for the model repair problem
instance I

178

I Set of all possible interactions between objects in SDs 93
I(r) Set of all possible interactions between objects and

actions of system run r
95

L Modeling language 15
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LAD AD modeling language 154
LFD FD modeling language 86
LSD SD modeling language 123
LPA TSPA modeling language 54

M Set of messages 35
MAD Set of all AD models 154
MFD Set of all FD models 59
MPA Set of all TSPA models 36
MSD Set of all SD models 94

nfa(ag) NFA associated to the AG ag 134

obj(i) Objects of the interaction i 93
O Infinite set of objects used in SDs 93

parent(f) Parent of feature f in a FD that is clear from the
context

59

parentfd(f) Parent of feature f in FD fd 59

P=(L, O,m) Refactors problem for the modeling language L, the
change operation suite O, and the model m

216

P=(L,m) Refactors property for the modeling language L and
the model m

216

P⊆(L, O,m) Refines problem for the modeling language L, the
change operation suite O, and the model m

216

P⊆(L,m) Refines property for the modeling language L and the
model m

216

R Repair-representative function 184

addActa Action-addition operation adding action a 119
delActa Action-deletion operation deleting action a 120
addIAi,o,a,p Interaction-addition operation adding interaction

(o, a, p) at position i
121

delIAi Interaction-deletion operation deleting the interac-
tion at position i

122

addOo Object-addition operation adding object o 109
delOo Object-deletion operation deleting object o 110
addOCo Tag-as-complete operation tagging o as complete 112
addOIo Tag-as-initial operation tagging object o as initial 116
addOVo Tag-as-visible operation tagging object o as visible 114
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delOCo Untag-as-complete operation untagging o as com-
plete

113

delOIo Untag-as-initial operation untagging o as initial 118
delOVo Untag-as-visible operation untagging o as visible 115
δ(m,m′) Semantic difference from model m to model m′ 16
δL(m,m′) Semantic difference from model m to model m′ in

modeling language L
16

Sem Semantic domain 15
SemFD Semantic domain of the FD modeling language 86
SemAD Semantic domain of the AD modeling language 154
SemSD Semantic domain of the SD modeling language 123
SemPA Semantic domain of the TSPA modeling language 54
sem Semantic mapping 15
JadKAD Semantics of the AD ad 154
JfdKFD Semantics of the FD fd 60
JsdKSD Semantics of the SD sd 96
JAKPA Semantics of the TSPA A 38
M Non-empty, countable set of models 15
src(i) Source of the interaction i 93
∆AD Syntactic differencing operator for ADs 156
∆FD Syntactic differencing operator for FDs 87
∆SD Syntactic differencing operator for SDs 124
∆PA Syntactic differencing operator for TSPAs 53

trg(i) Target of the interaction i 93
traces(ag) Trace semantics of the AG ag 134
T (R, I) Change sequence search tree induced by repair-

representative function R and model repair problem
instance I

186

delCc Channel-deletion operation deleting the channel c 51
chngIs Initial-state-change operation changing the initial

state to s
52

addICc Input-channel-addition operation adding the input
channel c

49

addOCc Output-channel-addition operation adding the out-
put channel c

50

addSs State-addition operation adding state s 44
delSd State-deletion operation deleting state d 45
addTs,t,a Transition-addition operation adding (s, a, t) 46
delTs,t,a Transition-deletion operation deleting (s, a, t) 47
type Function mapping channels to their types 35
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UN Countable and infinite set of names 22

ξ Empty pseudo message 35
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abstract syntaxes, 14

accomplishable, 171

action-addition operation, 119

action-deletion operation, 120, 144

action-insertion operation, 144

actions, 93

activity diagram, 129, 154

activity graph, 130, 131

and-fragment-deletion operation, 148

and-fragment-insertion operation, 147

Büchi automaton, 10

bijective, 8

cartesian product, 7

change operation, 19

change operation suite, 20

change sequence, 19

change sequence search tree, 186

channel, 35

channel assignment, 35

channel signature, 35

channel-deletion operation, 51

child of a node, 11

communication history, 37

complete change operation suite, 20

complete stereotype, 92, 94

composition of properties, 202

composition of repair problems, 202

concatenation, 8

concrete syntax, 14

configuration, 57, 60

consistent, 16

countable, 9

cyber-physical system, 33
cycle, 11
cyclic-fragment-deletion operation, 150
cyclic-fragment-insertion operation, 149

delays the solution, 180, 181
depth-first iterative deepening, 189
diff witness, 4, 16
differencing operator, 3, 4, 17, 20
domain, 7

empty sequence, 8
epsilon closure, 9
equivalence class, 179
equivalence relation, 7
evolution step, 161
excludes-constraint-addition, 76
excludes-constraint-deletion, 77
execution, 38

feature diagram, 57, 59
feature-addition operation, 72
feature-deletion operation, 73
feature-group-exclusion operation, 85
feature-group-insertion operation, 83
finite function, 8
finite sequence, 8
finitely branching, 11
Focus, 33
fragment-branch-insertion, 152
function, 7
function restriction, 8

generalization, 17
generalizes problem, 216
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generalizes property, 216
generalizing change operation, 21
grammar, 14
graph, 11

implies-constraint-addition, 74
implies-constraint-deletion operation, 75
inconsistent, 16
induce equally long, 177
infinite branch, 11
infinite sequence, 8
infinite tree, 11
initial stereotype, 95
initial-state-change operation, 52
injective, 8
input-channel-addition operation, 49
interaction, 93
interaction-addition operation, 121
interaction-deletion operation, 122
interactive system, 33
intersection of sets, 7
intial stereotype, 92
inverse, 21

König’s Lemma, 11

label-addition operation, 142
label-deletion operation, 143
language recognized by a BA, 10
language recognized by an NFA, 10
length of a sequence, 8

mandatory-to-optional-conversion, 81
metamodel, 14
model, 3, 13
model repair problem, 174, 202
model repair problem instance, 174
modeling language, 15

natural numbers, 7
Nondeterministic finite automaton, 9

object-addition operation, 109

object-deletion operation, 110

objects, 93

optional-to-mandatory-conversion, 82

or-group-creation operation, 78

or-to-xor-conversion operation, 80

output-channel-addition operation, 50

parent of a node, 11

partial function, 7

partition, 7

path, 11

powerset, 7

prefix operator, 8

prefix relation, 8

property, 171

property implication, 194

property preserving, 192

pseudo message, 35

quotient, 179

rafactors problem, 216

reactive, 36

refactoring, 17

refactoring change operation, 21

refactors property, 216

refinement, 4, 17, 163

refinement calculus, 163

refinement step, 161, 163

refines problem, 216

refines property, 216

refining change operation, 21

reflexive, 7

relative complement of sets, 7

repair-representative function, 183

repairing change sequence, 171

repairs a model towards, 171

root, 11

root-rename operation, 85

rooted tree, 11

run of an NFA, 10
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semantic difference, 4, 16
semantic differencing, 4, 161, 164
semantic differencing operator, 4, 17
semantic domain, 15
semantic mapping, 15
semantics of ADs, 154
semantics of FDs, 60
semantics of SDs, 96
semantics of TSPAs, 38
sequence diagram, 91, 94
set of finite subsets, 7
shortest repairing change sequence, 172
shortest solution, 174
solution, 174
state-addition operation, 44
state-deletion operation, 45
stepwise refinement, 33
stream, 37
surjective, 8
symmetric, 7
syntactic difference, 20, 161
syntactic differencing, 3, 163
syntactic differencing operator, 3, 20
syntax, 14
system run, 95

tag-object-as-complete operation, 112

tag-object-as-initial operation, 116

tag-object-as-visible operation, 114

time-synchronous, 34

time-synchronous port automaton, 35

trace semantics, 134

transition-addition operation, 46

transition-deletion operation, 47

transitive, 7

tree, 11

type, 35

undefined, 8

underspecification, 16

union of sets, 7

universe of names, 22

untag-object-as-complete operation, 113

untag-object-as-initial operation, 118

untag-object-as-visible operation, 115

valid in a feature diagram, 60

valid in a sequence diagram, 96

visible stereotype, 92, 95

walk, 11

xor-fragment-insertion operation, 145

xor-to-or-conversion operation, 79
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Related Interesting Work from the SE Group, RWTH Aachen

The following section gives an overview on related work done at the SE Group, RWTH Aachen.
More details can be found on the website www.se-rwth.de/topics/ or in [HMR+19]. The
work presented here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods
for innovative and efficient development of software and software-intensive systems, such that
high-quality products can be developed in a shorter period of time and with flexible integration
of changing requirements. Furthermore, we demonstrate the applicability of our results in various
domains and potentially refine these results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an
executable, yet abstract and multi-view modeling language for modeling, designing and pro-
gramming still allows to use an agile development process.”, [JWCR18] addresses the question
how digital and organizational techniques help to cope with physical distance of developers and
[RRSW17] addresses how to teach agile modeling. Modeling will increasingly be used in devel-
opment projects, if the benefits become evident early, e.g with executable UML [Rum02] and
tests [Rum03]. In [GKRS06], for example, we concentrate on the integration of models and
ordinary programming code. In [Rum12] and [Rum16], the UML/P, a variant of the UML espe-
cially designed for programming, refactoring and evolution, is defined. The language workbench
MontiCore [GKR+06, GKR+08, HR17] is used to realize the UML/P [Sch12]. Links to further
research, e.g., include a general discussion of how to manage and evolve models [LRSS10], a
precise definition for model composition as well as model languages [HKR+09] and refactoring in
various modeling and programming languages [PR03]. In [FHR08] we describe a set of general
requirements for model quality. Finally, [KRV06] discusses the additional roles and activities
necessary in a DSL-based software development project. In [CEG+14] we discuss how to im-
prove the reliability of adaptivity through models at runtime, which will allow developers to
delay design decisions to runtime adaptation.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming
process. Managing the complexity, size, and number of the artifacts developed and used during
a project together with their complex relationships is not trivial [BGRW17]. To keep track of
relevant structures, artifacts, and their relations in order to be able e.g. to evolve or adapt models
and their implementing code, the artifact model [GHR17] was introduced. [BGRW18] explains
its applicability in systems engineering based on MDSE projects.

An artifact model basically is a meta-data structure that explains which kinds of artifacts,
namely code files, models, requirements files, etc. exist and how these artifacts are related
to each other. The artifact model therefore covers the wide range of human activities during
the development down to fully automated, repeatable build scripts. The artifact model can
be used to optimize parallelization during the development and building, but also to identify
deviations of the real architecture and dependencies from the desired, idealistic architecture, for
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cost estimations, for requirements and bug tracing, etc. Results can be measured using metrics
or visualized as graphs.

Artificial Intelligence in Software Engineering

MontiAnna is a family of explicit domain specific languages for the concise description of the
architecture of (1) a neural network, (2) its training, and (3) the training data [KNP+19]. We
have developed a compositional technique to integrate neural networks into larger software ar-
chitectures [KRRvW17] as standardized machine learning components [KPRS19]. This enables
the compiler to support the systems engineer by automating the lifecycle of such components
including multiple learning approaches such as supervised learning, reinforcement learning, or
generative adversarial networks. According to [MRR11g] the semantic difference between two
models are the elements contained in the semantics of the one model that are not elements
in the semantics of the other model. A smart semantic differencing operator is an automatic
procedure for computing diff witnesses for two given models. Smart semantic differencing oper-
ators have been defined for Activity Diagrams [MRR11a], Class Diagrams [MRR11d], Feature
Models [DKMR19], Statecharts [DEKR19], and Message-Driven Component and Connector Ar-
chitectures [BKRW17, BKRW19]. We also developed a modeling language-independent method
for determining syntactic changes that are responsible for the existence of semantic differences
[KR18].

We apply logic, knowledge representation and intelligent reasoning to software engineering
to perform correctness proofs, execute symbolic tests or find counterexamples using a theorem
prover. And we have applied it to challenges in intelligent flight control systems and assis-
tance systems for air or road traffic management [KRRS19, HRR12] and based it on the core
ideas of Broy’s Focus theory [RR11, BR07]. Intelligent testing strategies have been applied to
automotive software engineering [EJK+19, DGH+19, KMS+18], or more generally in systems
engineering [DGH+18]. These methods are realized for a variant of SysML Activity Diagrams
and Statecharts.

Machine Learning has been applied to the massive amount of observable data in energy man-
agement for buildings [FLP+11a, KLPR12] and city quarters [GLPR15] to optimize the operation
efficiency and prevent unneeded CO2 emissions or reduce costs. This creates a structural and
behavioral system theoretical view on cyber-physical systems understandable as essential parts
of digital twins [RW18, BDH+20].

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound
derivate of the UML designed for product and test code generation. [Sch12] describes a flexi-
ble generator for the UML/P based on the MontiCore language workbench [KRV10, GKR+06,
GKR+08, HR17]. In [KRV06], we discuss additional roles necessary in a model-based software de-
velopment project. [GKRS06, GHK+15a] discuss mechanisms to keep generated and handwritten
code separated. In [Wei12], we demonstrate how to systematically derive a transformation lan-
guage in concrete syntax. [HMSNRW16] presents how to generate extensible and statically type-
safe visitors. In [MSNRR16], we propose the use of symbols for ensuring the validity of generated
source code. [GMR+16] discusses product lines of template-based code generators. We also devel-
oped an approach for engineering reusable language components [HLMSN+15b, HLMSN+15a].
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To understand the implications of executability for UML, we discuss needs and advantages of
executable modeling with UML in agile projects in [Rum04], how to apply UML for testing in
[Rum03], and the advantages and perils of using modeling languages for programming in [Rum02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML/P variant, which is described in the books [Rum16,
Rum17] respectively [Rum12, Rum13] and is implemented in [Sch12]. Semantic variation points
of the UML are discussed in [GR11]. We discuss formal semantics for UML [BHP+98] and
describe UML semantics using the “System Model” [BCGR09a], [BCGR09b], [BCR07b] and
[BCR07a]. Semantic variation points have, e.g., been applied to define class diagram semantics
[CGR08]. A precisely defined semantics for variations is applied, when checking variants of class
diagrams [MRR11c] and objects diagrams [MRR11e] or the consistency of both kinds of diagrams
[MRR11f]. We also apply these concepts to activity diagrams [MRR11b] which allows us to check
for semantic differences of activity diagrams [MRR11a]. The basic semantics for ADs and their
semantic variation points is given in [GRR10]. We also discuss how to ensure and identify model
quality [FHR08], how models, views and the system under development correlate to each other
[BGH+98], and how to use modeling in agile development projects [Rum04], [Rum02]. The
question how to adapt and extend the UML is discussed in [PFR02] describing product line
annotations for UML and more general discussions and insights on how to use meta-modeling
for defining and adapting the UML are included in [EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use,
but need appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10,
GKR+08, HR17] allows the specification of an integrated abstract and concrete syntax format
[KRV07b, HR17] for easy development. New languages and tools can be defined in modular forms
[KRV08, GKR+07, Völ11, HLMSN+15b, HLMSN+15a, HRW18, BEK+18a, BEK+18b, BEK+19]
and can, thus, easily be reused. We discuss the roles in software development using domain
specific languages in [KRV14]. [Wei12] presents a tool that allows to create transformation rules
tailored to an underlying DSL. Variability in DSL definitions has been examined in [GR11,
GMR+16]. [BDL+18] presents a method to derive internal DSLs from grammars. In [BJRW18],
we discuss the translation from grammars to accurate metamodels. Successful applications have
been carried out in the Air Traffic Management [ZPK+11] and television [DHH+20] domains.
Based on the concepts described above, meta modeling, model analyses and model evolution have
been discussed in [LRSS10] and [SRVK10]. DSL quality [FHR08], instructions for defining views
[GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based tooling for DSLs [KRV07a]
complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
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engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15] and the concern-
oriented language development approach [CKM+18]. As said, the MontiCore language work-
bench provides techniques for an integrated definition of languages [KRV07b, Kra10, KRV10,
HR17, HRW18, BEK+19]. In [SRVK10] we discuss the possibilities and the challenges us-
ing metamodels for language definition. Modular composition, however, is a core concept to
reuse language components like in MontiCore for the frontend [Völ11, KRV08, HLMSN+15b,
HLMSN+15a, HMSNRW16, HR17, BEK+18a, BEK+18b, BEK+19] and the backend [RRRW15,
MSNRR16, GMR+16, HR17, BEK+18b]. In [GHK+15b, GHK+15a], we discuss the integration
of handwritten and generated object-oriented code. [KRV14] describes the roles in software de-
velopment using domain specific languages. Language derivation is to our believe a promising
technique to develop new languages for a specific purpose that rely on existing basic languages
[HRW18]. How to automatically derive such a transformation language using concrete syntax of
the base language is described in [HRW15, Wei12] and successfully applied to various DSLs. We
also applied the language derivation technique to tagging languages that decorate a base language
[GLRR15] and delta languages [HHK+15a, HHK+13], where a delta language is derived from a
base language to be able to constructively describe differences between model variants usable to
build feature sets. The derivation of internal DSLs from grammars is discussd in [BDL+18] and
a translation of grammars to accurate metamodels in [BJRW18].

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals,
streams of telephone or video data, method invocation, or data structures passed between soft-
ware services. We use streams, statemachines and components [BR07] as well as expressive forms
of composition and refinement [PR99, RW18] for semantics. Furthermore, we built a concrete
tooling infrastructure called MontiArc [HRR12] for architecture design and extensions for states
[RRW13b]. In [RRW13a], we introduce a code generation framework for MontiArc. MontiArc
was extended to describe variability [HRR+11] using deltas [HRRS11, HKR+11] and evolu-
tion on deltas [HRRS12]. Other extensions are concerned with modeling cloud architectures
[NPR13] and with the robotics domain [AHRW17a, AHRW17b]. [GHK+07] and [GHK+08a]
close the gap between the requirements and the logical architecture and [GKPR08] extends it
to model variants. [MRR14b] provides a precise technique to verify consistency of architec-
tural views [Rin14, MRR13] against a complete architecture in order to increase reusability. We
discuss the synthesis problem for these views in [MRR14a]. Co-evolution of architecture is dis-
cussed in [MMR10] and modeling techniques to describe dynamic architectures are shown in
[HRR98, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling.
The mechanisms for distributed systems are shown in [BR07, RW18] and algebraically under-
pinned in [HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to the
language workbench MontiCore [KRV10, HR17] that can even be used to develop modeling tools
in a compositional form [HR17, HLMSN+15b, HLMSN+15a, HMSNRW16, MSNRR16, HRW18,
BEK+18a, BEK+18b, BEK+19]. A set of DSL design guidelines incorporates reuse through this
form of composition [KKP+09]. [Völ11] examines the composition of context conditions respec-

336



Related Interesting Work from the SE Group, RWTH Aachen

tively the underlying infrastructure of the symbol table. Modular editor generation is discussed
in [KRV07a]. [RRRW15] applies compositionality to Robotics control. [CBCR15] (published
in [CCF+15]) summarizes our approach to composition and remaining challenges in form of a
conceptual model of the “globalized” use of DSLs. As a new form of decomposition of model
information we have developed the concept of tagging languages in [GLRR15]. It allows to de-
scribe additional information for model elements in separated documents, facilitates reuse, and
allows to type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and de-
tailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by using
mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version espe-
cially suited for the UML is given in [BCGR09b] and in [BCGR09a] its rationale is discussed.
[BCR07a, BCR07b] contain detailed versions that are applied to class diagrams in [CGR08]. To
better understand the effect of an evolved design, detection of semantic differencing as opposed
to pure syntactical differences is needed [MRR10]. [MRR11a, MRR11b] encode a part of the
semantics to handle semantic differences of activity diagrams and [MRR11f, MRR11f] compare
class and object diagrams with regard to their semantics. In [BR07], a simplified mathematical
model for distributed systems based on black-box behaviors of components is defined. Meta-
modeling semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages
for the description of an exemplary object interaction, today called sequence diagram. [BGH+98]
discusses the relationships between a system, a view and a complete model in the context of the
UML. [GR11] and [CGR09] discuss general requirements for a framework to describe semantic
and syntactic variations of a modeling language. We apply these on class and object diagrams in
[MRR11f] as well as activity diagrams in [GRR10]. [Rum12] defines the semantics in a variety of
code and test case generation, refactoring and evolution techniques. [LRSS10] discusses evolution
and related issues in greater detail. [RW18] discusses an elaborated theory for the modeling of
underspecification, hierarchical composition, and refinement that can be practically applied for
the development of CPS.

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code they are not initially
correct and need to be changed, evolved and maintained over time. Model transformation is there-
fore essential to effectively deal with models. Many concrete model transformation problems are
discussed: evolution [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], decomposi-
tion [PR99, KRW20], synthesis [MRR14a], refactoring [Rum12, PR03], translating models from
one language into another [MRR11c, Rum12], and systematic model transformation language
development [Wei12]. [Rum04] describes how comprehensible sets of such transformations sup-
port software development and maintenance [LRSS10], technologies for evolving models within
a language and across languages, and mapping architecture descriptions to their implementa-
tion [MMR10]. Automaton refinement is discussed in [PR94, KPR97], refining pipe-and-filter
architectures is explained in [PR99]. Refactorings of models are important for model driven en-
gineering as discussed in [PR01, PR03, Rum12]. Translation between languages, e.g., from class
diagrams into Alloy [MRR11c] allows for comparing class diagrams on a semantic level.
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Variability and Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one man-
ufacturer develops several products with many similarities but also many variations. Variants
are managed in a Software Product Line (SPL) that captures product commonalities as well
as differences. Feature diagrams describe variability in a top down fashion, e.g., in the au-
tomotive domain [GHK+08a] using 150% models. Reducing overhead and associated costs is
discussed in [GRJA12]. Delta modeling is a bottom up technique starting with a small, but
complete base variant. Features are additive, but also can modify the core. A set of commonly
applicable deltas configures a system variant. We discuss the application of this technique to
Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only
describe spacial variability but also temporal variability which allows for using them for software
product line evolution [HRRS12]. [HHK+13] and [HRW15] describe an approach to systemati-
cally derive delta languages. We also apply variability modeling languages in order to describe
syntactic and semantic variation points, e.g., in UML for frameworks [PFR02] and generators
[GMR+16]. Furthermore, we specified a systematic way to define variants of modeling languages
[CGR09], leverage features for compositional reuse [BEK+18b], and applied it as a semantic
language refinement on Statecharts in [GR11].

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physi-
cal entities. In [RW18], we discuss how an elaborated theory can be practically applied for the
development of CPS. Contributions for individual aspects range from requirements [GRJA12],
complete product lines [HRRW12], the improvement of engineering for distributed automotive
systems [HRR12], autonomous driving [BR12a, KKR19], and digital twin development [BDH+20]
to processes and tools to improve the development as well as the product itself [BBR07]. In the
aviation domain, a modeling language for uncertainty and safety events was developed, which is of
interest for the European airspace [ZPK+11]. A component and connector architecture descrip-
tion language suitable for the specific challenges in robotics is discussed in [RRW13b, RRW14]. In
[RRW13a], we describe a code generation framework for this language. Monitoring for smart and
energy efficient buildings is developed as Energy Navigator toolset [KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition on con-
tributing to systems engineering in automotive [GHK+08b], which culminated in a new com-
prehensive model-driven development process for automotive software [KMS+18, DGH+19]. We
leveraged SysML to enable the integrated flow from requirements to implementation to inte-
gration. To facilitate modeling of products, resources, and processes in the context of Industry
4.0, we also conceived a multi-level framework for machining based on these concepts [BKL+18].
Research within the excellence cluster Internet of Production considers fast decision making
at production time with low latencies using contextual data traces of production systems, also
known as Digital Shadows (DS) [SHH+20]. We have investigated how to derive Digital Twins
(DTs) for injection molding [BDH+20], how to generate interfaces between a cyber-physical
system and its DT [KMR+20] and have proposed model-driven architectures for DT cockpit
engineering [DMR+20].
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State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statema-
chines for modeling systems. Our contributions to state based modeling can currently be split
into three parts: (1) understanding how to model object-oriented and distributed software using
statemachines resp. Statecharts [GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding
the refinement [PR94, RK96, Rum96, RW18] and composition [GR95, GKR96, RW18] of statema-
chines, and (3) applying statemachines for modeling systems. In [Rum96, RW18] constructive
transformation rules for refining automata behavior are given and proven correct. This theory
is applied to features in [KPR97]. Statemachines are embedded in the composition and be-
havioral specification concepts of Focus [GKR96, BR07]. We apply these techniques, e.g., in
MontiArcAutomaton [RRW13a, RRW14, RRW13a, RW18] as well as in building management
systems [FLP+11b].

Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support
for human behaviour (2) based on information from previously stored and real-time monitored
structural context and behaviour data (3) at the time the person needs or asks for it [HMR+19].
To create them, we follow a model centered architecture approach [MMR+17] which defines
systems as a compound of various connected models. Used languages for their definition include
DSLs for behavior and structure such as the human cognitive modeling language [MM13], goal
modeling languages [MRV20] or UML/P based languages [MNRV19]. [MM15] describes a process
how languages for assistive systems can be created.

We have designed a system included in a sensor floor able to monitor elderlies and analyze
impact patterns for emergency events [LMK+11]. We have investigated the modeling of human
contexts for the active assisted living and smart home domain [MS17] and user-centered privacy-
driven systems in the IoT domain in combination with process mining systems [MKM+19],
differential privacy on event logs of handling and treatment of patients at a hospital [MKB+19],
the mark-up of online manuals for devices [SM18] and websites [SM20], and solutions for privacy-
aware environments for cloud services [ELR+17] and in IoT manufacturing [MNRV19]. The user-
centered view on the system design allows to track who does what, when, why, where and how
with personal data, makes information about it available via information services and provides
support using assistive services.

Modelling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineer-
ing of robotics applications requires composition and interaction of diverse distributed software
modules. This usually leads to complex monolithic software solutions hardly reusable, main-
tainable, and comprehensible, which hampers broad propagation of robotics applications. The
MontiArcAutomaton language [RRW13a] extends the ADL MontiArc and integrates various im-
plemented behavior modeling languages using MontiCore [RRW13b, RRW14, RRRW15, HR17]
that perfectly fit robotic architectural modeling. The LightRocks [THR+13] framework allows
robotics experts and laymen to model robotic assembly tasks. In [AHRW17a, AHRW17b], we
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define a modular architecture modeling method for translating architecture models into modules
compatible to different robotics middleware platforms.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication
systems as well as advanced active and passive safety-systems result in complex embedded sys-
tems. As these feature-driven subsystems may be arbitrarily combined by the customer, a huge
amount of distinct variants needs to be managed, developed and tested. A consistent require-
ments management that connects requirements with features in all phases of the development for
the automotive domain is described in [GRJA12]. The conceptual gap between requirements and
the logical architecture of a car is closed in [GHK+07, GHK+08a]. [HKM+13] describes a tool
for delta modeling for Simulink [HKM+13]. [HRRW12] discusses means to extract a well-defined
Software Product Line from a set of copy and paste variants. [RSW+15] describes an approach to
use model checking techniques to identify behavioral differences of Simulink models. In [KKR19],
we introduce a framework for modeling the dynamic reconfiguration of component and connector
architectures and apply it to the domain of cooperating vehicles. Quality assurance, especially
of safety-related functions, is a highly important task. In the Carolo project [BR12a, BR12b],
we developed a rigorous test infrastructure for intelligent, sensor-based functions through fully-
automatic simulation [BBR07]. This technique allows a dramatic speedup in development and
evolution of autonomous car functionality, and thus enables us to develop software in an agile
way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and
evolution on a more general level by considering any kind of critical system that relies on archi-
tectural descriptions. As tooling infrastructure, the SSElab storage, versioning and management
services [HKR12] are essential for many projects.

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2
emissions is an important challenge. Thus, energy management in buildings as well as in neigh-
bourhoods becomes equally important to efficiently use the generated energy. Within several
research projects, we developed methodologies and solutions for integrating heterogeneous sys-
tems at different scales. During the design phase, the Energy Navigators Active Functional
Specification (AFS) [FPPR12, KPR12] is used for technical specification of building services
already. We adapted the well-known concept of statemachines to be able to describe different
states of a facility and to validate it against the monitored values [FLP+11b]. We show how our
data model, the constraint rules, and the evaluation approach to compare sensor data can be
applied [KLPR12].

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for
web-based application and service architectures with high complexity, criticality, and new appli-
cation domains. It promises to enable new business models, to lower the barrier for web-based
innovations and to increase the efficiency and cost-effectiveness of web development [KRR14].
Application classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15b], Big
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Data, App, and Service Ecosystems bring attention to aspects like responsiveness, privacy and
open platforms. Regardless of the application domain, developers of such systems are in need
for robust methods and efficient, easy-to-use languages and tools [KRS12]. We tackle these chal-
lenges by perusing a model-based, generative approach [NPR13]. The core of this approach are
different modeling languages that describe different aspects of a cloud-based system in a concise
and technology-agnostic way. Software architecture and infrastructure models describe the sys-
tem and its physical distribution on a large scale. We apply cloud technology for the services we
develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for
our tool demonstrators and our own development platforms. New services, e.g., collecting data
from temperature, cars etc. can now easily be developed.

Model-Driven Engineering of Information Systems

Information Systems provide information to different user groups as main system goal. Using
our experiences in the model-based generation of code with MontiCore [KRV10, HR17], we de-
veloped several generators for such data-centric information systems. MontiGem [AMN+20] is
a specific generator framework for data-centric business applications that uses standard models
from UML/P optionally extended by GUI description models as sources [GMN+20]. While the
standard semantics of these modeling languages remains untouched, the generator produces a
lot of additional functionality around these models. The generator is designed flexible, modular
and incremental, handwritten and generated code pieces are well integrated [GHK+15a], tag-
ging of existing models is possible [GLRR15], e.g., for the definition of roles and rights or for
testing [DGH+18].

341



Related Interesting Work from the SE Group, RWTH Aachen

[AHRW17a] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Engi-
neering Robotics Software Architectures with Exchangeable Model Transformations.
In International Conference on Robotic Computing (IRC’17), pages 172–179. IEEE,
April 2017.

[AHRW17b] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Modeling
Robotics Software Architectures with Modular Model Transformations. Journal of
Software Engineering for Robotics (JOSER), 8(1):3–16, 2017.

[AMN+20] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. En-
terprise Information Systems in Academia and Practice: Lessons learned from a
MBSE Project. In 40 Years EMISA: Digital Ecosystems of the Future: Methodol-
ogy, Techniques and Applications (EMISA’19), LNI P-304, pages 59–66. Gesellschaft
für Informatik e.V., May 2020.

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems
Engineering Process and Tools for the Development of Autonomous Driving In-
telligence. Journal of Aerospace Computing, Information, and Communication
(JACIC), 4(12):1158–1174, 2007.
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Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tërnava, Thomas Thüm, and
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[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domän-
spezifischer Sprachen. Informatik-Bericht 2006-04, CFG-Fakultät, TU Braun-
schweig, August 2006.
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dreas Schweiger, Marina Reich, and André van Hoorn, editors, Proceedings of the
Workshops of the Software Engineering Conference. Workshop on Avionics Systems

351



Related Interesting Work from the SE Group, RWTH Aachen

and Software Engineering (AvioSE’19), CEUR Workshop Proceedings 2308, pages
87–94. CEUR Workshop Proceedings, February 2019.

[KRRvW17] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von Wenck-
stern. Modeling Architectures of Cyber-Physical Systems. In European Conference
on Modelling Foundations and Applications (ECMFA’17), LNCS 10376, pages 34–
50. Springer, July 2017.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Sys-
tems - eine Herausforderung für die Automatisierungstechnik? In Proceedings of
Automation 2012, VDI Berichte 2012, Seiten 113-116. VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Develop-
ment using Domain Specific Modelling Languages. In Domain-Specific Modeling
Workshop (DSM’06), Technical Report TR-37, pages 150–158. Jyväskylä Univer-
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