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Abstract
The industry area of embedded and cyber-physical systems is one of the largest and it influences

our daily life. The global embedded systems marked was valued at about 160 billion US dollar in
2015 and it is getting up to 225 billion US dollar by end of 2021 [Zio17]. Example domains of
embedded and cyber-physical systems are: automotive [DHJ+08], avionics [FLV03], robotics
[WICE03], railway [DNCH10], production industry [EWSG94], telecommunication [ZSM11],
healthcare [ERA09], defense [BNP+04], and consumer electronics [VOVDLKM00].

Model-based engineering, esp. component and connector (C&C) models to describe logical
architectures, are one common approach to handle the large complexity of embedded and
cyber-physical systems [FR07, MBNJ09, OMG15, EJL+03]. Components encapsulate software
features; the hierarchical decomposition of components enables formulating logical architectures
in a top-down approach. Connectors in C&C models describe the information exchange via typed
ports; they model black-box communication between software features.

The current development of complex C&C-based embedded systems in industry mostly in-
volves the following steps [BMR+17a, DGH+19]: (1) formulating functional and extra-functional
requirements as text in IBM Rational DOORS; (2) creating a design model of the software architec-
ture including its environment interactions in SysML; (3) developing a complete functional/logical
model to simulate the embedded system in Simulink; and (4) system implementation based on
available hardware in C/C++ satisfying all extra-functional properties.

This current development process has the following disadvantages [KBFS12, HKK+18,
BMR+17a]: (a) SysML models do not follow a formalized approach; i.e., engineers may interpret
these models differently due to missing semantics; (b) the check between the informal SysML
architecture design against the Simulink model is done manually, and thus, error-prone and very
time-consuming; (c) refactoring of Simulink models (e.g., dividing a subsystem) needs manual
effort in updating the design model, and therefore, due to timing constraints this step is often
skipped resulting in inconsistencies; and (d) most tools do not support a generic approach for
different extra-functional property kinds, and thus, extra-functional properties are mostly modeled
as comments or stereotypes and consistencies between these properties are checked manually.

This thesis aims to improve the software development process of large and complex C&C
models for embedded and cyber-physical systems by providing model-based methodologies to
develop, understand, validate and maintain these C&C models. Concrete, this thesis presents
concepts to support the embedded software engineer with: (i) automatic consistency checks of
C&C models; (ii) automatic verification of logical C&C models against their design decisions;
(iii) automatic addition of traceability links between design and implementation models; (iv)
finding structural inconsistencies during model evolution; (v) providing a flexible framework to
define different extra-functional property types; (vi) presenting an OCL framework to specify
(company-specific) constraints about structural or extra-functional properties for C&C models;
and (vii) generation of positive or negative witnesses to explain why a C&C model satisfies or
violates its extra-functional or structural constraints or its design decisions.

Prototype implementations of above mentioned concepts and an industrial case study in
cooperation with Daimler AG show promising results in improving the model-based development
process of embedded and cyber-physical systems in industry.
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Chapter 1.

Introduction

Modern software systems are becoming more and more complex in many areas [FR07, PBKS07,
FB11, Bro05]. One prominent area for complex software and software-intensive systems is the
field of embedded and cyber-physical systems [Lee08]. Engineering cyber-physical systems
rises specific challenges that are rarely present in other software engineering disciplines due to
the systems’ steady interactions with their environment [KRRvW17]. A common approach, in
current research and in industry, is to describe embedded systems and their real-world interactions
as component and connector models [Rin14, Hab16, BS12, MT10, CGL+03]. Component and
connector models describe the logical architecture of cyber-physical systems by focusing on
software features and their logical communications [KRRvW17, Rin14]. In component and
connector (C&C) models, hierarchical decomposed components encapsulate software features,
and connectors model the data flow between components via typed ports [HRR12, The18k,
DvdHT01, Mod05, Nat98, FMS11]. As extra-functional properties, e.g., worst-case-execution-
time, memory and power/fuel consumption, safety, and security, are also key features for the
success of embedded systems, component and connector models are often enriched with many of
these properties [MRRvW16, Gru07, SSCC09, SCS11a, SSCS16, CM78, Rom85, RM06].

But, the process to develop, understand, validate, and maintain large component and connector
models (with extra-functional properties) for complex embedded software is onerous, time and
cost intensive [BMR+17a].

Hence, the aim of this thesis is to support the automotive software engineer (cf. Chapter 2)
with:

(i) automatic consistency checks of large C&C models,
(ii) automatic verification of C&C models against design decisions,

(iii) tracing and navigating between design and implementation models,
(iv) finding structural inconsistencies during model evolution,
(v) presenting a flexible approach to define different extra-functional properties for C&C

models, and
(vi) providing a declarative specification framework to formalize constraints on C&C models

for extra-functional properties in order to execute automatic consistency checks.
The remainder of this chapter is structured as follows: Section 1.1 introduces the context of

and some preliminaries for this thesis; i.e., component and connector models and their views for
specifying design decisions; model based (systems) engineering and domain specific languages;
and MontiCore, a tool for creating domain specific languages, used to engineer the language
family presented in this thesis. Section 1.2 presents the requirements on this PhD thesis; these are
based on the working packages of the proposal of the GIF grant I-1235-407.6/2014, that founded
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the research leading to these results. Section 1.3 states the research question and describes main
contributions of this thesis. Section 1.4 outlines the chapter structure of this document. Finally,
Section 1.5 gives an overview of related publications created in context of this thesis.

1.1. Context and Foundations

The foundations for the developed methodologies, concepts, algorithms, and tools are mostly
formed by previous research of Software Engineering at RWTH Aachen University in Germany
and School of Computer Science at Tel Aviv University in Israel.

In more detail, the EmbeddedMontiArc language family to model and simulate cyber-physical
and embedded systems is based on MontiArc [HRR12, Rin14, Wor16, Hab16], whereby the brain
domain specific language NestML [Plo18, BEP+18] inspired the unit concept used in Embedded-
MontiArc. The EmbeddedMontiView language, to specify component and connector design deci-
sions, uses concepts of the textual MontiArc derivate for C&C views [Rin14, MRR13, MRR14].
The symbol table based tagging mechanism, presented in this thesis to enrich component and
connector models with extra-functional properties, is an extension of the tagging mechanism
for DSLs (domain specific languages) [GLRR15, Loo17]. The object constraint language to
formalize the semantic relationship of extra-functional properties between EmbeddedMontiArc
and EmbeddedMontiView models added units and advanced type resolving features to the existing
UML/P OCL language [Rum16].

The algorithms of C&C views verification as well as the representation of positive satisfaction
and negative non-satisfaction witnesses are based on previous work [Rin14, MRR13, MRR14];
this thesis adapted and extended these previous algorithms and witnesses to fit better in the area
of embedded and cyber-physical systems.

The architectural modeling concepts, esp. C&C models and C&C views, of Haber, Maoz,
Ringert, and Rumpe are general and domain agnostic. This thesis extends their work
with modeling concepts used very much in embedded systems; esp. new port type system
with units, matrices, and ranges; static typed arrays of components and ports; as well
as component interfaces for product-lines. EmbeddedMontiArc and EmbeddedMontiView,
developed during this PhD thesis, introduce many new language features to facilitate an easier
integration of C&C modeling concepts into current development processes of automotive1

companies. To show the benefits of both languages, this thesis presents many code snippets based
on real-world examples in the area of embedded systems.

The next subsections explain in more detail:
• How do component and connector models and views look like?
• What is model based (systems) engineering in the context of this thesis?
• What are the important aspects of designing domain specific languages?
• How does MontiCore help to create domain specific languages in an efficient and easy

way?
1Most likely, the findings of EmbeddedMontiArc and EmbeddedMontiView according to the development process of

automotive systems engineering can also be transferred to other embedded system’s domains, e.g., aerospace or
robotics. However, this thesis evaluated these two languages according to development processes and examples
provided by automotive companies (cf. Section 2.1, Section 2.2, and Chapter 8).
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1.1.1. Component and Connector Models and their Specification
Language

Main sources: [MR13, Section 1], [KRRvW17, Section 1], [BMR+17a, Section II]

Model-based (systems) engineering together with domain-specific languages (cf. Subsec-
tion 1.1.3) help to address the problem-implementation gap by providing a language focusing
on the domain rather than on the solution. This subsection describes component and connector
(C&C) models and C&C views, which are two DSLs for the logical layer used in component-
based software engineering. Today, C&C models are mostly used in embedded or cyber-physical
systems, e.g., in avionics, robotics, railway, (production) industry, and automotive. Typical
applications developed with C&C models in automotive industry are, among others, trajectory
planning, lane correction, battery management, engine control, clutch lock-up, anti-lock braking
system, transmission system, automotive suspension, climate control system, power window
control, electronic stability control, electronic power steering, adaptive cruise control, adaptive
forward lighting, and automatic park assistance systems [KRRvW17, The18j, BMR+17a].

As the name component and connector model suggests, the structure of a C&C model consists
of components at different containment levels and connectors connecting components via their
typed input and output ports [MR13, Hab16, HRR12, KRRvW17, MRR13, MRR14, MRRvW16,
MMR+17, BMR+17a]. Due to the many applications for C&C models, there exist already
several tools and methodologies for creating, analyzing, maintaining, and synthesizing them
[MR13, KRRvW17], in industry and academia; e.g., MathWork Simulink [The18k], Acme-
Studio [SG04], AutoFOCUS [AVT+15], IBM Rational Rhapsody Architect [IBM18], Modelica
[Mod05, EMO99], MARTE [OMG11], LabView [Nat98], SysADL [OLB16], GALS [MVF00]
(Globally Asynchronous, Locally Synchronous), and ASCET [DSW+03] (Advanced Simulation
and Control Engineering Tool).

The main advantage of C&C models is their hierarchical decomposition, which enables
decomposing complex functions in smaller ones. This way large systems can be implemented by
different teams or even different stakeholders in a divide and conquer manner [KRRvW17].

However, the strict hierarchical decomposition of C&C models (showing only one layer at
a time) limits the overall design process of a system where different groups or stakeholders
participate by providing partial knowledge about the system [MR13]. In contrast to the imple-
mentation process that is based on an existing architecture, the design process to create this
architecture focuses on multiple user stories, or requirements. Therefore, the design process needs
to deal with concern-specific interests resulting in models crosscutting hierarchical boundaries
[MR13, Rin14, MRR13].

C&C views - introduced by Rumpe, Ringert, and Maoz [MRR13, MRR14, Rin14] - are
invented to describe (abstract) relations between components ignoring hierarchical boundaries.
Since C&C views’ syntax is an extension of the well-known syntax of C&C models, C&C
views describe structural properties of C&C models in an intuitive and formal way [MRR13,
BMR+17a]. C&C views enable to abstract from direct hierarchy, direct connectivity, port names
and types [MR13, MRR13, BMR+17a, Rin14]. The abstraction of direct hierarchy enables to
omit intermediate components in C&C views. The abstraction of direct connectivity enables to
connect components in C&C views which are only indirect connected in the C&C model.
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Figure 1.1.: C&C Model of a simple car software (inspired by [BMR+17a]).
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Figure 1.2.: C&C view (left) and C&C witness (right) generated based on C&C model in Fig-
ure 1.1 and C&C View (inspired by [BMR+17a]).

Specifically, a C&C view should focus on the design decision relating to one concern, user
story, or requirement; and thus, a C&C view typically contains only a small subset of components
and connectors belonging to a system.

Recent work [MRR13, Rin14] on C&C views already investigated (1) on C&C view synthesis
to create the complete structural C&C model based on multiple structural design decisions;
as well as (2) on C&C view verification to create satisfaction and non-satisfaction witnesses
explaining why an implementation is (not) conform to a design decision.

The next paragraphs present the difference and the relationship between C&C models and
C&C views on small examples.

Figure 1.1 shows an example C&C model of a simplified car software component. Similar
to all existing C&C modeling tools, the figure shows two separate hierarchy levels. The Car
component (left part in Figure 1.1) controls acceleration, brake, and light signals of a car based
on the current velocity and drive direction (isForwad) of the vehicle as well as based on the
distance and speed of an obstacle in front of the car. To handle these tasks, the Car component is
decomposed into the Driving and ALS (Adaptive Light System) subcomponents. Since the
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Driving component (right part in Figure 1.1) is responsible for parking and a superior driver
experience on highways; it is further decomposed into three components: ADAS (Advanced
Driver Assistance System), ParkAssist, and a Switch merging signals.

The C&C view in Figure 1.2 represents the architectural design decisions dealing with sensor
data measuring the distance to the obstacle in front of the car. The C&C view states that the
input port Dist_Obj has impact on ADAS (car needs to hold distance), ParkAssist (car
must fit in the parking slot), and ALS (car should not blind pedestrians) subcomponents. The
crosscutting nature of C&C views enables to connect the input port with components being
defined in two hierarchical different layers (cf. left and right part of Figure 1.1). Due to the
hierarchical abstraction of C&C views, the left part in Figure 1.2 omits the Driving component.

The C&C witness, right part in Figure 1.2, reasons why the C&C model in Figure 1.1 satisfies
the C&C View, left part in Figure 1.2. The witness contains the complete hierarchy, regarding to
the C&C model, of components being addressed in the C&C view; thus, the witness contains
the Driving component. Additionally, the witness contains all ports of the C&C model being
addressed in the C&C view directly or being necessary for resolving an abstract connector in a
C&C view to a connector chain in a C&C model. Therefore, the witness contains the Dist_Obj
port for the components Car, Driving, ADAS, ParkAssist, and ALS. The C&C view’s
abstract connector from Car’s Dist_Obj to the component ADAS is resolved to a connector
chain of two connectors: (1) connector from Car’s Dist_Obj to Driving’s Dist_Obj, and
(2) connector from Driving’s Dist_Obj to ADAS’s Dist_Obj. As a result, the witness
shows these two connectors; similar holds for the other connectors shown in the C&C witness.

1.1.2. Model Based Systems Engineering

Main sources: [HR17, Section 1.1], [MSN17, Section 2.1], [CBCR15, Section 2]

Model based (systems) engineering uses models to speed up the overall software (systems)
engineering process. This thesis uses the following definition for a model:
“A model is an abstraction of a (real) [software] system allowing predictions or inferences to be
made.” [Küh06]
This means a model abstracts unnecessary details [Rum16] from the original by showing specific,
for the system or application interesting, viewpoints/aspects [MSN17] (cf. [Küh06, Sta73,
HBB+94, BG01, Sei03, Sch12]).

There exists several development processes using models in different intensities. These
processes are called MBE (model-based engineering), MDE (model-driven engineering), and
MDD (model-driven development). Now, these processes are put into a relationship to see how
they differently work with models.

MBE is a softer version of MDE; since in MBE software models play an important role
(e.g., models as documentation on which developers create manually code), but they may not be
first-level artifacts of the process (i.e., they may not “drive” the engineering process) [Cab14].

“Model-driven development is simply the notion that we can construct a model of a system that
we can then transform into the real thing.” [MCF03]. MDD uses models as first-level artifacts of
the development process to generate source code, or to synthesize a larger artifact based on many
smaller first-level models.
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Examples of MDD at the Software Engineering chair at RWTH Aachen University are:

• MontiCore [HR17]: It uses grammar models to generate parser, visitor, and AST.
• MontiDEx [Rot17]: It generates a GUI and CRUDS (create, read, update, delete, and

search) application logic based on class diagram models. Similar applications are MaCoCo
[ANV+18], MontiWIS [Gül14], and WebDEx [Rei16].
• NESTML [Plo18, BEP+18]: It uses NESTML models to generate C++ code for the NEST

(Neural Simulation Tool) [GD07] infrastructure. This C++ code is used to simulate neural
activities in the brain.
• MontiArcAutomaton [Wor16]: It uses component and connector models (similar to SysML’s

internal block diagrams) and automata as primary modeling artifacts to generate Java or
Python source code.
• Facility Models [KLPR12]: They describe the energy flow inside buildings, so that posi-

tions and states of hot water circuits and central air conditions can be optimized to develop
energy efficient buildings.
• Besides only generating code based on models, model artifacts are also used to synthesize

one complete behavior model based on multiple LTL [MR15] or automata [Rin14] specifi-
cation models. Another example for model-based synthesis is the creation of timetables for
TV channels based on broadcast license permissions for movies, or series.

MDE is more general than MDD, since development is only one activity within engineering.
Activities of MDE, which are not part of MDD, are, e.g., model-based evolution [RSvW+15,
KSRvW18], variability modeling or extraction [KRR+16, RRS+16, HRR+11], and maintaining
legacy systems [BRR+10]. Thus, the relationship (based on Jordi Cabot’s blog [Cab14]) can be
summarized as follows: MBE ⊃MDE ⊃MDD

In the following this section continues to explain the wordings MBSE, CBSE, and DSL.

MBSE (model-based systems engineering) uses models to describe system requirements and
system designs as well as support system analysis, and system validation [INC07]. In contrast to
model-driven software engineering - mostly focusing on one domain such as financial service
systems, insurances, or web applications - system engineering is mostly based on multiple do-
mains - e.g., engineering a car deals with the following domains: embedded software, mechanical,
electrical, and safety. The production process to create the system also has influence on the system
itself (e.g., the price, or the amount of systems that can be produced). Therefore, model-based
production [BKL+18] also belongs to model-based systems engineering. Models, with their
cross-cutting nature helps to express relations between different domains in systems engineering.

CBSE (component-based software engineering) is a development paradigm by assembling
large software systems from components [Nin97]. One well-known concept to model structural
relationships between components in CBSE are C&C models (cf. Subsection 1.1.1). C&C models
such as SysML IBDs (internal-block diagrams) or SysML BDDs (block-definition diagrams) are
often used to design the logical layer of embedded software in a systems engineering context.

DSLs (domain-specific languages) are modeling languages formalizing the application struc-
ture, behavior, and requirements within a particular domain [Sch06]. DSLs tackle the problem-
implementation gap [FR07] - i.e., the conventional gap between the domain problem and the
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GPL (general purpose language, e.g., C++, Java, or Swift) based implementation - leading to
accidental complexity [CCF+15].

Well-known examples for DSLs, their extensions, and their interaction delivers the world
wide web consortium (W3C) as they defined for each problem (webpage structure, layout,
graphics, math expressions, or action handling) its own language such as HTML [W3C17b],
CSS [W3C17a], SVG [W3C11], MathML [W3C14], JavaScript/ECMAScript [ecm18]; and also
extend the HTML language with new keywords for addressing new problems (e.g., Payment API
[W3C18b], or HTML Media Capture [W3C18a]).

In contrast to GPLs - mostly programming languages of level 3 - executable DSLs are program-
ming languages of level 4 [HM02, VDKV00] or level 5 (AI-based DSLs [Gri84]), because DSLs
provide much higher abstractions due to their tailored problem-specific (and mostly declarative)
nature. But not every DSL is executable, e.g., SVG DSL for vector graphics.

DSLs include the following features: concrete syntax, abstract syntax, context conditions (also
called static semantics), and (dynamic) semantics (also called meaning) [HR00, HR04]. The
concrete syntax determines the representation of a DSL. The concrete syntax is the representation
how the user of the DSL needs to write down its concrete models. The concrete syntax of a
DSL should be as close as possible to existing notations used by domain experts [KKP+09].
The concrete syntax of a tool can be textual or graphical (also includes table-based like Excel)
[GKR+07, KKP+09].

DSLs for textual languages mostly use parser generators such as ANTLR [Par13], Yapp
[MMY10], Rats! [Gri06], PEG.js [Kur16], Waxeye [OVM15], or Mouse [Red09] to produce
parsers for transforming text into a traversable internal data structure.

Graphical tooling such as MPS [PSV13], Gemoc [BDV+16], or MetaEdit+ [TR03] are always
projectional editors [VS10]. Thus, these tools modify directly the underlying internal structure,
avoiding the parsing step, and so they do not need to deal with “token clashes”. The concrete
syntax of graphical models are the used graphical elements such as lines, arrows, boxes, stroke
width, or color.

The abstract syntax of a language describes its essential structure; the abstract syntax does
not contain semantically irrelevant words [CBCR15], which make only the concrete syntax better
readable. The ANTLR parse tree [Par13], the internal structure created by the parser, is not an
abstract syntax of a language, because the parse tree contains the complete syntactic sugar of the
textual input file. Some tools, e.g., EMF (Eclipse Modeling Framework) [SBMP08], enable to
define directly the abstract syntax of a language without using any concrete syntax.

The tree structure after parsing textual input and removing irrelevant concrete sugar is often
called abstract syntax tree (AST). This thesis uses the notation of abstract syntax based on Nazari
[MSN17]: “the abstract syntax consists of both the AST and the symbol table” (symbol table is
introduced in Subsection 1.1.3).

Context conditions, sometimes also called static semantics, are Boolean predicates over the
abstract syntax of a DSL [HR00, CBCR15]. Context conditions only constraint the syntax;
they do not describe the semantic domain, the meaning of the syntax [HR04]. For example,
the concrete syntax 10 + 11 can be interpreted as 21 when applying the semantic domain of
natural numbers; or as 01 when applying the Boolean algebra domain with + as exclusive-or
operator.



8 Chapter 1. Introduction

Typical context conditions of DSLs are resolving declarations and type checking [Edw00,
Car96, Bag10]; e.g., variables must be declared before referenced, a file contains at most one
public class in Java, or the type of an assignment’s left side must be compatible to the type of
the right side. Context conditions can also be used to detect code smells violating conventions,
e.g., Java classes should start with a capital letter [Ora99]. A model is well-formed if it fulfills all
context conditions [CBCR15, MSN17].

A language’s type system is mostly part of the essential structure (abstract syntax) and of
a language’s context conditions. DSLs with a behavior model, e.g., some kind of expression
language, mostly define a type system [JSH13]. The type system has inference rules for deriving
the type of a composed expression term based on the types of single operators. A type system
also has context conditions which check whether an expression based on the (inferred) type
information is valid. The type system of a DSL should reflect the problem domain.

For example, a DSL for matrices similar to MATLAB can have a matrix-based type system
containing matrix dimensions and algebraic matrix properties: One type inference rule is, e.g.,
how to calculate the matrix dimension after a matrix multiplication. One constraint is, e.g., that
matrix addition forces that matrix dimensions of the left and right side are equal.

A type system for an English-like DSL could be based on grammar rules such as singular and
plural: An inference rule could be that a list (comma separated, or just with an and or or) of
singular nouns is the same as a plural noun. A constraint could be that after a plural noun no
singular verb is allowed (Evgeny and Michael programs Java is wrong).

For xText [EB10] and its expression framework Xbase [EEK+12] exist XTS [Voe11], Xse-
mantics [Bet13], and TS4DSL [JSH13] as tools for type declaration, type inference, and type
checking.

The semantics of a language provides the meaning, in a well-defined and well-understood
domain, of each well-formed syntactical element. There are three kinds how to define the semantic
of a DSL:
• Denotational semantics: It defines a function mapping of the concrete or abstract syntax to

a mathematical domain, e.g., set theory by Scott and Strachey [Ten76, SS76].
• Axiomatic semantics: It defines the semantics and proofs the correctness by using axioms

[Hoa69].
• Operational semantics [TP97]: It maps the concrete syntax of a DSL directly to code of a

real (or simulated) machine. The weakness is that the machine (simulated, virtual, or real
hardware) needs a clear semantic description [Edw00].

EmbeddedMontiArc’s semantic is denotational as its syntax is mapped to I/O-EFA (input/output
extended finite automata) structures by using the same semantic as Simulink models with fixed-
step size solvers [RSvW+15]. Later in Chapter 7 this thesis uses denotational semantics to map the
meaning of EmbeddedMontiView to Boolean mathematical predicates about EmbeddedMontiArc
models. OCL/P’s semantic is operational; its meaning is defined by mapping it to Java code
[Rum16, Section 5.3] and the meaning of Java code is defined by its byte code and the Java
Virtual Machine [HBL99, Pus98].
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1.1.3. MontiCore

Main sources: [HR17, Section 1.1, Section 4.2], [MSN17, Subsection 2.2.2, Section 3.8, Section 8.1]

Subsection 1.1.2 shows that models and model-based (systems) engineering are used in many
domains, e.g., to speed up development, improve quality, and reduce maintainability costs. A
language workbench is a tool to create efficiently new DSLs [Fow10, Gho10, VBD+13, MSN17,
Rot17]. With xText, MPS, Enso, Mas, SugarJ, Whole Platform, MetaEdit+, Onion, Spoofax,
Rascal, and MontiCore exist already a number of language workbenches for agile language
engineering [PPL14, EVDSV+13]. In contrast to most other existing language workbenches,
MontiCore is a light-weight, highly customizable, and functional oriented language workbench
framework [GKR+08, KRV08, Kra10, KRV10, Völ11, Sch12, Hab16, Rei16, Loo17, MSN17,
Rot17, HR17].

MontiCore’s main features are [HR17]:
• Modular definition of languages
• Easy definition of large language families via:

– Independent language development
– Language extension
– Language embedding
– Language aggregation
– Composition of language tools

• Creation of language specific Eclipse [KRV07] and web editors [KRRvW18, Ron17]
• Assistance for model analysis
• A single source file defines concrete and abstract syntax, as well as parser and internal

representation of models
Due to the more than 10-year existence of MontiCore, there exists a large grammar repository

of many different languages belonging to many different domains, which can be reused to create
your own language in a minimum amount of time.

For example, MontiCore provides languages for the following domains [HR17]:
• Basic domain: Literals, Lexicals, Numbers, Matrices, Comments, Stereotypes, and Tagging
• UML: Class, Object, Activity, and Sequence Diagrams as well as StateCharts and OCL
• SysML: Units, MontiArc (ADL), Automata, Functional nets, CNNArch, MontiMathOpt

(optimization language), and Feature Diagrams as well as EmbeddedMontiArc and Embed-
dedMontiView

• GPLs: Java 7, Ansi-C++, Python, and JavaScript
• Cloud: MontiSecArc (security), MontiClarc (cloud architecture), MontiWIZ (online formu-

lar wizard)
• Text-based: Curriculum, Right Restriction for TV movies/series

Important languages for this thesis are class diagrams, OCL, and MontiArc. Subsection 1.1.1
shortly introduces MontiArc.

Class diagrams are part of structural UML (Unified Modeling Language) diagrams. For
example, class diagrams are used for object oriented modeling or for data modeling as they
describe the data structure via attributes of objects and their relations via associations. Another
use case for class diagrams is to describe the structure of systems, e.g., as abstraction of Java or
C++ code systems, by showing only their classes with their relations (implements/extends and
association relation), their attributes, as well as their methods.
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grammar PlusMinus {

Formula = (Expression ";")+;

interface Expression;

PrimaryExpression implements Expression <100> = 

Number | Name;

AdditiveExpression implements Expression <20> =

left:Expression op:(["+"] | ["-"]) right:Expression;        }

1
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MC5

grammar Arithmetic extends PlusMinus {

start Formula;

MultiplicativeExpression implements Expression <30> =

left:Expression op:(["*"] | ["/"] | ["%"]) right:Expression;}

8
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11

MC5Grammar

inheritance

grammar SimpleArithmetic extends Arithmetic {

start Formula;

PrimaryExpression implements Expression <100> = 

Number;                                                     }

12
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15

MC5

component grammar FileContainer {

File = "file" Name "{" FileContent* "}";

external FileContent;                                    }          

16
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MC5

grammar MathFile extends FileContainer, Arithmetic {

start File;

FileContent = Expression ";";                                 }     

19
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21
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Grammar

slicing
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priority

restrict PrimaryExression, no variable names anymore

Arithmetic's Expression is
embedded into FileContent’s hole

start rule

Figure 1.3.: Grammar Composition in MontiCore 5

OCL (Object Constraint Language) is an extension to UML models, e.g., class diagrams,
to specify precisely detailed aspects of systems. OCL is typed, declarative and side-effect
free [Cab12]. This thesis uses the OCL/P textual notation of Rumpe [Rum16] to specify OCL
constraints. Chapter 6 explains OCL in detail. The paper [BRvW16] illustrates on five constraints
the syntactic difference between OMG OCL 2.4 and OCL/P.

The rest of this subsection explains the concepts how to create a large language family similar to
EmbeddedMontiArc, the C&C language family introduced in this thesis and described in the next
chapters. It shows how eloquent MontiCore handles language inheritance, slicing, and merging
via grammar files. Section 4.6 describes how the resolving mechanism in MontiCore helps to find
declared symbols across different DSLs enabling language aggregation and embedding.

Information about the technical architecture of MontiCore, or how the here presented concepts
of MontiCore are implemented, or example code snippets explaining how to use these MontiCore
features to develop your own DSL are explained in detail in the official “MontiCore 5 Language
Workbench” book [HR17] and in the thesis “MontiCore: Efficient Development of Composed
Modeling Language Essentials” [MSN17].

Similar to other DSL tools, e.g., Melange [DCB+15], MontiCore also supports language
inheritance, slicing, and merging. In contrast to Melange, which specifies these language relations
via model types in the abstract syntax, MontiCore uses a grammar file to enable inheritance,
slicing, and merging not only on the abstract syntax, but also on the concrete one.

The top listing in Figure 1.3 shows the MontiCore grammar for a basic expression language.
This listing shows that the MontiCore grammar format extends EBNF (Extended Backus-Naur
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form) to specify productions for the lexer and the parser. As shown in lines 2, 4, 6, 10, 14, 17, and
21 most productions are assignments and consist of a left-hand side (LHS) part and a right-hand
side (RHS) part.

The LHS of a rule defines a nonterminal. The RHS defines the production’s body of the LHS
nonterminal. The RHS may consists of any combination of lexicals, terminals, or nonterminals.
The elements on the RHS may be annotated with cardinalities describing how often an element
appears: ? for 0 to 1 times; + for 1 to infinite times; and * for zero to infinite times. The pipe
symbol | is used to describe alternatives.

In contrast to ANTLR, MontiCore’s extended grammar format borrows several concepts from
object-oriented languages such as Java:

(i) definition of production interfaces,
(ii) definition of abstract productions,

(iii) implementation of production interfaces, and
(iv) extension of production interfaces.

Similar to object oriented languages where interfaces can be (a) marker interfaces without
any further function signatures, or (b) “normal” interfaces defining a contract that all classes
implementing it should follow [Die17]; MontiCore also supports these two kinds of interfaces
for productions: (a) the first kind has no RHS meaning it does neither define any concrete nor
abstract syntax; (b) the second kind has a RHS defining the signature (abstract syntax) for all
nonterminals implementing it [HR17].

Line 3 defines the Expression interface. Interfaces enable to decouple the definition of
languages as they create open extension points [HR17]. These open extension points enable that
the Expression interface may not only be implemented in its own grammar PlusMinus, but
also in the two other grammar files Arithmetic and SimpleArithmetic. Formula in
line 2 uses the interface nonterminal Expression in its RHS; and thus, it includes all nontermi-
nals implementing Expression according to their priority, i.e., first PrimaryExpression
and then AdditiveExpression. If no priority is explicitly defined, the occurrence order of
the definitions of the implementing nonterminals is used.

If a grammar contains no start rule as shown in line 9, then the first production rule is a
grammar’s start rule. Therefore, valid input files regarding to the PlusMinus grammar are:
• -17;
• x1;
• -17 + B;
• 3; x1 + 5 - B;

The Arithmetic grammar extends the PlusMinus grammar, and, thus, it has access to
all PlusMinus’s nonterminals. Additionally, the Arithmetic grammar adds a new produc-
tion rule implementing the Expression interface. The Arithmetic’s inherited Formula
production using the PlusMinus’ Expression interface includes all nonterminals of the
Arithmetic and all nontermals of the PlusMinus grammars, which implement the Ex-
pression interface. Since the priority of the MultiplicativeExpression is higher
than the one of the AdditiveExpression, but lower than the priority of the PrimaryEx-
pression; the Formula rule includes first PrimaryExpression, then Multiplica-
tiveExpression, and last AdditiveExpression.

A valid input file according to the extended Arithmetic, but an invalid input for the
PlusMinus is:
• x1 + 5 * 3;
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MontiCore also supports slicing grammars (removing words belonging to a language) by
extending a language and overwrite an existing nonterminal to restrict some allowed words. An
example is shown in lines 14 and 15 where the inherited PrimaryExpression nonterminal
is overwritten to accept only numbers and no (variable) names anymore.

Grammar merging, also known as grammar embedding, combines the words defined by
both grammars in a controlled way. The MathFile grammar embeds the Arithmetic’s
Expressions interface production into the FileContainer’s File production by binding
the external production Content to Expression (cf. l. 21).

The component grammar FileContainer (cf l. 16) is an incomplete grammar, and thus,
cannot be used standalone. The definition of the external production FileContent (cf. l. 18)
creates a slot defining a variation point: So multiple grammars can extend this FileContainer
grammar and bind FileContent differently (e.g., expressions, URL links, automata, etc.).

The later in this thesis presented language EmbeddedMontiArcBehavior, extending the pure
structural C&C language EmbeddedMontiArc with behavior, creates a variation point for behavior
to facilitate different behavior implementations: EmbeddedMontiArcMath has a MATLAB-like
behavior implementation, and EmbeddedMontiArcDeepLearning defines the behavior of atomic
components via a CNN (Convolutional Neural Network) as used in deep learning applications.

Grammar extension and the here mentioned interface mechanisms enable to engineer a large
language based on smaller ones. This is one of the most valuable features of MontiCore. For
example, ANTLR does not contain this feature, and so the concrete and abstract syntax of a
language must be completely defined in one very large g4-file; also reuse of grammar rules (e.g.,
names, numbers, or expressions) can only be done via copy and paste in ANTLR.

The previous paragraphs shows that MontiCore enables to combine concrete syntax as well as
ASTs of different languages in an efficient way. But as mentioned in Subsection 1.1.2 symbols
belong to the abstract syntax, too. Symbols are, e.g., created when defining variables, and symbols
are, e.g., used when resolving previously defined variable names. All symbols of a language
family are stored in a symbol table.

According to Nazari [MSN17] is a symbol table a graph-based data structure containing of
scopes, where each scope is a local repository for symbols, to fulfil the following tasks:

(i) mapping names to symbols representing essential model information;
(ii) organizing and finding types, declarations, implementation details, etc. of model elements

in an efficient way; and
(iii) representing the essence of a language, i.e., of its models by including model interfaces

constituted by the language interface [MSN17, CBCR15].
For C&C models, described in Subsection 1.1.1, the essential information is: in- and output

ports (i.e., the interface) of a component, subcomponents a component is decomposed of, dataflow
between ports, as well as types of ports and components. For example, the symbol table supports
finding a component by its name, and then navigate efficiently through the essential data structure.

MontiCore’s ability to combine grammars and to exchange symbols between languages enables
the development of modular language components and tools which can be completely reused to
engineer large language families and powerful modeling tools.
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1.2. Requirements on PhD Thesis

To integrate C&C architectural modeling and its C&C views verification techniques into industrial
development processes of embedded and cyber-physical systems, this section summarizes the
requirements on this PhD thesis in order to improve the existing C&C (views) languages MontiArc
and MontiArcView.

Most results of this thesis are founded by the German Israeli Foundation (GIF Grant No:
I-1235-407.6/2014) as a joint work together with Tel-Aviv University. This section contains text
fragments of the corresponding proposal [MR13, Section 3].

1.2.1. Enhancing the C&C Views Language

The basic C&C views language based on Maoz et. al. [MRR13] should be enhanced by integrating
extensions of AADL [Soc06], SysML [FMS11, OMG15], and specific application domains such
as automotive [SG07] or robotics [BKH+13].

The following extensions of C&C Views should be supported:
(R1) Component instantiation and component/connector types
Since existing architecture description languages already have an instantiation mechanism for
component reuse (including types, subtypes and their well-formedness rules), C&C views should
also introduce such an instantiation and typing mechanism. Furthermore, advanced language
features such as parameter instantiation, or generic component types should be inspected for the
C&C views concept.
(R2) An associate predicate language
While C&C views are intuitive and expressive enough to specify abstraction of C&C models
- e.g., by omitting complete hierarchy or ports in connections - not all structural properties of
C&C models can be expressed by C&C views. Thus, an OCL-like constraint language with
quantification support over components, connectors, and ports and related operations to its C&C
views should be created. The language should be designed that its answer whether the constraint
is satisfied or not is decidable; but the language should be able to constraint “the number of
ports of a component” or “specify the completeness of a given component hierarchy” in a short
compact form.
(R3) Domain-specific language adaptations and extensions
For future application of C&C views in industry, the C&C views language must support domain-
specific extensions to become more friendly to engineers. Additionally, C&C views language
and its corresponding C&C model language should support a way to add domain or application-
specific properties (e.g., extra-functional properties being used in automotive industry).

1.2.2. Advancing C&C Views Analyses

(R4) As the C&C views language is enriched by more and more features, the C&C model
language and the formal satisfaction relation between C&C views and C&C models must be
updated. Also introducing component types makes the verification problem much harder. In
this case also parts of the already existing algorithms might be updated in order to have a good
scalability up-to medium-large industry models.
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(R5) Also a Boolean answer to the verification problem is mostly not useful enough. Therefore,
esp. for negative verification results, a meaningful witness should be generated. The witness
should explain the reason (or reasons) why a C&C model does (not) satisfy its C&C design view.

1.2.3. Integrating C&C Views in the Development Process and
Environment

Since existing development processes and their tools are all about hierarchical decomposition of
systems to sub-systems, and thus, these tools represent only a single hierarchy/sub-system to the
engineer at a time; these tools are not suited for the crosscutting nature of C&C views and their
verification. Therefore, existing processes and tools must be adopted to take advantage of C&C
views together with their abstraction mechanisms and analysis methods.

This requirement consists of the two sub-requirements:
(R6) New design and development processes:
Existing design and development processes based on C&C models should be investigated. Ad-
ditionally, these mostly hierarchical based processes should be adapted to use C&C views; and
usage scenarios for design, development, or maintenance where C&C views support the adapted
process should be worked out so that the benefits of integrating C&C views with their verification
into existing processes becomes obvious.
(R7) New modes of interaction:
Existing tools represent only one hierarchy of a system or its sub-systems. This means it is not
possible to see two components and their interaction between them, if these two components are
not on the same hierarchy level. Therefore, a crosscutting visualization of a view as well as a
seamless navigation between C&C model and its views in both directions should be developed.

1.2.4. Evaluation

(R8) The new enhanced C&C view language should be evaluated in an industrial context. The
evaluated setting should show the benefits and weaknesses of the C&C view approach integrated
into existing processes. The evaluation together with an industrial partner should show how
efficient this approach is in the daily-life of engineers. Thereby, we will compare the results of
C&C view verification against its manual verification, in terms of speed, needed human resources,
and correctness.

1.2.5. Further Remarks

This thesis focuses on the C&C view and the C&C model language extension, support of
extra-functional properties, OCL-like specification language for C&C models, the extended
formal satisfaction relation between C&C views and C&C models, as well as how the C&C
verification can be integrated in existing development processes by adopting the current modeling
methodologies. Additionally, this thesis contains results of an industrial case study together with
Daimler AG about C&C views and their verification.

This thesis neither contains C&C views synthesis nor C&C views refinement.
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1.3. Objective and Main Results

The following research question summarizes the main research goal of this thesis:

How can domain specific languages support the software systems engineering process for
cyber-physical systems by defining structural design decisions and extra-functional properties in
an efficient, agile, and intuitive, but also unique and formal way so that industrial-size component
and connector models can be validated against them?

This thesis aims to improve software systems engineering by providing a continuous model-based
approach from specifying architectural design decisions over defining extra-functional properties
up to developing a complete logical architecture by utilizing domain specific languages (DSLs).
In particular, we created a language family that consists of DSLs:

(1) to model design decisions via crosscutting structural relations between components;
(2) to specify new kinds, structures and semantics of extra-functional properties, and to define

values according to its structure; as well as
(3) to model the complete logical and functional architecture.
Since each domain specific language addresses only one modeling concern in the systems

engineering process, the concrete syntax of each textual language focuses on the notation of
domain experts for this specific concern. This facilitates domain experts to model in an efficient
and intuitive way. Additionally, the magnitude on different DSLs plus the modular nature of each
DSL - building on Java’s class, package and import concept - enables to separate information
about one model into different artifacts. This provides a more flexible development process
as engineers can work on their subset of files, and thus, all features - having an overlapping
developing time - must not be integrated at the same time. It is even possible to revert only a set
of files representing a specific concern or feature. Therefore, the more flexible process supports
different, and thus shorter, development cycles for concerns (e.g., design, functional components,
safety, and security) making it more appropriate for agile development.

The unique meaning and formal background of these domain specific languages enable formal
verification between the logical architecture and its structural design decisions. Additionally, the
formal background of these DSLs empowers formal validation of architectures, enriched with
extra-functional property values, according to the specified semantics of their extra-functional
property kinds. These validations support an incremental and agile engineering process, as
their automatically generated result witnesses unveil instantly inconsistencies between evolving
designs, extra-functional property values, or the frequently modified functional architecture.
The main contributions of this thesis are:
• A number of DSLs with SI unit (Systeme international d’unites) support which has an

intuitive concrete syntax. This DSL enables engineers to define complex numbers, and
numbers with units (and their automatic conversions) in an intuitive way as they are written
down in daily life, e.g., in textual requirements. In contrast to other DSLs, where units
must be encoded between special characters, e.g., 0.8 [m/s] in Sprat Ecosystem DSL
[JH17], this DSL is able to parse numbers with units directly such as 0.8 m/s. This
language is the basis for many other DSL adoptions and extensions addressing (R3).

• EmbeddedMontiArc, a DSL for C&C models, with focus on cyber-physical systems. It
embeds SI numbers for unit support. EmbeddedMontiArc supports generics, component
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libraries, configuration parameters, as well as arrays of ports and component instantiations
to facilitate modular and reusable functional architectures. The enhancement of the previ-
ously used C&C modeling language [Rin14] is necessary so that models satisfying C&C
views, being extended to fulfil (R1), do exist.
• Formalization of the abstract syntax of EmbeddedMontiArc via class diagrams. This is

a necessary prerequisite to define the formal C&C view verification relation between
EmbeddedMontiArc and EmbeddedMontiView; addressing parts of (R4).
• Mathematical framework to specify the consistency constraints of extra-functional proper-

ties for C&C models. This is related to (R4).
• Tag schema and a tag model DSL to create new extra-functional property kinds and,

later-on, to define extra-functional values for these kinds. This solves completely (R3).
• Extension of the UML/P OCL language to specify further constraints in form of context

conditions for EmbeddedMontiArc. This addresses (R2). The OCL language supports
defining constraints for extra-functional properties in an efficient way, i.e., in a few lines
of code.
• Aggregation of tag schema, tag model, and OCL DSL to specify context conditions

for EmbeddedMontiArc regarding to the mathematical framework for extra-functional
properties. Also an extension of the verification algorithm, as required in (R4), validates
the defined consistency rules for extra-functional properties, and it also generates (non-)
consistency witnesses, as wished in (R5).
• Extension of the C&C view language with component types and arrays, abstract effectors,

as well as further port abstractions, and abstractions regarding to port arrays. For example,
new port abstractions are unit kinds as abstraction between no port type and concrete port
type. These extensions address (R1) and (R3).
• Formalization of the EmbeddedMontiView DSL, so that the new concrete and abstract

syntax has a concrete mathematical meaning. This also belongs to (R1) and (R3).
• Definition of a satisfaction relation between EmbeddedMontiArc and EmbeddedMontiView;

this satisfaction relation extends the existing satisfaction relation between C&C views and
C&C models of Maoz, Rumpe and Ringert [MRR13, MRR14, Rin14]. This new extended
satisfaction relation fulfills (R4).
• Adaption of satisfaction and non-satisfaction witnesses according to the new satisfaction

relation. This accomplishes (R5).
• Integration of C&C view verification with its witnesses into existing methodologies. The

tracing witness is added as new additional witness kind for a positive satisfaction relation;
tackling (R6). Support of other kinds of user interaction, e.g., by coloring all model
elements satisfying a specific view element and adding links between them; addressing
(R7).
• An industrial case study together with Daimler AG, solving (R8), evaluated use-cases

where C&C views with their corresponding verification can be integrated in an existing
development process. Additionally, the case study assess how the development process
and our tooling must be adapted; also addressing (R6) and (R7). The process of validating
component and connector models against C&C views or verifying extra-functional property
consistency is very fast (mostly far below 1 minute). This very fast execution of our
implemented tool, that is based on the here presented algorithms, supports agile and
incremental development.
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1.4. Thesis Organization

This thesis is organized in the following way:

Chapter 1 gives an overview of this thesis’ context, motivation, requirements, research questions,
and achieved research results.

Chapter 2 presents two current development methodologies in automotive industry. This chapter
shows how the research findings of this thesis can help to improve these model-based
development approaches.

Chapter 3 summarizes the results of our related work study on existing C&C modeling lan-
guages. Additionally, this chapter introduces the EmbeddedMontiArc language borrowing
concepts from established C&C languages.

Chapter 4 presents the abstract syntax of EmbeddedMontiArc via class diagrams. This chapter
also elucidates the component and connector instance structure representing the statical
architecture instantiated by an EmbeddedMontiArc model.

Chapter 5 shows the tagging mechanism to enrich C&C models with extra-functional properties
in a non-invasive way. This chapter introduces the two DSLs enabling the tagging mecha-
nism: (a) tag schema to define new extra-functional property kinds, and (b) tag model to
add extra-functional property values to C&C models.

Chapter 6 gives an overview of the mathematical framework to express consistency constraints
of C&C models enriched with extra-functional properties in OCL. Additionally, this chapter
shows how to specify context conditions via the developed OCL framework.

Chapter 7 presents EmbeddedMontiView- the C&C view language to specify design decisions
for EmbeddedMontiArc. The concrete and abstract syntax of the EmbeddedMontiView is
explained on many concrete listings and use cases. This chapter also defines when a large
EmbeddedMontiArc architecture satisfies an EmbeddedMontiView design specification.

Chapter 8 presents the industrial case study together with Daimler AG. It explains the study
design, the results of the preliminary study focusing on finding suitable models, and the
results of the main study answering questions about feasibility of C&C views, technical
applicability to use existing models, and how helpful the generated witnesses are.

Chapter 9 summarizes the main results and it concludes this thesis.

1.5. Publications

The following list of peer-reviewed research publications, which Michael von Wenckstern au-
thored or co-authored, contribute to the contents of this thesis:

[DGH+19] I. Drave, T. Greifenberg, S. Hillemacher, S. Kriebel, E. Kusmenko, M. Markthaler, P.
Orth, K. S. Salman, J. Richenhagen, B. Rumpe, C. Schulze, M. von Wenckstern, A. Wortmann:
SMArDT modeling for automotive software testing.
In: Software: Practice and Experience, 2018.

[KRSvW18a] E. Kusmenko, B. Rumpe, S. Schneiders, M. von Wenckstern:
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2016.
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Behavioral Compatibility of Simulink Models for Product Line Maintenance and Evolution.
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The contents of these above papers included in this thesis may have been adapted, reorganized,
or extended with respect to the published version. For better readability, contents of these above
papers are not put in quotation marks when reusing them in this thesis; and also contents of these
above papers - when used in this thesis - are not always in detail cited with the reference to the
published paper. The following paragraphs explain the papers’ contributions, and thus the reused
contents, for each chapter.

Chapter 2 is based on the publications about the development process at Daimler AG [BMR+17a,
BMR+18] and SMARDT methodology [DGH+19, KKRvW18, HKK+18]. Section 2.1 uses
mostly contents of the case-study paper [BMR+17a, Section III] and its supplementary mate-
rial on the website “Example Process with Focus on Challenges Traceability and Evolution”
[BMR+17b]. Section 2.2 describes the SMARDT approach, mostly based on [HKK+18, Sec-
tion 3] and [KKRvW18, Section 3], and how C&C views can be integrated (mostly based on
[KKRvW18, Section 4] and [DGH+19, Subsection 3.1]) in it. Additionally, Subsection 2.2.2
reuses some arguments explaining why the textual EmbeddedMontiArc family is better suited then
existing modeling tools from the paper presenting the tooling of EmbeddedMontiArc [KRRvW18,
Section 2].

Chapter 3 is based on the publications about EmbeddedMontiArc [KRRvW17] and model
examples using EmbeddedMontiArc [KRSvW18a, HKK+18]. Section 3.1 and Section 3.2 reuse
a lot of contents published in the EmbeddedMontiArc language family (in the paper called
MontiCAR) paper [KRRvW17] such as industrial-derived requirements, and related work of
EmbeddedMontiArc to existing C&C modeling languages. Section 3.6 reuses the spectral cluster
example [KRSvW18a, Section 2] and some presented models are inspired by the PID con-
troller example [HKK+18, Section 5]. Some EmbeddedMontiArc car examples are inspired by
EmbeddedMontiArc online playground [KRSvW18b].

Chapter 4 reuses nearly no contents of publications. It reuses the flip flop example [RSvW+15,
Figure 2] and is inspired by formal definitions [BMR+17a, Section II], which are mostly pub-
lished in the extra file “Component and Connector Views Definition” being available on the
supplementary material website [BMR+17b]. The port type system uses ideas of the published
abstract syntax for units [BMP+16, Section3].

Chapter 5 is mostly based on the publication of the two tagging languages and the correspond-
ing tagging mechanism [MRRvW16] for extra-functional properties. Especially, Section 5.5
mostly reuses parts of tag schema and tag model language [MRRvW16, Section IV], and Subsec-
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tion 5.5.5 reuses the consistency rules between tag model and tag schema [MRRvW16, Section
V]. Section 5.4 reuses the turbine controller example [MRRvW16, Section II].

Chapter 6 is mostly based on the publication describing the semantics of extra-functional
properties via OCL constraints [MMR+17]; especially Section 6.2 and Section 6.3 reuse parts
of the already published OCL constraints [MMR+17, Section V] based on the mathematical
notation of consistency rules [MRRvW16, Section V], [MMR+17, Section III]. The consistency
witnesses in Section 6.3 are inspired by the witnesses [MMR+17, Section V] for extra-functional
properties.

Chapter 7 reuses nearly no contents of the above publications. It is only encouraged by the
abstract effector concept presented in [BMR+17a, Section II] and the corresponding material on
the website “Component and Connector Views Definition” [BMR+17b]. Section 7.5 reuses only
parts of the examples for a simple car [BMR+17a, Section II] and a parking assistant [KRRvW17,
Section II], as well as C&C views and witnesses from the external material website [BMR+17b].

The structure of Chapter 8 is oriented on the case-study paper with Daimler AG [BMR+17a];
the contents of the preliminary and main study in Section 8.2, Section 8.3, and Section 8.4 are
mostly the same as in the published Models conference paper [BMR+17a].



Chapter 2.

Underlying Development Methodology

This chapter presents development processes for systems engineering of embedded and cyber-
physical systems. Section 2.1 is about the model-based systems engineering process at Daimler
AG. Subsection 2.1.1 introduces the current model-based development at the MBC department
at Daimler AG1. Subsection 2.1.2 shows how to integrate component and connector views and
their verification into the previously presented development process at Daimler AG. Furthermore,
this subsection explains how C&C views and consistency checks for extra-functional properties
improve the work of engineers.

Section 2.2 elucidates the SMARDT systems engineering process developed by BMW Group
[HKK+18, KMS+18, DGH+19, KKRvW18, PPS+03, PSAK04, PPW+05]. SMARDT is an
abbreviation for Specification Methodology Applicable to Requirements, Design, and Testing;
the original German short-form SMArDT is related to the term “Spezifikations-Methode für
Anforderung, Design und Test” [HKK+18]. This section also explains how the SMARDT process
may benefit from C&C views and its verification.

Section 2.3 compares a small set of tools and methodologies which are kind of similar to the
already elucidated development processes at Daimler AG and BMW Group.

2.1. Systems Engineering Process at Daimler AG

This section presents results of the case study with Daimler AG (cf. Chapter 8). The case study
contained of several interviews with an employee at Daimler AG [BMR+17a]. One question of
this case study was about the current model-based and component-based development process.
Another question was about the challenges of this process and where engineers spend a lot of
time due to these challenges, and what would help these engineers. In this case study we looked
at the process for creating an exterior light system and an advanced driver assistant system. As
the case study was about model- and component-based software engineering, we did not inspect
other processes that are not satisfying these two software engineering paradigms.

2.1.1. Current Development Process at Daimler AG

ISO 26262 (Road vehicles -Functional safety) is the international standard for functional safety
of electrical and/or electronic systems in production and/or automotive industry [Int11]. The

1Daimler AG is a large company with 289.321 employees (December 31st, 2017 [Dai18a]). Therefore, insights
gained in the industrial case-study [BMR+17a] with the MBC department at Daimler AG may not be representative
for other departments at Daimler AG.
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Figure 2.1.: ISO 26262 V-Model (copied from Mentor Graphics).

development process in automotive industry should satisfy the ISO 26262 norm as much as
possible, as the competitiveness of a company is measured by the capability of conducting to this
standard [JCJ+11]. Therefore, most German automotive industries develop their software for
embedded systems based on the ISO 26262 V-Model process as shown in Figure 2.1.

The design of a system is mostly described as textual requirements with links to each other;
one famous requirement management tool is IBM Rational DOORS. Later extra-functional
requirements for safety of a system’s design are identified; examples are functional safety,
technical safety, system safety, and hardware failures. These extra-functional and stakeholder
requirements are integrated into existing requirements of a system’s design [IBM13].

The design of a software architecture is mostly modeled in SysML block diagram definitions
[ECSG09]. Common SysML tools in industry are Enterprise Architect [RSRB06], ArchiMate
[Yam15], Metropolis [BWH+03], Cameo Systems Modeler [HDP14], and PTC Integrity Mod-
eler [SHC17]. The requirements are modeled separately in these tools and are linked to the
corresponding modeling elements, so that traceability is always given [PMPdK15].

After the design (which defines the interfaces of software components and their interaction with
its environment) is modeled in SysML, engineers at Daimler AG create manually an executable
model in Simulink regarding to the previously defined design decisions. To have the traceability
between requirements, SysML design models, and Simulink implementation models, engineers at
Daimler AG add to every subsystem in SysML and in Simulink an information block containing
a link to the requirement specification in IBM Rational DOORS [BMR+17a]. Adding and
maintaining these links manually is time consuming and error prone.

This development process has the following disadvantages:
• The check between the informal SysML architecture design against the Simulink model is

done manually.
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shown here)

• The requirement links must be created manually for architectural design model and for the
Simulink model.
• It exists no automatic check to find outdated Simulink subsystems after updating SysML

design models (e.g., due to model evolution).
• If Simulink models are refactored (e.g., subsystem is split into several ones), it may occur

that the SysML design model is not updated; and then the architecture model becomes
obsolete.

• Early inconsistencies in the SysML software architecture design, created by different
persons or even different teams in large companies, must be detected manually.

2.1.2. Improving the Development Process at Daimler AG

Main sources: [BMR+17a, Section III], “Example Process with Focus on Challenges Traceability and
Evolution”[BMR+17b]

To mitigate most of these above mentioned disadvantages, this subsection presents a slightly
modified development process and verification tools, as shown in Figure 2.2. The advantage of
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this new process is that it is completely compatible to existing tools (cf. right side of Figure 2.2).
The general workflow of this new process including existing tools is:

1. IBM Rational DOORS requirements are automatically extracted to a set of textual require-
ments.

2. Engineers create manually for each IBM Rational DOORS requirement a C&C high-level
design model.

3. These C&C high-level design models can be automatically transferred to graphical SysML
diagrams.

4. The linking between IBM Rational DOORS requirement IDs and C&C high-level design
models enables to automatically derive tracing information between IBM Rational DOORS
and SysML diagrams.

5. C&C views synthesis algorithms check automatically all defined C&C high-level design
level models against structural inconsistencies.

6. Engineers add manually extra-functional properties to the C&C high-level design model
based on the textual requirements.

7. The OCL (Object Constraint Language) framework checks automatically the consistence
of the added extra-functional requirements of the high-level design.

8. Engineers create manually the functional C&C model based on textual requirements and
the C&C high-level design models.

9. C&C views verification automatically checks whether the functional C&C model satisfies
all C&C high-level design models.

10. In a next step, this functional C&C model can be automatically transformed to a Simulink
model.

11. The tracing witness of C&C views verification enables to automatically derive tracing
information between SysML diagrams and the Simulink model as well as tracing information
between IBM Rational DOORS and the Simulink model2.

12. The Simulink model is executed. Measured runtime information (e.g., timing, or memory
usage) can be used to automatically enrich the C&C model with these extra-functional
properties.

13. Engineers enrich manually the C&C model with extra-functional properties based on
user-manuals of software or hardware components. Typical information in user-manuals
among others are price, latency, working temperature, ASIL (Automotive Safety Integrity
Level), and energy usage.

14. The OCL framework checks automatically the consistence of the extra-functional properties
added to the functional C&C model.

15. The OCL framework in combination with C&C views verification validates automatically
whether all extra-functional properties in the functional C&C model satisfy all extra-
functional requirements defined in all C&C high-level design models.

Even though the new toolchain is larger, there are less manual steps needed due to the higher
automation of the steps in this new toolchain. Creating SysML diagrams based on textual re-
quirements needs one manual step in the existing approach: IBM Rational DOORS→3 SysML

2due to existing tracing information between SysML and IBM Rational DOORS
3⇒: automatic transformation;→: manual transformation
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diagrams. The improved toolchain also needs only one manual step to translate textual require-
ments to C&C High-Level Design Models as shown in Figure 2.2: IBM Rational DOORS⇒
Textual Requirements→ C&C High-Level Design Models⇒ SysML diagrams. The same holds
to create Simulink models based on IBM Rational DOORS requirements and SysML diagrams,
where the additional manual step in the existing approach is to create Simulink models man-
ually, whereas in the new toolchain the functional C&C models are created manually: IBM
Rational DOORS→ SysML diagrams→ Simulink model ≡ IBM Rational DOORS⇒ Textual
Requirements→ C&C High-Level Design Models→ Functional C&C Model⇒ Simulink model.

In the existing approach the tracing between IBM Rational DOORS and SysML diagrams,
between IBM Rational DOORS and Simulink model, as well as between SysML diagrams and
Simulink model is done manually. In contrast, the new toolchain does the tracing between C&C
high-level design models and functional C&C model automatically. Thus, only the tracing
between textual requirements and C&C high-level design models is done implicitly manually
as each C&C view belongs to one requirement. Based on this implicit relation between textual
requirements and C&C high-level design models as well as the automatically generated tracing
between C&C high-level design models and functional C&C model, the tracing for textual
requirements and functional C&C model can also be done automatically. The two automatic
transformations enable to automatically derive the tracing between IBM Rational DOORS require-
ments and the Simulink model. This means three manual tracing relations in the old approach are
equivalent to only one manual tracing relation in the new toolchain. Thus, the new toolchain
saves a lot of work, especially in agile systems engineering, and it prevents manual tracing
errors.

Furthermore, the new toolchain adds due to its unique semantics many additional automatic
verifications to ensure better model quality and to prevent modeling errors as early as possible:
step 5, step 7, step 9, step 14, and step 15.

The rest of this subsection explains some of the steps of this new toolchain and the underlying
new approach in more detail and it also elucidates what parts of this thesis addresses which steps.

The C&C high-level design contains out of several stand-alone textual C&C view descriptions,
which can be merged [MRR13] to one large design model and/or graphically displayed. The
advantage of splitting up the design decisions into several textual files (similar as programming
languages do it), is the ability to version these files separately. Commercial SysML tools such
as PTC Integrity Modeler use a database approach, which supports to version only the entire
(design) model including all SysML elements used by different development teams. In PTC
Integrity Modeler different teams work in one database model, as otherwise (tracing) links
between elements - created in different layers or by different teams - are not possible. In contrast
to the database linking approach, the here presented C&C view design language uses readable
full qualified names (no generated encrypted IDs) to establish the linking process (cf. Section 4.6,
[MSN17], and [HR17]).

The synthesis algorithm for C&C views enables to check the C&C high-level design against
inconsistencies [KRRvW18]. If this algorithm generates a C&C model based on the specified
C&C views, then the design is consistent; otherwise the specified design is inconsistent. For
inconsistent designs, the synthesis algorithm generates user-friendly error messages, which
include a natural text of the problem description, and a minimal C&C witness containing the
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involved components causing the conflict. Since these checks are completely automatic, they can
be integrated in a commit-based or nightly continuous integration process, e.g., in Jenkins. This
thesis does not contain any synthesis algorithm for C&C views; these algorithms are described by
Maoz and Ringert [MRR13, Rin14, MPRS17].

The high-level design can also be enriched with extra-functional properties such as safety,
performance or security ones. The strong typed tagging mechanism presented in Chapter 5
supports to tag only correct elements reducing human errors (e.g., shifting a line lower). An
example of a check for the tagging mechanism is unit correctness: A velocity tag of a car cannot
be 9 kg. Since for each extra-functional property consistency constraints can be defined, our
validation framework (cf. Chapter 6) can check full-automatically (no further user action is
required) the correctness of the design model with its enriched extra-functional properties. For
example, the tool can check whether the price of a component is larger than the sum of the prices
of its subcomponents.

Chapter 3 shows a textual modeling language extending Simulink with new features such as
complete unit support as well as component and port arrays. These extensions facilitate an easier
description of functional C&C models: (1) Model references must not be copied to be used
multiple times; and (2) stronger types with units prevent inconsistencies when connecting ports.
Additionally, our textual approach is based on the modular Java class concept that supports to
split one model into several textual files to be modified and versioned by different people.

Furthermore, our layout algorithm (cf. Subsection 8.5.1 and [Sch18]) creates nice graphical
representations with boxes and lines of the textual model. These graphical representations enable
an easier navigation between different components. Furthermore, our layout algorithm avoids
manually (and time consuming) adaptions of the graphical model when adding new ports4. Based
on the automatically calculated layout of the textual model, it is possible to generate a MATLAB
script file containing Simulink API calls to create a Simulink model. Hence, the here presented
workflow can be easily integrated into existing ones based on SysML and Simulink tools.

This thesis also defines formally when a functional model satisfies all its design models in
Section 7.4. If the design verification was successful, then the tooling infers automatically all
tracing information/links (cf. Subsection 7.5.2). In case the functional model does not satisfy the
design model, then non-satisfaction witnesses with user-friendly error messages pointing directly
to the error locations are generated (cf. Subsection 7.5.3).

The normal verification algorithm based on Maoz and Ringert [MRR14, Rin14] finds only the
shortest path to satisfy the design, thus, not all traces are found. Therefore, this thesis presents
besides the “normal” verification witness in Subsection 7.5.1 also a tracing witness in Subsec-
tion 7.5.2. The tracing witness contains all matched elements in the C&C model verifying one
structural view element. This means the tracing witness highlights/links all structural important
elements in C&C models (Simulink, or EmbeddedMontiArc) belonging to one requirement design
view.

Similar to the design model, the functional model can also be enriched with extra-functional
properties. For example, measured values - derived by executing the functional model on real
hardware - can be added to the C&C model. A simple extension (cf. [Meh17b, Meh17a]) of

4Simulink does not have a layout algorithm, yet [Gos12]. But other modeling tools such as Ptolemy II [Che16] and
LabView [Nat09] have one.
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the mathematical framework, presented in this thesis, enables to check whether extra-functional
properties of the functional model satisfy all extra-functional requirements specified in the design
model.

2.2. Digitalizing the Systems Engineering Process using
SMARDT

First, this section describes how the software systems engineering is done for the electric pow-
ertrain at BMW Group before using the SMARDT methodology. Second, this section also
introduces the model-based SMARDT approach to improve the software and systems engineering
process. Furthermore, this section presents how the structural verification of this thesis can
be integrated in the overall SMARDT methodology and it explains the advantages of such an
integration.

2.2.1. Current Systems Engineering Process at BMW Group

Main sources: [HKK+18, Section 1, Section 3]

Similar to the current development process at Daimler AG, the process at BMW Group for
developing software for powertrains is based on the V-Model [BD95] displayed in Figure 2.1.

A brief summary of the left side (development) of the process is:
(i) Fact sheets describe high-level functionalities in text form.

(ii) General design decisions about the interface to its environment (also external components
or user interactions) are informally (PowerPoint or Word documents) collected.

(iii) Large functions (top components) are hierarchically decomposed into smaller functions
(subcomponents) so that independent developer teams can work on them; these decisions
are only informal documented in Microsoft Office documents.

(iv) Based on these Office documents Simulink models or C/C++ code implementing these
features are developed.

For the right side of the V-Model, which is the validation and verification part, tests for units,
integration and acceptance are manually created representing test steps for each layer on the left
side from requirements over design up to implementation.

Since the creation of these tests is done manually most of the time, this leads to several
disadvantages [HKK+18]:
• Informal (mostly SysML-based) drawn models in Visio, PowerPoint, or other tools lack on

a unique semantics [LWL04]. Thus, different teams may interpret the decisions differently.
• Due to the informal nature of SysML diagrams, it not possible to detect inconsistencies in

one diagram (e.g., contradiction of guard conditions in activity diagrams); so derived tests
may contradict each other.

• Only time-consuming and manual checks for completeness and consistencies between
different layers (requirements, design, logical architecture, SW+HW implementation) are
possible, since only “graphics” with no formal semantics are available. Also variation
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handling between different layers, and thus variation handling of test suites, becomes more
difficult.
• Ensuring consistency between the tests on the right side and the specifications on the left

side becomes difficult, since only vague links between tests and specifications exist.
• Tracing test failures back to the specification is very time consuming as some system tests

are for many requirements.
• Updating specifications make it necessary to manually check and update the corresponding

handwritten tests. This is especially painful if the specification has not changed for years,
and so the test case structure is not well-known anymore.
• Extending a system’s functionality is mostly done only on the lowest layer 4 due to time

pressure. Requirements and specifications of the higher layers 1 and 2, however, are not
updated accordingly. This means that the documentation of the functionality - and thus also
for test cases - is inconsistent with its implementation, and this is nearly the worst thing
which might happen: “Incorrect documentation is often worse than no documentation.”
and “Correctness is clearly the prime quality. If a system does not do what it is supposed to
do, then everything else about it matters little.” [Mey86]

To overcome these disadvantages, the SMARDT process as it is roughly described in the next
subsection has been invented.

2.2.2. Overview of SMARDT process

Main sources: [HKK+18, Section 3], [KRRvW18, Section 3]

The SMARDT approach, as shown in Figure 2.3, does not use informal documentations in
form of Office documents anymore. BMW Group decided to use SysML to model architecture,
use cases, etc. SysML’s meaning is not unique as it lacks some formal semantics [LWL04].
Therefore, the here presented SMARDT methodology uses only a formalized subset of SysML
diagrams [OMG15] with a meaningful and unique semantics [HR04] to specify the functionality
of complex systems. This formal background enables to derive consistency checks between
different abstraction layers of the V-Model and between productive models (left side of V-Model)
and test cases (right side of V-Model). This plus on consistency is especially useful for agile
development processes, which are mostly iterative, incremental, and evolutionary [BBVB+01].

The rigorous mathematical theory behind the used SysML diagrams enables further validations
such as [KRRvW18]:

(i) backward compatibility checks [RSvW+15, RRS+16, BMP+16, BRRvW16, KSRvW18]
for software maintenance and evolution between different diagram versions of the same
layer,

(ii) behavioral [Rum96, HRvW17] and structural [BMR+17a, KKRvW18] refinement
checks between diagrams of different layers for detecting inconsistencies in specifica-
tions between different layers.

(iii) extra-functional property checks on SysML diagrams [MRRvW16, MMR+17] to detect
timing, memory or safety violations, as well as
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Figure 2.3.: Overview of the SMARDT methodology (copied from [HKK+18]).

(iv) automatic test-case derivation based on SysML diagrams [KMS+18] and backtracking of
failed tests to effect chains in models (dt. Wirkkettenanalyse) to identify the cause in an
easier way.

In general, SMARDT describes a formal specification for requirements, design, and testing
of systems engineering artifacts according to the ISO 26262 specifications, as illustrated in
Figure 2.3. Four abstraction layers structure the method [HKK+18, KKRvW18]:

0. The textual requirement (it maybe a user feature of a ticket in a ticket system, an exported
IBM Rational DOORS requirement, or some text from a fact sheet) is the start situation for
SMARDT, but it is not part of the actual SMARDT approach.

1. The first layer contains a first description of the object under consideration and it shows
the object’s interaction with other software and/or hardware components. This also unveils
the dependencies of the object under consideration. The most common SysML diagrams
for the first layer are use case diagrams and context diagrams.

2. The second layer contains functional specifications and high-level functional decompo-
sitions and their relations; e.g., functional effect chains. This layer does not deal with
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technical details. The most common SysML diagrams for this layer are activity diagrams,
state charts, block definition diagrams, and high-level internal block diagrams.

3. The third layer embraces technical concepts of the system. This layer contains decisions
about the used control systems (e.g., proportional, derivative, bang-bang [BGG56], PID
[Sko03] controllers, or lag-lead compensators [WCPL07]) as well as strategies for error
handling (detection, isolation/identification and recovery [AUT09]) and diagnosis. The
most used SysML diagrams are internal block diagrams.

4. The fourth layer represents the software and hardware artifacts of the system’s imple-
mentation. In contrast to the third layer being hardware independent, this layer contains
MATLAB, C/C++ implementations that are hardware specific as they contain code snip-
pets reacting on chip-dependent low-level behavior such as memory alignments, memory
size/cache distribution and I/O interrupts.

The new validation steps (green symbols in Figure 2.3) added to SMARDT, enable higher
consistency:

(i) between models and tests [KMS+18, PPS+03] (due to automatically generated tests) inside
one layer,

(ii) between models (due to structural and behavioral refinement) of different layers,
(iii) between tests (due to automatically transformed test cases) of different layers, as well as
(iv) between features of different layers (product-line modeling and configuration management)

- skipped in Figure 2.3.
The first two layers have a specification character, meaning that these models cannot be directly

executed and that multiple implementations (maybe even product-line of them) may satisfy them.
Also all signals used in the first two diagrams are abstract ones and they do not correlate with the
implementation signals send over FlexRay or CAN bus.

The third layer contains the complete logical architecture of the software component. Thus, a
simulator (e.g., MIL, or SIL) can execute the model to detect logical behavior errors. The fourth
layer contains additionally technical information such as processor, memory usage derivation.
Tests for the fourth layer are mostly PIL or HIL. The models in the third and fourth layer are
much larger than the high-level one used in the first two layers as these models also contain
complex diagnostics and error handling strategies.

MIL (model in the loop) simulates models and its environment in a modeling framework to
detect functional deficiencies at early stages of the development cycle [SPSG14]. The third
layer is split sometimes into 3A (generic technical concept) and 3B (concrete technical concept)
[HKK+18]. Layer 3A simulates (e.g., interpreting the model, generating code, or using a hybrid
approach) the physical model (e.g., implementation model derivation contains integral and
derivations in a continuous range) to detect pure logical errors. Whereas layer 3B simulates the
implementation model (e.g., numeric calculations are approximated with fix-point numbers) to
detect wrong scaling and/or wrong used approximation (e.g., wrong tolerance or wrong algorithm
for ordinary differential equations).

SIL (software in the loop) checks the behavior of the generated code with the used compiler to
verify the complete generator/compiler toolchain; the environment is simulated again without
using special hardware [SPSG14]. Additionally, SIL supports to verify code coverage. PIL
(processor in the loop) cross-compiles the code and executes it on a similar target processor to
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reveal wrong compiler settings (e.g., wrong endian) or faults caused by the processor architecture
[SPSG14]. HIL (hardware in the loop) verifies the hardware electronic control unit (ECU) to
detect other hardware faults.

Since a car is developed by many teams with different know-how, SMARDT also supports
besides the abstraction concept (layers 1- layers 4) a decomposition mechanism which is mostly
based on the geometric decomposition of a car. The geometric decomposition (vehicle function
such as acceleration, vehicle subsystem such as powertrain, function cluster such as otto pow-
ertrain, and function carrier such as fuel injection) can also be interpreted partly as a feature
diagram as some features are optional, and thus SMARDT also supports product line modeling.
This means in reality is SMARDT a 3D structure as for every decomposition element all four
abstraction layers are modelled.

The SMARDT abstraction layers 1-3 focus on different abstraction of the logical level of
functions, as these functions and their interplay with the environment (physical laws) do not often
change. SMARDT layer 4 is split up into 4SW (software) and 4HW (hardware). Due to different
license issues or already existing software architectures of bought-in frameworks, there is no 1:1
mapping from SMARDT layer 3B to layer 4SW as the simplified overview diagram in Figure 2.3
suggests.

As the geometric decomposition and the hardware layers of SMARDT play not an important
role in this thesis, the concrete explanation of the hardware layers, the 3D SMARDT structure,
and the linking approach between the abstraction layers 1-4 and different decomposition levels
would be out of scope for this section.

In contrast to other V-Model extensions mostly focusing on integrating or adapting (manage-
ment) processes [V-M06, BR05, FKSH09], SMARDT main contribution is the formal SysML or
SysML-like subset used to model artifacts in different layers in such a way that these artifacts are
consistent, traceable and testable over the entire development process [HKK+18].

This thesis supports the SMARDT methodology by providing the C&C view language
EmbeddedMontiView and the C&C architecture language EmbeddedMontiArc. Embedded-
MontiView, introduced in Chapter 7, is a C&C view language [Rin14] for embedded system
designs for the logical layer of SMARDT. EmbeddedMontiArc, introduced in Chapter 3, is
a C&C architecture language for the technical layer of SMARDT. The unique semantics (cf.
[RSvW+15, KRSvW18a] and Section 7.3) of EmbeddedMontiArc and EmbeddedMontiView
prevent different interpretations of the textual or derived graphical models by different developers
or even teams. Furthermore, the formal semantics between both languages enables an automatic
structural verification whether the technical concept still satisfies (is compliant with) the logical
layer.

Additionally, the mathematical implementation [KRRvW17, KRSvW18a, HKK+18, GKR+17]
of EmbeddedMontiArc enables to execute the technical concept in simulators to validate technical
decisions (e.g., used controller kind or image recognition algorithms) earlier. The simulator
also has an integrated (simple, but for research purposes sufficient) physics engine and a 3d
visualization to inspect the car’s interaction with its environment. This way the impact of different
technical design decisions can be compared according to specified use cases of the first layer.
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The simulation of time (time in simulator must not match the duration of running the simulation
- which is also hardware dependent) and the simulation of other extra-functional properties such
as noise distribution for different sensors facilitates to enrich the EmbeddedMontiArc models with
the measured data of the simulation. Section 5.5 shows how to describe extra-functional properties
in a model-based manner, and Chapter 6 presents how to verify an existing C&C architecture
against self-defined consistency constraints for the previously defined extra-functional properties.
For embedded systems interesting extra-functional properties are time, memory, ASIL level,
encryption, and communication protocols.

The simulator as well as the mathematical implementation describing the behavior of C&C
components is not part of this thesis, but for further information the following publications
[KRSvW18a, KRRvW17, HKK+18, GKR+17, KRRvW18, KRSvW18b] and videos [Mok18,
vW18, Dal18, Lor17, Ilo18a, Hei18, Hal18, Str18b, Str18c] are available.

EmbeddedMontiArc as well as EmbeddedMontiView are textual modeling languages. Textual
modeling concept exhibits - compared to existing graphical modeling tools such as PTC Integrity
Modeler, Cameo Systems Modeler, Enterprise Architect, and Mathwork Simulink- the following
advantages [KRRvW18]:

(i) All model information is direct available in files. In contrast, graphical modeling tools hide
information behind different dialog boxes and tabs. The graphical layout is often saved
in proprietary (binary) formats (e.g., cryptic XML or database format) where accessing
and reading information is hard, since the stored data does not contain only syntax but also
many customizable layout information. Due to the tree structure of most binary formats
and the many additional information, integrated search speed for large models is mostly
slow.

(ii) Textual IDEs (e.g., Notepad++ [Ho18], or Eclipse [KPP06a]) can find or replace informa-
tion via simple or regex search. Additionally, bash scripts can efficiently (in memory and
runtime) manipulate many text files; e.g. by calling sed or grep. In contrast, graphical
models must always be updated by using the vendor-specific API with its own functions.
These APIs are mostly not very well documented (exception is the MATLAB API for
manipulating Simulink models) and some are even incomplete.

(iii) Text-based versioning tools like SVN [PCSF08], Mercurial [Mer18], Microsoft TFVC
(Team Foundation Version Control) [BWHK12], and Git [LM12] support many text differ-
encing, text merging and text branching features. Even most graphical tools have an XML
export, reading an XML difference is hard. The exported graph structure uses generated
identifies, mostly a cryptic number, for all graphical elements (e.g., boxes). Links between
graphical elements connect two of these identifies, and thus, it is hard to understand (in
XML diffs) what elements are how connected. Even though some tools have their own Git
or SVN plugin, the graphical models can still not be convenient used on version control
platforms such as GitHub [DSTH12], GitLab [BHJ16], BitBucket [Leo16], or CloudForge
[YGJK16] as they all focus on textual models.

(iv) Similar to all major programming languages (e.g., Java, C, C++, Ada, Delphi) different
teams collaborate together in large projects via different files, folders, or even repositories
according to their responsibilities. EmbeddedMontiArc and EmbeddedMontiView use this
separation of artifacts paradigm as well as a library import concept with version control
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(based on Maven) to enable modeling in the large. Different files, repositories, or even
deployed libraries for complex projects - containing of thousands of components - enable
better collaboration, as single component files or single repositories can be easily branched,
merged, and independently reverted.

(v) Test driven development increases code quality. EmbeddedMontiArc has a textual domain-
specific testing language for unit tests of components. This stream testing language is
based on the formal semantics of the Focus theory. In contrast to a graphical testing
framework where test elements must be copied or modified one by one, textual files enable
to copy and modify all tests or only some of them at once. For example, in Simulink
removing test data (e.g., one time step) for a subsystem is time consuming as every point
for every input port data must be removed via mouse clicks in the graphical signal builder
editor. Another advantage of EmbeddedMontiArc’s stream unit tests is the partial support
of underspecification [GKR+17]. Underspecification is needed for test-driven development
as the complete behavior specification of a model is not known in higher abstraction levels
(e.g., SMARDT level 1 or 2).

(vi) Agile development has short development cycles, e.g., 7-day scrum sprints. Software
and models in a sprint are developed for given user stories. For new user stories (due to
customer feedback) models are updated. But frequent updates of large graphical models
(e.g., by inserting and reconnecting components) is very time consuming, because the
existing graphical layout (at least for one visible hierarchy) needs to be manually rearranged
to obtain readable models without having overlapping and crossing modeling elements.
EmbeddedMontiArc integrates a HTML/SVG generator (cf. Subsection 8.5.1, and [Sch18]),
which automatically produces a good readable graphical layout based on textual files. This
way, modeler can focus on the main task by only adding, changing, or removing textual
lines, and still have a graphical C&C architecture for better understanding.

2.3. Similar Existing Methodologies and Model-based
Approaches

The first two sections in this chapter introduced the model-based systems engineering process
for software components at Daimler AG and at BMW Group. This section presents similar, but
not company specific, model-based approaches and their tools; namely Simulink Requirements,
Mentor Capital, Polarsys Arcadia, and Vector PREEvision at some detail.

In literature exist many other (partly) related approaches. Some of them are:
• VDI V-Model [GM03] approach uses modeling, model analysis and simulation.
• COLA (Component Language) automotive approach focuses on three different architecture

levels: Feature Architecture, Logical Architecture, and Technical Architecture [Kug12,
KTB+07].

• CAR-CL (Combined ARchitecutre Description Language) is a seamless model-based
development approach using architecture based specification and verification of Embedded
Software Systems [Bro08]. This approach uses four abstraction levels: Service Level,
Functional Level, Logical Cluster Level, and Platform Level.
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• EAST-ADL (Electronics Architecture and Software Technology - Architecture Description
Language) models automotive systems in four abstraction levels: Vehicle Level, Analysis
Level, Design Level, and Implementation Level [CFJ+10].
• Save-IDE is an integrated development environment for building predictable component-

based dependable embedded systems [SPCH08]. It supports design, analysis, transforma-
tions, and verification of models. It uses timed automata as behavior models.
• Forsoft Automotive project [BRS00] focuses on requirement analysis and specification of

the overall functional development process. It uses three abstraction level: Logical Level
(User Requirements - functional network), Abstract Architecture (System Requirements -
perfect world assumptions), and Concrete Architecture (Architecture Design - real world
assumptions).
• AutoFOCUS’ [HF10, Kug12] main features are the design and analysis of distributed,

reactive and timed systems. It has the three abstraction levels: Functional Architecture,
Logical Architecture, and Technical Architecture. It is based on the focus theory.
• SCADE Suite [ADS+06] (based on data-flow language Lustre [PHP87]) designs safe and

reliable systems. It has failure mode, fault tree analysis and effect analysis to calculate
minimal combination failures.
• MICOBS framework [PPK+11] transforms high-level components to native component

implementations to achieve better abstraction and reusability. It also supports analysis of
extra-functional properties to find the best deployment of a system.

2.3.1. Simulink Requirements

Simulink Requirements [Urb15, The18m] is a product which focus on the ISO 26262 safety norm
and supports to import requirements from well-known existing tools or create its own requirements.
Based on the specified textual requirements, they can check whether every requirement is linked
to a block and whether every block contains a requirement link. The tool also supports to group
requirements hierarchical, and thus it can calculate a percentage number how many requirements
of this group are mapped to Simulink blocks.

But this tooling (as shown in Figure 2.4) goes directly from textual requirements to executable
specifications, and this means it skips the underspecified, and thus not executable, design levels
(according to the SMARDT process, it would go from level 0, Requirements, directly to level 3,
executable technical model). The tooling only supports to link requirements to blocks, but this way
requirements cannot be linked to connectors to express communication between requirements.

The approach presented in this thesis (cf. evaluation on case study in Chapter 8) is more
general, it facilitates to create for each requirement a high-level design specification answering
the following questions:

(1) What components/blocks must exist?
(2) How are these blocks in relations (siblings, parent, child)?
(3) How do these blocks interact with each other (abstract connections between blocks or even

their ports)?
(4) Are there (direct or indirect) effects between blocks or between in- and output ports inside

one block?
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Figure 2.4.: Simulink Requirements toolbox for ISO26262 modeling (copied from [Con12]).

Furthermore, the (not-executable, and incomplete) design specifications can be checked against
the implementation level. The approach of this thesis also generates tracing between the tex-
tual requirement and Simulink model, this means all the checks being available in Simulink
Requirements and other related toolboxes such as Simulink Design Verifier can be reused.

2.3.2. Mentor Capital

Mentor Capital supports three abstraction layers and provides corresponding tooling for them (cf.
Figure 2.5): logic layer (similar to SMARDT layer 2), wiring layer (similar to SMARDT layer
3B), and harness (dt. Kabelbaum) layer (similar to SMARDT layer 4).

In contrast to SMARDT focusing on pure functional constraints based on requirements and
user stories in the first two layers, Mentor Capital is much more focused on electrical wiring.
Therefore, Capital Logic deals with logical wiring over signals (which is close to SMARDT layer
2) as well as with physical wiring designs (e.g., wires, splices, and multicores) that is related
to SMARDT layer 3B or SMARDT layer 4. Capital Logic is bound to C&C hierarchy borders
in logical and physical designs and, therefore, it is less suited for modeling abstract functional
(under-)specification as it is possible in C&C views.

Capital Integrator uses rules and designs for synthesis of wiring systems, so general rules
and designs can be established and these rules can be reused (e.g., only a design might be
omitted or changed) for different implementations. Capital Integrator automatically synthesizes
the complete physical implementation [Men18c]. This approach is similar to the C&C views
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Figure 2.5.: Mentor Capital’s tools for modeling at different abstraction levels (copied from
[Men18a]).

synthesis [MRR13]. Even though this thesis does not extend the C&C view synthesis algorithm,
its tagging mechanism for C&C views enables to model these kinds of wiring constraints, as the
views can now be tagged with communication frequencies and delays. Additionally, the design
can be verified against the logical architecture.

The overall process for Mentor Capital is the following: In Capital Logic logical signals of
a design and the wanted wiring schemata are defined for small C&C models, and then with
Capital Integrator all the design models are synthesized by using the specified rules to optimize
latency or other properties. So Capital Integrator generates from many wiring schemata one
large physical wiring architecture. Last Capital Harness XC automatically adds, i.e., wires,
multicores, terminals, seals, cavity plugs, tapes, tubes, and heat-shrink sleeves to the physical
wiring architecture to generate a manufacturing-ready harness design [Men18b].

The generative approach from Capital Logic, Capital Integrator, and Capital Harness XC
enables rapid-prototyping as well as the creation of the final product. The synthesis of the physical
layer and the generation of harness components enable consistent and fast updates of the other
layers when changing signals in the logical layer.

In Mentor’s keynote “Systems of Systems - What’s the Story?” [Kur17] the validation of
designs for new processes, traceability and re-use are very important to integrate systems of
systems. Mentor Capital Publisher [Men18d] aims to skip documentation and it generates the
documentation based on Capital models. This means that Mentor addresses similar challenges
(traceability, product line, and evolution) as this thesis in the case study with Daimler AG in
Chapter 8.

2.3.3. Polarsys Arcadia

Polarsys Arcadia [Pol18], and its corresponding tooling Capella [Cla18b] is an overall modeling
approach similar to SMARDT. It also consists of four layers (cf. Figure 2.6) which are similar to
the four SMARDT layers [Cla18a]:
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Figure 2.6.: Architectural Layers when modeling with Polarsys Arcadia (copied from [Cla18a]).

(1) Definition of the Problem - Customer Operational Need Analysis: Analyzing customer
needs, expected mission and activities. It is like a case study for the customer what he
needs and expects.

(2) Formalization of system requirements - System Need Analysis: Focuses on the system
itself and how it can satisfy the needs of layer 1. In this phase also extra-functional
constraints such as safety, security, performance, etc. are modelled. In this phase also a first
architecture is created to check the requirements and extra-functional properties against the
architecture and to estimate the total costs for the project.

(3) Development of System Architectural Design - Logical Architecture (Notional Solu-
tion): Based on the functional and extra-functional requirements of layer 1 and 2, a
complete logical system architecture is developed. They use a viewpoint-driven method to
formalize all extra-functional properties. To validate the architecture and its viewpoints
against layer 1 and 2, the logical architecture contains links to its requirements.

(4) Development of System Architecture - Physical Architecture: This layer does the same
as the layer above but it finalizes the architecture. The layer introduces design patterns,
technical services and framework choices so that the components can be developed by
different teams, and that the output can communicate via the technical solutions.

Polarsys Arcadia uses viewpoints on every layer and each viewpoint deals with a specific
concern. This approach is similar to our tagging approach, where you can create for each concern
(extra-functional property) your own tag file. The viewpoints of the second layer can be compared
with the C&C view concept presented in this thesis. Similar to C&C views, in Polarsys Arcadia
each viewpoint in the second layer deals only with the structural elements being relevant. Similar
to calculating the tracing between EmbeddedMontiView and EmbeddedMontiArc, which are the
witnesses, Capella can compute simplified links between the layers [Roq16].
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2.3.4. Vector PREEvision

Vector PREEvision [Sch16] is a 150% modeling approach with similar purpose of Polarsys Arca-
dia and SMARDT. A more theoretically focused approach similar [Zve08] to Vector PREEvision
is COLA- The component language [KTB+07] - from TU Munich.

As showed in Figure 2.7, the PREEvision approach contains eight architecture abstraction
levels, whereby each level may belong to different product lines [Sch16]:

Level 1: Requirements, Customer Features, Feature-Functionality-Network
Level 2: Logical Architecture, Activity Chain (from Sense to Actuation), Logical Functions,

Block Diagrams
Level 3: System-Software Architecture: Composition of Software Components
Level 4: Implementation: Packages und Files
Level 5: Hardware Component Architecture, Hardware Network Topology
Level 6: Electric Circuit, Power Supply
Level 7: Wiring Harness, Ground, Gateways
Level 8: Geometrical Topology

PREEvision has also a communication layer according to AUTOSAR which is orthogonal to
the abstraction levels 2 to 5. This layer supports enriching logical communication with extra
information such as topology (e.g., CAN, CAN FD, LIN, FlexRay, Ethernet) and then it uses
Dijkstra to automatically suggest routing information based on bus loads and data types.

Vector PREEvision is an E/E (electric and electronic) architecture design and optimization
model-based approach. It supports three groups of optimization targets [Sch16]:
• Global vehicle targets, such as cost, weight, package and geometry (e.g., cable diameters,

cable length), and power consumption constraints;
• E/E targets, such as real time requirements, diagnostic and service requirements (e.g.,

service interface or over the air), and bus load constraints; as well as
• product line targets, such as variants, options, product lines, expected production numbers,

and function oriented decomposition vs. component oriented reuse.
Similar to SMARDT supporting abstraction and decomposition, the PREEvision approach

uses a similar matrix structure: The vertical direction in Figure 2.7 provides abstraction from
logical communication over wiring harness details to complete electric circuit to the ECU in
network levels. The horizontal direction provides decomposition so that every level can be
hierarchical decomposed to support top-down and bottom-up development. SMARDT focuses
more on top-down development, but it also supports bottom-up. PREEvision level 1 maps to
SMARDT layer 1. PREEvision level 2 maps to SMARDT layer 2. PREEvision level 3 maps to
SMARDT layer 3A. PREEvision level 4 maps partly to SMARDT layer 3B and also partly to
SMARDT layer 4SW. PREEvision levels 5 to 7 maps to SMARDT layer 4HW. As SMARDT was
mostly developed for the software components of systems engineering, there exists no mapping
for PREEvision level 8 in SMARDT, yet.
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Figure 2.7.: Vector PREEvision methodology for modeling embedded systems (copied from
[Sch16]).





Chapter 3.

Concrete Syntax of EmbeddedMontiArc:
A Functional Component and Connector
Modeling Language for Cyber-Physical
Systems

Chapter 1 and Chapter 2 explained the importance of component and connector (C&C) models for
embedded and cyber-physical systems. Chapter 2 elucidates how C&C models can be integrated
into the systems engineering process in the automotive industry.

This chapter introduces the functional modeling language family around EmbeddedMontiArc.
EmbeddedMontiArc is a textual domain specific language for the logical layer. This means
its main focus is on the functional correctness when modeling features of embedded systems.
EmbeddedMontiArc does not try to solve the problems of the technical or even software/hardware
specific layer with first order language concepts. However, libraries and modeling patterns
for EmbeddedMontiArc allow to address redundancy, safety, or diagnostics and error recovery
strategies due to software or hardware failures in an efficient way.

EmbeddedMontiArc tries to support the functional and logical modeling of embedded systems
in an efficient, agile, and intuitive way. Therefore, Section 3.1 starts with a an explicit declaration
of requirements. These requirements are derived from many interviews with industrial partners
in the automotive domain during project collaborations of them with the software engineering
chair at RWTH Aachen University. Section 3.2 continues with a literature overview for a
modeling language for the logical layer by presenting a large analysis of existing standards, tools,
programming and modeling languages in the field of embedded and cyber-physical systems. We
want to investigate how the existing approaches solve some of our requirements. Next, Section 3.4
gives a general overview of the complete EmbeddedMontiArc modeling family. Section 3.5, and
Section 3.6 present in detail the concrete syntax of the EmbeddedMontiArc modeling language,
which integrates the best modeling concepts according to our requirements of the investigated
existing standards, tools, and languages.

Highlights of the textual C&C modeling language EmbeddedMontiArc are:
(i) modular and reusable component types with component interfaces,

(ii) component and connector arrays,
(iii) component libraries due to generics for port types, array dimensions, and components,
(iv) convenient connection patterns, as well as,
(v) a strict type system with unit and accuracy support.



42 Chapter 3. Concrete Syntax of EmbeddedMontiArc

EmbeddedMontiArc’s type system together with its configuration and generic parameters
facilitates an efficient modeling of large functional C&C software systems, because library
components such as PID controllers or image cluster components can be easily reused. Arrays,
both port and component instantiation arrays, in combination with generic and configuration
parameters support agile and efficient development, as the number of component or port instances
can be easily adapted by just changing one number in a model. Thus, time intensive duplicating
or removing of component instances (e.g., when changing the number of front or rear park
sensors in a car) and reconnecting the other components are avoided. The convenient connection
patterns with index- or name-based connection patterns of ports or port arrays facilitate an
intuitive modeling of the logical communication between components. The strict type system
with its integrated static verifications detects errors (e.g., incompatible matrices or port types) as
fast as possible (e.g., during model creation in the IDE), but at the very latest when compiling
EmbeddedMontiArc models. This prevents cost-intensive runtime failures and long bug-fixing
sessions resulting in a more efficient systems engineering process.

After presenting all language features of EmbeddedMontiArc (cf. Section 3.5, and Section 3.6),
this chapter discusses potential new language concepts for the EmbeddedMontiArc modeling
family in Section 3.7. Section 3.8 presents an example business use case modeled in Embedded-
MontiArc to illustrate that EmbeddedMontiArc can also be used outside the systems engineering
domain. Finally, this chapter finishes by presenting EmbeddedMontiArcStudio, the tooling around
EmbeddedMontiArc language family, with all its user experience features.

3.1. Requirements for a Logical Architecture Modeling
Language

According to requirement analysis based on a decade of multiple automotive industry collabora-
tions [KMS+18, KKRvW18, BMR+18, HKK+18, KMS+17, BMR+17a, DDE+17, KRR+16,
RRS+16, BMP+16, RSRS15, BBH+15a, BBH+15b, RSvW+15, KRR15, BBH+14b, BBH+14a,
CEG+14, BHK+07, HKM+13, BBH+13, KDH+13, GRJA12, HRRW12, BRR+10, BRRW13,
RBL+08, MFZ+09, BRS09, BBKR09] at the Software Engineering Chair at RWTH Aachen
University, a modeling language for cyber-physical and embedded systems should satisfy the
following requirements (points (M1) to (M7) are already discussed in [KRRvW17, Section 3]):

• (M1) Unit support. In- and output ports should support metric, imperial, and customized
units, such as pixel-per-inch.
• (M2) Unit conversion. Units should be convertible to SI units in port connections and in

mathematical expressions.
• (M3) Array support. Redundancy in models should be avoided by supporting arrays of

ports and component instantiations. A convenient mechanism to interconnect and access
ports and component instantiations should be supported.
• (M4) Domain. There is a need for concepts to model the domain; i.e., minimum, maximum,

and resolution, of the values exchanged between components.
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• (M5) Static Analysis. Tools to support static analysis, i.e., over- and underflow checks,
division by zero, detection of components in dead paths, and detection of duplicated
components.

• (M6) Reuse concepts. A library concept for components and ports configurable over
parameters is needed. Advanced reuse concepts such as configuration parameters and
generics are required to enable modifications of component interfaces and behavior.

• (M7) Matrix type supports. Discrete control systems are often described by matrix-
vector expressions. To reduce error-proneness a type system should support static matrix
dimension, units, and detection of domain incompatibilities, e.g., multiplying two 3× 3
matrices having the domain [0; 1]3×3 (all values of both 3× 3 matrices are between 0 and
1) must result in a [0; 3]3×3 matrix (the values of the 3× 3 result matrix are between 0 and
3).
• (M8) Support for test driven development. The language should have a first level

integration for unit tests so that the correctness of a model can be checked. To enable
complete test driven modeling, the tests should also support underspecification1.

• (M9) Product-line support. Most embedded systems offer different variants (e.g., cars,
coffee machines, stoves, or airplanes) to customers. Therefore, the software for these
systems is mostly a large product family.

• (M10) Multiple behavior languages. Extendibility to support different languages for
behavior implementations for components. Examples are statecharts, differential equa-
tions, imperative programming, declarative programming (e.g., as an optimization), and
convolutional neural networks as used in artificial intelligence.

• (M11) Advanced search. Large embedded software systems are composed of many
components (or classes, modules) in different hierarchy/abstraction levels. An advanced
search enables to look for relations of components in different hierarchies in an efficient
and intuitive way.

• (M12) Annotation mechanism. Cyber-physical systems are often enriched with extra-
functional properties or hardware information; mostly in form of profiles, tags, or stereo-
types.

3.2. Existing C&C Modeling Languages

Main sources: [KRRvW17, Section 4]

This section compares important standards, modeling and programming languages for em-
bedded and cyber-physical systems. Table 3.1 lists an overview of the investigated languages
according to the requirements presented in the previous section. The features for AADL and
ADML are the same, because ADML tried to standardize concepts of ACME in XML; so ADML
is an XML-version of AADL [TMD10, slide 37].

About half of the languages in Table 3.1 support units (M1). AADL provides a special units
keyword to define units and their relation (e.g., ns => ps * 1000) [Gre07], [Ins15, slide

1This requirement in this chapter only forces underspecification for tests. However, Chapter 7 introduces an
architectural specification language supporting architectural underspecification
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Table 3.1.: Comparison of standards, modeling languages, and programming languages of cyber-
physical and embedded systems
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17]. But the Cartesian product of units is not really readable in AADL [BKU14, slide 15]. The
Cartesian product looks like mph, mpsec, kmph, or kmpsec due to name conventions and
package conflicts in AADL. Ada does not support units natively. Ada’s ability to overload operators
(also via generics) and to define UTF-8 unit constants (e.g. 2, 3, etc.), makes it possible to create
complete unit libraries [Kaz14]. This way also combined units and measures are possible;
e.g., Entity := 5.0 * A / s [Kaz14]. AUTOSAR, LabView, MARTE, Modelica, and
SysML fully support SI units according to ISO 31-1992 [KRRvW17]. Simulink introduced unit
support step-wise since version R2016a [The18l]. MATLAB and Simulink [The18k, Section 9]
version R2018a also support unit consistency checks [The18o, p.2-7], unit conversions [The18o,
p.2-31ff.], defining new units [The18o, p.2-35ff.], restriction of unit kinds, as well as units in
differential equations [The18o, p.2-9]. SystemC extends C++ to enable discrete event simulation
via event-driven interfaces [Wik18]. Similar to Ada, SystemC does not support units natively. C++
preprocessor templates [Lem16, p.299],[Jur15] add full unit support to SystemC. C++ templates
are executed at compile time and, thus, unit inconsistencies do not cause runtime errors. Verilog
and VHDL integrate units as part of their numbers and support number prefixes such as Nano,
or Pico [KRRvW17]. EmbeddedMontiArc reuses SysML’s unit concept (cf. abstract syntax in
SysML 1.4 [OMG15, Section 8.6.4]) to be compliant to ISO 31-1992.

All languages with full unit support enable unit conversions (M2). Simulink supports to
enable or disable whether units are automatically converted [The18k, p. 9-16]. For manual unit
conversions, Simulink offers the Simulink-PS Converter block [The18k, p. 9-14]. Verilog
and VHDL can only convert flow to potential and vice versa by using disciplines [KRRvW17].
Both AMS languages do not support complex conversions (e.g., km/h into mi/h, or ◦C into
◦F) [KRRvW17]. EmbeddedMontiArc converts units automatically when their dimensions are
compatible.

AADL offers array support (M3) since version 2. AADL 2 supports component arrays and
connection patterns [Fei10, slide 15]. Ada has array support of types (similar to components), and
it supports function access arrays (similar to connectors). ArchJava offers arrays of component and
port types via Java arrays, and it adds connection patterns [ACN02]. Darwin supports component
arrays and efficiently binds (similar to connectors) components with for loop constructs [TMD10,
slide 7]. Ptolemy supports MultiInstanceComposite components, which defines the
number of instances of channels via parameter values, and it also supports array iterations [Pto14,
Section 2.7]. ROOM (Real-Time Object-Oriented Modeling) supports as one of the first languages
port arrays and a way how to connect these [Sel96]. SystemC, a C++ extension, supports arrays
for ports and signals. SystemC supports to declare array sizes of ports and signals using a C-like
syntax. Java and ADLs using the Java type system (e.g., MontiArc) contain only array dimensions.
In contrast, C++ arrays contain the complete array size. UniCon (arrays of simple types), Verilog
(one and two dimensional arrays), VHDL (ranged and unconstrained arrays), and WRIGHT
(multiple instances of pipes) also satisfy the array requirement (M3) [KRRvW17].

AADL uses the same syntax as Ada to define the domain of ranges (M4). AADL also supports
to combine ranges with units (e.g., 1 b .. 1 kb) [TMD10, slide 26]. Ada can define
the step-operator with the delta keyword [Nag99]. ASCET’s ESDL language uses similar
syntax (e.g., type c_uint8 is integer 0 .. 255 using c_unsigned_char)
[Rie18]. AADL and ASCET do not support to define steps in ranges. Ada supports besides ranges
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also modulo types, where no overflow or underflow can occur [Nag99]. Modulo types are
especially useful for hash calculations. AUTOSAR (using subnode constraint), LabView (custom
scales), Modelica (attributes in reals and intergers variable decleration), MontiArc (stereotypes
when using MontiMatcher [RSvW+15, RSvW16] extension), Simulink (slope and bias for fix
point data types), UniCon, Verilog (ranges plus abstol attribute), and VHDL (same as Verilog plus
tolerances) support domains (M4) [KRRvW17]. MARTE, SysML (stereotype «data type» and
OCL), WRIGHT (ranges for instances [All97, p. 154]), and xADL support ranges (M4) partially.

The following languages have tools or provide a theory for static analysis or verification of
structure or behavior: AADL (OCARINA model analysis framework [LZPH09]), ACME (AcmeS-
tudio’s verification engines [Rec08, p. 274]), ADA (ADACore’s CodePeer Static Analysis Tool
[AB14]), ADML (see AADL), AutoFOCUS 3 (model checkers NuSMV/nuXmv [CCD+14] for
unreachable states and range checks), Darwin (uses pi-calculus for formal analysis [TMD10, slide
5], LabView (programs are verified by ACL2 solver [KKR09]), Ptomely (Java static analysis tools
such as Cibai [Log07]), Rapide (cf. publications of stanford program analysis and verification
group [LKA+95]), SCADE (model analysis with SCADE design verifier [JH05]), SystemC (type
checking, CFG analysis, and verifying pointers with SCOOT [BKS08]), UniCon (translation of
ADL to labelled transition systems, computational tree logic, or petri nets [TX00, Figure 1] and
then verification with tools such as SPIN [Hol97], or NuSMV2 [CCG+02]), Verilog (using VIS
[BHSV+96]), VHDL (verification with tools [ZTB08] such as PVS [GV99] and Mathematica
[ASZT07]), and WRIGHT (translation into communicating sequential processes for automated
analysis [TMD10, slide 17]). EmbeddedMontiArc uses MontiMatcher to identify structural and
behavioral duplicates [RSvW+15, RSvW16] or inconsistencies [HRvW17] as well as to detect
over- and underflow [Tol16].

Reuse concepts (M6) of components/classes can be satisfied by different ways, e.g., using
configuration or generic parameters, implementing interfaces, template mechanisms, or via
feature modeling. The reuse concepts of the investigated languages are: AADL, and thus also
ADML, have packages to structure large project, as well as AADL supports extending and refining
components [Ins15, slide 5]. ACME has an extensible type system with parameters and templates
[TMD10, slide 36]. Ada has package structure, modules (to provide and hide information),
inheritance, generics, and access (pointers) types for controlled reusability [Nag99]. ArchJava
reuses all atomic concepts [Aßm08], and inherited features like generics of Java. ASCET/ESDL
supports classes, variants and features. Koala enables reusability via product-lines [TMD10,
slide 21]. MARTE uses stereotypes to define configuration and generic parameters [KRRvW17].
Modelica uses the MBLOCK for generics, it also supports configuration parameters [KRRvW17].
MontiArc’s type system is based on the Java one: it supports component inheritance, generics,
and configuration parameters for components [Hab16]. Ptolemy is a Java extension, and thus it
inherits these reusable features. Higher order functions and generics are the basis for SCADE’s
reusability concepts [Est10]. SysML enables product-line modeling, generics, and configuration
parameters via stereotypes or profiles [KRRvW17]. Simulink supports model references with
configuration parameters to reuse components. Simulink has a library concept but without generics
[The18k]. SystemC has the features inherited from C++. Verilog and VHDL support configuration
parameters, but no generics [KRRvW17]. xADL does not have native generic support, but its
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extensible nature enables to add generics in an efficient way [KRRvW17],[TMD10, slide 39].
EmbeddedMontiArc uses MontiArc’s extension concepts for components.

Most languages shown in Table 3.1 do not have matrix support at all (M7). Languages having
only basic matrix support via a library without hardware support, and languages providing no
matrix access features, as MATLAB provides them, are listed with a dash (no support) in the
table; MARTE [OMG08, p. 44], providing only integer matrices, or Ada are such cases. Some
languages support matrices and their operations in a dedicated way (marked with a p in the
table). For example, some tools have powerful libraries with hardware support to improve
calculations or some languages have built-in mechanism for matrix operators without a typing
concept. Languages with partially matrix support are: AADL (ArcheOpterix uses matrices for
network interactions [ABGM09]), LabView (it has matrix support, but “you cannot limit the
size of a matrix to a fixed number of elements” [Nat17a]), Simulink with MATLAB [The18k,
Chapter 1, Chapter 2, Chapter 4] (provides special matrix operators2 and easy matrix access, but
MATLAB3 has no type system for matrices), and SystemC (Mat-Core extension [SAJ09] maps
matrix operations to special hardware instructions of chips). EmbeddedMontiArc, Modelica,
and SCADE are the only three languages having full matrix support with a type system and
hardware acceleration. Modelica has the Matrices library [Wat18]; it offers high-level matrix
support (incl. matrix dimensions) mapped to native instructions via LAPACK [Uni18b]. Scade
also offers matrix operations and, additionally, it provides array data types (e.g., intˆ4) to define
matrix dimensions [EA15, slide 51], [Est14]. EmbeddedMontiArc has the most powerful matrix
type system, because it supports besides matrix dimensions also the specification of domains for
matrix values and algebraic matrix properties (e.g., diagonal matrix). EmbeddedMontiArc uses all
matrix operators of MATLAB (e.g., backslash, and element-wise operators). Similar to Modelica,
EmbeddedMontiArc uses the Armadillo library [SC16] (based on LAPACK) to get access to
native chip instructions. The algebraic matrix types together with the LAPACK backend enables
faster execution of matrix operations in EmbeddedMontiArc than executing them in Modelica or
Simulink [KRSvW18a].

Nearly half of the investigated languages or tools provide (full or partial) mechanisms for
testing (M8). The following languages have full support of test-driven development: AADL (via
the COMPASS project [vS13]), Ada (with unit and integration test framework VectorCAST/ADA
[Vec18]), ArchJava (with Java test frameworks such as ArchUnit [Arc18] or JUnit [MH03]),
AutoFOCUS 3 (via simulation tests), AUTOSAR (supports functional safety tests [AUT16], e.g.,
core or ram tests), LabView (has its own NI LabView Unit Test Framework Toolkit [Nat17b]),
Modelica (commercial UnitTesting library offered by Emmeskay [TK06]), MontiArc (blackbox
stream unit testing [Hab16]), SystemC (SCV - SystemC Verification library [BDBK10, acc18]),
Verilog (Verilog Testbenches [CG14]), and VHDL (similar to Verilog). EmbeddedMontiArc uses
the stream test mechanisms of MontiArc [Hab16, Section 6.4.1], [Sof16]. Partial support for
test-driven development have the following tools: Ptolemy uses Java to instantiate and thus
also test the abstract syntax [Lee13], but “Vergil does not provide means for automated test
executions” [Hab16]. “Rapide toolset supports testing for interface conformance by both compile
time and runtime checking” [Luc96], but not for behavior [Luc96]. Simulink enables to create

2such as backslash for solving linear equations
3the behavior language for atomic Simulink subsytems
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input signals using the Signal Builder block [The18k, p. 61-124]. However, in Simulink
exists no convenient way to define the expected output, unless you compare each calculated result
again against a Signal Builder value.

Nearly one third of all investigated languages support product-line (M9) modeling, also called
feature or variant modeling, completely : AADL (languages has features keyword [Fei05]),
ArchJava (connection patterns enable variance for components and their interactions [PNR04]),
AUTOSAR (defines a feature model exchange format [AUT17, p. 11]), Koala (via the lan-
guage extension Koalish [ASM04]), LabView (built-in variants manager [Gar12]), MontiArc (via
the language extensions Delta-MontiArc [MNR+13, HKR+11a, HKR+11b], or MontiArcHV

[HRR+11]), Simulink (variability bindings over model references [LEK13]), SysML (variation
points [Wei12a]), and UniCon (via variant property [Zel94]). The following languages support
partly variance modeling: ASCET (has interfaces and binding points to existing product-line
modeling tools such as dSpace), LabView (can be coupled with EAST-ADL’s product line support),
Modelica (replaceable classes and interfaces serve as a plug-in mechanism for product-lines
[Mod17, Chapter 6]), SystemC (supports variants via the #ifdef C preprocessor mechanism
[KAT+09]), and xADL (does not support product-line modeling natively, but it can be easily
added [FG07]). EmbeddedMontiArc supports partial product-line modeling via configuration
parameters of component types (cf. Subsection 3.6.5). Additionally, EmbeddedMontiArc sup-
ports conceptually the delta mechanism of MontiArc as presented in Section 3.7, but it is not
implemented yet. EmbeddedMontiView, the high-level design specification language of Embed-
dedMontiArc, has no concept how to deal with product-lines; even after this thesis, there is still
some research on C&C view language features needed.

Component and Connector models describe the architectural and structural decomposition.
Since the tasks of atomic components in embedded or cyber-physical systems vary, the language
should provide means to embed different behavior models such as automata, matrix operations,
differential equations, or neuronal nets. Languages with such an behavior embedding mechanism
(M10) are MontiArc (see behavior description extension point [Hab16, requirement LRQ3.2]),
Ptolemy (“Ptolemy II supports several, and can be extended with new models of computation”
[Ber18] via extension points of the core infrastructure [Lee04, slide 05:26]). EmbeddedMontiArc
reuses the language extension mechanism of MontiArc. In contrast to MontiArc only providing
Java (cf. AJava) and automata (cf. MontiArcAutomaton) for behavior, EmbeddedMontiArc
provides already a large family to describe behavior. Examples of behavioral languages in Embed-
dedMontiArc are automata (reused from MontiArc), MontiMath (typed MATLAB), MontiMathOpt
(math plus non-linear optimization problems), CNNArch (convolutional networks for deep learn-
ing), and OCL (for logical declarative description of components similar). This thesis describes
only the basic EmbeddedMontiArc language; thus, it does not explain any language containing an
implementation. Table 3.1 marks with partial (p) all languages that support multiple behavior
descriptions without being extendable to new behavior languages.

Requirement (M11), advanced search, is to our best knowledge only supported by Embedded-
MontiArc. The EmbeddedMontiView design language can also be used to search for components
in a very intuitive way. Search examples are: (i) find all components of a given component type
that have the flip flop component as parent, (ii) find all components that are connected with the
speed control component, or (iii) find all input ports that have effect to the output port acceleration
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in the tempomat component. The crosscutting nature of C&C views enables to search between
different hierarchies without writing scripts using the data structure of EmbeddedMontiArc.

Table 3.1 contains a check symbol when the language provides a way to add information (e.g.,
extra-functional properties) to models (M12). If the language or tool supports only comments,
then this requirement is not satisfied. In contrast, if the language provides only untyped stereotypes
as a key-value list, then the requirement is satisfied; even though this is not an elegant way how to
add information. Languages not using stereotypes to enrich information are AADL (valued typed
attributes [Ins15, slide 5]), ACME (it supports to add new attributes [MT00]), AUTOSAR (based
on UML profiles [AUT06]), SCADE (imports information from SysML diagrams [LSLGG+11]),
and xADL (extension of the architecture via the “xADL Way” [Uni18a]). EmbeddedMontiArc
uses a tagging mechanism (cf. Chapter 5) similar to AADL’s valued types.

3.3. Comparison to Other MontiArc Derivatives

MontiArc is the base language of EmbeddedMontiArc, even though EmbeddedMontiArc in-
corporated also many features of other languages (cf. Section 3.2). This section compares
EmbeddedMontiArc with the other languages (technologically or conceptually) derived from
MontiArc [BHH+17], [Hab16, p. 257]. This list is not complete.

• MontiArc [Hab16]
Besides the language feature differences shown in the section before, MontiArc uses
dynamic scheduling so that “different component timing domains can be combined with
each other” [Hab16, p. 85]. Both, MontiArc and EmbeddedMontiArc separate timing
slots by abstract ticks. MontiArc supports both strong and weak-causality. In contrast,
EmbeddedMontiArc uses only weak-causality where tick-delays must be explicitly modeled
(e.g., via the UnitDelay component). In contrast to MontiArc using asynchronous
communication, EmbeddedMontiArc uses a time-synchronous approach processing exactly
one value (e.g., number, matrix, or struct object) in one time slot (between two ticks).
The result is, that MontiArc uses a runtime environment which does the scheduling of
components. “To simulate logical distributed and concurrent components in a single thread,
an explicit scheduling is needed. The scheduler is responsible for message processing and
the simulation of time.” [Hab16, p. 96] The MontiArc runtime scheduling is needed due to
the different simulation modes of component and ports (e.g., tickfree ports, blocked ports,
instant components, delayed components, untimed components, and causal synchronous
communication).

In contrast, EmbeddedMontiArc’s restrictions with one value for each time slot facilitates
the generator to analyze and optimize the complete C&C structure at compile time. Thus,
EmbeddedMontiArc’s generated C++ code (MontiArc generates Java code) contains the
complete scheduling information. The EmbeddedMontiArc generator works similar to the
Simulink code generator, also first analyzing the dependencies (cf. slist [The18i] and
elist [The18c] commands), then producing optimized code. The “simple” (compared
to MontiArc’s scheduling options) nature of EmbeddedMontiArc’s scheduling enables
mapping the behavior of EmbeddedMontiArc (with its MontiMath implementation for
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atomic components) to input output extended finite automata [RSvW+15]. This formal
interpretation of EmbeddedMontiArc models are the theoretical foundation for many behav-
ioral validations [RSvW+15, RRS+16, HRvW17, Tol16]. Examples of such validations
are: component backward compatible checks to its previous version, detect duplicated
models, find dead paths, effect chain analysis (how many time steps of an output signal are
influenced by a change in an input signal), and detect over or under-flow.

The relatively simple scheduling of EmbeddedMontiArc, compared to the one of MontiArc,
enables to generate optimal multi-threaded C++ code [KRSvW18a]. EmbeddedMontiArc’s
C++ compiler toolchain is highly optimized by using BLAS libraries [KRSvW18a] to
speed up the runtime of EmbeddedMontiArc models dramatically. Therefore, the execution
of computationally intensive C++ code generated by EmbeddedMontiArc runs in seconds;
whereas similar code executed by the JVM crashes due to memory problems or needs
about 10 minutes of execution time (cf. case study [KRSvW18a, KRSvW18]). In classical
embedded domains, simulators or microcontroller processors often execute functional
models in loops with different input data; e.g., continuous image detection and steering
correction. Therefore, a fast execution of logical models of controllers decreases the
time to test or simulate these controllers dramatically. In contrast, simulators for some
non-embedded domains may not frequently update the input data of many components
(e.g., when depending on user inputs). Therefore, the scheduler may skip the execution of
most components in a simulation; in such cases the dynamic scheduling of MontiArc might
have performance advantages.

EmbeddedMontiArc executes all components in every time step. This means (also in con-
trast to MontiArc’s scheduling mechanism) the worst-case execution for a given hardware
can be estimated a priori. This is very important for worst-case execution time analysis of
embedded systems.

Another difference between MontiArc and EmbeddedMontiArc is that EmbeddedMontiArc
does not support “dirty” (not side-effect-free) components such as the ACCSystem model
defined in MontiArc [Hab16, p. 253]. Prohibiting “dirty” components ensures that also the
most high-level component can be black-box tested with the stream language.4 Many other
modeling languages derived from MontiArc also have the “dirty component illness”.
• AJava [HRR10]

“MontiArc does not include a language that allows the implementation of behavior within
components, the behavior has to be implemented externally in Java” [Hab16, p. 160].
Therefore, the modeler using MontiArc must understand how to add handwritten code to an
atomic component. For small atomic components such as simple mathematical expressions,
this is rather cumbersome. Thus, AJava addresses this issues by embedding the MontiCore
JavaDSL [SE18] language into MontiArc. This way the behavior of atomic components
can be directly described in the component definition file. EmbeddedMontiArcMath uses
a similar approach to embed MontiMath into EmbeddedMontiArc [KRRvW17]. The
advantage of AJava is that it can use all JVM libraries.

4Since the ACCSystem component in MontiArc has neither input nor output ports, a system test is not possible.
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// emulation of ArrayList as port type

struct ArrayListBounded<T, N1 maxNbOfElements> {

T data[maxNbOfElements];

(1: maxNbOfElements) length;

}

1

2

3

4

5

SIStructs

Figure 3.2.: Code how to emulate ArrayList in EmbeddedMontiArc.

EmbeddedMontiArc supports using external libraries, this way via JNI (Java Native Inter-
face) the C++ code can also invoke Java libraries. But due to the nature of EmbeddedMon-
tiArc, e.g., that the array size is fixed at runtime, no complete dynamic ArrayList can
be passed between JVM and EmbeddedMontiArc. If the upper bound for the number of
elements in an ArrayList or any similar object (e.g., collections) is well known, then
the modeler can use the data ArrayListBounded data type shown in Figure 3.2.

Similar to Java, AJava is more suited for object oriented problems; and similar to MATLAB,
EmbeddedMontiArcMath is more suited for mathematical and matrix based problems.
• clArc/cloudADL [NPR13]

clArc is designed for model based development of cloud applications. clArc uses port
groups (see Figure 3.3) to specify that all ports in a group belong semantically together and
are executed at the same time. In EmbeddedMontiArc data, which belongs semantically
together, is encapsulated in data structures (cf. SIStructs language in Section 3.4). Since
in EmbeddedMontiArc all ports receive their values at the same time, no special group
semantics for this case is necessary. Similar to EmbeddedMontiArc component instances
can be replicated, but in clArc they have no instance limit and the number of instances can
vary (according to the request number or other runtime parameters) during runtime. In
contrast to clArc, EmbeddedMontiArc defines exactly the number of component instances
at generate/compile time. In contrast to clArc, EmbeddedMontiArc does not need routing
for messages of newly created components. This is the case, because simulators of
EmbeddedMontiArc execute the entire system in every time step and these simulators know
the execution time of the entire system when compiling the models. In clArc “Message
channels attached to replicating components guarantee that every message is received
by exactly one replica” [NPR13]. This means components can also gain empty input in
clArc, if more components are present than messages in the message channel. Contexts
in clArc address ambiguities when connecting replica of different components with each
other by defining rules (e.g., based on session IDs) how to connect instances with different
component types.

clArc and EmbeddedMontiArc complete each other: EmbeddedMontiArc models the behav-
ior of one self-driving car (the logical behavior for one car hardware). clArc models how
this one car (which is a black-box component in clArc) is replicated and how these cars
(dynamic number of cars) interact with each other. This enables to model dynamic local
traffic systems.
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component UserManagement {

port group UserData in User usr, in UpdateRequest req;

component UpdateStore store [*];

connect usr -> store.user;

connect req -> store.requrest;

service required clarc.db.NoSQL;

}

1

2

3

4

5

6

7

clarc

Figure 3.3.: clArc user management system (copied from [BHH+17]).

component CashDeskLine {

port out PayMentRequest; // to Bank

component CashDeskUI ui { 

port out Sale; 

}

component CardReader reader {

port out CardHolderData;

}

component CashDesk cashDesk {

port in CardHolderData,

in Sale,

port out PaymentRequest;

trustlevel +1;

accesscontrol on;

}

identity weak ui -> cashDesk;

connect ui.sale -> cashDesk.sale;

connect encrypted reader.cardHolderData -> cashDesk.cardHolderData;

connect encrypted cashDesk.paymentRequest -> paymentRequest;

}
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Figure 3.4.: MontiSecArc architecture of cash desk line in supermarkets (copied from [BHH+17]).

• MontiSecArc [BHH+17]
MontiSecArc extends MontiArc by adding security information to architectural models.
An example is shown in Figure 3.4. MontiSecArc enriches the textual syntax directly
with security information. EmbeddedMontiArc has a powerful tagging mechanism to
enrich models with different extra-functional properties (e.g., security) via different tagging
schemata (cf. Chapter 5). This supports a better separation of concerns and, additionally, the
same logical architecture can be tagged with different security features (e.g., for different
deployments).
• MontiArcAutomaton [RRW12, RRW13a, RRW13b, RRW14, RRRW15, RRW16, HRW16,

BRW16, Wor16, HKR+16, BKRW17, BEK+18]
MontiArcAutomaton embeds input/output automata into MontiArc to describe the behavior
of atomic components. The EmbeddedMontiArc modeling language family also embeds
input/output automata for behavior modeling, whereby the input/output automata version in
EmbeddedMontiArc uses the unit-based type system to specify velocity < 4 km/h
in guard conditions, whereby MontiArcAutomaton uses the Java type system. Similar to
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component WindowSystem {

port

in WinderRequest driverRequest,

in WinderRequest coDriverRequest,

out WindowStatus;

component WindowWinder driverWinder,

coDriverWinder;

component WindowWatchDog {

port

in WindowStatus driverStat,

in WindowStatus coDriverStat,

out WindowStatus overallStat;

variationPoint: MoreWindowsDog [0..1];

}

connect driverRequest ->

driverWinder.driverRequest,

driverWinder.passengerRequest,

coDriverWinder.driverRequest;

connect coDriverRequest ->

coDriverWinder.passengerRequest;

connect driverWinder.WindowStatus ->

WindowWatchDog.driverStat;

connect coDriverWinder.WindowStatus ->

WindowWatchDog.coDriverStat;

connect WindowWatchDog.overallStatus ->

WindowStatus;

variationPoint: MoreWindows [0..1];

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

��������
	


variant FourWindows realizes

WindowSystem.MoreWindows {

port

in WinderRequest rearLeftRequest,

in WinderRequest rearRightRequest;

component WindowWinder rearLeft, 

rearRight;

connect driverRequest ->

rearLeft.driverRequest,

rearRight.driverRequest;

connect rearLeftRequest ->

rearLeft.passengerRequest;

connect rearRightRequest ->

rearRight.passengerRequest;

connect rearLeft.WindowStatus ->

WindowWatchDog.rearLeftStat;

connect rearRight.WindowStatus ->

WindowWatchDog.rearRightStat;

WindowSystem.WindowWatchDog.MoreWindowsDog

realizedBy FourWindowsDog;

}
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variantConfig FourWindowSystem for

WindowSystem {

WindowSystem.MoreWindows

realizedBy FourWindows;

}
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Figure 3.5.: Four window system modelled via MontiArc HV (copied from [HRR+11]).

MontiArcAutomaton’s controlled underspecification [RRW16], EmbeddedMontiArc lan-
guage family has two input/output automata versions: One deterministic one for behavior
implementations which is directly embedded into EmbeddedMontiArc. Another version
to specify the behavior of components; this version is non-deterministic. For example,
non-determinism enables that output assignments must not have a concrete value as well
as that conditions may satisfy multiple guards in an implementation. Bounded model
checking between specification and implementation automata can be used to verify the
behavioral correctness of an implementation [HRvW17]. Since this thesis focuses on the
structural part of the EmbeddedMontiArc family, these two automata languages are not part
of this thesis.

• MontiArcHV [HRR+11]
The HV in MontiArcHV stands for hierarchical variability modeling “which supports
specifying component variability integrated with the component hierarchy and locally to
the components” [HRR+11].

An example model of MontiArcHV is given in Figure 3.5. The code (except of ll. 16,
32) in the left part of Figure 3.5 is identical to the normal MontiArc language describing
a WindowSystem being decomposed of three subcomponents dirverWinder (l. 7),
coDriverWinder (l. 8), and WindowWatchDog (l. 10, it is automatically instanti-
ated). Both variation points are optional; thus an empty realization of the WindowSystem
creates a software component with two electric power windows in front. If the MoreWin-
dows variation point is realized with the variant shown on the top right part in Figure 3.5,
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the WindowSystem has four electric power windows: two in the front and two in the
back. The solution of MontiArcHV destroys the encapsulation nature of C&C models
as variants replace (line by line) the variation point. The variant FourWindows real-
izes MoreWindows, but it accesses the driverRequest port of the WindowSystem
component (cf. l. 43).

The port and component array concept of EmbeddedMontiArc (introduced in Subsec-
tion 3.6.2) addresses this product-line problem much more intuitive and in a much
more generic way. A generic parameter in EmbeddedMontiArc, let’s call it N1 nb-
ElectricalWindows, for the component type definition WindowSystem creates this
product-line. Creating a variant is very easy by binding this generic parameter. For exam-
ple, instance WindowSystem<2> electricFrontWindows and instance
WindowSystem<4> electricFrontAndBackWindows creates this two variants
mentioned above. This over 60 lines of MontiArcHV code can be modeled in Embedded-
MontiArc with about 20 lines (cf. Figure 3.6). For a bus having 15 rows each with an
electric power window, the line savings in EmbeddedMontiArc is even higher, because nb-
ElectricalWindows must be only bound to 30 and there is no need to write an extra
line. Since the driver front window plays an important role in this product-line, Embed-
dedMontiArc also supports partial enumerations as generic types. Therefore, Section 3.5.4
elucidates on a concrete example how partial enumerations increase the readability by
keeping the generality of the here presented approach.

More complex product-line modeling in EmbeddedMontiArc is possible via component
interfaces in combination with configuration parameters and arrays. Subsection 3.6.5
presents a product-line example.

3.4. Overview of EmbeddedMontiArc Modeling Family

This section presents the most important languages of the EmbeddedMontiArc language family
shown in Figure 3.7. MontiArc is not part of the EmbeddedMontiArc language family, because the
port type system of MontiArc is based on the Java type system (cf. Section 3.3) and all languages
of the EmbeddedMontiArc language family have a SI unit based port type system. However, the
EmbeddedMontiArc language borrows many language concepts from MontiArc; e.g., the concrete
and abstract syntax to model components and connectors.

This section also contains hints how to realize some of these languages in MontiCore 5.
The base language (omitting all MontiCore commons languages) for the EmbeddedMontiArc

family is SIUnit. This language defines all kinds of numbers, i.e., complex numbers such as 0.5
+ 3i, numbers with units such as 5 m/sˆ2 or -30.4◦C, and normal numbers without units
such as 7 or -0.3.

Special about the SIUnit grammar in contrast to most other MontiCore grammars is that it uses
semantic predicates to define all alpha-numeric tokens. Line 6 in Figure 3.8 shows the definition
of the imaginary sign using the existing Name token (defined in the basic MontiCore grammars)
together with the semantic predicate (the italic text in Figure 3.8). If the SIUnit grammar would
be used standalone (no other grammar would embed or extend this grammar), then the rule in
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component WindowSystem<N1 nbElectricalWindows> {

ports

in WinderRequest driverRequest,

in WinderRequest coDriverRequest[nbElectricalWindows - 1],

out WindowStatus windowStatus;

instance WindowWinder winders[nbElectricalWindows];

instance WindowWatchDog<nbEletricalWindows> watchDog;

// connects all winders instances

connect driverRequest -> winders[:].driverRequest; 

connect driverRequest -> winders[1].passengerRequest;

connect coDriverRequest[1: nbElectricalWindows - 1] -> 

winders[2: nbElectricalWindows].passengerRequest;

connect winders[:].windowStatus -> watchDog.windowStatus[:];

connect watchDog.overallStatus -> windowStatus;

}
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component WindowWatchDog<N1 nbElectricalWindows> {

ports

in WindowStatus windowStatus[nbElectricalWindows],

out WindowStatus overallStatus;

}
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EMA

Figure 3.6.: Four window system of Figure 3.5 modeled in EmbeddedMontiArc.
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Figure 3.7.: EmbeddedMontiArc language family (inspired by [KRRvW17]).

line 6 is equivalent to I = “i”. However, the expression “i” introduces an extra lexer token
resulting that no Name token will ever recognize the variable name i again. This is similar to
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ComplexNumber =

(negRe:"-")? real:NumericLiteral ("+" | negIm:"-") im:NumericLiteral I

;

// use Name instead of i, otherwise no variable can be named i again

I = { _input.LT(1).getText().equals("i") }? Name;

1
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5

6

MC5

Semantic predicate Use existing token ‘Name’ 

Figure 3.8.: Excerpt of SIUnit grammar for MontiCore 5.

struct GPS {  (-90° :0.001°:90°)  latitude;

(-180°:0.001°:180°) longitude; } 

1

2

SIStructs

Embedding of SIUnit syntax inside struct grammar

Figure 3.9.: Example model of SIStructs language.

most existing programming languages such as Java where variables must differ from keywords
such as for or if.

Since the SIUnit grammar contains all units together with their prefixes, it would introduce
tokens for nearly every single-letter variable name5. Introducing all these tokens would result in
many “token clashes” when combining the SIUnit grammar with other grammars. Therefore, the
complete SIUnit grammar introduces no alpha-numeric tokens; it uses for units or unit prefixes
the same approach with semantic predicate plus Name or Literal token as shown in Figure 3.8
for the imaginary sign in complex numbers.

SIStructs is a language similar to C structures to encapsulate data. SIStructs embeds the
SIUnit language to reuse numbers with units in the type definition of single elements in one
structure; cf. underlined numbers in Figure 3.9. Figure 3.9 shows the GPS structure model
of the SIStructs language. The GPS structure encapsulates the two elements: latitude and
longitude. The latitude attribute accepts values from minus 90◦ up to plus 90◦ with
a resolution of 0.001◦. Therefore, -89.999◦ is a valid number for latitude. However,
89.9989◦ is invalid, violating the resolution, and 100◦ is invalid, violating the range. The
longitude attribute accepts values from minus 180◦ up to plus 180◦ having the same resolution
as latitude. The check whether a value is a valid element of a SI unit type is implemented as
a context condition; this check is similar to the type compatibility check defined in Figure 4.12.

MontiMath is a typed matrix language inspired by MATLAB to avoid runtime errors due to
matrix (numbers are interpreted as 1×1 matrix) incompatibilities. MontiMath also embeds SIUnit
to create matrices with units. For example, (0m:10m)ˆ{1,10} distance defines a row

5Examples of single-letter units or unit prefixes are: a (are), A (ampere), b (barn), c (centi, unit prefix), d (deci, unit
prefix), e (exa, unit prefix), f (femto, unit prefix), g (gram), G (Giga, unit prefix), h (hour and hector, unit prefix), J
(joule), k (kilo, unit prefix), K (kelvin), l (liter), m (meter and milli, unit prefix), M (mega), n (nano, unit prefix), N
(newton), p (pico, unit prefix), P (peta, unit prefix), R (roentgen), s (second), T (tera, unit prefix), U (rack unit),
V (volt), W (watt), y (yocto, unit prefix), Y (yotta, unit prefix), z (zepto, unit prefix), and Z (zetta, unit prefix)
[GG18].
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operator<N1 n> diag Q^{n,n} y = diag Q^{n,n} a + diag Q^{n,n} b

y = diag(diag(a) + diag(b));

end

1

2

3

MontiMath

diag with vector input behaves different than diag with matrix (at least two rows) input

function<N1 n> diag Q^{n,n} y = diag(Q^{1,n} a)

y = zeros(n, n);

for i = 1:n

y(i,i) = a(i);

end

end
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MontiMath

function<(2:oo) m, N1 n> Q^{1, min(m,n)} y = diag(Q^{m,n} a)

for i = 1 : min(m,n)

y(i) = a(i,i);

end

end

10
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13

14

MontiMath

result type left operand type right operand type

Figure 3.10.: Example how to overload operators and functions in MontiMath.

vector of length 10, where each element of the vector is between 0m and 10m. On the other side,
Qˆ10, which represents Q10×1 and which is a short-form of (-oo, oo)ˆ{10,1}, defines
a column vector. The expression diag inv (0:1)ˆ{10, 10} facMatrix defines a
diagonal and invertible 10× 10 rational matrix, whose elements are between 0 and 1. Similar to
MATLAB, MontiMath supports matrix operations such as matrix addition (+), matrix subtraction
(-), matrix multiplication (*), element-wise multiplication (.*), right matrix division (B/A,
solves xA = B for x), left matrix division (B\A, solves Ax = B for x), element-wise division
(./), element-wise power (.ˆ), matrix power (ˆ), and matrix modulo (mod). The type system of
MontiMath (cf. symbol table part in Subsection 1.1.3) enables one to overload matrix operators.
This provides more efficient calculations for special matrix types.

Figure 3.10 shows an example how to overload matrix functions and operators. Lines 1 to
3 offer a more efficient way to add matrices when both of them are diagonal ones. Using this
overloaded operator reduces the algorithmic complexity from O(n2) to O(n) for adding two
n× n matrices. For practical reasons such as existing documentation and the high prevalence
of MATLAB, MontiMath tries to be compatible as much as possible (modulo type system) to
MATLAB functions. Therefore, the diagonal function (cf. MATLAB documentation [The18b])
behaves different for a vector (cf. ll. 4-9) or a matrix (cf. ll. 10-14) as input parameter. Due
to the type system of MontiMath, the function signature unveils this difference; in MATLAB
you need to study the documentation or understand the implementation of a function to detect
this difference. Line 2 does not bind any generic value to the diag function, because the type
inference algorithm can derive the value of the generic parameter. MontiMath’s type inference is
similar to Java’s one. The short-form used in line 2 increases the readability compared to the,
also possible, long-form y = diag<n>( diag<n,n>(a) + diag<n,n>(b) ).
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script MinimizeXSquare

minimize( Q x)

Q y = x^2;

subject to

x <= -1;

end

end
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MontiMathOpt

Figure 3.11.: Example model of the MontiMathOpt language.

struct GPS {  (-90° :0.001°:90°)  latitude;

(-180°:0.001°:180°) longitude; } 

1

2

SIStructs

component AutomatedVehicle {

ports in GPS posCar,

(0.01m:0.01m:4.2m) distance[10],…

out (0N:1N:200kN) brakeForce[4];

}

3

4

5

6

7

EMA

port type port name port array size

Aggregation of languages via Symbols

Figure 3.12.: Example model of EmbeddedMontiArc language.

MontiMathOpt embeds the MontiMath language to reuse all mathematical statements including
matrix operations. Additionally, the MontiMathOpt language adds support for optimization
equations, i.e., minimization and maximization problems. Modern control theory models the
behavior of concrete car controllers as minimization problems; e.g., control the steering of a car
so that the mean squared error of the calculated trajectory according to the new set steering angle
against the optimal (wished) trajectory is minimal. The subject to equations in modern
control theory model environment restrictions to the steering angle; e.g., the derivation of the
steering angle must be in a specific range so that the car does not flip.

Figure 3.11 shows a simple script of the MontiMathOpt language. The underlined text lines
(cf. ll. 3 and 5) highlight the embedded syntax of MontiMath. The gray filled square on the left
side represents the valid solution area satisfying the one subject to constraint in line 5. The
yellow circle on the left side (x = 1) is the solution of this simple minimization script.

Since the rest of this chapter presents the EmbeddedMontiArc language in detail, Figure 3.12
is only used to show that the language also embeds the SIUnit language (cf. italic numbers
0.01m, 4.2m, 6N, etc. in ll. 5-6) and aggregates the SIStructs language via the symbol table (cf.
Section 4.6) by resolving port type names (cf. solid underlined GPS name).

Figure 3.13 shows an example of the stream language (cf. ll. 6-10). The stream language
embeds MontiMath (cf. italic text in ll. 7-9) to specify matrices. Line 7 uses the MATLAB colon
operator to define the two 1 × 3 matrices [1,2,3] and [4,6,8]; in contrast to MontiArc
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Aggregation of languages via symbols

component SumVec<N1 n> {

ports in Z^n summand1,

in Z^n summand2,

out Z^n sum;

}
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EMA

stream SumVec3Test1 for SumVec<3> {

summand1: 1:3 tick 4:2:8;

summand2: [11,13,17] tick [-19,23,-29];

sum:      [12,15,20] tick [-15,29,-21];

}
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Stream

"1:3" is short-form of matrix "[1, 2, 3]" and
"4:2:8" is short-form of matrix "[4, 6, 8]"

function<N1 n> diag Q^{n,n} y = diag(Q^{1,n} a)

y = zeros(n, n);

for i = 1:n

y(i,i) = a(i);

end

end
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Figure 3.13.: Example model of Stream language.

How ports are visible in Math language
after applying Math-EMA-Adapter

component behavior implementation is specified using the MontiMath Language (syntax)

* Lines do not belong to original source code. They are only inserted in this listing to see how

port types are handled as matrix types in the embedded MontiMath language.

component SensorFusion <N1 n> ( (-90°:90°)^{1,n} tilt ){

ports in (0m:0.2m:10m)  distance[n],

out (0m:0.2m:10m) mergedDistance;

implementation Math {

(0m:10m)^{1,n} distance;

(0m:10m)^{1,1} mergedDistance;

diag (0:1)^{n,n} factorMatrix = diag(cos*(tilt));

mergedDistance = min(distance * factorMatrix);

}

}
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Figure 3.14.: Example model of EmbeddedMontiArcMath language (copied from [KRRvW17]).

and Focus, the syntax 1:3 does not represent a stream with the two values 1 and 3. The
stream language aggregates the symbols of EmbeddedMontiArc (cf. solid underlined names in
Figure 3.13). As already explained in Section 3.3, EmbeddedMontiArc processes exactly one
value (number or matrix) per time slot. The tick keyword in lines 7 to 9 separates two time
slots (also called execution cycles). The stream language enables model-based black box testing
of EmbeddedMontiArc models. Model-based testing abstracts all technical details of the C++
compiler toolchain from the modeler.

EmbeddedMontiArcMath embeds MontiMath into EmbeddedMontiArc to describe the behavior
of atomic components in a convenient way. Figure 3.14 shows the EmbeddedMontiArcMath
code of an atomic SensorFusion component. The component receives as input the distances
measured by the single sensors (cf. l. 2) of a back park distronic system and produces as output
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overwrite Port rule to add underspecification

component AutomatedVehicle {

ports in GPS posCar,

in (0.01m:0.01m:4.2m) distance[10],

out (0N:1N:200kN) brakeForce[4];

}
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component AutomatedVehicle {

ports in ? posCar,

Length ?,

out ? ?[4];

}
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Port =

( incoming:["in"] | 

outgoing:["out"] )

Type Name

( "[" Number "]" )?

;
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Port =

( incoming:["in"] | 

outgoing:["out"] )

(Type | "?") (Name | "?")

( "[" Number "]" )?

;
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EmbeddedMontiArc.mc5 EmbeddedMontiView.mc5

Figure 3.15.: Example model of EmbeddedMontiArc and EmbeddedMontiView (top), as well
as an example excerpt how EmbeddedMontiView extends the EmbeddedMontiArc
grammar (bottom).

the distance to the obstacle (cf. l. 3). The tilt configuration parameter (cf. l. 1) is the tilt of
the sensors in the back bumper. Lines 5 and 6 show how the embedded MontiMath language
sees the variables introduced by the ports in EmbeddedMontiArc; both lines do not belong to the
EmbeddedMontiArcMath model. The MontiMath language does not need to know anything about
port arrays, because the port array is adapted (cf. Section 4.6) to a matrix variable. This enables
reusing all of the type inference and check rules of MontiMath in EmbeddedMontiArcMath. The
star after the cosine function in line 7 states that this vector function applies the normal cosine
element-wise on the input vector. This way exists a distinction between functions known from
school mathematics (without *) and new vector-based ones (with *).

EmbeddedMontiArcMathOpt extends EmbeddedMontiArcMath. EmbeddedMontiArcMathOpt
does not extend EmbeddedMontiArc directly to reuse the context conditions of EmbeddedMon-
tiArcMath; e.g., that variables transformed to an output port must be assigned at least once.

The top part in Figure 3.15 shows an EmbeddedMontiArc (cf. l. 1-5) and one corresponding
EmbeddedMontiView (cf. l. 6-10) model. The EmbeddedMontiView model contains underspec-
ification (cf. the underlined text parts in ll. 7-9); e.g., the unknown6 data type of the posCar
input port, the unknown name of the second input port, and the unknown data type and name
of the output port. The bottom part in Figure 3.15 shows an excerpt how EmbeddedMontiView
language extends the EmbeddedMontiArc one, e.g., by overwriting the Port rule to specify
besides concrete types or concrete names also question mark signs for types or names. Chapter 7
introduces the EmbeddedMontiView language to specify incomplete C&C design models in detail.

The right side in Figure 3.16 shows the concrete syntax of the CNNArch language. Evgeny
Kusmenko designed this language. The left side shows the graphical convolutional neuronal
network of the textual syntax. The network contains 6 layers (cf. ll. 4-9) represented as vertical
nodes in the graphic. Each layer consists of a different number of nodes: layer 1 has three nodes

6The ? symbol represents not specified data types or port names.
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architecture SimpleNetworkRelu {

def input Q^3 in

def output (0:oo)^2 out

in ->

FullyConnected(units=5, no_bias=true) ->

Tanh() ->

FullyConnected(units=2, no_bias=true) ->

Relu() ->

out

}

+

+

+

+

+

+

+�
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Figure 3.16.: Example model of the CNNArch language.

tagschema LatencyTagSchema {

tagtype Latency:Duration

for PortDefinition,

PortInstance;   }

1

2

3

4

conforms to LatencyTagSchema;

tags Latency for ECU1 {

tag vehicleSpeed with

Latency = 100 ms; }

5

6

7

8

TagSchema TagModel

Aggregation of languages via symbols

Figure 3.17.: Example models of TagSchema and TagModel language.

(cf. Qˆ3 in in l. 2), layer 2 has five nodes (cf. units=5 in l. 5), layer 3 has also five nodes as
Tanh function is applied node-wise (cf. l. 6), layer 4 has two nodes (cf. units=2 in l. 7), layer
5 has also two nodes as Relu (cf. l. 8) is also a node-wise function, and layer 6 has two nodes
(cf. Q(0:oo)ˆ2 out in l. 3). The FullyConnected keyword connects all nodes from one
layer to all nodes of the next layer whereby the value of the next layer is calculated as sum of the
values of the source nodes (represented as incoming edges in Figure 3.16).

EmbeddedMontiArcDL embeds the CNNArch language into EmbeddedMontiArc to express
the behavior of atomic components via convolutional neuronal networks. The mechanism is the
same as in EmbeddedMontiArcMath.

The tag schema model defines new tag kinds. Tag kinds are similar to typed UML stereotypes
or UML profiles. The tagging schema defines what model elements of a language can be tagged
with what kind of information. The tag schema example in Figure 3.17 enables to tag port
definitions (cf. l. 3) and port instances (cf. l. 4) with latency information (cf. l. 2). Every concrete
tag model is conforming to a given tag schema (cf. l. 5). The tag model in Figure 3.17 enriches
the vehicleSpeed port of the component ECU1 with a Latency value of 100 ms. The
tag model embeds the SIUnit language to reuse numbers with units (cf. italic text in l. 7). It is
important to know, that the TagSchema and the TagModel language are language agnostic as both
of them work on the general Symbol interface (cf. [MSN17]) provided by MontiCore. Therefore,
every language exporting symbols via the symbol table (cf. Section 4.6) can be enriched with
extra information using these both languages. Chapter 5 explains more information about the
tagging mechanism based on these two languages.

The OCL language also embeds the SIUnit language to express physical constraints, e.g.,
context Person: small <=> size < 160 cm. The EmbeddedMontiArc family
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uses OCL to express context conditions for EmbeddedMontiArc models (cf. Section 6.1) as
well as to describe semantic constraints for extra-functional properties (cf. Section 6.2).

This section gave a high-level overview of the most important languages of the EmbeddedMon-
tiArc family, including behavioral languages such as MontiMath, MontiMathOpt, or CNNArch.
The rest of this thesis will only focus on the languages needed to express structural and extra-
functional properties as well as their constraints; i.e., EmbeddedMontiArc, EmbeddedMontiView,
TagModel, TagSchema, and OCL. The next sections explain the EmbeddedMontiArc language on
many concrete syntax examples.

3.5. Typing in EmbeddedMontiArc

This section shortly explains the typing of ports in EmbeddedMontiArc. Section 3.4 already
showed that EmbeddedMontiArc language family is based on a type system with SI unit and
matrix support. Subsection 3.5.1 introduces the port type system focusing on SI unit support.
Subsection 3.5.2 explains how algebraic properties of matrices are encoded into the port type
system. Subsection 3.5.3 and Subsection 3.5.4 explain how values and types of the port type
system can be passed via configuration parameters as well as how generic port type parameters
can be used as port types to increase modularity. Chapter 4 presents the abstract syntax of the
port type system including its type parameters in detail.

3.5.1. Port Type System

This subsection shortly introduces the abstract syntax of the port type system. The abstract syntax
helps to understand parameters and how EmbeddedMontiArc binds these parameters in the next
(sub)sections. Figure 3.18 shows an excerpt of the port type system. Figure 3.18 does not include
the Boolean type and any encapsulated types such as (nested) structures.
Quantity is the interface describing the dimension of units. The left side of this figure shows

some quantities implementing this Quantity interface; Appendix B contains all available quan-
tities. The dimension of most quantities is unique; exceptions are, e.g., Torque and Energy
having the same physical dimension. Two quantities are compatible when their dimensions are
compatible. The dimension of a quantity is a structure with the following 7 real-valued properties:
length, mass, time, current, temperature, substance, and luminosity. For
example, the singleton Velocity object has the values length = 1, time = -1, and all
others are 0. Each Quantity object has one base unit, e.g., Velocity has the base unit
meter per second. Every Unit belongs to exactly one Quantity. However, a Quantity has
multiple units. The Unit class has the additional attribute prefix. Every base unit always has
a prefix value of one. The unit object mile belonging to quantity Length has as prefix
the value 1600, because 1 mile are 1 600 meters.

Every Number has exactly one Unit. Java numbers such as 2 or -2.3 have the singleton
unit ONE with prefix equals 1 and quantity Dimensionless. Thus, the port type system
of EmbeddedMontiArc supports all numbers of the common programming languages. The
EmbeddedMontiArc syntax 2 cm creates the object of the type Number with the following
attribute values: value = 2, unit = cm having quantity = Length, isPlusInf =
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Matrix

NaturalNumber rows

NaturalNumber cols

CD

Unit

double prefix

baseUnit

«interface»

Quantity

Acceleration

Angle

Area

Dimensionless

Duration

Energy

Force

Torque

Velocity

#

NumericType

NaturalNumber rows

NaturalNumber cols

max

0..1

«interface»

AlgebraicProperty

Diagonal

Symmetric

*

Number

double value

boolean isPlusInf

boolean isMinusInf

min

res

Invertible

#

context Number inv:

rows == 1 &&

cols == 1 &&

elements == { this }

elements * {ordered}

OCL

1

1

1

Figure 3.18.: Excerpt of abstract syntax of EmbeddedMontiArc’s port type system (Boolean type,
enumerations and structures are omitted).

false, and isMinusInf = false. The EmbeddedMontiArc syntax oo, +oo, and -oo
represent plus infinity or minus infinity. Since for both infinities the value and the unit prefix is
irrelevant, the value is set to 0 and the unit is set to Quantity.baseUnit. Therefore, plus
and minus infinity are compatible to every quantity. Mostly, EmbeddedMontiArc can infer the
quantity of plus and minus infinity automatically, then these quantities can be skipped; otherwise
you must specify the quantity explicitly in the concrete syntax; e.g., -oo<Length>.

The NumericType class represents numeric port types. Numeric port types have the manda-
tory range attributes minimum (min) and maximum (max), as well as the optional range attribute
resolution (res). Every NumericType belongs to one quantity, and the quantities of min, max,
and res are equals to the quantity of this NumericType. The minimum/maximum attributes
may have the values minus/plus infinity, the resolution attribute may not have infinity values.
Besides the range attributes, the NumericType class also has the matrix attributes: number of
rows, number of columns (cols), and a set of algebraic properties (cf. Subsection 3.5.2).

The EmbeddedMontiArc syntax (1 cmˆ2 : 5 mˆ2) creates a NumericType object
with the following attribute values: quantity = Area, min = 1 cmˆ2 having quantity
= Area, max = 5 mˆ2 having quantity = Area, res = ⊥7, rows = 1, cols =
1, and algebraicPorperties = {}. The EmbeddedMontiArc syntax diag (0s :
1ns : 1h)ˆ{20, 10} creates a NumericType object with the following attribute val-

7equals to Java’s Optional.empty()



64 Chapter 3. Concrete Syntax of EmbeddedMontiArc

SpectralClusterer

Similarity

cluster

C&C

KmeansClustering

NormalizedLaplacianEigenSolver
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matrix 
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value 

range

array size
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Figure 3.19.: Spectral clustering algorithm as example for needs of matrix properties in Embed-
dedMontiArc (copied from [KRSvW18a]).

ues: quantity = Duration, min = 0s having quantity = Duration, max = 1h
having quantity = Duration, res = 1ns having quantity = Duration, rows
= 20, cols = 10, and algebraicPorperties is a set with one value - the singleton
Diagonal object.

EmbeddedMontiArc supports special syntactic sugar:
• Writing down a class name implementing the Quantity interface, represents the object

of NumericType with minimum set to minus infinity of the specified quantity, maximum
set to plus infinity of the specified quantity, and resolution is not present. For example,
Velocity in EmbeddedMontiArc means the object with type NumericType with quantity
Velocity having the attribute values min = -oo m/s, max = +oo m/s, and res
= ⊥.
• Z (inspired by Z) in EmbeddedMontiArc means the object of type NumericType with

quantity Dimensionless, min = -oo, max = +oo, and res = 1.
• Z+ (inspired by Z+) or N+ (inspired by N+) is similar to Z, but with min = 1.
• Z0 (inspired by Z+

0 ), Q+ (inspired by Q+), and Q (inspired by Q) work in the same way.
In EmbeddedMontiArc each number is a matrix of dimension 1×1. Every matrix in Embedded-

MontiArc consists of numbers all having the same quantity.

3.5.2. Matrices as Port Types

Most cyber-physical systems contain object recognition algorithms, e.g., pedestrian detection
in self-driving cars, object and position recognition in automated fabrications (industry 4.0).
Due to the cheap hardware prices for cameras, more and more systems use image process-
ing, esp., image segmentation, often dealing with image matrices or higher dimensional ar-
rays. Figure 3.19 gives an example of a spectral clustering algorithm used in image segmen-
tation. The Similarity component (cf. Figure 3.20) gets as input three (for the channels
red, green, blue) 50 × 50 matrices with pixel values between 0 and 255. Based on these in-
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component Similarity {

ports in (0:255)^{50,50} rgb[3],

out symmetric Q(-255:255)^{50,50} W,

diagonal Q(0:1)^{50,50} D;

}
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algebraic property

Figure 3.20.: Example defining Matrix properties as part of port types.

puts it calculates a symmetric similarity matrix W and a diagonal degree matrix D. As shown
in Figure 3.19, EmbeddedMontiArc supports specification of matrix properties, as they are
essential properties components rely on. The component NormalizedLaplacian in Fig-
ure 3.19 calculates the symmetric Laplacian matrix and this calculation is wrong if the input
matrix W is not symmetric. Besides symmetric other, but not limited to, valid algebraic
matrix properties are defective, non-defective, invertible, idempotent, Her-
mitian, Skew-Hermitian, positive-definite, positive-semidefinite, in-
definite, negative-definite, negative-semidefinite, normal, diagonal,
tridiagonal, upper-triangular, lower-triangular, unitary, non-normal,
identity, permutation, singular, non-singular, nilpotent, or unitary. A
matrix may have multiple algebraic matrix properties. For example, a 5 × 5 matrix with only
twos on its main diagonal and only ones on its first diagonal below as well as above is symmet-
ric tridiagonal positive-definite. Matrix Taxonomy & Matrix Properties paper
[Bor06] shows the relationship between these algebraic matrix properties as well as their exact
mathematical definitions. Some matrix properties have short-forms, e.g., diag for diagonal.

3.5.3. Configuration Parameters of Port Type System

Configuration parameters of the port type system present configurable holes in the concrete
implementation. Configuration parameters enable to reuse component types, and at the compo-
nent’s instantiation the binding of these parameters specify different behavior. MontiArc uses
squared brackets for configuration parameters [Hab16, Listing 3.4]; whereas EmbeddedMontiArc
uses parenthesis surrounding configuration parameters, because squared brackets define array
definitions or array access operators in EmbeddedMontiArc similar to most other languages such
as Java or C++. Please note that generic parameters influence component’s interface or signature,
having impact of any port’s type or the number of ports (array size), while configuration parame-
ter will never influence a component’s interface. Generic parameters needed for configuration
types should be defined at the end, because values of these generic parameters can be mostly
inferred due to the passed configuration parameters during component instantiations8. Since this
thesis deals with structural properties of component and connector models for cyber-physical
systems, the focus of this thesis lays on component interfaces and their connections. Our ECMFA

8For example, component X<Z p1, Z p2, Z p3>(Zˆp3 p4) defines the generic parameter p3 at the end,
as p3 can be inferred by the type of the bounded configuration parameter p4. The component instantiation
instance X<4,5>([1, 2]) x1 binds p3 to 2, because the bounded type of p4 is Zˆ2 (Z2 3 [1 2]).



66 Chapter 3. Concrete Syntax of EmbeddedMontiArc

component Max<T, N+ n=2> {

ports in T values[n],

out T maxValue;

}
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Figure 3.21.: Component type definition Max with generic port type and generic array size
parameter.

component MaxInstancesExamples {

instance Max<(0$:150$), 3> maximumOfThreePayments; // T=(0$:150$), n=3

instance Max<(0°:0.1°:180°> maximumOfTwoDegrees; 

// T=(0°:0.1°:180°), n=2

instance Max<n=5, T=(-5 m/s^2: 5 m/s^2)>; // T=(-5 m/s^2: 5 m/s^2), n=5

}

1

2

3

4

5

6

EMA

Figure 3.22.: Example showing how to instantiate generic component type definitions.

paper [KRRvW17], introducing EmbeddedMontiArc, contains a more detailed explanation and
an example in [KRRvW17, Figure 5].

3.5.4. Type Parameters

Most Cyber-physical systems contain control components such as filters, error/derivation cal-
culations, and prediction functions. These components are based on a generic mathematical
background; e.g., the finite impulse response (FIR) filter is generic [GKR+17] in the number of
stored input values it may response to.

Figure 3.21 shows the code of a simple generic component calculating the maximum value (cf.
l. 3) of input values (cf. l. 2). The component definition has two generic parameters: T for the
(yet unknown) port type of the input and output values, and n for the array size of the input port
(Subsection 3.6.2 explains arrays of ports and component instantiations). Even when the port
type is not specified yet, Figure 3.21 forces that the port type of both input and output are the
same. Since T is not restricted in this context, T can be anything such as (0 Eur:0.01 Eur:
oo Eur), (-10 km/h:250 km/h), or just plain numbers (1:100), but also structures (cf.
SIStructs language in Section 3.4). The expression T is UnitNumber excludes structures.
The expression T is Money restricts T to the JScience [Dau07] Money quantity, whereas
T is Velocity restricts it to speed values, and T is Dimensionless restricts T to
dimensionless numbers, vectors, matrices, or tensors having units such as percentage or degree.
If a generic component type is used often with the same concrete generic parameter, then this
value can be specified as default value; e.g. N+ n = 2 as shown in line 1 in Figure 3.21.

Figure 3.22 illustrates how to instantiate the generic component type Max defined in Figure 3.21.
EmbeddedMontiArc supports binding parameters by order (ll.2-3) or by names (l. 5). The last
concept is borrowed from Ada where it is also possible to bind generics by names. This is
especially useful for generic components having multiple generic parameters with default values.
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component PID

// generic parameters

< Qt1 as Quantity = Dimensionless, 

Qt2 as Quantity = Qt1,

Qt1 lower = -oo, (lower : +oo) upper = -1*lower >

// configuration parameters

( Q+ P, Q+ I, Q+ D,       Qt1*T windup = oo ) {

ports in  Qt2 error,

out (lower : upper) output; 

}
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error output

is short-form for Type<Qt1>
with min = -oo and max = +oo

-oo is derived short-
form for –oo<Qt1>

as lower bounds Quantity
to Qt1, +oo is +oo<Qt1> 

increases time dimension by one,
e.g., if Qt1 = Velocity, 

then Qt1*T = Acceleration
and Qt1*T is short-form for
NumericType<Acceleration> and this
Is equals to (-oo m/s^2 : +oo m/s^2)

P part

D part

I part

Anti windup

Plant

Figure 3.23.: Generic PID controller modelled in EmbeddedMontiArc. Textual code for connec-
tions are skipped, instead a graphical picture showing how the subcomponents are
connected is inserted. The inner picture of the structure of the PID controller is
copied from [Kra18, Bild 11.3-7].

Figure 3.23 shows the header of a generic PID controller modeled in EmbeddedMontiArc.
The PID controller has one input port error and one output port. The general PID controller
receives control errors (derivation between wished and actual values), and produces new outputs
based on the error history. Since there exist different controllers, e.g., reacting on velocity errors
with an acceleration value, or reacting on distance errors by adopting the speed value, the general
PID controller has two Quantity generic parameters for the types of the input port and the
two other generic parameters. The lower and upper generic parameters define the type of
the output port, as they limit the output signal to a given range. The first three configuration
parameters P, I, and D are the constant factors for the proportional, integral, and derivative part
of the PID controller; these constants are mandatory. Additionally, this generic controller has a
windup limiter, which uses the discrete derivation of the output divided by the time. For this
reason the windup configuration parameter has the type NumericType with quantity Qt1*T
(cf. Subsection 3.5.1), whereby Qt1*T is the quantity derived from Qt1 by increasing the time
dimension by one. More information how the generic PID controller works in detail is available
from the online tutorial “Der Windup-Effekt bei Reglern mit begrenzten Stellgrößen” [Kra18].
This online tutorial also contains C++ code to execute this PID controller.
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component Controller {

// specify all generic parameters:

instance PID<Velocity, Acceleration, -10 km/h, 10 km/h> 

(12, 0.7, 2.3, 1.5 cm) velAccPid;

// in- and output port have the same dimension, no antiwindup protection

instance PID<Length, lower=0m, upper=10m>(2.3, 1.3, 0.2) distancePid;

// input and output port are both dimensionless

instance PID<lower=0°, upper=90°>(2.3, 1.3, 0.2, 0.2°*s) steeringPid;

// in- and output port are dimensionless, symmetric limiter, no antiwindup

instance PID<lower=-45°>(2.3, 1.3, 0.2) symmSteeringPID;

// a very simple PID without limiter and antiwindup protection

instance PID(1, 1, 1) simplePid;

}
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Figure 3.24.: Controller component showing how to instantiate the generic PID controller in
multiple ways.

Figure 3.24 contains several instantiations of the general PID controller to show bindings of
generics with and without default parameters. The first instantiation velAccPid (cf. ll. 3-4)
defines all generic and configuration parameters. The second one distancePid (cf. l. 6)
skips the second generic parameter, as the controller maps Length to Qt1 and Qt2 as Qt2’s
default value is Qt1’s bounded value, and it omits the last configuration parameter. The third
instantiation (cf. l. 8) skips the first two generic parameters, as the input and output ports are
dimensionless. The fourth instantiation (cf. l. 10) has a symmetric limiter, and thus it defines
only the lower generic parameter plus all required configuration ones. If a modeler does not
have so much background knowledge about PIDs (or does not need limiters and antiwindup
protection), then the modeler can instantiate a simplePid controller only focusing on the
important parameters P, I and D as shown in line 12.

The realistic PID controller example shows how to create general reusable library components
in EmbeddedMontiArc. These library components can be instantiated (used) by modelers with
different technical backgrounds (less background: output and input ports are the same and use
nearly all default values; much background: do a lot of fine tuning via type adjustments).

Enumerations in Arrays of Component Instances and Ports as well as in Type
Parameters

One drawback of port and component instantiation arrays (cf. Subsection 3.6.2) is the reduced
readability; actuators[1] is not as good understandable as frontActuator in a model
not using the array concept of EmbeddedMontiArc. Using partial enumerations for generic types
tackles this problem.

Figure 3.25 presents an example with and without the usage of partial enumerations for generic
types. The models on the left and on the right are the identical. But the left model in line 9 is



3.5. Typing in EmbeddedMontiArc 69
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component BumperBot<N+ axes> { 

instance Sensors sensors;

instance Controller 

controller;

instance Actuators 

actuators[axes];

// special treatment for 

// front axe

connect actuators[1] -> …

connect actuators[2:end] -> …

}
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component BumperBot

<enum { FRONT | … } axes> {

instance Sensors sensors;

instance Controller controller;

instance Actuators actuators[axes];

// special treatment for front axe

connect actuators[FRONT] -> …  

connect actuators[axes\{FRONT}] 

-> …

}
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component Actuators {

instance Motor leftMotor;

instance Motor rightMotor;

}
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// possibilities how to use it:

instance BumberBot<2> bb2; 

// or

instance BumberBot<3> bb3; 

16
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component Actuators {

instance Motor leftMotor;

instance Motor rightMotor;

}

31
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// possibilities how to use it:

enum TwoAxes { FRONT | BACK }

instance BumberBot<TwoAxes> bb2;

// or

enum ThreeAxes { FRONT | MIDDLE | 

BACK }

instance BumberBot<ThreeAxes> bb3; 

35
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Figure 3.25.: Example code of port arrays without (left) and with (right) partial enumerations in
generics.

hard to understand without the comment above it. A modeler reading the model in a few years
without having the comment has a hard time to figure out if this is a special treating for the first
or for the last axe. According to clean code (rule 1 for comments “Always try to explain yourself
in code.” [Luk16] in clean code by Robert C. Martin [Mar09]) a comment should not say what
you do, it should only say why. Therefore, EmbeddedMontiArc has the opportunity to use partial
enumerations (cf. l. 21) instead of using subsets of N+ as data type for type parameters. When
normally numbers as indices are used to access array elements (e.g. in l. 9 and l. 10), elements
of the enumerations (cf. l. 26) or sets (cf. l. 27) of enumerations’ elements are used for partial
enumerations. When normally numbers (cf. l. 17 and l. 19) are used to bound this type element,
enumerations (cf. l. 36 and l. 39) are used to bind a partial enumeration type parameter (cf. l. 37
and l. 41). Also numbers and enumerations are not the same, as a number is a single element and
enumerations are sets of elements, they are interpreted equally by meaning in line 24 actually
the cardinality of the enumeration |axes|. Only for better readability of the concrete syntax,
EmbeddedMontiArc uses the short-form axes.
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package safety;

component EmergencyBrake {

ports in (0m : 0.5m : 25m) distance,

(0 km/h : 0.1 km/h : 250 km/h) speed,

out (0% : 1% : 100%) force;

}

1

2

3

4

5

6

EMA

Figure 3.26.: Component type definition with two inputs and one output ports.

The idea by accessing array elements by names instead of only numbers is borrowed from
JavaScript object properties [Dat18]. Another advantage of using partial enumerations instead
of numbers is that the developer sees at the BumperBot signature that the front axe receives
special treatment.

For the semantics of the model and the ability of reusing the component in different scenarios,
it makes no difference if the left or the right version is used. Therefore, this thesis uses only the
left version as the right model can be transformed to the left one. But for creating models with
EmbeddedMontiArc the better readable right version should be preferred.

3.6. Components and Ports in EmbeddedMontiArc

This section introduces the textual C&C modeling language EmbeddedMontiArc. EmbeddedMon-
tiArc is a domain specific language for the logical layer in the systems engineering process (cf.
Section 2.2). EmbeddedMontiArc enables efficient, agile, and intuitive functional modeling by
providing component types (cf. Subsection 3.6.1), arrays of ports and component instantiations
(cf. Subsection 3.6.2), component interfaces (cf. Subsection 3.6.3), configuration parameters
of component types/interfaces for reference architectures (cf. Subsection 3.6.4) and product-
line modeling (cf. Subsection 3.6.5), intuitive connection patterns (cf. Subsection 3.6.6), and
packaging concept similar to Java (cf. Subsection 3.6.7).

3.6.1. Component Type Definitions and Component Instantiations

In EmbeddedMontiArc components communicate only via their interfaces containing of in- and
output ports. EmbeddedMontiArc uses direct point to point communication as its base language
MontiArc. In EmbeddedMontiArc exists, in contrast to Simulink, no data exchange via local/global
variables.

Figure 3.26 defines the new component type safety.EmergencyBrake (ll. 1-2). The
full-qualified name of a component type includes the package (l. 1) and the short component
type (l. 2) name. Similar to Java’s class definitions, the full-qualified name of a component type
definition must be globally unique. The EmergencyBrake component type has two in- and
one output ports. The first input port distance (l. 3) accepts the rational numbers 0.0m, 0.5m,
1.0m, 1.5m, . . . , 25.0m. The second one speed (l. 3) accepts numbers between 0 km/h
and 250 km/h as a multiple of 0.1 km/h. In contrast to its base language MontiArc, using
the Java type system, EmbeddedMontiArc uses the SI type system including domain definitions.
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package adas;

import safety.EmergencyBrake;

import safety.BrakeActuator;

component ParkingAssistant {

ports …;

instances EmergencyBrake brakeLeft, brakeRight;

instance BrakeActuator brakeActuator;

}
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Figure 3.27.: Hierarchial decomposition of components.
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component A {

instance B b1;

}

1

2

3

component B {

instance A a1;

}
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EMA

Figure 3.28.: Model contains hierarchy cycle on instances, and is therefore invalid.

Therefore, memory-unbounded port datatypes such as String or List are not available in
EmbeddedMontiArc.

Other component definitions can instantiate the EmergencyBrake component definition
multiple times as shown in Figure 3.27. Figure 3.27 also shows the hierarchical decomposition
of the complex component ParkingAssistant. The ParkingAssistant component
type is decomposed of three component instantiations brakeLeft, brakeRight and brake-
Actuator. Please note, that one component type definition can be decomposed with several
component instantiations of the same type. In the example in Figure 3.27, the ParkingAs-
sistant component type definition contains two instances of the component type Emergen-
cyBrake. Resolving component types used in component instantiations (cf. ll. 6-7) is based
on the full-qualified name of component types. Therefore, Figure 3.27 imports the two artifact
files defining the component types EmergencyBrake and BrakeActuator (cf. ll. 2-3),
because the package adas (cf. l. 1) of the ParkingAssistant component type definition
differs from the package safety (cf. l.1 in Figure 3.26) of the referenced component types
EmergencyBrake (cf. l. 6) and BrakeActuator (cf. l. 7).

The package/import mechanism of EmbeddedMontiArc is the same one as in Java; importing
an entire package [Ora17g] via the asterisk symbol is also supported. Thus, the rest of this thesis
omits package and import statements for better readability reasons.

In EmbeddedMontiArc the component types of instantiations, already decomposing a parent
component type, may contain other instantiations of component types. The component (type)
hierarchy is a tree of all component types starting with the component type of the main component
instantiation (cf. Subsection 3.6.7). The component instance hierarchy is always a tree with no
cycles: Figure 3.28 is invalid.

Note that in MontiArc, which is the base language of EmbeddedMontiArc, the keyword
instance is also component. However, this ambiguity, component keyword for both
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component OuterComponentTypeDefinition {

// not recommended to define inner component type, 

// as it can only be used inside this file

component InnerComponentTypeDefinition { 

// …

}

instance InnerComponentTypeDefinition inner;

}
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Figure 3.29.: Model contains hierarchy cycle, and is therefore invalid.

component SensorProcessing { // incomplete

ports in C signal[6],

out (0m : 0.5m : 25m) distance;

instance Filter filter[6];

}
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Figure 3.30.: Example model with port and component instantiation arrays.

component type definitions and component instantiations, confused students looking only at the
textual models during labs. This extra instance keyword is neither needed for more advanced
modelers nor for technical reasons as an algorithm can derive whether a component is defined or
instantiated.

MontiArc models contain often inner component type definitions (cf. [Hab16, Rin14]). In
EmbeddedMontiArc it is not recommended to define nested component types as shown in Fig-
ure 3.29, because no other component type definition can reuse the inner component type one.
EmbeddedMontiArc supports inner component type definitions, but using them will cause a
warning, as this limits the reuse of components. Therefore, this theses will not cover this case.

3.6.2. Arrays of Ports and Component Instantiations

One feature of EmbeddedMontiArc, missing in most other C&C languages (cf. Section 3.2), is the
ability to create arrays of ports and component instantiations. The array concept avoids copying
of ports and component instantiations, as well as it introduces more flexibility.

Figure 3.30 shows an incomplete EmbeddedMontiArc model levering the array concept; this
subsection omits connections between arrays of ports or component instantiations (cf. Subsec-
tion 3.6.6 for simple and more advanced connection patterns).

Figure 3.31 represents the graphical C&C representation of Figure 3.30. The SensorPro-
cessing component has 6 input ports (cf. l. 2), which receive raw signal data from a hardware
as complex numbers, and it instantiates 6 subcomponents (cf. l. 4) to filter invalid input parallel.
Most component and connector architecture description languages, e.g., MontiArc and Simulink,
do not support arrays of component instantiations; and therefore, instantiations (in our example
the 6 filter instantiations) are copied multiple times resulting in bad readable models.



3.6. Components and Ports in EmbeddedMontiArc 73

SensorProcessing

Filter

filter[1]

Filter

filter[2]

Filter

filter[3]

Filter

filter[4]

Filter

filter[5]

Filter

filter[6]

C&C ...

incomplete component
and connector model

signal[1]

signal[2]

signal[3]

signal[4]

signal[5]

signal[6]

component type

component name

port

distance

port name

Figure 3.31.: Graphical representation of Figure 3.30 as incomplete component and connector
example model. Connections are skipped; Subsection 3.6.6 presents different
connection patterns.

EmbeddedMontiArc supports only one-dimensional arrays of ports and component instantia-
tions right now. If a use case requires a multi-dimensional array, e.g., to model clusters, then the
EmbeddedMontiArc language must be extended.

3.6.3. Component Interfaces

In EmbeddedMontiArc components communicate only via ports of component instances. There-
fore, the internally decomposition or the atomic behavior of a component type is not important
for data exchange with component instances of this component type. The component interface
addresses this issue. The interfaces between C&C models and their simulators - e.g., car simulator
MontiSim [GKR+17], SuperMario simulator [KRRvW18], or the PacMan simulator [KRRvW18]
- use component interfaces on the EmbeddedMontiArc side and compatible C++ or Java interfaces
on the simulator side. Therefore, data exchange between EmbeddedMontiArc and simulators are
explicitly defined, and different model behaviors are easily possible. A component interface has
no behavior, i.e., it does not contain any implementation block or neither it is decomposed of
other subcomponents.

MontiArc supports besides component interfaces also component extensions whereby all
input, output ports as well as subcomponent instantiations and their connections are inherited
[Hab16, p. 42]. One drawback (in the opinion of the author of this thesis) of this component
extension mechanism is the unclear semantics of connections inside a component which are not
needed anymore. For example, the connection port1 -> sub1.portIn is replaced by the
chain port1 -> newSub.portIn and newSub.portOut -> sub1.portIn during
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// interface defines the contract with developed physic engine simulator

component interface Car { 

ports in GPS posCar,

(0 km/h : 0.1 km/h: 250 km/h) carSpeed,

(0 cm : 0.1 cm : 100 cm) distanceFront[20],

…

out (0 lx : 2 lx : 60 lx) leftFrontLights[40],

(-10 m/s^2 : 0.01 m/s^2: 15 m/s^2) acceleration,

(-90°: 0.2°:90°) steering;

}
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component PorscheCayenne implements Car { 

... // has all the ports of Car, but adds its own implementation

}

11

12
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component Fiat500 implements Car { 

... // has all the ports of Car, but adds its own implementation

}

14

15

16
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Figure 3.32.: Definition of Car component interface and their implementations.

component extension; but the extension mechanism (similar to Java’s one) does not support
to remove the old connections. Therefore, in EmbeddedMontiArc it is not possible to extend
component types by any kind of ports.

Figure 3.32 shows an example of EmbeddedMontiArc’s interface mechanism. The Car
interface (cf. l. 1) defines the ports (cf. ll. 3-5) that the simulator needs to update the physical car
model. The PorscheCayenne (cf. l. 11) and the Fiat500 (cf. l. 14) are two different C&C
models implementing this Car interface. Therefore, both PorscheCayenne and Fiat500
can interact with the MontiSim simulator, which results in two different driving behaviors of the
car in the simulator.

The component interface can also contain generic or configuration parameters to facilitate
more flexible data exchange between models and simulators. For example, the number of left
front lights or the maximum value of the type of the car speed port could be a generic parameter
in the Car interface.

3.6.4. Reference Architectures with Configuration Parameters

A component library reference architecture (cf. Figure 3.33) does not specify the implementation
behavior of all atomic components. Thus, the reference design is reusable in different scenarios.
For this case EmbeddedMontiArc supports component-interfaces as configuration parameters. For
example, the PumpActuator (cf. gray subcomponent in Figure 3.33) might differ in various
situations due to safety restrictions in countries, height it must pump water, or weather conditions.

Figure 3.37 presents the EmbeddedMontiArc model of the reference architecuture. It defines
the PumpActuator component interface (cf. ll. 1-4) dealing as variation point. The reference
architecture component type PumpingSystem (cf. ll. 6-9) has one configuration parameter
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Figure 3.33.: PumpingSystem reference architecture (copied from [Rin14]).

// library component

component Integrator<T as Numeric> {

ports in T value,

B reset,

(0s : oo s) time,

out T sumValue;

// implementation skipped

}
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// library component

component Differentiator<T as Numeric> {

ports in T value,

B reset,

(0s : oo s) time,

out T diffValue;

// implementation skipped

}
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Figure 3.34.: Library components from another company. These are packed and cannot be
modified.

having the PumpActuator component interface as type (cf. l. 6). The PumpingSystem
component type uses this configuration parameter to instantiate the subcomponent pumpActua-
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component interface TimeDependentCalculator<T as Numeric> {

ports in T inValue,

B reset,

(0s : oo s) time,

out T outValue;

}
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component Controller(TimeDependentCalculator calc) { … }7

EMA

// create wrapper to use library component

component IntegratorWrapper<T as Numeric>

implements TimeDependentCalculator<T> {

instance Integrator<T> integrator;

connect inValue -> integrator.value;

connect this.* -> integrator.*; // see 3.6.6

connect integrator.sumValue -> outValue;

}
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// create wrapper to use library component

component DifferentiatorWrapper<T as Numeric>

implements TimeDependentCalculator<T> {

instance Differentiator<T> differentiator;

connect inValue -> differentiator.value;

connect this.* -> differentiator.*; // see 3.6.6

connect differentiator.diffValue -> outValue;

}
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// reuse both library components

component ComplexController {

… 

instance Controller(IntegratorWrapper<(0m/s^2 : oo m/s^2)>) controller1;

instance Controller(DifferentiatorWrapper<(0m : oo m)>) controller2;

}
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Figure 3.35.: Using library components in reference architecture with wrappers and without duck
typing. Duck typing can be disabled in EmbeddedMontiArc via context condition
flag.

tor in line 8. If the variation point is deeper in the hierarchy of the reference architecture, then
the configuration parameter PA is passed to a subcomponent instantiation.

Figure 3.38 shows how to create and pass two specific component types. Both implement
the PumpActuator interface (cf. ll. 1-4), and both types are passed to the PumpingSystem
reference architecture (cf. ll.7, 12). The main component instantiation mechanism (cf. Sub-
section 3.6.7) enables reusing reference architectures as top-level element without creating any
wrapper component (as it is done in this example with the HydrolicPowerStationWes-
tEur and ElectricPowerStationHawaii components).
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component interface TimeDependentCalculator<T as Numeric> {

ports in T inValue,

B reset,

(0s : oo s) time,

out T outValue;

}

1

2
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4
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EMA

component Controller(TimeDependentCalculator calc) { … }7

EMA

// reuse both library components directly via duck typing

component ComplexController {

…

instance Controller(Integrator<(0m/s^2 : oo m/s^2)> via duck typing) 

controller1;

instance Controller(Differentiator<(0m : oo m)> via duck typing) 

controller2;

}

8
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Figure 3.36.: Using library components in reference architecutre via duck typing.

// it is very specific to the climate

component interface PumpActuator {

ports … ;

}

1

2

3

4

EMA

// general library model reference model

component PumpingSystem (PumpActuator PA) {

… // large model with different hierarchy levels

instance PA pumpActuator;

}

5

6

7

8

9

EMA

Figure 3.37.: Reference Architecture (incomplete model) as shown in Figure 3.33.

A general question is whether duck-typing [CRJ12] for component types should be supported
or not. From a modeling-in-the-large point of view, duck-typing is really of advantage, as a project
can define a component-interface and all library models (created before your project interface)
can be imported and used (if they are compatible). In duck typing library components (which did
not explicitly implement the new project’s interface) automatically implement the interface, if the
library component type is compatible to the interface. Without duck typing, the new project must
wrap all library component types just to add the component-interface implementation.

Some persons [Beu05] see duck typing as a risk and it should not be used at all. Embedded-
MontiArc addresses both parties by supporting duck typing in general, and by providing the
no-duck-typing flag. Using this flag, EmbeddedMontiArc activates a context condition to
forbid duck typing for all components in this project.
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component WestEuropePump implements PumpActuator

{ … } // no hurricans, but snow

1

2

EMA

component HawaiiPump implements PumpActuator

{ … } // hurricans, very hot, but no snow

3

4

EMA

component HydrolicPowerStationWestEur {

// reuse reference architecture via general library model

instance PumpingSystem(WestEuropePump) ps;

…

}

5

6

7

8

9

EMA

component ElectricPowerStationHawaii {

// reuse reference architecture via general library model

instance PumpingSystem(HawaiiPump) ps;

…

}

10

11

12

13

14

EMA

Figure 3.38.: Usage (incomplete model) of Reference Architecture (cf. Figure 3.37).

Figure 3.34 shows the two library components provided by a model repository. These com-
ponents are not modifiable. Figure 3.35 shows how to reuse these two library components in
the controller reference architecture by wrapping both of them. The wrapper variant enables
renaming ports. Figure 3.36 shows the equivalent code of Figure 3.35 using the convenient duck
typing concept. EmbeddedMontiArc forces the modeler to add the via duck typing (cf. ll.
11, 13) keywords to enable passing of components not implementing the interface. This way
the duck typing is directly visible (e.g., to search later for such locations), and it avoids passing
wrong component types via typos.

3.6.5. Product-Line Modeling with Configuration Parameters and Default
Values

Delta Modeling supports powerful product-line modeling; cf. Section 3.7. In contrast to delta
modeling stands the 150% modeling concept. Simulink uses Enabled Subsystems [The18k,
p. 10-11ff.] for 150% modeling. Enabled Subsystems are especially useful to model
optional features in an easy way.

This subsection shows how to create a product-line with optional features in EmbeddedMon-
tiArc. Figure 3.39 shows a shortened product-line of an advanced driver assistance system.
Figure 3.40 shows the 150% Simulink model for this product-line. Features are enabled (value
19 or true) or disabled (value 0 or false) via feature constants (cf. FeatureTempomat,
FeatureRepeater, and FeatureEmergencyBrake in Figure 3.39). These constants can

9Simulink interprets any value different than 0 as true [The18d].
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AdvancedDriver

AssistanceSystem

Brake

Assistent

Emergeny

Brake
Tempomat

Repeater

Figure 3.39.: Shortened Product-Line of advanced driver assistance system version 4
[BMR+17a].

AdvancedDriverAssistanceSystem

Tempomat

FeatureTempomat
Constant

CC_SetValue

CC_ChangeSetValue

FeatureRepeater
Constant

BrakeAssistant

EmergencyBrake

FeatureEmergencyBrake
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VelocityContr
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...
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...
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...

...
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...

...

...

...

...

...

�

Enabled Subsystem

SL

% enable tempomat

FeatureTempomat = 1;

% disable repeater

FeatureRepeater = 0;

% enable emergency brake

FeatureEmergenyBrake = 1;

variant1.m

% enable tempomat

FeatureTempomat = 1;

% enable repeater

FeatureRepeater = 1;

% disable emergency brake

FeatureEmergenyBrake = 0;

variant2.m

% disable tempomat

FeatureTempomat = 0;

% disable emergency brake

FeatureEmergenyBrake = 0;

variant3.m

Figure 3.40.: Excerpt of Simulink model being compatible to product-line of Figure 3.39 (cf.
[BMR+17b]).

be mapped to external tools (e.g., dSpace VariantManager). These tools produce MATLAB scripts
(cf. right side of Figure 3.40) to enable or disable features. An Enabled Subsystem is a
special Simulink subsystem which subcomponents are only executed when the current value of the
input port control signal is true. Therefore, output ports of an Enabled Subsystem
must declare what output value to produce when the enabled subsystem is disabled (cf. [The18k,
p. 10-51f.]), because the output value cannot be calculated by its decomposed subcomponents.

Figure 3.41 shows the equivalent EmbeddedMontiArc model. For each optional feature a
component interface and two components implementing this feature are written by the developer.
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component interface TempomatFeature { 

ports in (0km/h:0.1km/h:250km/h) vehicleSpeed, …,

out (-10km/h:0.1km/h:10km/h) vehicleSpeedDelta, …,

}

1

2
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EMA

component TempomatFeatureDisabled implements TempomatFeature {

// terminate all input signals

connect vehicleSpeed -> #;

…

// write down constant values for all output ports

connect 0km/h -> vehicleSpeedDelta;

}

5

6

7

8

9

10

11

EMA

component TempomatFeatureEnabled

(RepeaterFeature featureRepeater = RepeaterFeatureEnabled) 

implements TempomatFeature { … }

12

13

14

EMA

component interface RepeaterFeature { … }15

EMA

component RepeaterFeatureDisabled implements RepeaterFeature { … }16

EMA

component RepeaterFeatureEnabled implements RepeaterFeature { … }17

EMA

component interface EmergencyBrakeFeature { … }18

EMA

component EmergencyBrakeFeatureDisabled implements EmergencyBrakeFeature

{ … }

19

20

EMA

component EmergencyBrakeFeatureEnabled implements EmergencyBrakeFeature

{ … }

21

22

EMA

component AdvancedDriverAssistanceSystem(

TempomatFeature featureTempomat = Tempomat,

EmergenyBrakeFeature featureEmergencyBrake = EmergencyBrake) {

ports ...;

}

23

24

25

26

27
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Figure 3.41.: EmbeddedMontiArc model for this product-line shown in Figure 3.39.
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// variant 1

Main-Component-Instantiation: AdvancedDriverAssistanceSystem(

TempomatFeatureEnabled(RepeaterFeatureDisabled));

1

2

3

Main.txt

// variant 2

Main-Component-Instantiation: AdvancedDriverAssistanceSystem( 

featureEmergencyBrake=EmergenyBrakeFeatureDisabled);

4

5

6

Main.txt

// variant 3

Main-Component-Instantiation: AdvancedDriverAssistanceSystem(

TempomatFeatureDisabled, EmergenyBrakeFeatureDisabled);

7

8

9

Main.txt

Figure 3.42.: Three variants showing how to instantiate the EmbeddedMontiArc model in Fig-
ure 3.41 with different features.

One component disables this feature; this component just terminates all input signals (cf. l.
7) and produces constant output values (cf. l. 10). The other component enables this feature
containing the actual logic. Since the Tempomat feature has the subfeature Repeater, the
TempomatFeatureEnabled component type has one configuration parameter of the type
RepeaterFeature (cf. l. 13). The AdvancedDriverAssistanceSystem component
type has two configuration parameters (cf. l. 23), because the advanced driver assistance system
has two direct subfeatures.

Figure 3.42 illustrates how to instantiate different variants of the product-line by enabling or
disabling features via configuration parameters. Lines 2 and 3 show how to initialize the first
version with the disabled Repeater. The default value of the second configuration parameter
may pass the main component instantiation (is explained in detail in Subsection 3.6.7) as only
configuration value. Lines 5 and 6 create the variant with enabled Tempomat and enabled
Repeater, but disabled EmergencyBrake. Lines 8 and 9 shows the code for the variant
disabling all optional features. A main component instantiation without passing any configuration
parameter enables all features. The default values in this scenario are chosen in a way that most
users want to activate these features.

In EmbeddedMontiArc all variation points of a product-line are visible in the component signa-
ture via the configuration parameters. In contrast, Simulink subsystems do not show variation
points at all; the signature of the root subsystem AdvancedDriverAssistanceSystem
contains only the signal input and output ports, but no feature constant value. Therefore, Embed-
dedMontiArc with its strong type concept enables a “cleaner” modeling for optional features of a
product-line.
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C&C
component SensorProcessing {

ports in C signal[10],

GPS posCar,

out (0m : 0.5m : 25m) 

distance;

instance Filter filter[10];

instance SensorFusion<10> sf;

connect signal[:] -> 

filter[:].signal;

connect posCar -> filter[:].posCar;

connect filter[:].distance -> 

sf.inValues[:];

connect sf.outValue -> distance;

}
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SensorProcessing

signal[1]

...
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filter[1]
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filter[10]
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Figure 3.43.: Example showing component communications via connectors.

component InvalidConnection {

ports in (0m : 1m : 10m) source,

out (3m : 1m : 5m) target;

connect source -> target; 

1

2
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4

EMA

domain(source) = domain(0m : 1m : 10m) = {0m, 1m, 2m, 3m, ..., 9m, 10m}

⊈ domain(target)=domain(3m : 1m : 5m) = {3m, 4m, 5m}

Figure 3.44.: Invalid connection, because domain of source port is not a subset of the domain of
the target port.
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component SteeringAct<N+ n> {

ports in (-45°:45°) steeringDeg,

out (-5°/s:5°/s) steeringAc[n];

}

1
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component SteeringActUsage<(2:4) m, (1:3) k> {

ports in …,

out (-5°/s:5°/s) steering[k*m];

instance SteeringAct<m> sa[k];

connect sa[:].steeringAc[:] -> steering[:];

// is the same as:

// forall i = 1..m, j = 1..k:

//   connect sa[i].steeringAc[j] -> steering[i*(m-1)+j];

…

}
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Figure 3.45.: Example for two-dimensional matching via connector patterns.

3.6.6. Connections

Communication between component instances, also including communication between parent
components to its subcomponents, is established via unidirectional asynchronous connectors.
Figure 3.43 shows an example how to connect ports in EmbeddedMontiArc. The left part of the
arrow symbol (->) is the source port of a connector, and the right part is the target port. The
data exchange takes place from the source port to the target port. Since EmbeddedMontiArc is a
logical modeling language, connectors do not loose data. If data loss in a connection is wanted,
then a component actively loosing or modifying (noise) information must be added between the
dataflow of two components.

Lines 8 and 9 in Figure 3.43 (signal[:] -> filter[:].signal) are a convenient
abbreviation for forall i in 1..10: connect signal[i] -> filter[i]
.signal. Lines 8 and 9 connect the first signal port of SensorProcessing to the signal
port of the first filter subcomponent and so on. The next line posCar->filter[:].posCar
propagates the values of the posCar port to the corresponding port of all filter instances. An
alternative syntax for line 10 is forall i in 1..10: connect posCar -> fil-
ter[i].posCar. Line 13 (sf.outValue -> distance) connects two output ports with
each other; this syntax is identical to the one of the base grammar MontiArc.

The domain of the sender port must be a subset of the domain of the target port; Figure 3.44
shows an invalid example. In EmbeddedMontiArc a target port must not have different source
ports. However, one source port may connect multiple target ports. In EmbeddedMontiArc
constants can be directly connected to ports, e.g., connect 7m/sˆ2 -> acceleration.
The route symbol in a target port (e.g., connect unusedPort -> #) terminates the data
flow to suppress unused output port warnings.
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Line 9 in Figure 3.45 shows an example of a two-dimensional matching via the connector
pattern: The first dimension is a component instantiation array, and the second dimensions are
port arrays for each component instantiation.

EmbeddedMontiArc resizes the matrix Asource automatically to the vector vsource. Now,
EmbeddedMontiArc can connect elementwise this source port vector vsource with its target port
vector vtarget.

Asource =

 sa[1].steeringAc[1] · · · sa[1].steeringAc[k]
...

. . .
...

sa[m].steeringAc[1] · · · sa[m].steeringAc[k]

 (3.1)

vsource =



sa[1].steeringAc[1]
sa[1].steeringAc[2]

· · ·
sa[1].steeringAc[k]
sa[2].steeringAc[1]

· · ·
sa[2].steeringAc[k]

· · ·
sa[m].steeringAc[k]


(3.2)

vtarget =

 steering[1]
· · ·

steering[k· m]

 (3.3)

The lines connect portX[:] -> sub[:].portY[:] and connect subA[:].
portX[:] -> subB[:].portY[:] enable resizing of port arrays. This automatic resiz-
ing facilitates very efficient ways to connect arrays of subcomponent instantiations with arrays of
ports.

EmbeddedMontiArc uses the MATLAB array notations to create connection patterns (cf. colon
operator [The18a, The18e] and reshape [The18f] documentation). Similar to MATLAB, indices
in EmbeddedMontiArc start with 1, and not with 0 as in Java or C++. AADL also has connection
patterns for one and two dimensions (cf. Figure 3.46). AADL uses words instead of indices to
describes these patterns. It is a matter of taste, whether number-based or word-based indexing
for connections is more beautiful. The number-based indexing of EmbeddedMontiArc is very
powerful, and enables creating customized connection patterns in a few lines of code.

Name-based Connections

In practical applications it is often necessary to forward many ports from a component to one
of its subcomponents or vice versa. Therefore, MontiArc (cf. [Hab16, Section 3.3.2]) and also
EmbeddedMontiArc introduces the autoconnect keyword. Using this keyword in a component
definition, all subcomponent instantiations’ ports having the same port name are automatically
connected.

However, in very rare cases (mostly due to wrong port namings) the autoconnect option is
not available, because the connection is not unique. Figure 3.47 presents such a rare case where
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Figure 3.46.: Connection patterns in AADL (copied from [Fei10, slides 90-91]).
In the right picture (identity, identity) connects ∀i, j ∈ {0, 1, 2} : S[i, j]− > D[i, j]; (identity,

next) connects ∀i ∈ {0, 1, 2}, j ∈ {0, 1} : S[i, j]− > D[i, j + 1]; (next, next) connects ∀i, j ∈ {0, 1} :
S[i, j]− > D[i+ 1, j + 1].
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Figure 3.47.: MontiArc’s autoconnect option is not available (prohibited by context condition)
as it could not be resolved uniquely. These cases are very rare.

component Inner {

ports in Z a, b, c,

out Z x, y;

}

1
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4
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component Outer {

ports in Z a, b, c, d, e,

out Z x, y, z;

instance Inner inner;

// connects: a -> inner.a; b -> inner.b; c -> inner.c;

connect this.* -> inner.*; 

// connects: inner.x -> x; inner.y -> y;

connect inner.* -> this.*;}
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Figure 3.48.: Forwarding data using the wildcard operator in connectors.
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Merge

RedundantVelocityController

currentVelocity

wishedVelocity

obstacleSpeed

obstacleDistance

newGear[1]

currentGear

acceleration[1]

brakeForce[1]

VelocityController

controller[1]

currentVelocity

wishedVelocity

obstacleSpeed

obstacleDistance

currentGear

newGear

acceleration

brakeForce

VelocityController

controller[2]

currentVelocity

wishedVelocity

obstacleSpeed

obstacleDistance

currentGear

newGear[2]

acceleration[2]

brakeForce[2]

newGear

acceleration

brakeForce

newGearMerged

accelerationMerged

brakeForceMerged

newGearMerged

accelerationMerged

brakeForceMerged

Figure 3.49.: Graphical C&C model of a redundant velocity controller.

autoconnect does not work. To still facilitate an efficient way of forwarding data for these
use cases, EmbeddedMontiArc additionally supports the .* syntactic sugar (based on Java’s *
imports) to select all input or output ports.

Figure 3.48 shows an example. Of course, it is also possible to connect two subcomponents with
the wildcard operator: connect inner1.* -> inner2.*. If the inner1 subcomponent
instantiation has the output ports p1, p2, and p3, as well as the inner2 subcomponent in-
stantiation has only the output ports p1, and p2; then connect inner1.* -> inner2.*
connects only inner1.p1 -> inner2.p1, and inner1.p2 -> inner2.p2. However,
if connect inner1.* -> inner2.* would result in no connections as port names do not
match, then EmbeddedMontiArc throws an error.

Index- and Name-based Connections

Previously, this subsection explained how index-based connections and name-based connections
work. In the following more complex connection patterns using both, index- and name-based,
features in one connection statement are explained. A realistic example unveils the power of
EmbeddedMontiArc’s connection patterns.

Figure 3.49 shows a redundant velocity controller containing of two controller instances to
managed the velocity of a car. The two instances are needed to safety reasons to gain the wanted
ASIL level. The input ports are the current gear of the car, the current vehicle velocity, the wished
velocity (e.g., set by driver), as well as obstacle speed and distance of the car in front. The output
ports are the new gear, acceleration, and brake force to get closer to the wished speed but avoiding
a crash.

Figure 3.50 shows the combined index- and name-based connection pattern. The powerful pat-
tern needs only 3 lines of code (cf. Figure 3.50) to create 19 connection instances (cf. Figure 3.49).
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component RedundantVelocityController(N+ n=2) {

ports ... ;

instance VelocityController controller[n];

instance Merge<n> merge;

connect this.* -> controller[:].*;

connect controller[:].* -> merge.*[:];

connect merge.* -> this.*;

}
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Figure 3.50.: Graphical C&C model of a redundant velocity controller.

The easiest way to understand this pattern is to unfold the connection statements step-wise (e.g.,
first all wildcards, and then all colons; or vice versa - the order does not matter). The connec-
tion this.* -> controller[:].* is equivalent to this.currentGear -> con-
troller[:].currentGear, ..., this.obstacleDistance -> controller[:]
.obstacleDistance. The connection this.currentGear -> controller[:]
.currentGear is equivalent to this.currentGear -> controller[1].current-
Gear and this.currentGear -> controller[2].currentGear, because the left
side is a single port and the right side is a port array and so the single port is connected to each
port of the port array (cf. also Figure 3.43).

It is even possible to further shorten the listing in Figure 3.50. The double-lined (cf. l. 5) and
the dashed (cf. l. 7) connections are subsumed by the autoconnect keyword; the code marked
with with an triangle (cf. l. 6) is still necessary. This shows that the autoconnect and the
name and index-based connection patterns complement each other very well.

In Figure 3.49 the RedundantVelocityController component type uses different
output port names than the VelocityController component type. This is only for il-
lustration purposes describing the name-based connection pattern. The real model uses the
same output port names for both component types VelocityController and Redun-
dantVelocityController, so that both component types can implement the same com-
ponent interface. However, the name-based connection pattern does not work in this case
anymore as the port names such as in merge.newGearMerged and newGear differ. In
this case type-based connection patterns (skipped in this thesis) are available. In this exam-
ple, connect merge.** -> this.** would connect merge.newGearMerged ->
newGear, merge.accelerationMerged -> acceleration, and merge.brake-
ForceMerged -> brakeForce based on the output port types. However, type-based pat-
terns are only available when every output or input port has a unique port type. The port type of
accelerationMerged and acceleration is m/sˆ2 and it differs from the port types of
the other output ports having N and the enumeration type Gear.

All of these connection patterns enable to create more general component types, as shown
in Figure 3.50, because the redundancy of the VelocityController component can be
easily increased by adapting the configuration parameter n (cf. l. 1) when instantiating the
RedundantVelocityController.
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// mandatory part

Model-Paths: [main/models/, lib/cars/, main/tags, test/streams];

Main-Component-Instantiation: controller.PID<°> 

(-45°, 45°, 0.2°*s, 2.3, 1.3, 0.2) steeringPid;

// mandatory, if needed

no-duck-typing: false;

1 EUR = 1,22838 USD;

1 GBP = 1,14402 EUR;

// optional, but recommended part

Authors: Michael von Wenckstern, Evgeny Kusmenko;

Date: 2017-12-15;

Version: 1.3;

EMA-Version: 2.5;

EMA-Compiler-Version: 4.1;

Simulator: 3dCarSimulator;

Simulator-Version: 2.3;

// optional part for trust

Public-Certificate: vonwenckstern.p12

File1:vonwenckstern.p12 

File1-Digest: oA73o+KVb9kpTo8N4BtgEL4tbvR9eIFWC+lj0t+l/wYvRinu19m5ez09Ex5TimZt4M+NUlgpAfrw/k2zd1d6Ug==

File2: main/models/packageA/Inner.cmp

File2-Digest: fDcdHN6KYGuS32YO/GjCEApR06qQwVqlxBduCUYoZ5lz7ytDiDoUEwoHSycpmWeQ1/v2fHQZe5GFcN2RNHSXPQ==

File3: main/models/packageA/Outer.cmp

File3-Digest: Qxl+1fM+GvAzNNrYCswSZfdLc9yUV+ea4HUgS0Go76lr0Xatbf6M7ldrI7ydxGcFLraR8oKzZxzOJDv8H7wI9A==

…
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Figure 3.51.: Example code snippet of Main.txt file.

3.6.7. Main Component Instantiation and Packaging

A complete model includes multiple component types and their interactions via connectors.
Similar to Java [Ora17a], there is a need to specify the main (root) component instantiation of the
modeled component types in a Main.txt file. Figure 3.51 presents such an example.

Similar to Java’s JAR concept, all the models of the EmbeddedMontiArc family (cf. Section 3.4)
plus the Main.txt file (which must be in the root folder) are zipped. This ZIP file presents one
complete EmbeddedMontiArc component and connector model. Different tools can process this
self-contained ZIP file directly, e.g., to generate a graphical component and connector instance
structure, or to generate executable C++ code.

The C++ code generator [KRSvW18a] converts all units automatically. To convert currency
units an exchange rate must be specified (cf. ll. 7-8).

The Main.txt file contains also an EMA-Version property (cf. l. 13) to which the
model is compatible. This is needed for later compatibility, e.g., when updating the syntax
or semantics. EMA is a short-form for EmbeddedMontiArc. This EMA-Version represents
complete EmbeddedMontiArc modeling family. This means, if the syntax of any language of
this family changes (e.g., MontiMath) or a new language is added, then this version is increased.
Optionally, the Main.txt file contains a name of a registered (e.g., in an IDE) simulator and its
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current version. This enables tools to easily start the simulation with the given model. Besides
the simulator and an EmbeddedMontiArc compiler, the Main.txt file can also contain other
key (plugin-names) - value (plugin version) pairs. Based on the specified key-value pairs the IDE
adds extra buttons in the toolbox, if these plugins with their versions are registered in the used
IDE. Example plugins are the SVG generator, stream unit tester, extra-functional property verifier
(cf. Chapter 6), and the C&C view design verifier (cf. Chapter 7).

The Main.txt file must contain the name of the root component, the Main-Component-
Instantiation (cf. l. 3). The Main-Component-Instantiation has the same syntax
as component instantiations (also with generic and configuration parameter bindings). The type
of the instantiation must be a full-qualified type. The main component instantiation must not have
a dimension.

The Main.txt file also contains model paths that are folders where the symbol table looks
up when loading component types or other information. All the tag models must belong to one
registered model path, otherwise these are ignored and the C&C model is not enriched with this
extra information.

The Main.txt file enables IDEs to run different EmbeddedMontiArc models in different
simulators (e.g., one model in a robotic arm simulator, and another one in a simulator for
autonomous vehicles). To deliver EmbeddedMontiArc models to customers, generated C++
artifacts, C++ compiler, used mathematics libraries, as well as AI and optimization frameworks
plus the needed simulator are packed into an extra ZIP file. The EMA2WASM compiler translates
the EmbeddedMontiArc models to web assembly. This way the byte code (similar to JAR byte
code) together with a web simulator (in JavaScript or web assembly) can be uploaded to a
webserver. The webserver enables users to simulate scenarios in a web browser without installing
any plugins or downloading the compiler and simulator frameworks. Examples of compiled
models uploaded to the institute web server are:
• http://www.se-rwth.de/materials/embeddedmontiarc/ shows the spec-

tral clusterer for image processing, PacMan controller to eat food and avoid ghosts, and a
SuperMario controller.

• http://www.se-rwth.de/materials/ema_compiler/ presents an online car
simulator with noise regulator.

• http://www.se-rwth.de/materials/ema_tutorial/ contains two car tutori-
als: elk test and parking.

Similar to Oracle’s JAR signing [Ora17c], a personal private key of a public client certificate
can sign the ZIP file. It is recommended to use public client certificates authored by a trusted
source, e.g., from the RWTH IT center [RWT18b]. The signed ZIP file includes the public
key of the certificate [Ora17d]. If a model is signed, then a Sha512.txt file (skipped in this
thesis) is additionally created. This file contains the base64 encoded Sha512 digest of every file
except of its own Sha512.txt file (also the public certificate and the Main.txt file). The
Sha512.txt file has the same task as the signature file in JARs. EmbeddedMontiArc uses
SHA512 (SHA2) hashes instead of SHA1 hashes in signed JARs.

The signing mechanism with the certificate and the digests of all files creates trustful Embed-
dedMontiArc models for library components. The hash values enable to verify that no content has
been modified. More information about signature files and how to verify certificates are available
from the Manifest Format page of the JDK documentation [Ora17e, Ora17b].

http://www.se-rwth.de/materials/embeddedmontiarc/
http://www.se-rwth.de/materials/ema_compiler/
http://www.se-rwth.de/materials/ema_tutorial/
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component interface VelocityController { … }1

EMA

component RedundantVelocityController(VelocityController VC1,     

VelocityController VC2) {

ports …;

instance [VC1, VC2] controller[2];

instance Merge<2> merge;

connect this.* -> controller[:].*;

connect controller[:].* -> merge.*[:];

connect merge.* -> this.*;

}
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Figure 3.52.: EmbeddedMontiArc code with component type array (red text).

component RedundantVelocityController(VelocityController VC1, 

VelocityController VC2) {

ports …;

instance [VC1, VC2] controller[6];

instance Merge<6> merge;

// connectors omitted, is the same code as in Figure 3.52

}
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Figure 3.53.: EmbeddedMontiArc code with component type array being instantiated multiple
times(red text).

3.6.8. Arrays of Component Types, Generic and Configuration
Parameters

This subsection shortly explains how arrays of component types, generics, and configuration
parameters help to further increase modularity of library components.

Figure 3.49 on page 86 and Figure 3.50 on page 87 show the redundant velocity controller.
To become more resistant against logical design errors, the two controllers should not have the
same component type. Therefore, the VelocityController component type is converted
to a component interface which can be implemented by different component logics. To reuse
the powerful connection patterns (cf. Subsection 3.6.6), an array of component types (cf. under-
lined text [VC1, VC2] in Figure 3.52) of the component interface VelocityController
instantiates the two controller instances. This means controller[1] has the component type
VC1, and controller[2] has the component type VC2.

To achieve an even higher ASIL level, the two logical different velocity controllers should be
instantiated three times each; so that they are more resistant against hardware failures. Figure 3.53
presents the code snippet, where only lines 4 and 5 differ from Figure 3.52. The statement
instance [VC1, VC2] controller[6] creates three component instances of type VC1
and VC2. The first three controller instances (index 1 to 3) have type VC1, whereas the last three
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// each type of the array VK is instantiated n times

component RedundantVelocityController <N+ k>

(VelocityController VC[k], N+ n=1) {

ports …;

instance VC[:] controller[n*k];

instance Merge<n*k> merge;

// connectors omitted, is the same code as in Figure 3.52

}
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Figure 3.54.: EmbeddedMontiArc code with an an array of configuration parameters (red text).

// k=1 is derived from array size, n=1 the default parameter is used

RedundantVelocityController([VelocityControllerA]); 

// k=2 is derived from array size

RedundantVelocityController([VelocityControllerA, VelocityControllerB], 4); 

// k=2 is explicitely stated to ensure that the array size of VC is really 2

RedundantVelocityController<2> ( [ VelocityControllerA, 

VelocityControllerB ],4); 

// it is wrong as k is set to 2 and the array size of VC is 1, 

// this results in a compile time error

// RedundantVelocityController<2> ( [VelocityControllerA] ); 
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Figure 3.55.: Examples how to instantiate the generic RedundantVelocityController
component.

controller instances (index 4 to 6) are of type VC2. The array instance number (in our case 6)
must be a multiple of the array size (in our case 2) of the component type array.

The downside of Figure 3.53 is that it is not generic anymore, because the number 6 is
hard encoded and only two different types of velocity controllers can be used. Figure 3.54
addresses this issue by adding the configuration parameter VC (cf. VC[k] in l. 2) to the
component type signature of the RedundantVelocityController. The parameter VC
accepts a k-dimensional array of component types, where all elements implement the Veloc-
ityController interface. The generic parameter k can be skipped when instantiating the
RedundantVelocityController, because k can be inferred from the array dimension
of the parameter VK. The configuration parameter n states how often each component type of
the array VK is instantiated. If the parameter is not bound during instantiation of the Redun-
dantVelocityController component, its default value 1 is used. Figure 3.55 shows how
to instantiate the RedundantVelocityController component.

Besides configuration parameters, generic parameters also support arrays of component types.
An example is shown in Figure 3.57, which is equivalent to Figure 3.56. But Figure 3.57 can be
easily generalized, by replacing the two in in[2] with another generic parameter. The zero in
(0 : limit[:]) is refilled to a vector so that it fits the array size of limit. This is the same
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component X<N+ limit1, limit2> {

ports in (0 : limit1) val1,

(0 : limit2) val2,

out Z res;

}
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instance X<10, 7> x1;6

EMA

Figure 3.56.: Simple component type X with two generic parameters (cf. Subsection 3.5.4).

component X<N+ limit[2]> {

ports in (0 : limit[:]) vals[2],

out Z res;

}
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EMA

instance X<[10, 7]> x1;5

EMA

Figure 3.57.: Component Type in generic parameter definition.

methodology as resizing single ports in sources to match the array size of port arrays in targets of
connectors (cf. Subsection 3.6.6).

Let A be an one-dimensional array, then A[:] is equivalent to A[1:end] and both return the
complete content of the array A by selecting a sub-array containing the first up to the last element
of the array A. Therefore, instead of the long-form A[:] the equivalent short-form A could be
used in EmbeddedMontiArc. This results in the following consequences:
• connect port -> portArray instead of connect port -> portArray[:]
• instance TypeArray x[3] instead of instance TypeArray[:] x[3]
• port in (0 : limitArray) vals[2] instead of port in (0 : limi-
tArray[:]) vals[2]

If the names are all post-fixed with Array the reader knows that a port array is used instead
of a single port. On the other hand, if intuitive names (e.g., all example code snippets in this
section) are used, then the reader does not know whether it is an array or single element of ports,
component types, or parameters. Therefore, EmbeddedMontiArc requires the array access [:]
operator to use all array elements in connect, instance, or port statements.

3.7. Concepts of New Language Features

This section raises ideas and new features the EmbeddedMontiArc language may support in
future. These features are not supported due to missing implementation man-power or because
the concepts are not 100% clear, yet. The author still wants to summarize the new ideas shortly,
since these concepts or variations of them may help in future.
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Figure 3.58.: PumpStation C&C model (copied from [Rin14]).

Delta Modeling and Enabled Component Patterns for Product-Lines. The delta
concepts of ∆-MontiArc with add, remove, modify, and replace [MNR+13] operations
can be mapped directly to EmbeddedMontiArc for product-line modeling.

Delta Modeling for Bug Fixing. Alt [Alt16] describes in his blog why programming lan-
guage should not be closed by default as it is the case with Kotlin. Closed classes cannot be
extended anymore to misuse these classes. But on the other side, this extension restriction makes
it hard to fix bugs or enhance libraries at needed points where the library designer did not think
of it at the beginning.

EmbeddedMontiArc does not support the extends mechanism of MontiArc anymore, so all
component types are closed by default. In contrast to Java, where classes only contain type infor-
mation and no instances; EmbeddedMontiArc and MontiArc component type is actually a mixture
of instances (it instantiates a concrete number of subcomponents) and classes (components can be
multiple time instantiated). This type mixture is the reason why a simple extension mechanism,
as it is the case in MontiArc, is not strong enough for bug-fixing. The rest of this subsection gives
an example why the delta language approach is a convenient way for bug-fixing and breaking the
closed nature of EmbeddedMontiArc’s component types.

Figure 3.58 shows the pump station model from Jan Ringert’s [Rin14] model library, which we
import and reuse in our own EmbeddedMontiArc project. The library model includes 5 non-atomic
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// old: buggy

component HydrolicPowerStation {

instance PumpStation ps;

}
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// new: bug fixed

component PumpStationFixed modifies PumpStation{

replace component type EMSOperation

with EMSOperationFixed

for instance pumpingSystem.controller.emsOperation;

}
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// use fixed version

component HydrolicPowerStation {

instance PumpStationFixed ps;

}

11
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Figure 3.59.: Example code snippet to replace the defect component with their bug fixed version
using the Delta approach.

components and of 11 atomic components. Imagine, the atomic EMSOperation component
contains a bug, hence this component must be exchanged with a corrected version. Since the
bug is inside a model library, we cannot fix the bug directly by editing the EMSOperation file.
Therefore, the only way to fix the complete pump station model is to copy the Controller text
file to ControllerFixed, and replace EMSOperation component instantiation with the
correct one. Since, the buggy Controller component was used by other components, we need
to copy these too; otherwise, they do not use the new ControllerFixed component. This
results in copying PumpingSystem to PumpingSystemFixed just to use Controller-
Fixed instead of Controller, and to copy PumpSystem to PumpSystemFixed to use
PumpingSystemFixed. This is a lot of work! This task is also very errorprone: The bug fix
is only successful, if every component in the complete hierarchy between the top-level component
and the defect one is copied and modified to use the bug-fixed subcomponent. Otherwise, the
wrong, still buggy, component type is instantiated and the bug is not fixed.

For this mentioned scenario, EmbeddedMontiArc should have a concept to exchange or modify
the interior structure of large library components.

The Delta language approach as presented in DeltaMontiArc [HKR+11a] or DeltaSimulink
[HKM+13, KRR15] looks like a suitable solution. Figure 3.59 shows how to replace the EMSOp-
eration component with the corrected version. The EMSOperationFixed component type
must have a compatible interface (input and output ports) to the EMSOperation component
type to be replaced sucessfully.

The delta language approach also supports to add/delete components, ports and connections;
thus new features can be easily integrated (e.g., adding a second pump actuator instance inside
PumpingSystem for safety reasons).
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// returns the price in Eurocent 

int fare(int startPriceInCent, 

int priceInCentPerKm, 

int routeInKm, 

bool nightRide, 

bool baggagePresent) {

int basePrice = priceInCentPerKm * routeInKm;

int discount = 0;

if (routeInKm > 50) {

discount = std::round(0.1 * basePrice); // 10% discount, rounded

} else if (routeInKm > 10) {

discount = std::round(0.05 * basePrice); // 5% discount, rounded

}

int extraCharge = 0;

if (nightRide) {

extraCharge = std::round(0.2 * basePrice); // 20% extra charge, rounded

}    

if (baggagePresent) {

extraCharge += 300; // Cent; extra charge for baggage

}

return startPriceInCent +  basePrice + extraCharge - discount;

}
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Figure 3.60.: Clean Code version of fare fees calculation in C++ (translated from [SV18, Listing
1b]).

basePriceInCent > 0 AND basePriceInCent <= MaxBasePrice

AND

priceInCentPerKm > 0 AND priceInCentPerKm <= MaxKilometerPrice

1
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Logic

Figure 3.61.: Contract for parameter in fare function (cf. Figure 3.60) for better testing (trans-
lated from [SV18, p. 11 left column bottom]).

3.8. Example Use Case for EmbeddedMontiArc in Business
Domain

All sections in this chapter used EmbeddedMontiArc to model cyber-physical or embedded
systems, because this is the main domain why this modeling family has been invented. This
subsection shows how EmbeddedMontiArc can help to create clean code in a business domain.
The clean code fare fees calculation function of Andreas Spillner [SV18, Listing 1b] serves an
example.

Figure 3.60 shows the clean code of this fare function. Since C++ does not support units as first
level language concept, all variable names in the function’s signature are postfixed with their unit
(e.g., routeInKm). But this postfix does not help to assign wrong units such as routeInKm
= priceInCentPerKm as both have the type int. A generic unit framework would help, but
this would lead to complexer type definitions.
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To test only relevant intervals, Spillner et. al. suggests to create a contract for the interface
(cf. Figure 3.61) to restrict the prices based on the price policy in the specification or of the
customers opinion. The down-side of this approach is that the contract of Figure 3.61 is added
either (i) informal as comment to a test suite, or the contract is added as (ii) assertion to the code
in Figure 3.60 - resulting in runtime exceptions10. Both possible ways do not enforce the contract
when using this function at compile time: if the base price is above the limit, then (i) it may crash
as this case is not tested, or (ii) it will crash due to the assertion. Both cases result in unexpected
behavior for the taxi driver.

Even Spillner et. al. do not follow the complete clean code guidelines, as in extraCharge
+= 300; // Cent the comment is used to explain what the expression means and not why
he uses it. Clean code also postfixes variable names inside functions with units; thus, the line
must be changed to extraChargeInCent += 300. This new version of the line is also
readable without the old comment. Since this code is printed in a journal article and thus reviewed
many time, it shows how much discipline is needed to create good readable code when units are
involved and the used programming language does not support natively any unit concept. The
rest of this section presents a much more type-safe version of this code in EmbeddedMontiArc.

Figure 3.62 contains the equivalent EmbeddedMontiArc code of Figure 3.60. The code is
as easy to read as the C++ one, but it includes type safety checks of units. Additionally, the
component supports other currencies, because EmbeddedMontiArc converts them automatically
based on the exchange rate given in the Main.txt file (cf. Subsection 3.6.7). Thus, the user of
the function must not care if the function works with Euro, American Dollar, or British Pounds.

Figure 3.63 shows how to instantiate the Fare component. This listing also shows that in
contrast to the C++ version in Figure 3.60 and Figure 3.61, the EmbeddedMontiArc version
supports different design contracts as these are bound via generics and not defined globally.

This subsection elucidated that EmbeddedMontiArc may also be a perfect choice for finance
calculations. The strong unit concept, also supporting currencies, plus the universal generic
concept enables to define contracts in what area the component operates (calculation is defined).

3.9. EmbeddedMontiArcStudio: Tooling for Users

The previous sections of this chapter presented the EmbeddedMontiArc family and its main
language. The tooling around EmbeddedMontiArc breathes life into the theoretical concept. The
tooling of these languages is the prerequisite to create many EmbeddedMontiArc artifacts. Only
the nice user experience features for the EmbeddedMontiArc language family motivates students
and professionals to create larger models of EmbeddedMontiArc. The 3D visualization presenting
the simulation results are good for visual feedback and acceptance testing at the end to see
whether the controller behaves in a correct way. The 3D visualization unveils “ugly” movements
of cars or figures (e.g., PacMan or SuperMario), and then the components are refined by adding
more intelligence resulting in smoother motions and resulting in larger EmbeddedMontiArc
models. Only the creation of medium up to medium-large models enables the possibility to
validate the language features presented above. Additionally, reuse of components as well as
10The author did not explicitly mention where he adds the contract. The contract should only help for equivalence

testing.
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// generic design contract using constants, etc. 

// are repliced by first level design contracts in the 

// interface enabling static type checking

component Fare<

(1 ct : oo ct) MaxBasePrice, 

(1 ct/km: oo ct/km) MaxKilometerPrice, 

(1 km : oo km) MaxRoute,

(0 ct : oo ct) SmallestCoin = 1 ct, // in Germany it is 1ct, 

// in Netherland is rounded up to 5ct

(1 ct : oo ct) MaxFarePrice = 

100 EUR + 4 * (MaxBasePrice + MaxKilometerPrice * MaxRoute)

> {

ports //skip here units in names as types contain units 

in (0 ct : SmallestCoin : MaxBasePrice) startPrice, 

(0 ct/km : MaxKilometerPrice) priceInCentPerKm,

(1 m: 1 cm : MaxStrecke) routeLength,

Boolean nightRide,

Boolean baggagePresent,

out (0 ct : SmallestCoin : MaxFarePrice) farePrice;
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implementation Math {

// data type const, means that this value is fixed and never changes, 

// thus the range of data type can be automatically inferred based

// on the expression on the right hand side of the assignment

const basePrice = round(routeLength * priceInCentPerKm, SmallestCoin); 

(0 ct : 1 ct : MaxFahrPreis) discount = 0 EUR;

if routeLength > 50 km

// rounds up or down so that the result is a multiple of SmallestCoin

rabatt = round(basePrice * 10% , SmallestCoin); 

elseif routeLength > 10 km

rabatt = round(basispreis * 5%, SmallestCoin); 

end

(0 ct : 1 ct : MaxFahrPreis) extraCharge = 0 EUR;

if nightRide

extraCharge = round(basePrice * 20%, SmallestCoin);

end

if baggagePresent

extraCharge += 3 EUR;

end

farePrice = max(startPrice + basePrice + extraCharge - discount, 

MaxFarePrice);

}

}
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Figure 3.62.: EmbeddedMontiArc code of Figure 3.60. This code contains the complete contract
information via generics. This model has not been shorten to illustrate how a
published business code can be completely modeled in EmbeddedMontiArc.
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// use later

instance Fare<20 EUR, 10 EUR/km, 5'000 km> farePriceGermany;

instance Fare<25 EUR, 15 EUR/km, 15'000 km> farePriceItaly;

// NL has no 1 and 2 cent coins anymore

instance Fare<25 EUR, 15 EUR/km, 15'000 km, 5 ct> farePriceNetherlands; 

instance Fare<10 USD, 20 USD/mi, 20'000 mi, 0.01 USD> farePriceUSA;

// 1 GBX = 1 Penny

instance Fare<15 GBP, 20 GBP/mi, 10'000 mi, 1 GBX> farePriceEngland; 

// main file must contain now exchange rate between EUR and USD and GBP 

// see http://jscience.org/api/org/jscience/economics/money/Currency.html#setExchangeRate(double)

// 1 EUR = 1.17 USD

// 1 GBP = 1.13 EUR
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Figure 3.63.: Examples how the component function of Figure 3.62 can be used.

building component libraries, is only needed when a component model has more than just a
couple of components. The MontiSim simulator of EmbeddedMontiArc is completely decoupled
from the 3D visualization. Therefore, the simulator can be used for automatic black-box testing
of closed-loop controllers interacting with the environment in CI tools such as Jenkins.

Table 3.64 shows that MontiArc and MontiArcAutomaton has been evaluated on 15 examples
(two by Haber, seven by Ringert, and six by Wortmann).

Table 3.65 shows that the EmbeddedMontiArc language family has been evaluated on more than
15 examples, whereby eight of these models contain even more than 200 component instances.
Ievgen created in his master thesis ten different racing lap models; Table 3.65 shows only the
largest of these ten models. All these models are public available under the links presented in
Subsection 3.6.7.

The first four models are translated Simulink models provided by Daimler AG. ADAS is
the abbreviation for advanced driver assistance system. ADASv1 represents the first version.
ADASv4 represents the latest evolution version provided to us. The ADAS models receive as
input the logical sensor data, e.g., vehicle speed, recognized speed sign, set tempomat speed by
driver, distance and speed to obstacle (also other car, bike, or pedestrian) in front of this vehicle.
Based on these input signals, the EmbeddedMontiArc ADAS models calculate the optimal brake
force or the car acceleration.

The fifth model is an adaptive light system provided as Simulink model by Daimler AG.
The model’s input signals are user controls such as turning on headlights, hazard flashing, or
high beams. Based on these user controls the EmbeddedMontiArc ALS models calculates the
brightness of many light bulbs.

The PacMan model controls the PacMan figure. It receives as input the current position of
ghosts and of the food item as well as an integer matrix for the map having three different values
to represent a wall, a way with coins, and a way without coins. The output of this controller is the
movement position (left, right, forward, or backward) of PacMan. The most complex part of the
PacMan controller is the optimal path finding algorithm using a cone-like search; it minimizes the
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Author Model Nb. com-
ponent in-
stances

Haber TCP/IP [Hab16, Section 8.2] 40
Haber FlexRay [Hab16, Section 8.3] 25
Ringert PumpStation [Rin14, Section 3.1] 16
Ringert BumperBot [Rin14, Table 4.17] 12
Ringert NavigationUnit [Rin14, Section 8.4] 12
Ringert CoffeePreparingRobot [Rin14, Section 8.5] 11
Ringert BumperBotEmergencyStop [Rin14, Section 8.1] 10
Ringert RotationalJoint [Rin14, Section 8.4] 8
Ringert AvionicsSystem [Rin14, Section 8.4] 6
Wortmann NXT Java Coffee Delivery [Wor16, Subsection 9.1.1] 60
Wortmann Robertino SmartSoft Java Transport Services [Wor16, Subsection

9.1.3]
58

Wortmann iserveU Hospital Logistics Project [Wor16, Subsection 9.2.3] 57
Wortmann Robotino ROS Python Transport Services [Wor16, Subsection 9.1.2] 31
Wortmann Lego NXT Distributed Toast Service [Wor16, Subsection 9.2.1] ≈ 15†

Wortmann Multi-Platform BumperBot [Wor16, Subsection 9.2.2] ≈ 15†

Table 3.64.: Models to evaluate MontiArc and MontiArcAutomaton languages.
† Guessed on the figures and the project description, no number is present in the thesis [Wor16].

number of movements to eat the food, but to avoid the ghosts. Documentation of the controller is
available in an EmbeddedMontiArc case study paper [HH18].

In the racing lap model [KRSvW18b, Str18a], the controller moves a car which needs to pass
a number of tests on the lap: (a) the elk test (driving around cones), (b) overtaking a car, (c)
avoiding obstacles on the track, and (d) finish the lap by parking in a parking lot. The input values
of the controller are distances from radar sensors, and the output values are the steering angle and
the acceleration/deceleration value.

The SuperMarioBros model controls the SuperMario figure to pass one world. The figure
must jump over obstacles, collect coins, and defeat enemies. The input of this model is very
close to the one of PacMan, the output are the direction arrows and two Boolean values whether
SuperMario should jump or fire.

The simple autopilot controller moves a car from the current position to a specified point
in OpenStreetMap; it uses the MontiSim simulator [GKR+17]. The most interesting part of
this controller is to calculate trajectory points, having small distances such as 10cm based on
navigation points, having large distances containing only intersections. The navigation system
component is not modeled, it is written in Java. The input and output ports are very close to the
racing lap model.

The object detector model [KRSvW18a] using a clustering algorithm on a given image (the
input port is a matrix array representing the channels red, green, and blue), and the output port is
a Boolean image (matrix output port) where true represents the identified object.
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Author Model Nb. com-
ponent in-
stances

Daimler AG ADASv1 (cf. Chapter 8) 639
Daimler AG ADASv2 (cf. Chapter 8) 1 396
Daimler AG ADASv3 (cf. Chapter 8) 2 278
Daimler AG ADASv4 (cf. Chapter 8) 2 309
Daimler AG ALS (cf. Chapter 8) 1 086
Heithoff atomic version of PacMan 143 296∗

Heithoff normal version of PacMan [HH18] 239+

Ievgen racing lap model [Str18a] 220
Haller SuperMarioBros [HH18] 55
Moktharin simple autopilot controller 32
Schneiders object detector [KRSvW18a] 21
Ringert pump station (remodeled from [Rin14] in EmbeddedMontiArc) 16
von Wenck-
stern

turbine controller [MRRvW16] 12

Kusmenko traffic sign detection ≈ 10
Mehlan weather balloon sensor [MMR+17] 5

Table 3.65.: Models to evaluate EmbeddedMontiArc language family.
∗ Behavior of atomic components, e.g., And, Multiplication, and Smaller, is mostly one

simple expression.
+ The large difference between component instances and component instantiations results that compo-

nent instances analyzing the world, i.e., ghosts, food, and obstacles, are created via arrays of component

instantiations. The atomic version of PacMan was created after the normal version of PacMan to

test the performance of EmbeddedMontiArcStudio; only the visualization had problems as generating

four HTML and four SVG files for each component instance causes the PC to run out of hard disk

space. Loading the large model and creating all 143 296 component instances was no problem for

EmbeddedMontiArc and the MontiCore symbol table infrastructure.

The traffic sign detection model uses EmbeddedMontiArcDL. It receives an image with a speed
sign, and it produces the recognized output value such as 30 km/h. This model is a trained
CNN model.

The pump station model controls the pump valve and pump actuator. The turbine controller
controls the pitch angle to generate most electricity, but to avoid damages due to too large wind
speeds. The weather balloon sensor collects GPS, temperature, and pressure information and
decodes its values to send them via an antenna to the base station.

EmbeddedMontiArcStudio is the IDE for the EmbeddedMontiArc language family. Together
with Evgeny Kusmenko in more than 30 bachelor and master theses and in 2 labs (together over
60 lab participants) many powerful features around EmbeddedMontiArc have been developed.
The features of EmbeddedMontiArc can be used-standalone, e.g., via command-line interfaces
on servers or continuous integration environments such as Jenkins, TravisCI or GitLabRunners.
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ⒶⒶⒶⒶ IDE editor ⒷⒷⒷⒷ generated graphical layout ⒸⒸⒸⒸ LaTeX generator

ⒹⒹⒹⒹ Colored
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ⒺⒺⒺⒺ Quality Report ⒻⒻⒻⒻ MontiSim simulator ⒼⒼⒼⒼ Classifier 

simulator

ⒽⒽⒽⒽ Cluster 

simulator

ⓘⓘⓘⓘ PacMan

simulator

Figure 3.66.: Screenshots of EmbeddedMontiArcStudio 1.7.5 and the integrated tools.

EmbeddedMontiArcStudio integrates nearly all of these features in a development environment
for modelling embedded and cyber-physical systems with the EmbeddedMontiArc modeling
family (cf. Section 3.4). The premise for EmbeddedMontiArcStudio is that one button click of a
developer is enough to execute a specific user experience feature.

EmbeddedMontiArcStudio is available from http://www.se-rwth.de/materials/
embeddedmontiarc/. Version 1.7.5 contains among others the following features (cf. Fig-
ure 3.66):
• IDE with Outline, Syntax Highlighting and Parser Error Messages (cf. A©) [KRRvW18,

Ron17];
• Optimized native C++ generator and compiler supporting SIMD and GPU [KRSvW18a,

Sch17];
• Automatic generation of graphical C&C layouts for textual EmbeddedMontiArc models (cf.

B©) [Sch18] - the generated graphical layout is available in four different abstraction levels;
• Automatic test environment for component black-box testing;
• Verification of extra-functional property consistency (cf. Chapter 6);
• Verification of design C&C views against C&C models (cf. Section 7.4) and creation of

(colored) witnesses (cf. Section 7.5, D©);
• Component quality analysis inclusive report output (cf. E©);
• Many complete examples such as Autopilot model for self-driving cars (cf. F©), Image

classifier (cf. G©), Cluster model to cluster images for object detection (cf. H©), and PacMan
(cf. i©);
• 3D-Driver Simulator inclusive Physic Engine (provided by Evgeny Kusmenko) [Ilo18b,

Ryn18]; and
• Model Explorer11 with over 1 500 EmbeddedMontiArc component types to import from.

11https://embeddedmontiarc.github.io/webspace/reporting/report/
componentQuality.html

http://www.se-rwth.de/materials/embeddedmontiarc/
http://www.se-rwth.de/materials/embeddedmontiarc/
https://embeddedmontiarc.github.io/webspace/reporting/report/componentQuality.html
https://embeddedmontiarc.github.io/webspace/reporting/report/componentQuality.html




Chapter 4.

Internal Representation of
EmbeddedMontiArc

The previous chapter presented the language concepts and the concrete syntax of EmbeddedMon-
tiArc based on examples. EmbeddedMontiArc is a functional component and connector (C&C)
language to model the logical layer of embedded systems in an efficient, agile, and intuitive
way. In EmbeddedMontiArc the instantiated main component represents the static architecture
of a system. This architecture is decomposed of instantiations having different (generic) com-
ponent types. Due to the modular and reusable nature of EmbeddedMontiArc, the decomposed
component types are stored into multiple text files.

To enable an efficient navigation through the data structure of EmbeddedMontiArc’s compo-
nent libraries and/or subcomponent instantiations of the main component, the first part of this
chapter explains the abstract syntax (also named meta model in some papers) provided by the
EmbeddedMontiArc language. As this thesis describes the abstract syntax of EmbeddedMontiArc
via class diagrams to easier define OCL constraints on, the first section explains how MontiCore
derives these class diagrams based on given grammar files.

The next section in the first part presents these class diagrams; and this section also contains
important rules to express whether a C&C model is valid.

The second part of this chapter introduces the C&C instance structure. Models of the C&C
instance structure language can be derived from valid C&C models of the EmbeddedMontiArc
language by binding all generic, configuration parameters and component interfaces as well as by
creating all component instances starting from the main component instantiation. The instance
model describes the complete structure of one cyber-physical system. The instance structure
of the architecture is better suited for further validations of structural and behavioral properties
[RSvW+15, RRS+16, BRRvW16, BMP+16, BRvW16, RSvW16, HRvW17].

The fourth section elucidates how to derive the C&C instance structure from a C&C model.
This section explains this transformation on many examples.

The next section of this chapter compares the abstract syntax models of the second and
third sections with the ones of other MontiArc derivatives, i.e., Ringert’s formal C&C model
definition, as well as the abstract syntax of Haber’s MontiArc and Wortmann’s MontiArcAutomaton
languages.

The last section describes how both abstract syntax models are realized using MontiCore’s
symbol management infrastructure. The last section also explains how the abstract syntax of
other languages can be easily integrated into the presented abstract syntax models, so that these
new languages can reuse all analyzes working on these two abstract syntax models.
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Figure 4.1.: Artifact model shows dependencies between the three different EmbeddedMontiArc
grammars and the derived abstract syntax of these grammars. The gray parts high-
light the internal representation of EmbeddedMontiArc presented in this chapter.
Context conditions about EmbeddedMontiArc and their extra-functional properties
are formulated via OCL on the gray marked abstract syntax structures (cf. Chapter 6).

4.1. Deriving Class Diagrams from MontiCore Grammars

The internal representation of EmbeddedMontiArc is directly derived from MontiCore grammars.
The MontiCore grammar format defines the concrete and abstract syntax of a language. Monti-
Core’s production rules of grammar files generate class diagrams for the abstract syntax of this
language (cf. [HR17, Chapter 5]). The transformation from MontiCore’s EBNF-based grammar
format to class diagrams representing the abstract syntax of this language is full-automatic (cf.
[BJRW18]).

Section 4.2 and Section 4.3 present the internal structure of EmbeddedMontiArc as class
diagrams, because Chapter 6 and Chapter 7 formulate OCL constraints against these class
diagrams. For the most readers it is more convenient to read OCL constraints against graphical
class diagrams. However, the author of this thesis wants to emphasize that the internal structure
of EmbeddedMontiArc does not use class diagrams as primary artifacts. The internal structure of
EmbeddedMontiArc is defined by different grammar files.
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Figure 4.1 shows the relations between the artifact types of EmbeddedMontiArc. Embedded-
MontiArc has three MontiCore main grammars1 for different purposes: The first one exists to
parse the textual EmbeddedMontiArc models with its nice syntactic sugar as presented in Chap-
ter 3. The second main grammar is for tooling and context conditions; its main focus is to define a
convenient abstract syntax to easily express OCL well-formedness constraints on, and to calculate
auto-completions and outlines. The third main grammar represents the instance structure, the
complete static architecture of the main EmbeddedMontiArc component (cf. Subsection 3.6.7);
the C++ code and SVG visualisation generator uses the C&C instance structure.

A textual EmbeddedMontiArc model is an instance of the first main grammar. MontiCore
generates based on the EmbeddedMontiArcParsing grammar a class diagram representing
the abstract syntax of this grammar as well as a parser reading the EmbeddedMontiArc model
and creating an object diagram (it is actually a Java object structure, but it can be reported as an
object diagram) being an instance of this abstract syntax class diagram of the EmbeddedMon-
tiArcParsing grammar.

MontiCore also generates the abstract syntax representations for the EmbeddedMontiArc-
Tooling grammar and for the CnCInstanceStructure grammar. A special subset of
OCL (OCL constraints following a specified pattern - cf. Section 6.4) specifies the relationship
between the objects of the different abstract syntax structures. Based on these OCL transfor-
mations, the object structure of the textual EmbeddedMontiArc model, Abstract Syntax
of CnCModel, is transformed to the object structures of the abstract syntax of the other two
main grammars. The C&C model developer does not create textual models being instances of the
EmbeddedMontiArcTooling and the CnCInstanceStructure grammars. However,
the tool developer, e.g., to test these transformations, creates models of these two grammars to
specify test results first as it is suggested by test-driven-development.

Section 6.4 explains how models of the first grammar (object diagrams of the abstract syntax
of the first grammar) are transformed to models of the second grammar. The first transformation
mainly extends convenient syntactic sugar (e.g., ports in B val, out B notVal;) to
a long-form containing all information explicitly (e.g., the one-dimensional port array size in
ports in B val[1], out B notVal[1];). As the first grammar is primarily used for
parsing, and its abstract syntax is similar to the second grammar and the abstract syntax of the
first grammar is not so important for this thesis; Section 4.2 and Section 4.3 only present the
abstract syntax of the second and the third grammar of EmbeddedMontiArc. Section 4.4 explains
how models of the second grammar are transformed to models of the third grammar.

The rest of this section shortly explains how MontiCore translates grammar definitions to class
diagrams automatically. More details about this transformation are presented in the MontiCore
language reference manual [HR17, Chapter 5] and in the paper Translating Grammars to Accurate
Metamodels [BJRW18].

Figure 4.2 shows an excerpt of a simplified EmbeddedMontiArcTooling grammar. This
simplified grammar copied the Range non-terminal in it instead of extending an existing gram-
mar; however, this grammar is better suited to demonstrate the class diagram derivation.

1EmbeddedMontiArc has actually more grammars as it uses MontiCore’s modular language patterns to engineer these
three main grammars. For example, SIUnit, matrix-based Expression, and Type grammars are MontiCore
grammars being reused by all these three main grammars.
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grammar EmbeddedMontiArcTooling {

interface ComponentType;

symbol scope Component implements ComponentType = 

"component" Name /*...*/ "{" 

"ports" (Port || ",")* ";" 

(subs:ComponentInstantiation | Connector)* "}";

enum Direction = IN:"in" | OUT:"out";

symbol Port = 

Direction type:PortType Name "[" dimension:NaturalNumber "]";

symbol ComponentInstantiation /*...*/ =

"instance" type:Name@ComponentType /*...*/ Name 

"[" dimension:NaturalNumber "]" ";" ;

PortInstantiation =

(sub:Name@ComponentInstantiation subIndices:Range | "this") "." 

port:Name@Port portIndices:Range;

Connector = 

"connect" sourcePort:PortInstantiation

"->" targetPort:PortInstantiation ";" ;

Range =

"[" start:NaturalNumber ":" step:NaturalNumber ":" end:NaturalNumber "]";

}
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Figure 4.2.: Excerpt of EmbeddedMontiArcTooling grammar. This grammar file is modi-
fied for demonstration purposes, e.g., the Range nonterminal rule is actually part of
another grammar file which EmbeddedMontiArcTooling one extends.
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Figure 4.3.: Automatically derived class diagram from EmbeddedMontiArcTooling gram-
mar in Figure 4.2.
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Figure 4.3 illustrates the automatically derived class diagram based on the MontiCore grammar
presented in Figure 4.2. The blue texts are comments; all classes and associations are linked to
the line number of Figure 4.2.

The left-hand side (LHS) of a production rule is transformed to a class, to an interface
(if it starts with the interface keyword), or to an enumeration (if it starts with the enum
keyword) inside the class diagram. Thus, line 2 creates the ComponentType interface, line 3
the Component class, line 7 the Direction enumeration, line 8 the Port class, line 10 the
ComponentInstantiation class, line 13 the PortInstantiation class, line 16 the
Connector class, and line 19 the Range class.

The right-hand side (RHS) of a production rule is mapped to properties (if the type is Name
or String) or to outgoing associations to the referenced non-terminal. Therefore, the Compo-
nent class has the property name (cf. l. 4), as well as three outgoing associations to Port,
ComponentInstantiation, and Connector (cf. ll. 5-6). The properties and outgoing
associations of Direction, Port, Connector, and Range are derived in the same way.

A special case is a non-terminal reference with an @ sign: The expression sub:Name@Compo-
nentInstantiation in line 14 means that the concrete syntax expects a word matching the
Java name token, and MontiCore maps this word to a ComponentInstantiation object
having this word as name. For this reason, PortInstantiation has an outgoing association
to ComponentInstantation with the role name sub instead of having a String property
sub.

The cardinalities of the associations in the class diagram are derived from the possible occur-
rences of referenced non-terminals in the RHS of production rules. The cardinalities of the sub
and the subIndices associations starting from the PortInstantiation class is optional
(0..1), because the pipe symbol (“|”) in the MontiCore grammar defines an alternative, and
thus, parsing this.portA[1:1:1] leads to a not defined sub name and to a not defined
subIndices range.

4.2. Component and Connector Model

This chapter uses class diagrams to formalize the abstract syntax of EmbeddedMontiArc. The
graphical notation of class diagrams is based on Rumpe [Rum16, Chapter 2]. Since the complete
class diagram of the abstract syntax of EmbeddedMontiArc is too complex to be shown at once,
this chapter shows several graphical views (as suggested by Rumpe [Rum16, Section 2.4]) of the
large class diagram focusing on different aspects of the abstract syntax of EmbeddedMontiArc.
Classes, fields, and associations in different class diagram views with the same (role) name
represent the same element of the complete class diagram.

The complete class diagram is created by merging (cf. [FALW14]) all graphical class diagram
views. Appendix B contains the complete class diagram in textual CD4A syntax. The advantage
of the textual CD4A syntax is that its concrete syntax is not ambiguous (e.g., in graphical diagrams
it is not always clear to which association arrow the role name belongs to) and the CD4A syntax
has a unique semantic by providing a mapping to Java source code (cf. [Rot17, Chapter 5]).
The CD4A syntax is very good to express large class diagrams in an unique way; the graphical
representation of the large class diagram has to many cross-cutting association lines. However,
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in the opinion of the author of this thesis, the graphical representation of smaller class diagram
views is much easier to comprehend than the textual representation. Thus, the merged CD4A
class diagram in the appendix together with the OCL constraints presented in Chapter 6 formally
defines the abstract syntax of EmbeddedMontiArc; and this chapter explains this class diagram
stepwise on graphical view representations of it.

This thesis assumes that the reader is familiar with class diagrams, and so this thesis does not
introduce the graphical syntax and semantics of class diagrams; Rumpe [Rum16, Chapter 2] and
Roth [Rot17] introduce class diagrams. If the source/target role name of an associations is equal
to the source/target type of this association modulo the capitalization of the first character and
modulo singular/plural differences for star cardinalities, the graphical representation may skip the
role name due to clarity reasons2.

This chapter adds OCL constraints for completeness and to explain the abstract syntax only
once directly below the corresponding class diagram views. However, Chapter 6 - presenting the
OCL framework - only introduces and explains OCL in detail. Therefore, the author suggests for
readers being unfamiliar with OCL the following reading order: (i) this chapter with ignoring
OCL, (ii) Chapter 6 to get familiar with OCL, and (iii) scan this chapter again with focusing on
OCL.

Many of the following classes in the abstract syntax contain a name field. For the semantics
this name field is (except for the Port class) not necessary and from a mathematical point of
view it can be deleted in each class diagram. However, the classes also serve as abstract syntax
structure for the underlying tools and, therefore, the name field has been added to generate user-
friendly error messages containing the name of the model elements (e.g., when some conditions
are violated).

All name fields are short names (no extended or full names such as package.component
.port). The port definition needs, in contrast to the rest, a name field in its definition to force
that port names of a component match the port names of its implemented component interface.
The ports of the component must not be identical with the ports of the component interface, as
their type can be different (the type must only be compatible).

The rest of this section introduces the abstract syntax for the C&C language EmbeddedMontiArc
(it is the generated abstract syntax of the EmbeddedMontiArcTooling grammar) step-wise.

4.2.1. Port Type System

Figure 4.4 illustrates the relation between Type and Value interfaces. A Value has always
one specific Type. The Type interface is very general. The PortType interface extends this
general Type interface. All types used to communicate between components via ports implement
this PortType interface, and the concrete values passed between the components implement the
PortValue interface. A Quantity also implements the Type interface, because quantities
may be types of parameters (cf. Subsection 4.2.2). Every Quantity has one base unit; e.g.,
Length has the base unit Meter. Every unit belongs to exactly one quantity; e.g., the quantity

2For example, an association going from Component (source type) to Port (target type) having the cardinal-
ity star at Port and one at Component (association [1] Component -> Port [*]) and omit-
ting role names, automatically introduces the source role name component and the target role name ports
(association [1] Component (component) -> (ports) Port [*]).
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Figure 4.4.: Abstract syntax of Type and Value interfaces.
This thesis uses a derived version of CD4A presented in [Rot17]; cf. Appendix B for slightly modified textual syntax.

The {read-only} tag presented in this class diagram has been added. The {read-only} flag allows it to have

two associations with the same name (i.e., type in this figure) if both are marked as {read-only} and if the

source and target class of both associations are in an inheritance relation (implements or extends relation in the

class diagram). The advantage of this new keyword is that {read-only} associations can be refined. For example,

every Value has (read-only access to) a unique Type; however, if the Value is a PortValue (the value has been

refined), then we can now also express that the Type has also been refined to PortType.

One could argue that the top type association going from Value to Type is uninteresting for the concrete syntax

of this language, however, this top association makes it much easier to express context conditions in OCL; and the

main purpose of the abstract syntax of EmbeddedMontiArcTooling grammar is to have a convenient internal

structure for tooling and to express context conditions.

This thesis uses the {read-only} flag only when an outgoing association (as in this example the type asso-

ciation) is refined. This means removing any {read-only} flag causes in an inconsistent textual class diagram

when merging all these graphical representations. In all other cases, this thesis omits the {read-only} flag in
associations to keep the graphical representations as simple as possible.

of Mile is Length. Figure 3.18 on page 63 lists available classes implementing the Quantity
interface3.

Figure 4.5 shows the abstract syntax of the PortType interface. EmbeddedMontiArc has four
port type kinds:

• BooleanType: This type presents a Boolean value with true and false.
• EnumType: This type presents an enumeration. Each enumeration contains (multiple)

enumeration items (EnumItem).
• NumericType: This is the most interesting type. This type represents numeric numbers

or matrices (cf. Subsection 3.5.1).

3EmbeddedMontiArc uses JScience quantities. All available quantities are listed at: http://jscience.org/
api/javax/measure/quantity/Quantity.html.

http://jscience.org/api/javax/measure/quantity/Quantity.html
http://jscience.org/api/javax/measure/quantity/Quantity.html
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Figure 4.5.: Abstract syntax of PortType interface (extended abstract syntax of Figure 3.18).
The cardinality of the type associations of the abstract syntax in this figure is 1, because duck typing in Embedded-

MontiArc (cf. Subsection 3.6.4) works only on component types and not on port types. The duck typing inference

algorithm of EmbeddedMontiArc automatically adds component interface implementations to existing component

types.

• StructType: This type encapsulates data in a structure. Each item in this structure has
a unique name. Since StructType implements the PortType interface and the items
of structures (cf. qualified association) are elements of the PortType interface again,
structures can be nested.

The OCL constraint in lines 1 to 4, say that Struct items have the same names as their
StructType items and that the type of a Value of a Struct item with a given name is the
same as the StructType item with the same name.

Figure 4.6 presents the abstract syntax of the PortValue interface. Analog to the port
type kinds, EmbeddedMontiArc has four port value kinds. The classes Tensor, Matrix,
Vector, Number, and NaturalNumber are numeric values; the type of these classes is the
NumericType class.

The first OCL constraint says that a natural number has a value greater or equals to 1 and it is
dimensionless and it cannot be plus or minus infinity (if one of these two boolean flags is true,
the double field value is ignored). The second constraint says that a matrix is a tensor with
depth equals to one. The next constraint classifies that a vector contains only of one row, this
means every vector in EmbeddedMontiArc is a row vector. The last constraint formulates that a
number is a vector with one column, meaning it is a 1× 1 matrix.
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Figure 4.6.: Abstract syntax of PortValue interface (extended abstract syntax of Figure 3.18).
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Figure 4.7.: Relationship between Parameter and ParameterBinding interfaces.

4.2.2. Parameter Definitions and Parameter Bindings

Figure 4.7 illustrates the abstract syntax of parameter definitions and parameter bindings. Every
parameter has a kind attribute which is an enumeration with the two values CONFIG and
GENERIC to model configuration and generic parameters. Additionally, parameters have a
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type instanceof ComponentInterface
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Figure 4.9.: OCL constraint for ComponentParameter.

dimension and parameter bindings have the corresponding counterpart range to address the
indices of a parameter definition (cf. example in Figure 3.54).

In EmbeddedMontiArc every parameter has an optional default value. However, every param-
eter kind accepts a different default value; therefore, the defaultValue association is not
modeled in Figure 4.7.

Most parameters have a Type in EmbeddedMontiArc. Nonetheless, the GeneralType-
Parameter, QuantityParameter, and the NumericTypeParameter have no type
association; thus, in Figure 4.7 the Parameter interface contains no outgoing type association.

EmbeddedMontiArc has eight different parameter kinds as shown in Figure 4.8:
(i) General type parameters. These parameters accept as value every class implementing the

general PortType interface, i.e., all four port type kinds mentioned in Subsection 4.2.1.
Examples are component G<T>, component G<T1 = Z, T2 = T1>. Since the
GeneralTypeParameter implements the PortType interface, the (default) value of
a general parameter can be another general parameter.

(ii) Quantity parameters. These parameters have as value a class implementing the Quan-
tity interface. Examples are component X<Qt1 as Quantity = Length,
Qt2 as Quantity = Velocity>. The keyword as introduces the quantity pa-
rameter in EmbeddedMontiArc. The QuantityParameter implements the Quan-
tity interface to use quantity parameters as (default) values for other quantity parame-
ters; e.g., component Y<Qt3 as Quantity, Qt4 as Quantity = Qt3>. A
quantity parameter binding (QParamaterBinding) binds a concrete value to a quan-
tity parameter, e.g., when instantiating a component type. The expression instance
X<Acceleration, Dimensionless> binds the parameter Qt1 to the value Ac-
celeration, and Qt2 to the value Dimensionless; this example creates two objects
of the class QParameterBinding.

(iii) Numeric type parameters. These parameters define the numeric type, supporting arith-
metic operations, of in- and output ports. The keyword is introduces numeric type param-
eters. Examples of numeric type parameters are: component B<T2 is Mass = (0
kg : 1t)>, component C<QtT3 as Quantity, T3 is QtT3>, and com-
ponent D<T4 is Acceleration, T5 is Acceleration = T4>. These pa-
rameters have as value an object of the NumericType class (cf. Figure 3.18). The quan-
tity association of a numeric type parameter specifies the quantity property of the Nu-
mericType class. The NumericTypeParameter class extends the NumericType
class so that numeric type parameters can be values of other numeric type parameters as
shown for component D. The numeric type parameter binding (NTParameterBinding)
binds one value to one numeric type parameter. The expression instance A<T1 =
Acceleration> binds T1 to (-oo m/sˆ2 : oo m/sˆ2), because using quantity
names in types in EmbeddedMontiArc is syntactic sugar for the type, having this quantity
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as generic parameter, with the largest possible range. This syntactic sugar is especially
useful, when instantiating subcomponents with the same type having another parameter as
quantity; e.g., component D<Qt5 as Quantity> { instance A<Qt5> a1;
instance D<Qt5> d1; }.

(iv) Tensor parameters. Matrices are n×m× 1 tensors, and numbers are 1× 1 matrices. The
type attribute of a tensor parameter is the NumericType class. The quantity of a Numer-
icType for the tensor parameter’s type attribute is the same as the quantity of the unit in
a Tensor for the value attributes of TensorParameter or TParameterBinding;
thus, component M<Zˆ2 vector1 = [2 cm, 5 cm]> is wrong, as the type at-
tribute for the parameter object vector1 is NumericType with quantity Dimension-
less and the value attribute for vector1 is Tensor with quantity Length. Also the
tensor dimensions (rows, cols, and depth attributes, cf. Figure 4.5 and Figure 4.6) of the
type attribute and the value attribute must fit; therefore, component N<Zˆ3 vec-
tor2 = [2, 3]> is invalid, because the dimension of vector2.type is 3× 1× 1
and the dimension of vector2.value is 2×1×1. TensorParameter extends Ten-
sor, so that one parameter can be another parameter’s value; e.g., component P<N+
dim1, N+ dim2 = dim1>. Numbers as matrix parameters are often used to define the
dimension of port or component instantiation arrays; e.g., component Or<N+ n> {
ports in B values[n], out B result; }. For easier reading of this thesis,
TensorParameters has the following extension hierarchy graph (analog to Tensor
in Figure 4.6): MatrixParameter, VectorParameter, NumberParameter, and
PositiveParameter having as values only NaturalNumbers; vector1 is a Vec-
torParameter, and dim1 is a PositiveParameter.

(v) Enum type parameters. These parameters have an enumeration item as (default) value.
The enumeration item bound to an enumeration type parameter must belong to the enumer-
ation type of the type attribute of an enumeration type parameter. Thus, enum E1 { A
| B}, enum E2 { C | D}, and component W<E1 en = D> is invalid, because
D does not belong to en’s type attribute which is E1.

(vi) Boolean type parameters. These parameters store as value either true or false.
(vii) Structure type parameters. These parameters have as value a structure, whereby the

structure must be a valid instance of the structure type defined by the parameter’s type
attribute. This means the structure contains exactly the same names as the structure type
does, and all values of the structure are compatible to the types of the defined struc-
ture type. An example is struct GPS { (-90◦ : 90◦) latitude; (-180◦

: 180◦) longitude; } and component S ( GPS position = { lati-
tude = 45◦; longitude = -20◦; } ).

(viii) Component parameters. In contrast to the other seven parameter kinds, this parameter
kind does not belong to the port type system. Reference architectures (cf. Subsection 3.6.4)
use component parameters to enable different behavior of atomic components. The type of a
component parameter is a component interface (cf. restriction in Figure 4.9)4. The value of
component parameter is a bound component type whereby another component parameter is

4The type association in the class diagram is ComponentType and not ComponentInterface, as oth-
erwise the class diagram merging algorithm does not work due to a conflict with the later introduced
association BoundComponentType -> (type) ComponentType and ComponentParameter
extends BoundComponentType. Therefore, the type of every ComponentParameter is restricted via
OCL.
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also a bound component type. An example is component interface Interface1
{}, component Atomic(N+ n) implements Interface1 {}, and compo-
nent Ref1 ( Interface1 I1 = Atomic(3) ) { instance I1 i1; }.

A nice component definition with the three kinds (ii) - (iv) of parameters is component
General<Qt as Quantity, T is Qt> (Qt val). The first parameter is a quantity
parameter, the second one is numeric type parameter with the quantity association bound to the
value of the first parameter, and the third one is a matrix parameter with quantity Qt, and type
of NumericType with minimum to minus infinity and maximum to plus infinity . A valid
instantiation for this component is instance General<Length, (0m : 10m)> ( 1
km). The value of val must not be of type T, thus 10 km which is larger than 10 m is a valid
parameter. To force that the parameter val is inside the range created by the parameter T, the
component must be defined as follow component General2<Qt as Quantity, T is
Qt> (T val), and now instance General2<Length, (0m : 10m)> ( 1 km)
results in a compile error.

The general PID controller in Figure 3.23 is defined as follow component PID<Qt1 as
Quantity, Qt2 as Quantity, Qt1 lower, (lower : oo) upper> (...)
{ ports in ... time, Qt2 error, out (lower : upper) output; }.
Instead of passing lower and upper as two parameters and then building the type of the output
port with these two values, a numeric type parameter can be used instead. This would look as
follow: component PID2<Qt1 as Quantity, Qt2 as Quantity, T is Qt1>
(...) { ports in ... time, Qt2 error, out T output; }. The differ-
ence in the component instantiation is instance PID<Velocity, Acceleration, 0
m/s, 7m/s>(...) pid1 versus instance PID2<Velocity, Acceleration,
(0 m/s : 7 m/s) (...) pid2. The first version (PID) is better suited when the
MontiMath implementation also needs the lower or upper generic parameters; otherwise the
second version (PID2) is to prefer.

Quantity and type parameters (i) - (iii), (v) - (vii) are mostly generic parameters, and the
component parameter is mostly a configuration parameter. The matrix parameter, esp. numbers,
are in general both: generic parameters when they address the dimension of ports as well as
configuration ones when they address only the dimension of subcomponent instantiations or are
factors (cf. P, I, and D of the generic PID controller) used in the implementation part.

4.2.3. Component Instantiation

Figure 4.10 shows the abstract syntax around the ComponentInstantiation class. A com-
ponent instantiation has a dimension, and name; additionally it inherits from BoundCom-
ponentType all bound parameter values, as well as its component type. If the dimension
is missing in the concrete syntax, then this dimension is set to 1. An example of Embedded-
MontiArc syntax without a dimension is: instance A a1. Examples of EmbeddedMontiArc
syntax with dimension are: instance A a2[3], and instance A a3[n] whereby N+
n is a configuration parameter. The dimension is always a natural number; either a positive whole
number (N+) or a parameter which type is a subset of a positive whole number.

A component can implement multiple bounded component types (cf. implements associa-
tion). A component implementing a component interface may bound some parameters of this
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«interface»

ParameterBinding

Component

type

1

values

*
* implements

CD

«interface»

Value

«interface»

Type

ComponentInterface

BoundComponentType «interface»

ComponentType

dimension
1

String name

ComponentInstantiation

NaturalNumber

context Component inv:    

forall t in implements.type:

t instanceof ComponentInterface

1

2

3

OCL

Figure 4.10.: Abstract syntax ComponentInstantiation class.

interface; therefore, the implements association goes from Component to BoundCompo-
nentType and not to ComponentInterface. An example is the following: component
interface I5<N+ n> and component X implements I5<5>, whereby I5<5> is a
bounded component type with component interface I5 as type and n = 5 as parameter binding.

The OCL constraint says that a component can only implement bounded component types
whose types are component interfaces. Hence, component Y<T is Acceleration> and
component Z implements Y<(-2m/sˆ2 : 2m/sˆ2)> is invalid (cf. discussion in
Subsection 3.6.3 why EmbeddedMontiArc does not support extension of components).

4.2.4. Ports and Connectors

Figure 4.11 displays the abstract syntax of Port and Connector classes. A port has a name,
a direction, a type, and a dimension. The direction of a port is either IN or OUT. A
port instantiation is a port of a subcomponent instantiation or a port instantiation of the parent
component (sub attribute is absent). Since ports and subcomponents have a dimension, a
port instantiation contains index ranges of the subcomponent (subIndices) and of the port
(portIndices). Index ranges are needed as port instantiations of library components cannot
be “flattened”, yet. A connector models dataflow from a source port instantiation to a target port
instantiation.

An example for a connector of a library component is component LibA<N+ n> { in-
stances LibB lib1[n], lib2[n]; connect lib1[:].result -> lib2[:]
.value; }. The connector connects the source port instantiation lib1[:].result with
the target port instantiation lib2[:].value. The source port instantiation has the following
values: sub = lib1, subIndices = 1:1:n (start = 1, step = 1, and end = n), port =
LibB.result, and portIndices = 1:1:1. Since the value of subIndices.end is a
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«interface»

PortType

type1

1

PortInstantiation ComponentInstantiation
1 0..1

Connector

1 source

Port
1 target

Port

port

Indices
1 sub

Indices
0..1

start1 end1

e.g., [2:7]
or [1:3:9]

CD

Range

1 step

sub

«interface»

NaturalNumber

dimension

port

NaturalNumber

«query» boolean isCom

patibleTo(PortType pt)

Port

String name

{IN | OUT} direction

start

Con

end

Con

context Connector inv:

sourcePort.port.type.isCompatibleTo(targetPort.port.type)

1

2

OCL

context PortInstantiation inv:

sub.isPresent == subIndices.isPresent &&

portIndices.end <= port.dimension &&

subIndices.end <= sub.dimension

3

4

5

6

OCL

context Range inv:

start <= end

7

8

OCL

Figure 4.11.: Abstract syntax of Port and Connector classes.

PositiveParameter which is not bound yet, the port instantiation, and thus the connector,
cannot be flattened to lib1[1].result -> lib2[1].result, and so on.

The second OCL constraint in Figure 4.11 says that the portIndices and subIndices
must be in range, thus, not larger than the dimension of the port definition and the sub-
component instantiation. component A{ ports in In1[3], Out1[4]; connect
In1[1:4] -> Out1[1:4]} is invalid, because the port A.In1[4] does not exist.

The third OCL constraint says that the start value of a range is not larger than its end value.
This constraint prevents empty (invalid) ranges. Line 3 in Figure 4.12 shows exactly how to
define the values of a range.

The first OCL constraint in Figure 4.11 says that connectors connect only source ports with
target ports when their types are compatible. Figure 4.12 defines exactly when two port types are
compatible.

The first OCL constraint in lines 1 to 15 in Figure 4.12 says that NumericType t1 is
compatible to NumericType t2 (source port type t1 can be connected to target port type t2),
when the quantities and the tensor dimensions are equal (cf. ll. 9-12), as well as the algebraic
properties are compatible (cf. l. 13) plus the range of t2 includes all values of the range of t1 (cf.
l. 14-16). This thesis skips the concrete definitions when algebraic properties are compatible;
their definitions are available in the matrix taxonomy paper [Bor06].
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context NumericType t1, NumericType t2 inv:

let

maxSteps1 = {1 .. 2*Math.abs(t1.max / t1.res) + 1};

range1 = { v | v = t1.min + k * t1.res, k in maxSteps1, v <= t1.max };

maxSteps2 = {1 .. 2*Math.abs(t2.max / t2.res) + 1};

range2 = { v | v = t2.min + k * t2.res, k in maxSteps2, v <= t2.max };

in

t1.isCompatibleTo(t2) <=>

(t1.quantity == t2.quantity &&

t1.cols == t2.cols &&

t1.rows == t2.rows &&

t1.depth == t2.depth &&

t2.algebraicProperties.areCompatibleTo(t1.algebraicProperties)) &&

t1.res.isPresent == t2.res.isPresent &&

( t1.res.isPresent implies range2.containsAll(range1) ) &&

( !t1.res.isPresent implies t1.min >= t2.min && t1.max <= t2.max )

1
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context StructType t1, StructType t2 inv:

t1.isCompatibleTo(t2) <=>

t1.items.size == t2.items.size &&

(forall item1 in t1.items:

exists item2 in t2.items:

(item1.name == item2.name &&

item1.type.isCompatibleTo(item2.type)))

17

18

19

20

21

22

23

OCL

context BooleanType t1, BooleanType t2 inv:

t1.isCompatibleTo(t2) <=> true // booleans are always compatible

24

25

OCL

context EnumType t1, EnumType t2 inv:

t1.isCompatibleTo(t2) <=>

t1.items == t2.items

26

27

28

OCL

Figure 4.12.: Constraints about port type compatibility.

The source port type (0:2:6) is not type compatible to (-1:2:7), since 4 ∈ (0 : 2 :
6) = {0, 2, 4, 6} and 4 6∈ (−1 : 2 : 7) = {−1, 1, 3, 5, 7}. The source port type diag (-
1:1)ˆ{10,10} is not type compatible to diag positive-definite (-1:1)ˆ{10,
10}, because the source port type may have negative elements on the main diagonal and the
target one must not have negative elements on its main diagonal.

The second OCL constraint in lines 17 to 23 states that two struct types are compatible if
and only if both structs contain the same struct type element names and all of their struct type
elements are compatible. This means struct S1 {N+ x; Z y;} is compatible to struct
S2 {Z x; Z y;}. However, S1 is not compatible to struct S3 {N x; N y; N z;},
because first S3 contains an element with name z, and second the element type with y of S1 is
not compatible to S3 as Z 6⊆ N.

The third OCL constraint says that two boolean types are always compatible, and the fourth
constraint forces that two enumerations are only compatible when they are equal.
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Effector PortRange

CD
sourcePort

targetPort

1

1

sourceIndex

1

targetIndex1

startEff

endEff

context Effector inv:

sourceIndex.end <= sourcePort.dimension &&

targetIndex.end <= targetPort.dimension

1

2

3
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context Effector inv:

let

sct = sourcePort.componentType;

s = typeif sct instanceof Component then sct.subs else {};

in

sourcePort.direction == IN  &&

targetPort.direction == OUT  &&

sct == targetPort.componentType &&

s == {}

4

5

6

7

8

9

10

11

12

OCL

Figure 4.13.: Abstract syntax of Effector class.

DoubleSwitch

a1

b1

cond

a2

b2

c1

c2

component DoubleSwitch<T> {

ports in T a1,

T a2,

B cond,

T b1,

T b2,

out T c1,

T c2;

implementation Math {

if cond

c1 = a1;

c2 = a2;

else

c1 = b1;

c2 = b2;

end

} }
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16

17

EMAMC&C

effector

Figure 4.14.: DoubleSwitch component example to demonstrate effectors.

4.2.5. Effector

Figure 4.13 shows the abstract syntax of the Effector class. In contrast to a connector,
delegating values one-to-one from one port to another port, an effector shows the effect of input
ports to output ports of atomic components. Non atomic components do not have effectors.

The first OCL constraint in Figure 4.13 forces that the source and target index is in the range of
the port dimensions. The second constraint says that an effector goes from an input to an output
of an atomic component.

The embedded behavior language calculates the effectors; e.g., EmbeddedMontiArcMath
calculates the effectors based on the control-flow graph of the mathematical expressions. In
the default implementation of EmbeddedMontiArc (with no behavior language) every input port
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context Component inv:

forall cmpType in implements.type:

cmpType.ports.name == this.ports.name
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context Component inv:

let

typeDimParams = {p in ports.type.addAll(ports.dimension) |

p instanceof Parameter};

in

this.subs != {} implies

this.parameters ==

subs.values.parameter

.addAll(typeDimParams)

.addAll( { param | param in this.parameters,

exists param2 in this.parameters:

param == param2.type})
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Figure 4.15.: Abstract syntax of Component and ComponentInterface class.

affects every output port. Assume we have a double switch as illustrated on the right side in
Figure 4.14 with the input ports a1, a2, b1, b2, and cond as well as the output ports c1 and
c2. If cond is true, then c1 returns the result of a1; otherwise c1 returns b1. The output port
c2 works analog. The input port cond affects both output ports (cf. left side in Figure 4.14);
but the input port a1 and b1 only affect c1, similar a2 and b2 affect only c2. This information
what input port affects what output ports is useful to calculate structural effect chains crosscutting
component hierarchies. The effectors for atomic components are later used to calculate effect
chains (cf. Section 7.4) and to highlight abstract effectors in C&C views more accurately.

4.2.6. Component and Component Interface

Figure 4.15 displays the abstract syntax of the Component and ComponentInterface
classes. Both, component interfaces and the components, have ports and parameters. Additionally,
the component may contain subcomponent instantiations. If a component implements a bounded
component interface, then the port names of the component must be identical to the port names
of the implemented component interface instantiation (cf. first OCL constraint in ll. 1-3).

The second listing constraints that all parameters defined by non-atomic components must be
used at least once. Atomic components may have additional configuration parameters that are
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ComponentInstantiation
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context CnCModel inv:

let

inPorts = {p | p in componentTypes.ports, p.direction == IN};

in

forall p in inPorts:

forall pi in PortInstantiation:

(pi.port == p && pi.sub != main) implies

(exists con in connectors:

pi == con.targetPort)
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Figure 4.16.: Abstract syntax of CnCModel class.

used by their implementations in later language extensions. Concrete this means: All parameters
(cf. l. 10) defined by a non-atomic (cf. l. 9) component must be used at least once in (1) a
subcomponent instantiation (cf. l. 11), (2) as type or (3) dimension parameter in ports (cf. ll.
6, 7, 12), or as (4) parameter type of another parameter (cf. ll. 13-15). A correct example
is component X</* (4) */ Qt as Quantity, /* (2) */ T is Qt, N1 /*
(3) */ n> (N1 /* (3) */ m) { port in T in1[n]; instance Y y[m]; }.

4.2.7. Component and Connector Model

Figure 4.16 shows the abstract syntax of the CnCModel (component and connector model) class.
A C&C model has one main component instantiation (cf. Subsection 3.6.7). Based on this main
component instantiation, which has one unique component type, and on the transitive closure of
all its subcomponent instantiations, all used component types of a C&C model can be derived.
When all component types are derived and each component defines ports, then also all effectors
of these ports can be derived; similar to all connectors.

A C&C library (CnCLibrary) is a collection of component type definitions, whereby each
component type belongs at most to one C&C library. Effectors and connectors of a library can be
derived. Since a C&C model knows which component types it uses, the imported C&C libraries
can also be derived.
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The OCL constraint in Figure 4.16 forces that for all input ports not belonging to the main
component instantiation there must exist a connector providing data to this input port. The input
and output ports of the main component instantiation must not be connected, because these
ports serve as interface with the (simulator) environment. If an output port instantiation is not
connected it produces a warning that the terminator block (# symbol) should be used. However,
not connected input ports (except of the ports belonging to the main component instantiation)
leads to the fact that components belonging to these ports cannot execute their calculations.

4.3. Component and Connector Instance Structure

Most tools, e.g., C++ code generator, graphical SVG code generator, or final context condition
checks whether a C&C model is valid, work on the instance structure of a C&C model. The
instance structure of a C&C model is derived from the main component instantiation. The instance
structure does not contain any generic and configuration parameters. The instance structure only
contains component instances, port instances as well as connector and effector instances, plus
configuration parameter bindings for behavior implementations. Therefore, the instance structure
is much easier to handle by tools than a complex C&C model, because all types have been
completely resolved.

The C&C instance structure is the abstract syntax of the third main language of Embed-
dedMontiArc (cf. Section 4.1). The abstract syntax of the second language EmbeddedMon-
tiArcTooling of EmbeddedMontiArc does not exactly match the C&C instance structure,
because EmbeddedMontiArcTooling supports reuse of component types and array concepts
whereas these concepts are not present in CnCInstanceStructure.

To have complete traceability between the instance structure and the text files, a link between
the instance structure and the C&C model, it is derived from, is created. The C&C model contains
links to the abstract syntax tree it is created from; and the parser adds source code positions of
the matched text fragments to the abstract syntax tree.

Figure 4.17 shows the abstract syntax of the C&C instance structure. Every C&C model
has exactly one C&C instance structure by binding all its parameters; because the textual
EmbeddedMontiArc models describe a static architecture with no dynamic changes at runtime as
it is the case in object oriented (modeling) languages.

However, different C&C models may instantiate the same C&C instance structure; e.g., instan-
tiating both EmbeddedMontiArc models And<n=2> {ports in B input[n], out B
output; } and And {ports in B input[2], out B output; } as main compo-
nent results in the same C&C instance structure.

A C&C instance structure has one main component instance. A component instance can be
decomposed of multiple subcomponent instances. Every component instance consists of several
port instances to communicate with other component instances via connector instances. Atomic
component instances, having no subcomponent instances, have effector instances to describe
affects from input to output port instances. The type of a port instance is any type explained in
Figure 4.5, but it is no parameter type.

The C&C instance structure does not contain a component interface, or any generic or configu-
ration parameters. Also port instances and subcomponent instances do not have any dimension
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(forall p in params.parameter:
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1

2

3

4

OCL

context PortInst inv:

! (type instanceof Parameter)

5

6

OCL

Figure 4.17.: Abstract syntax of C&C instance structure classes (gray are classes of C&C model;
added for traceability).

attribute. Atomic component instances may have bounded tensor configuration parameters so that
later language extensions of EmbeddedMontiArc with a behavior implementation (e.g., Embed-
dedMontiArcMath, or EmbeddedMontiArcDL) have access to the passed configuration parameters.
Section 4.4 gives an example why tensors are needed for implementation parameters.

Figure 4.18 displays the abstract syntax of the chain instance class. A chain instance represents
dataflow between two port instances. All element instances belonging to this dataflow via
connector or effector (to describe dataflow inside atomic components) instances belong to this
chain instance.

Additional, Figure 4.18 shows the derived associations for port instances and component
instances. The two OCL constraints specify their semantics.

The sender association of a port instance A refers to another port instance sending data to
A. The receiver association of a port instance B are all port instances that are connected to
B. The influencee association extends the sender port instances with port instances linked
via effectors; analog is the influencer association defined.

The sender association of a component instance C are all component instances that com-
municate via connectors with C. The receiver association is defined in an analog way. The
self-associations of port and component instances enable an efficient navigation through the
dataflow of C&C instance structures.
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context ComponentInst inv:

sender == { p.sender |

p in ports}.componentInst &&

receiver == { p.receiver |

p in ports}.componentInst
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context PortInst inv:

sender.asSet == { PortInst p | exists con in ConnectorInst:

con.sourcePort == p && con.targetPort == this } &&

receiver == {PortInst p | exists con in ConnectorInst:

con.sourcePort == this && con.targetPort == p} &&

influencer == sender.asSet.addAll(

{p | exists eff in EffectorInst:

eff.sourcePort == p && eff.targetPort == this} )   &&

influencee == receiver.addAll( {p | exists eff in EffectorInst:

eff.sourcePort == this && eff.targetPort == p} )
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Figure 4.18.: Abstract syntax of ChainInst class and derived associations of PortInst and
ComponentInst classes.

4.4. Derivation of C&C Instance Structure from C&C Model

This section explains on two examples how to derive the C&C instance structure based on a
given C&C model. To make the examples better readable, this section uses the more compact
textual syntax representations instead of object diagrams to present concrete C&C instance
structure examples. The concrete textual syntax of the C&C instance structure is very similar
to the concrete syntax of EmbeddedMontiArc elucidated in Chapter 3. To better distinguish
between EmbeddedMontiArc’s C&C model code and this C&C instance structure code; the
C&C instance structure grammar (cf. Section C.1 on page 369) uses different keywords than
the EmbeddedMontiArc grammar: cmp-i for component instance, port-i for port instance,
eff-i for effector instance, and no keyword for connector instance. The C&C instance structure
uses no keyword for the connector instance statement to make the code snippets for connections
in this section shorter to fit in one line.

First, the transformation from the abstract syntax of EmbeddedMontiArcTooling to the
abstract syntax of CnCInstanceStructure replaces the component instantiations with the
complete contents of their component types; starting at the main component instantiation and
it terminates when it reaches atomic components. Second, the transformation replaces port
arrays by multiple single port definitions. Third, the transformation replaces connection patterns
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component SensorProcessing<N1 n> {

ports in C signal[n],

GPS posCar,

out (0m : 25m) distance;

instance Filter filter[n];

connect signal[:] -> 

filter[:].signal;

connect posCar -> 

filter[:].posCar;

}
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Main-Component-Instantiation:

SensorProcessing<2>;

17

18

Main.txt

cmp-i SensorProcessing {  

port-i in C signal$1,

in C signal$2

in GPS posCar,

out (0m : 25m) distance;

cmp-i filter$1 {

port-i in C signal,

in GPS posCar,

out (0m : 100m) distance;

eff-i signal -> distance;

eff-i posCar -> distance;

}

cmp-i filter$2 {

port-i in C signal,

in GPS posCar,

out (0m : 100m) distance;

eff-i signal -> distance;

eff-i posCar -> distance;

}

signal$1 -> filter$1.signal;

signal$2 -> filter$2.signal;

posCar -> filter$1.posCar;

posCar -> filter$2.posCar;

}
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component Filter {

ports in C signal,

GPS posCar,

out (0m : 100m) distance;

}
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Figure 4.19.: C&C instance structure derived from an EmbeddedMontiArc model with port and
component instantiation arrays.

with single connection statements. The second and the third transformation also starts at the
main component instantiation. The rest of this section explains these three transformations on
examples.

Figure 4.19 shows how EmbeddedMontiArc models (cf. left side) containing component
definitions with arrays of ports (cf. l. 2) and component instantiations (cf. l. 5) are transformed
to a C&C instance structure (cf. right side). The main component instantiation (cf. ll. 17-18)
passes the value 2 for the parameter n when instantiating the SensorProcessing (cf. l. 1)
component definition. Therefore, the transformation creates for the signal port definition (cf. l.
2) with the dimension n two signal port instances (cf. ll. 20-21) for the SensorProcessing
(cf. l. 19) component instance. For the same reason, the transformation maps the component
instantiation array (cf. l. 5) to two component instances (cf. ll. 24-30 and ll. 31-37). Please
note, that EmbeddedMontiArc models contain component instantiations to create subcomponents
whereas the C&C instance structure contains directly the subcomponent instances. Thus, the
C&C instance structure often contains the same information multiple times (cf. ll. 25-29 and ll.
32-36).

The transformation creates for the connection (cf. ll. 7-8) of the C&C model two con-
nection instances (cf. ll. 38-39) in the C&C instance structure. It resolves the expression
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component interface

PumpActuator <T is Length> {

ports in T pumpState,

T desiredPumpState,

out (0% : 100%) 

pumpActuator;

}
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Main-Component-Instantiation:

PumpingSystem (

WestEuropePump<(0m : 20m)> );
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Main.txt

cmp-i PumpingSystem {

cmp-i pumpActuator {

port-i in (0m:20m) pumpState,

in (0m:20m) desiredPumpState,

out (0%:100%) pumpActuator;

cmp-i protection { ... }

cmp-i pid {

port-i in (0ns : 1ns

: oo ns) time,

in (-oo m : oo m) error,

out (-oo m : oo m) output; 

...

}

}

}
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InstSt �component PumpingSystem

(PumpActuator PA)    {

instance PA pumpActuator;

}
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component WestEuropePump

<T is Length> implements

PumpActuator<T>      { 

instance ShutOff protection;

instance PID<Qt2 = Length>

(1, 1, 1) pid;

}
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Port instance "in (0m:20m) pumpState"
is linked to its port definition
"in T pumpState".
Thus, the binding information
"(0m:20m)" -> "T" can be derived.

Figure 4.20.: C&C instance structure derived from an EmbeddedMontiArc model with generic
port type and component interface as configuration parameter.

signal[:] to signal[1 : end], and this to signal[1 : n] which is for n = 2
equals to signal[1 : 2]. The transformation maps the names signal[1] to sig-
nal$1 and signal[2] to signal$2. The concrete syntax of the C&C instance structure
uses a dollar sign for indices instead of squared brackets to avoid confusion with the port array
dimension in EmbeddedMontiArc.

The effector instances in lines 28 and 35 are derived from the effectors in the C&C abstract
syntax, which are added automatically (cf. Subsection 4.2.5) when building the C&C abstract
syntax based on EmbeddedMontiArc’s abstract syntax. The effector instances together with
the connector instances of the C&C instance structure enable to derive these chain instances;
Section C.3 on page 371 presents the four longest chain instances.

These four chain instances support generators to optimize code, e.g., by parallelizing the
calculations of the four chains at four different threads (CPU cores) [KRSvW18a]. The SVG
generator uses these four chain instances to highlight dataflow (e.g., when clicking at an output
port).

Figure 4.20 shows how the derivation algorithm creates the C&C instance structure of an
EmbeddedMontiArc model with generic and configuration parameters. The main component
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instantiation (cf. ll. 20-22) binds the component interface parameter PA to WestEuropePump
component type. Thus, the transformation maps the subcomponent instantiation in line 10 to the
subcomponent instance shown in lines 24 to 35. Line 22 binds the generic port type parameter
T to the type (0m : 20m). Since the WestEuropePump component definition passes (cf.
l. 14) this bounded parameter T to the implemented component interface PumpActuator, the
type of the port instances pumpState (cf. l. 25) and desiredPumpState (cf. l. 26) is (0m
: 20m). The type of error (cf. l. 32) and output (cf. l. 33) port instances is (-oo m
: oo m), because the generic parameter Qt2 is bound to Length (cf. l. 17) and no upper
and lower parameter is set. Please remember that a quantity such as Length used as port type
means the numeric type going from minus infinity to plus infinity of the corresponding quantity
in EmbeddedMontiArc. This example showed why it is so convenient for further tools to work
with the C&C instance structure, because they do not need to care about bounded parameters and
component interfaces.

As shown in Figure 4.17, port instances (cf. PortInst class) are linked to its port definitions
(cf. Port class). Helper classes use these links to recalculate the mapping of the data types, e.g.,
(0m:20m) to T.

Figure 4.21 illustrates how the two main component instantiations of the Convolution
component type are transformed to two C&C instance structures. Similar to Figure 4.19 the
port dimensions of imageIn and imageOut (cf. ll. 6-7) are unfolded (cf. ll. 30-36) in the
first Convolution component instance. The first main component instantiation bounds the
parameter T to a 1 080 × 720 matrix, which elements are in the range between 0 and 255.
Therefore, the transformation replaces the port type T in lines 6 and 7 with the port type (0
: 255)ˆ{1080, 720} in lines 31 to 36. The kernel array, which type is a n× n matrix, is
transferred to a n×n×dim tensor during the transformation process. This way the implementation
languages need no knowledge about arrays of configuration parameters. Extending the kernel
array to kernel$1, ..., kernel$3 for the first component instance would not work as the
implementation language resolves the configuration parameter according to its name, and then it
expects one value with a specific type and not three values.

The powerful type inference algorithm5 of EmbeddedMontiArc also infers the stricter type of
the configuration parameter kernel from Q5×5×3 (n bounded to 5 and dim to 3) to ( 1

256 : 1
256 :

9
64)5×5×3 based on the passed matrix.

The stricter type enables to generate C++ code leveraging much more hardware optimizations,
as the entire 5× 5× 3 tensor can be divided by 255 at the end and so EmbeddedMontiArc needs
only to store the values 1, 2, . . ., 36. This way the tensor can be highly accelerated by using
hardware accelerators, e.g., Google’s TPUs (tensor processing units). TPUs are specific chips
to execute 8-bit matrix multiplications for artificial intelligence applications. Due to the value
limit of 8-bit (Integer values from 0 to 255), most TPUs offer throughput of 92 TeraOps/second
[JYP+17].

The importance to generate code for domain-specific hardware (e.g., using Intel’s AVX-512
instructions, GPUs’ single floating point calculations, or TPUs’ 8-bit integer matrix multiplica-

5The algorithm encodes the matrix property rules [Bor06] in Prolog and a Java Prolog interpreter infers the data
types; cf. [Gör17] for more information about the type inference algorithm.
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component Convolution

<T is dimensionless, 

(1:2:3) dim, (3:oo) n> 

(symmetric Q^{n, n} 

kernel[dim]) {

ports in T imageIn [dim], 

out T imageOut[dim]; }
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// Full-HD b/w image, 

// use 3x3 sharpen kernel

Main-Component-Instantiation:

Convolution

<(0 : 2^24)^{1920, 1080}, 1> 

( [0, -1, 0; -1, 5, -1; 

0, -1, 0] )       fullHD;
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Main.txt

cmp-i Convolution (symmetric

(1/256 : 1/256 : 9/64)^{5,5,3}

kernel = [... /* tensor */ ])     {  

port-i

in (0:255)^{1080,720} imageIn$1,

in (0:255)^{1080,720} imageIn$2,

in (0:255)^{1080,720} imageIn$3,

out (0:255)^{1080,720} imageOut$1,

out (0:255)^{1080,720} imageOut$2,

out (0:255)^{1080,720} imageOut$3;

eff-i imageIn$1 -> imageOut$1;

eff-i imageIn$2 -> imageOut$2;

eff-i imageIn$3 -> imageOut$3;}

27

28

29

30

31

32

33

34

35

36

37

38

39

InstSt 1�

// HD-ready RGB-image, use 5x5 

// Gaussian blur matrix for 

// kernel[1], ..., kernel[3]

Main-Component-Instantiation:

Convolution

<(0 : 255)^{1080, 720}, 3> 

( kernel[:] = 1/256*

[1, 4,  6,  4,  1; 

4, 16, 24, 16, 4; 

6, 24, 36, 24, 6; 

4, 16, 24, 16, 4; 

1, 4,  6,  4,  1] ); 
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Main.txt

cmp-i fullHD (symmetric

(-1 : 1 : 5)^{3,3} kernel =

[0, -1, 0; -1, 5, -1; 0, -1, 0]  ) {  

port-i

in (0:2^24)^{1920,1080} imageIn,

out (0:2^24)^{1920,1080} imageOut;

eff-i imageIn -> imageOut;

}

40
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Gaussian blur

sharpen kernel

Figure 4.21.: C&C instance structures derived from EmbeddedMontiArc models with generic
matrix port type and atomic configuration parameters. Images for applying kernel
convolution are copied from Wikipedia [Plo13].

tions) is the major improvement to handle the cost and energy consumption of new data-intensive
algorithms [JYP+17].

Modern smartphones also contain specific TPU chips to handle virtual and augmented reality.
The paper [ITC+18] benchmarks 10 000 Android mobile devices and more than 50 different mo-
bile system-on-chips. EmbeddedMontiArc’s matrix type system with its type inference algorithms
enables that the developer only focuses on the mathematical domain (what values need to be
stored in the matrix) and to tag the C&C instance model with preferred hardware targets; the
generator automatically produces high-performance hardware-specific C++ code.

The second main component instantiation in Figure 4.21 passes a 3× 3 matrix to kernel and
binds the variable dim to 1 instead of 3. The parameter dim (cf. l. 3) accepts only the values 1
or 3; 1 for black white images, and 3 for colored images whereby the three dimensions are the
red, green, and blue channels.

The transformation of a C&C model to its C&C instance structure is unique. This means each
C&C model is transformed to one unique C&C instance structure due to all parameter bindings
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passed through the main- or subcomponent instantiations. The transformation is not injective,
because different C&C models, e.g., one with generic type parameters and one without, can be
transformed to the same C&C instance structure.

4.5. Comparison of EmbeddedMontiArc’s Abstract Syntax
Structures against the Ones of Other MontiArc
Derivatives

This section compares both abstract syntax structures of Section 4.2 and Section 4.3, i.e., C&C
model and C&C instance structure, with the abstract syntax structures defined by other MontiArc
derivatives. The comparison starts with Ringert’s formalized C&C model and C&C types defini-
tions, over Haber’s MontiArc abstract syntax, and finishes with Wortmann’s MontiArcAutomaton
abstract syntax.

Ringert’s Abstract Syntax of MontiArc and MontiArcAutomaton

Ringert defines the abstract syntax of C&C models [Rin14, Definition 2.2 on p. 15] and C&C
types [Rin14, Definition 6.8 on p. 164] via tuple structures. A unique translation of these tuple
structures to a class diagrams is possible by mapping:
• Sets to classes, e.g., “Cmps is a set of components cmp ∈ Cmps” is equal to the Cmp

class, and
• Functions to 1-* associations, e.g., “each of which has a set of ports ports(cmp) ⊆ Ports”

is equal to the association [1] Cmp -> Port [*].
The C&C model definition in Ringert [Rin14, Definition 2.2] is very similar to the C&C

instance structure of this thesis, because it only includes component (instances), port (instances),
and connector (instances). The here presented C&C instance structure extends Ringert’s definition
with effector instances and configuration parameter bindings. Also the port type system of the
here presented C&C instance structure is much more advanced.

The component and connector type definition [Rin14, Definition 6.8 on p. 164] of Ringert
fits better to this thesis’ definition of a C&C model. However, “[Rin14, Definition 6.8] ab-
stracts MontiArcAutomaton’s component type name, the component parameters, and the type
parameters to the single element cType. We omit the implementation details of these ad-
vanced concepts, which are not required for consecutive definitions and the techniques” [Rin14,
p. 168]. In contrast, this thesis presented in this chapter the complete formalized abstract
syntax using the class diagram and OCL semantics of a C&C modeling language with compo-
nent types, component interfaces, configuration and generic parameters, as well as the bind-
ings of these parameters. Ringert’s restriction of connectors, “which connects two ports of
the same type” [Rin14, p. 165], is very conservative. The here presented abstract syntax
enables a more relaxed approach, inspired by Simulink and SysML models of industrial part-
ners, to connect compatible types (cf. OCL expression in Figure 4.11 on page 117); e.g.,
connect the source type (0:1:7) with the target type (-10 : 10). In the Java world,
the relaxed restriction enables connecting (i) source type int with target type double; and
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Figure 4.22.: Top part: Abstract syntax (symbol table) of MontiArc presented by Haber (copied
from [Hab16, p. 135]).
Bottom part: Abstract syntax of simulator runtime environment (copied from
[Hab16, p. 94]).
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component And {

port in Boolean in1,

in Boolean in2,

out Boolean out1;

}
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MontiArc

component And3 {

port in Boolean in1,

in Boolean in2,

in Boolean in3,

out Boolean out1;

component And and1;

component And and2;

connect in1 -> and1.in1; 

connect in2 -> and1.in2; 

connect in3 -> and2.in1; 

connect and1.out1 -> and2.in2;

connect and2.out1 -> out1;

}
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MontiArc

MontiArc uses "component" keyword
for component type definition and
for component instantiation

Figure 4.23.: Example for missing PortReferenceEntry in MontiArc’s symbol table.

(ii) source type ArrayList<String> or LinkedList<String> with the target type
List<String>, because ArrayList<String> and LinkedList<String> implement
the List<String> interface.

We brake the name convention6 of Ringert on purpose, so that our notation is compatible
to the C&C model notation of Haber [Hab16], and Wortmann [Wor16] based on MontiCore’s
general approach that models are textual artifacts created by developers. In our case, developers
cannot directly create C&C instance structure artifacts. Developers use the EmbeddedMontiArc
language to define C&C models with component types to enable reuse. The purpose of the here
presented C&C instance structure language was only to explain the transformation process from
EmbeddedMontiArc models to the C&C instance structure.

Haber’s Abstract Syntax of MontiArc

The top part of Figure 4.22 shows Haber’s abstract syntax of MontiArc. Components can only
have none or one supercomponent (cf. cardinality 0,1 above ComponentReferenceEntry).
Thus one component type cannot implement multiple interfaces, even if all the component
interfaces have the same or compatible ports. This way a component type cannot implement two
component interfaces provided by two different simulators.

The ConnectorEntry belongs to the component type (ComponentEntry) and has di-
rect connection to ports (PortEntry) and not, as in this thesis, to PortReferenceEntry

6Ringert’s C&C model is our C&C instance structure, and our C&C model is Ringert’s component type definition.
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(which is missing in the symbol table of MontiArc and which would be the equivalent class to
PortInstantiation of our abstract syntax)7. This results for Figure 4.23 to the following
problem: The connector in line 13 has source port And3.in1 (cf. l. 7) and as target port
And.in1 (cf. l. 2), and the connector in line 15 has source port And3.in3 (cf. l. 9) and as
target port again And.in1 (cf. l. 2). This means that the object graph based on Haber’s abstract
syntax connects the port And3.in1 and And3.in3 with the one port And.in1; and this is
wrong and leads even to an invalid model.

The bottom part of Figure 4.22 shows Haber’s abstract syntax of the simulator runtime envi-
ronment. Haber’s simulator runtime instantiates the MontiArc models (cf. “Object Instantiation
of a Simulation” [Hab16, p. 90]). The abstract syntax of the simulator runtime environment
contains parts of our instance structure: The ISimComponent interface is similar to our Com-
ponentInst class, and the IPort interface is similar to our PortInst class. The simulator
runtime uses Java references of objects of the IPort interface for dataflow; thus it does not
contain any equivalence to our ConnectorInst class.

Because MontiArc supports architectural changes at runtime and the generation/compilation
process is highly modular, MontiArc generator does not optimize Java code according to control-
flow graph analysis techniques, and therefore, MontiArc does not need the ConnectorInst
class.

On the other side, EmbeddedMontiArc’s C++ generator uses the ConnectorInst and Ef-
fectorInst classes to analyze what computations can be executed parallel on different cores
as well as what calculations maybe switched without modifying the result (cf. [KRSvW18a] for
more details). Assume a component is decomposed of two matrix multiplication subcomponents:
the first subcomponent multiplies the 100× 20 matrix A with the 20× 50 matrix B and the result
is a 100× 50 matrix C; the second subcomponent multiplies this matrix C with a 50× 10 matrix
D and the result is a 100 × 50 matrix E. Executing the decomposed component from left to
right, i.e., (A ·B) ·D, needs about 300 000 operations8, whereas reordering the calculations to
A · (B ·D) based on the control-flow graph according to the connector and effector instances
only 40 000 operations are needed; causing in a speed-up of at least 7.5. The actual speed-up is
even higher as the second calculation does not create the very large temporary matrix C and thus,
effects like loading and storing memory blocks are less present.

Wortmann’s Abstract Syntax of MontiArc and MontiArcAutomaton

Figure 4.24 shows the abstract syntax of Wortmann’s MontiArc and MontiArcAutomaton symbol
table. Wortmann’s abstract syntax contains no connector class and the PortEntry does not
contain a self-reference to express the source or target port a specific port object is connected to.
Thus, the abstract syntax does not hold any information about data flow between components.
The absence of a reference class for TypeEntry results in missing links between type parameter

7 The following statements in [Hab16, Tbl. 5.9] underlines this: “A ComponentEntry is created for each MontiArc
component definition. A component entry consists of further entries that describe the component’s interface
and decomposition. The interface is given by a set of associated port entries.” [Hab16, p. 135], “A component
reference entry represents a reference to a component type. It is used to represent subcomponents as well as the
reference to the type of a supercomponent.” [Hab16, p. 136], and “Connector entries represent connectors in the
model which connect a source port (src) with a target port (trgt).” [Hab16, p. 136].

8A100×20 ·B20×50 ≈ 2 · 100 · 20 · 50 = 200 000 operations
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Figure 4.24.: Abstract syntax (symbol table) of MontiArc (top) and MontiArcAutomaton (bottom)
presented by Wortmann (copied from [Wor16, p. 53 and p. 54]).

definitions and their binding with concrete values. The incomplete nature of the symbol table
class diagram requires calculating the instance structures and their interactions for each tooling
(e.g., context condition checks, or code generation).

Figure 4.25 shows the abstract syntax (AST + symbol table) of the component X. The dashed
line between AST-OD and Symtab-OD shows the link between object diagrams of the abstract
syntax tree and the symbol table. This link is automatically created when an AST node creates
a symbol table entry. The structure of Wortmann’s abstract syntax is modular and focuses only
on the contents of a single file artifact. However, the additional C&C instance structure of
EmbeddedMontiArc across component artifacts makes implementing context conditions more
efficient. For example, the type incompatibility between source and target port of the connector,
defined in lines 4 and 5, is hard to figure out using Wortmann’s modular abstract syntax structure.
This is the case, because neither AST nor the symbol table contains direct connections between
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X:ArcComponent

:ArcComponentBody

prefix "AST" removed
for better readability

s1:ArcSubComponent

s2:ArcSubComponent

:QualifiedName

value = "s1.result"

:QualifiedName

value = "s2.ifTrue"

:ArcConnector

source

target

AST-OD...

X:Component

Switch:Component

:Type

name = "Integer"

:Type

name = "String"

:Type

name = "T"
incomingPort

outgoingPort

typeParameter

type

Parameter

component

Type

component

Type

s2:ComponentReference

s1:ComponentReference

subComponent

subComponent

Symtab-OD...
postfix "Entry" removed for better readability

:Port

name = "ifTrue"

:Port

name = "result"

link between
AST and
symbol table

component X {

component Switch<Integer> s1;

component Switch<String> s2;

connect s1.result -> 

s2.ifTrue;

}
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component Switch<T> {

port in T ifTrue,

in Boolean cond,

in T ifFalse,

out T result;

}
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MontiArcAutomaton

Figure 4.25.: Object diagram for AST (abstract syntax tree) and Symtab (symbol table) created
for left textual MontiArcAutomaton model. The AST-OD is created based on
Wortmann’s MontiCore grammar [Wor16, Listing A.1 on p. 250].

the two ports. Additionally, the abstract syntax also does not have a direct link between the
bounded generics in the component reference (cf. ll. 2, 3) and the generic port type of the
two Switch’s ports (cf. ll. 8, 11) due to the missing type reference class in the symbol
table. In contrast, EmbeddedMontiArc’s C&C instance structure, shown in Figure 4.17, contains
the ConnectorInst class having direct links to the source and target port objects of the
PortInst class, which again has a direct link to the concrete bounded port type.

Both, EmbeddedMontiArc and MontiArcAutomaton, support component interfaces which
are atomic and do not provide any behavior (cf. [Wor16, p. 51, and Listing 6.1 on p. 115]).
MontiArcAutomaton’s Application Configuration Language (cf. [Wor16, Section 8.1 on pp.
176ff.]) also supports the definition of a main component and it supports to bind platform-
independent component interfaces with platform-specific components [Wor16, pp. 115, and
Listing 8.1 on p. 177].

However, the motivation of introducing component interfaces in EmbeddedMontiArc and
MontiArcAutomaton is slightly different. EmbeddedMontiArc is a functional C&C modeling
language (cf. Subsection 2.1.2); and thus, it models the problem-specific part (e.g., how a
braking assistant works), and so it is by definition platform independent. Component interfaces in
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EmbeddedMontiArc help to create mathematical reference architectures. In EmbeddedMontiArc
component interfaces are logical variation points; e.g., filters used in image processing - all
having other problem specific properties such as stability about different noise distributions.
The platform specific part is added via tag models, e.g., ROS tags to define communication
between components, or generate against different frameworks or simulators such as Torcs,
or OpenDavinci. EmbeddedMontiArc toolchain also supports multiple targets such as native
Windows and Linux platforms as well as client-side Browser platforms (cf. [KRSvW18a]).

In contrast, MontiArcAutomaton uses interfaces only to bind platform-independent components
such as Timer class to different native API calls. For this reason, the binding is also only
defined in the Application Configuration Language which also specifies the generator target.
Thus, component interfaces cannot be used in MontiArcAutomaton to model variability in the
logical platform-independent layer.

Summary

The two abstract syntax structures of MontiArc or MontiArcAutomaton- Ringert [Rin14], and
Haber [Hab16] - do not introduce a main component instantiation mechanism. They provide a
number of MontiArc artifacts (which could also be only a library), and based on the Java code,
e.g., what artifacts are firstly loaded, different component and connector models are instantiated.
This thesis here introduces a complete model-based approach where EmbeddedMontiArc models
can be shipped as stand-alone (see ZIP file in Subsection 3.6.7) artifacts to be processed by
different tools.

Table 4.26 summarizes the comparison results of the different abstract syntax structures (AST
+ symbol table, or formal definitions in mathematical tuples) of the different MontiArc derivatives.
This table shows clearly that the two abstract syntax structures of EmbeddedMontiArc contain
the most and best navigable information. These two structures facilitate to formalize context
conditions in a few lines of OCL code (cf. Section 6.1), as well as they enable later to formalize
the satisfaction relation between EmbeddedView (C&C view) language and EmbeddedMontiArc
(C&C model) language precisely.
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Table 4.26.: Overview of the elements of the abstract syntax of different MontiArc derivatives.

von Wenckstern [this thesis]
(EmbeddedMontiArc)

Ringert [Rin14]
(MontiArcAutomaton)

Haber [Hab16]
(MontiArc)

Wortmann [Wor16]
(MontiArc-
Automaton)

CnCModel - (no main component) - (no main compo-
nent)

Application Config-
uration Language

Component structure cmp = (cType,
CPorts, ...)

ComponentEntry MAAComponent-
Entry

ComponentInstantiation CSubCmps Component-
ReferenceEntry

Component-
ReferenceEntry

ComponentInterface - (no extension or implements
relation between cType)

ComponentEntry isInterface flag in
MAAComponent-
Entry

Port CPorts PortEntry PortEntry
PortInstantiation tuple (name, t) ∈

CSubCmps ∪
{(cType, cmp)}

- (is an error in the
abstract syntax)

- (reference of Port-
Entry is missing)

Connector CCons ConnectorEntry -
Effector - - -
Range - (no arrays of port or compo-

nent instantiations)
- (no arrays of port
or component in-
stantiations)

- (no arrays of port
or component in-
stantiations)

Type (type system with units,
quantities, structs, enumera-
tions, and matrices)

P (only a set, no relation be-
tween port types)

ArcdTypeEntry
(Java type system),
CDTypeEntry

TypeEntry (Java
type system)

Parameter (parameters for
port types)

- ArcdFieldEntry,
ArcdTypeEntry

FieldEntry, Type-
Entry

ComponentParameter - - -
ParameterBinding - ArcdType-

ReferenceEntry
- (reference of Type-
Entry is missing)

CnCInstanceStructure structure m = (Cmps, Ports,
...) (main component must be
computed)

- -

ComponentInst Cmps ISimComponent -
PortInst Ports IPort -
ConnectorInst Cons - -
EffectorInst - - -
TParameterBinding - (no behavior config. Param-

eter for structure m)
- -
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public class ComponentSymbol extends CommonScopeSpanningSymbol {

public Collection<PortSymbol> getPorts () {

return this.getSpannedScope().<PortSymbol> 

resolveLocally(PortSymbol.KIND);

}

public Collection<ComponentInstantiationSymbol> getSubComponents() {

return this.getSpannedScope().<ComponentInstantiationSymbol>

resolveLocally(ComponentInstantiationSymbol.KIND);

}

}
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Java ...

Figure 4.27.: Java code excerpt of ComponentSymbol class. This Java class represents the
Component class of the abstract syntax shown in Figure 4.15.

4.6. Realization of the Abstract Syntax with Symbol
Management Infrastructure

This section shortly explains how both abstract syntax structures are realized with symbol
management infrastructure presented by Nazari [MSN17]. The first part of this sections describes
some implementation details of the symbol table and its resolving mechanism. The second part
of this section explains how the symbol table’s resolving mechanism helps to easily integrate the
different languages of the EmbeddedMontiArc language family.

Figure 4.27 shows a Java code excerpt of the ComponentSymbol class. This Java symbol
class is the equivalent class to the Component one of the abstract syntax shown in Figure 4.15.
The getPorts method (cf. ll. 2-5) in the Java class maps to the ports association going
from Component to Port in the class diagram in Figure 4.15. The getSubComponents
method (cf. ll. 6-9) in the Java class maps to the subs association going from Component to
ComponentInstantiation in the class diagram in Figure 4.15.

The ComponentSymbol class extends the CommonScopeSpanningSymbol class, be-
cause the component symbol spans a new scope. The reader can interpret each scope as a
repository which contains other symbols (cf. Section 1.1.3). In EmbeddedMontiArc only text
files (ArtifactScope) and component type definitions (ComponentSymbol) open scopes.
All other symbols (elements of the abstract syntax), e.g., PortSymbol, ConnectorSymbol,
and EffectorSymbol, do not span a scope.

Links between symbols are not hard coded to support an easy adaption and extension of
the abstract syntax. This is explained on an example later in this section. Therefore, the
ComponentSymbol class does not contain any collection of PortSymbols in a field variable
storing all the ports belonging to a component, nor does the ComponentSymbol contain any
collection field for subcomponent instantiations. Instead, the ComponentSymbol asks his
spanned scope repository to return all symbols of a special kind as it is shown in lines 3 and 4 to
receive all ports of a component and as it is shown in lines 7 and 8 to receive all subcomponent
instantiations.

The same mechanism holds for the ConnectorSymbol, it only stores the source and target
names as String variables. The ConnectorSymbol asks its enclosing scope to resolve port
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public class EmbeddedMontiArcSymbolTableCreator extends

EmbeddedMontiArcSymbolTableCreatorTOP {

@Override public void visit(ASTCompilationUnit node) {

String cuPackage = Names.getQualifiedName(node.getPackageList());

List<ImportStatement> imports = ...;

ArtifactScope artifactScope = new EmbeddedMontiArcArtifactScope(

Optional.empty(), cuPackage, imports);

putOnStack(artifactScope);

} 

@Override public void visit(ASTComponent node) {

ComponentSymbol component = new ComponentSymbol(node.getName());    

// MontiCore opens new scope, as ComponentSymbol is scope spanning symbol

addToScopeAndLinkWithNode(component, node); 

}

@Override public void endVisit(ASTComponent node) {

removeCurrentScope(); // MontiCore does not remove the scope yet

}

protected Boolean isInport = null;

@Override public void visit(ASTPort node) {

PortSymbol port = new PortSymbol(node.getName());

port.setType(...);

port.setDimension(node.getDimensionOpt().orElse(1));

// handling syntactic sugar to allow "ports in B in1, Z in2,(0:3) in3;"

isInput = node.getDirectionOpt().orElse(isInput);

if (isInput == null) {

Log.error("0xE1053 no direction at input port specified", 

node.get_SourcePositionStart()); }

port.setDirection(isInput);

addToScopeAndLinkWithNode(port, node);

} }
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Figure 4.28.: Java code excerpt of EmbeddedMontiArcSymbolTableCreator which
uses the abstract syntax tree to create the C&C model using the symbol table
management infrastructure.

instantiation symbols with the target or source name. Since each connector is defined inside a com-
ponent type definition in EmbeddedMontiArc, the enclosing scope of a ConnectorSymbol
is the spanned scope of a ComponentSymbol.

Java developers using the EmbeddedMontiArc language do not notice that the symbols of
the C&C abstract syntax are loosely coupled via the symbol management infrastructure. Java
developers just call the get methods of each symbol to receive the wanted information. In this
sense, the EmbeddedMontiArc symbol implementation encapsulates all the technical details of the
symbol management infrastructure. To receive the first component symbol of the abstract syntax a
developer needs only to create an EmbeddedMontiArcModelingFamily object having the
path to the Main.txt file. In a next step, the developer calls getMainComponentInstan-
tiation or getMainComponentInstance to receive component type instantiation or the
component instance of the root component defined in the Main.txt file. The root component
(instance) supports developers navigating through the Java classes as illustrated in the abstract
syntax models in Section 4.2 and Section 4.3.
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Figure 4.28 shows Java code excerpt of the EmbeddedMontiArcSymbolTableCreator.
The symbol table creator builds the abstract syntax based on the abstract syntax tree. The Embed-
dedMontiArcSymbolTableCreator extends the generated symbol table creator in line 2.
MontiCore uses the grammar definition file to generate the basic symbol table infrastructure as
well as visitor classes to traverse the abstract syntax tree in an efficient way. The generated symbol
table creator extends the generated EmbeddedMontiArc language visitor. The EmbeddedMon-
tiArcSymbolTableCreator overwrites the by default empty visit methods to extract
all necessary information stored in abstract syntax tree nodes in order to create the elements of
the abstract syntax. The first visit method in lines 3 to 9 is called when the root AST node
of a text file is traversed. Line 4 extracts the full qualified package name, and line 5 collects all
import statements in a list. Lines 6 and 7 initialize the artifact scope and add it to the global
scope. All scopes added in the next visited visit methods automatically belong to the given
package name. The symbol table management extends all names in later added scopes to their
full-qualified names based on this package and import information.

The second visitmethod in lines 10 to 14 creates the component symbol based on component
AST node. Ports and subcomponents are not added to the component symbol. Line 13 adds
the component symbol with its introduced scope to the previously created artifact scope as well as
it links the component symbol to the component AST and vice versa. Line 16 closes the current
component scope in the artifact scope. This is needed for nested inner component definitions, so
that derived full-qualified names (e.g., port names) of inner components differ from the ones of
outer components.

Lines 18 to 29 create the port symbol based on the port AST node. This code excerpt (it is still
very incomplete) is a little bit longer to illustrate how the symbol table creator handles syntactic
sugar. For example, line 22 sets the port dimension to 1 if it is absent in the AST9. Lines 24 to 28
extract the port direction information from the AST node; whereby the previous port direction is
used when the port direction is not specified in the AST. However, the first port AST node must
specify a port direction; lines 25 to 27 throw an error if this is not the case. Line 29 adds the
port symbol to the current scope, which is the scope created by the component symbol in line 13.
Additionally, line 29 links the port symbol to the port AST node. An alternative way (and for
the author of this thesis the preferred way) of handling syntactic sugar is to specify the relation
between EmbeddedMontiArcParsing and EmbeddedMontiArcTooling via OCL constraints as it is
done in Section 6.4 and to generate this Java code.

This code snippet illustrates that associations between symbols of the two classes in the
abstract syntax are only linked via the symbol management infrastructure. The symbol
table creator plus its helper classes contain about 1 000 lines of code to create the abstract syntax
structure based on the AST. It is so complex, because it must handle many kinds of syntactic
sugar (e.g., direction is not necessary, name based connections using the .* notation, and index
based short-cuts using the [:] notation) as well as the symbol table creator must define all
parameter definition symbols and their according parameter binding ones.

The next part of this section explains how Go functions can be adapted to component definitions
and how the symbol management infrastructure integrates them directly in the C&C model.

9This line is a large abstraction by assuming that the dimension is a number. However, the dimension can also be a
generic parameter and this case is much more complicated.
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func addsub(x, y int) 

(sum, diff int) {

sum = x + y

diff = x - y

return

}

1
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5

6

Go

component DoubleAddSub {

ports in Z x,

Z y,

out Z sum,

Z diff;

instance Addsub as;

instance Multiplier m[2];

connect this.* -> as.*;

connect as.sum -> m[1].factor1;

connect as.diff ->m[2].factor1;

connect 2 -> m[:].factor2;

connect m[:].res -> [sum,diff];

}
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component Addsub {

ports in Z x,

Z y,

out Z sum,

Z diff;

}
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capitalizes name

Figure 4.29.: Example how Go function can be integrated in C&C model.

The direct integration enables reusing the complete abstract syntax defined in Section 4.2 and
Section 4.3 by other tools without any adaption. The adaption of Go functions is only a simple
and illustrative example; other languages can also be integrated into the flexible abstract syntax
implementation.

Figure 4.29 illustrates an example where the Go function definition (cf. ll. 1-6) is used as
component type (cf. l. 12). To support this case, all what a language engineer needs to do is to
define an adapter translating Go function symbols to component symbols; lines 20 to 25 show
how a translation of such an adapter may look like. The adapter translates Go’s integer data type
to the whole number (Z) data type of EmbeddedMontiArc. It transforms in parameters to input
ports, and return parameters to output ports. Additionally, the adapter capitalizes the Go function
name during the translation process to satisfy EmbeddedMontiArc code conventions.

Figure 4.30 shows how the symbol table management infrastructure resolves the type associa-
tion of the ComponentInstantiation class of the abstract syntax defined in Figure 4.10.
First, the language engineer, aggregating the Go language with the EmbeddedMontiArc one,
creates a new modeling family. For this new modeling family, the language engineer registers all
Go adapters, e.g., the one which translates a GoFunctionSymbol to a ComponentSymbol.

A developer uses this new modeling family as symbol table. The developer calls the get-
Type() method of the ComponentInstantiation symbol to receive further information
about the as subcomponent instantiation in line 12 in Figure 4.29. Now, the ComponentIn-
stantiationSymbol, shown in Figure 4.30, calls the resolve method of its enclosing
scope which delegates this request to the global scope of the symbol table. The global scope
resolves this symbol further until it looks up the information in a map (cf. [MSN17] for complete
workflow). Since the map does not have any symbol with the name Addsub it returns null
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as:Component

InstantiationSymbol

GlobalScope:Scope

getType

Language Engineer

resolve("Addsub", 

ComponentSymbol.KIND)

:Map

get("Addsub")

null

a1:GoAdapter

adaptName

("Addsub")

"addsub"

get("addsub")

s1:GoFunction

Symbol

adapt

Symbol(s1)

s2:Compo-

nentSymbols2:Compo-

nentSymbols2:Compo-

nentSymbol

registerAdapter(a1)

SD

Developer

Figure 4.30.: Example workflow how the symbol table resolves the Addsub component type
name and adapts the addsub go function to a ComponentSymbol.

for not found. Then, the global scope iterates overall registered adapters to adapt the name10

to addsub; this is the inverse function of the name translation shown in Figure 4.29. In a
next step in Figure 4.30, the global scope asks the map for a symbol with the new addsub
name. Since this key exists in the map, the map returns a GoFunctionSymbol to the global
scope. As the global scope was asked to resolve a component symbol kind, the global scope calls
the adapter to translate the GoFunctionSymbol to a ComponentSymbol. Last, the global
scope returns this ComponentSymbol to the getType method of the ComponentInstan-
tiationSymbol. The getType method delegates this result to the developer.

The developer receives an adapted component symbol. If the developer calls the getPorts
method on this adapted component symbol (not shown in Figure 4.30), this symbol calls re-
solveLocally(PortSymbol.KIND) (cf. ll. 3-4 in Figure 4.27) on the spanned scope of
the component symbol to receive all ports. Now the scope iterates over all symbols it contains and
checks if one of them has the symbol kind PortSymbol.KIND. This is not the case, because the
addsub Go function does not define any ports. Therefore, the first iteration over the scope’s sym-
bols returns an empty set. Next, the scope calls all adapters to adapt the PortSymbol.KIND;

10In the MontiCore implementation this is done via filters, but for simplicity we abstract the filter and call the
adaptName function of the adapter. Filters and adapters are pairs in the implementation; both are needed
together.
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Figure 4.31.: Resolving of Symbols in a scope graph resulting from language composition in
MontiCore (inspired by [MSN17, Fig. 8.1]).

the registered adapter a2 translates this kind to GoParameterSymbol.KIND, and the adapter
a3 translates the port symbol kind to GoReturnSymbol.KIND. Iterating over the scope again
and collecting all symbols with these new kinds, returns two GoParameterSymbol objects
(x and y, cf. l. 1 in Figure 4.29) and two GoReturnSymbol objects (sum and diff, cf.
l. 2 in Figure 4.29). Next, the adapters a2 and a3 translate the GoParameterSymbol and
GoReturnSymbol objects to four PortSymbol objects. Finally, the scope of the adapted
component symbol object s2 returns these four adapted port symbol objects to the component
symbol which delegates them to the developer.

The description of the two workflows (ComponentInstantiationSymbol::getType
and ComponentSymbol::getPorts) elucidates why the implementations of both abstract
syntax structures resolve associations between their classes via the symbol management infras-
tructure of Nazari [MSN17] as shown in Figure 4.27. The designed and implemented abstract
syntax realizations are highly extensible for new language aggregations or language embeddings.

The next part of this sections explains on a parking assistant C&C model how the symbol
management infrastructure supports to exchange information via symbols of four different
languages.

The top left part in Figure 4.31 shows a C&C model belonging to a composed language
containing of EmbeddedMontiArc (describing the C&C structure with components, ports, and
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connectors), SIStructs (which describes composed data types), CNN (to describe the functional be-
havior via neuronal nets), and MontiMath (describing the behavior in a declarative and functional
style and supporting matrices) language.

The ParkAssistant component type is decomposed of three subcomponent instances
having the component type Filter and SensorFusion. The atomic component type Fil-
ter describes its behavior via a neuronal net. The atomic component type SensorFusion
models its behavior via matrix vector multiplications. Each of these three component types are
described in its own textual artifact. The EmbeddedMontiArc language processes the artifact of
the ParkAssistant component type; EmbeddedMontiArcDL language processes the artifact
of the Filter component type; the EmbeddedMontiArcMath language processes the artifact
of the SensorFusion component type; and the SIStructs language processes the artifact of
the GPS port type. The main task of the symbol management infrastructure is to aggregate the
abstract syntax of these four different artifacts.

The presented ParkAssistant component has the input port posCar that data type is
GPS. To receive essential information about the GPS data type, e.g., type ranges, or unit kinds, the
EmbeddedMontiArc language (as it defines the port) queries the symbol table for a GPS symbol.
Now, the symbol table queries the scope, containing the port symbol, and its subscopes whether
they have a GPS symbol and then a resolving workflow similar to Figure 4.30 is started; this
process is called bottom-up or down resolving.

In our ParkAssistant example neither the scope nor its subscopes contain the GPS symbol;
thus, the symbol table resolves up by asking the parent scopes until they receive the global scope
(marked as GS in Figure 4.31). The global scope asks all artifact scopes whether they or their
subscopes contain the GPS symbol. When the global scope resolves symbols, the symbol table
also loads automatically text files, which may contain the symbol based on its kind and its name.
Loading a text file means parsing the file, creating the AST and symbols, as well as registering
symbols in the symbol table. In our example the symbol table would automatically load all
component and struct files. While loading the GPS struct file, the GPS symbol is found and this
symbol is returned to the global scope. Finally, the global scope returns the GPS symbol, found
in the struct file, back to the EmbeddedMontiArc language as resolving result.

This explained process of resolving symbols asked in one language and found in another
language is called cross-language inter-model resolution. Efficient language aggregation is only
possibly due to this cross-language aggregation, as symbols defined by other languages can be
used as they were defined in their own language. This means, it does not matter for tooling (e.g.,
context condition checks, or type inference) where the symbol is defined. And importantly, the
checks for C&C models - such as ports only with the same data types can be connected - do not
need to be updated when integrating the EmbeddedMontiArc language into the language family
containing SIStructs.

The same concept holds for language embedding where the CNN language defines functional
layers and the input data as well the output data is not defined in the CNN implementation. In
contrast, the CNN input data are ports defined in the EmbeddedMontiArc language. Due to the
intra-model resolution, the CNN language asks for a symbol name used in any CNN layer and the
symbol table automatically resolves this information no matter where it is defined (e.g., in C&C
models or in struct models). The resolving mechanism for the Math language is very similar to
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the CNN language: the atomic component implementation is a math formula reading input port
values and writing its result to an output port.

MontiCore’s ability to combine grammars and to exchange symbols between languages enables
the development of modular language components and tools which can be completely reused to
engineer large language families and powerful modeling tools.



Chapter 5.

Enriching EmbeddedMontiArc Models
with Extra-Functional Properties

This chapter presents a model-driven approach to enrich component and connector (C&C) models
with extra-functional properties. This tagging approach enables non-invasive extensions of the
C&C modeling language EmbeddedMontiArc with new types of extra-functional properties.

The first section gives an overview of existing extra-functional properties in literature to show
how flexible the tagging mechanism must be to support all of them. The second section presents
existing approaches for annotating component and connector models with extra-functional prop-
erties. This section serves as basis to create the best fitting solution for our tagging approach by
considering the best points of existing work. The third section lists the requirements, derived
from the first two sections, of our tagging mechanism. The fourth section introduces a turbine
controller model that is enriched with different extra-functional properties. The turbine controller
is the running example for the rest of this chapter.

The last section presents details of the tagging mechanism for component and connector models.
This larger section is divided into five subsections: Subsection 5.5.1 presents the general tagging
approach; it introduces all involved artifacts and gives an overview of the relations between
these artifacts. Subsection 5.5.2 elucidates the tag schema language to define concrete and
abstract syntax of new extra-functional property types. Subsection 5.5.3 explains the tag model
language to enrich C&C models with the extra-functional properties as defined in a tag schema
model. Subsection 5.5.4 shows the derivation process of class diagrams based on the previously
defined tag schema; it also illustrates how the generated class diagrams are merged with the ones
representing the abstract syntax of EmbeddedMontiArc (cf. Chapter 4). Subsection 5.5.5 lists
context condition rules for tag schemas, tag models, and between both.

The tagging approach of this chapter enables a complete model-driven workflow to enrich C&C
models with extra-functional properties: (1) The tag schema defines the new extra-functional
property type. (2) Tag Models, each conforming to one tag schema, annotate concrete extra-
functional properties to existing C&C models. (3) The derivation of class diagrams for tag
schemas and merging them with the class diagrams of EmbeddedMontiArc’s abstract syntax,
integrates these new defined extra-functional properties directly in the well-known C&C model
and C&C instance structure; this way OCL constraints (cf. Chapter 6) can define context
conditions of enriched C&C models.

The here presented tagging approach has the following advantages, compared to most other
solutions explained in Section 5.2 [MRRvW16]:
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(i) EmbeddedMontiArc models are not polluted with extra-functional properties and, thus,
these models stay easy to read.

(ii) Inherent separation of concerns enables different domain experts to decorate the C&C
model with their own separated extra-functional tagging models.

(iii) Tag models reference C&C elements by their names present in the concrete syntax; hence,
no knowledge about the implementation APIs of EmbeddedMontiArc are needed to tag
these C&C models with extra-functional property values.

5.1. Overview of Existing Extra-Functional Properties

Before a tagging mechanism for extra-functional properties can be defined, we need to analyze
what kinds of extra-functional properties exists. Examples of extra-functional properties/require-
ments are:
• Accuracy [KPMS01]: Mean magnitude of relative error.
• Accessibility [BP06]: Access control and audit for blind people, or older persons.
• Analyzability [BCvDV11]: When is a software optimal decomposed?
• Attractiveness [PSSK14]: Human activeness for features.
• Availability [LKD+03]: For example, service level agreements in cloud computing, and

network connected components.
• Backup/Recovery [BI96, SPE11]: Cost, schedule, evolvability, performance, locality.
• Capacity [MA02]: Current and forecast.
• Certification [DEISS09]: ISO certificates, certificate ranking, communication certificates.
• Completeness [SRK+12]: For example, check how many requirements have been im-

plemented, or how many variants covers one product-line via test coverage or model
checking.
• Complexity [CSM+79]: Psychological Complexity of Software.
• Compliance of Software Systems [SSC96a, AK13]: Risk management.
• Configure-ability [CBCP02]: Internationalization (e.g., different countries, languages), or

Personalization (personal user experience).
• Consistency [WYW+10]: Replica strategy, or consistency levels [Dat17].
• Deployment [HHW99, KH08]: Publishing, discovery, dependency resolution, download-

ing, installation, (re)configuration launching, activation process, deploying alternative
combinations of components , Solution Deployment Descriptor [OAS08].
• Documentation [TH77]: JavaDoc, PSL / PSA.
• Efficiency [CMST03]: Resource consumption for given load, storage efficiency, or execu-

tion efficiency.
• Effectiveness: Resulting performance in relation to effort, e.g., via effectiveness metrics

[Gac16].
• Emotional factors [vdWS10]: Fun or absorbing.
• Error and attack tolerance [AJB00]
• Expected market: Is the software or product for kids or for adults only, e.g., FSK 16 or

FSK 18 [Sei12].
• Exploitability [WZX08]
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• Extensibility: Ability to add features, carry-forward of customizations at next major version
upgrade; it depends, e.g., on the number of free pins in communication buses [OPSS93].

• Failure management, cf. “Model-Based Failure-Management for Automotive Software”
[EMOW07]

• Fault tolerance [DW02, dLdCGR06]: Coverage modes (not failed, failed covered, failed
not covered).

• Legal and licensing [DPGA10]: Issues or patent-infringement avoidability instrumentation.
Instrumentation of software refers to the process of enabling the software to be monitored
at selected points to capture significant system state data at those points.

• Interoperability [KLH+02, CCW+05]
• Maintainability [SRK+08]: Coding guidelines, or cyclomatic complexity of components

[CKK01].
• Maturity, cf. “The Capability Maturity Model: Guidelines for Improving the Software

Process” [WCC95]
• Modularity: Design structure matrices [SGCH01]
• Performance/Response time: Jitter, response, latency, throughput, cf. palladio component

model [BKR09].
• Platform compatibility
• Price
• Privacy, cf. “A Framework for Modeling Privacy Requirements in Role Engineering”

[HA+03]
• Reporting: Severity level (warning, error, information), and output format.
• Resource constraints: Processor speed, memory usage, disk space, network bandwidth,

energy efficiency, or response time.
• Reusability [SKS92]
• Robustness [Fir04]: Functions under abnormal conditions such as environmental tolerance,

error tolerance (wrong user input), failure tolerance (defect in system execution).
• Safety/Factor of safety, e.g., ASIL [Int11]
• Scalability: Single/multi-thread, GPU support, or running on a cluster.
• Security, e.g., permissible information flows. [Den76]
• Stability
• Survivability: System must survive fire, natural catastrophes.
• Testability [VM93]
• Traceability
• Withdraw-ability: Degree to which a problematic version of a system or wrong data can be

withdrawn and replaced with a previous versions.

This incomplete list (more properties are listed in [MMR14, Pou94, SCS11b, Rom85]) shows
that extra-functional properties are varying very much, and thus the mechanism for defining these
properties must be general and flexible. It may even be that further kinds of extra-functional
properties will become of interest in the future.
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property set AADL_Projects is

Time_Units: type units ( 

ps, 

ns => ps * 1000, 

us => ns * 1000, 

ms => us * 1000, 

sec => ms * 1000, 

min => sec * 60, 

hr => min * 60); 

-- # 

end AADL_Projects;

property set Timing_Properties is

Time: type aadlinteger

0 ps .. Max_Time units Time_Units; 

Time_Range: type range of Time; 

Compute_Execution_Time: Time_Range

applies to thread, device, subprogram, 

event port, event data port); 

end Timing_Properties;

thread foo 

properties -- (1) 

Compute_Execution_Time => 3 .. 4 ms; 

Deadline => 150 ms ; 

end foo; 

thread implementation foo.impl

properties -- (2) 

Deadline => 160 ms; 

Compute_Execution_Time => 4 .. 10 ms; 

end foo.impl;

process implementation bar.others

subcomponents

foo0 : thread foo.impl; 

foo1 : thread foo.impl; 

foo2 : thread foor.impl

{Compute_Execution_Time => 

20 .. 40 ms;}; -- (3) 

properties -- (4) 

Compute_Execution_Time => 

30 .. 50 ms applies to foo1;

end bar.others; 

Listing 1 Listing 2 Listing 3 Listing 4

Figure 5.1.: Example how to define and use properties in AADL (copied from [Ins15, Slides
16-17]).

5.2. Existing Approaches For Annotating Component and
Connector Models with Extra-Functional Properties

In literature exist several approaches in different scenarios where models are enriched with
different information. This section summarizes some language mechanisms to enrich C&C
models with additional information.

AADL uses typed attributes to associate information to component types, implementations,
subcomponent instances, or contained property associations [Ins15, Slides 16-17]. A typed
attribute may have one or more properties, collected in a property set. Each property has a name,
a type, and a list which component kinds are allowed to enrich. Figure 5.1 shows an example
how properties are defined (two left listings), and how they are used (two right listings) in AADL.
Listing 1 in Figure 5.1 defines time units in AADL. Listing 2 in Figure 5.1 defines the compute
execution time property for threads, devices, subprograms, event ports and event data ports. The
type of this compute execution time property is a time range, which is also defined in Listing 2.

EmbeddedMontiArc’s units and type build-in mechanisms supports specifying the type simply
by (0 ps : oo s). This type contains all values being greater equals zero picoseconds (0
ps). The infinite seconds (oo s) means that the type (0 ps : oo s) has no upper limit;
-oo s is the analogue syntax for types having no lower limit.

Listing 3 in Figure 5.1 defines values of this compute execution time properties inside (1) the
component type thread, and inside (2) an implementation of a thread. Listing 4 in Figure 5.1
defines values of this compute execution time property inside (3) a subcomponent instance, and a
(4) property association.

ACME uses property types to define properties. ACME supports multiple representations
and views to add values to the defined property types in different artifacts. However, ACME
does not support relations between property types defined in different artifacts1. The left side
in Figure 5.2 shows an example how to define the property type CallType for a connector
having the one property returnsValue and how to add this property types to connectors in
the LunarLander system. The right side in Figure 5.2 shows different property views to enrich
the client server architecture with Visualisation, Source Code, and Performance
Data.

1“The ability to associate multiple representations with a design element (any of the ACME building blocks:
components, connectors, and so on) enables ACME to encode multiple views of architectural entities (although
there is nothing currently built into ACME that supports resolution of inter-view correspondences).” [GMW00a,
pp. 53f.]
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//Global Types

Property Type returnsValueType = bool;

Connector Type CallType = {

Property returnsValue : returnsValueType; 

};

System LunarLander = { 

// Connectors

Connector UserInterfaceToCalculation : CallType {

Property returnsValue : returnsValueType = true;

}

Connector UserInterfaceToDataStore : CallType {

Property returnsValue : returnsValueType = false;

}

}

Figure 5.2.: Example how to define and add properties to ACME models (left part copied from
[TMD10, slide 33]; and right part copied from [GMW00a, Figure 3.4]).

Haugen et. al. [HMPO+08] present an approach where not the base model, in this paper
a simple arithmetic model, is directly enriched with annotations; instead, the authors create
an additional variation model for specifying model feature combinations. Besides the one
advantage of directly marking model elements with variability, the usage of annotations has the
one large disadvantage: base models are cluttered with variability specifications, and thus, only
one variability model exists for each base model [HMPO+08]. For this reason, Haugen et. al.
suggest to separate DSL languages from variation ones. Besides addressing main disadvantage of
annotations, the separation approach has the following advantages: (points 1. to 3. are copied
from [HMPO+08])

1. Domain experts can concentrate on domain language concepts only.
2. The base DSL becomes compact and simple.
3. The separated approach supports division of labor and separation of concerns.

The ProMoBox [MDL+14] framework enriches domain specific models with temporal proper-
ties so that general constraints (e.g., elevator will not pass a passenger more than once) can be
automatically verified with Spin [Hol97]. To easily define the temporal properties their approach
generates five (design, runtime, input, output, properties) pattern languages, so that users do
not need to specify error-prone LTL formulas. Similar to Haugen et al., this approach uses five
different domain specific languages for defining different system properties; but furthermore, due
to their generative aspect, ProMoBox can guarantee that the five pattern languages are consistent
with the previously defined domain specific model.

Lara et al. [LGC14] presents an approach how to remove complexity, e.g., removing pow-
ertypes or stereotypes, from two-level modeling by introducing multi-level modeling. It also
supports introducing dynamic features, e.g., new extra-functional properties, which are not given
in the concrete meta-model.

Selic [Sel07] explains how to refine existing (widely-defined) UML diagrams with profiles, or
stereotypes. The usage of this defined stereotypes or profiles is constrained via OCL. A profile can
contain several stereotypes being in relations which each other. The advantages of this approach
are separated abstract syntax models (the C&C abstract syntax model and the profile ones adding
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EFP

1 1

«power»

context EFP efp inv:

efp.instance instanceof

ComponentInst &&

efp.value > 0 W

OCL

CD

«power»

:EFP

«interface»

ElementInst

«interface»

Value

turbineController

:ComponentInst

5 mW: Number

«delay»

context EFP efp inv:

efp.value >= 0 ms
OCL

«delay»

:EFP :ConnectorInst

2s: Number

CD

CD

OD

OD

Figure 5.3.: Example how to add extra-functional properties via profiles.

new extra-functional properties), and separate object diagrams which can be merged (weaved) to
one large diagram later. Figure 5.3 shows an example how to add extra-functional properties to
models via profiles. The downside of this approach is that tagging many properties via object
diagrams is time consuming; number objects 5mW and 2s are not completely modeled as all
attributes (cf. Figure 4.5) are omitted.

Figure 5.4 shows how to add non-functional properties via tagged values to systems engi-
neering diagrams using UML/MARTE NFP framework [EDG+05]. Special about this MARTE
approach is that MARTE also adds the source property to extra-functional property; e.g., calc for
calculated, or req for requirement in Figure 5.4. In MARTE complex extra-functional properties
(complexNFP) may have multiple extra-functional property values. For example, the Latency
property has the two values worst-case execution time (WCET) and deadline. MARTE NFP
has full unit support: Numbers and units can be directly assigned as values, e.g., WCET(5.0,
ms, calc). Extra-functional property data types specify the allowed unit kinds, e.g., Dura-
tionUnitKinds; these unit kinds are very similar to our quantities defined in Figure 3.18.
One drawback of the MARTE NFP approach is that the model (the activity diagram in Figure 5.4)
is directly annotated with these extra-functional property values and not separated as suggested
by Haugen et. al.

Figure 5.5 illustrates how extra-functional properties are defined and added to C&C models
with the attribute framework [SSCC09] of ProCom. ProCom is a two layer (ProSys, and ProSave)
component model for control-intensive distributed embedded systems [SVB+08, BCC+08].

The left side in Figure 5.5 presents an attribute type registry. It contains all defined extra-
functional properties of an organization. The type identifier must be unique. It is also possible
to group the registry into categories such as resource usage, reliability, or timing
[SSCC09].
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Figure 5.4.: Applying tagged values for annotating non-functional properties with the MARTE
NFP framework (copied from [EDG+05, Figure 6]).

Sentilles [SSCC09] et al. can specify multiple values per attribute on their extra-functional
properties including conditions when an attribute should be valid, e.g., testing or production, plus
dependencies between attributes, and a version number. The data format of an extra-functional
property are primitive types (e.g., Integer, or Float), structured types (e.g., arrays), or
complex types (e.g., value distribution, external models, or images).

As shown in the right side of Figure 5.5, the framework also stores meta data for attribute
values. Example meta data are the source of the value (e.g., requirement, estimation, measurement,
simulation, formal analysis with tool X, or generated from implementation), timestamp, or
accuracy [SSCC09]. Besides meta data, a value attribute may consist of multiple validity
conditions; e.g., specific platform, usage profiles, or attribute dependencies [SSCC09].

Since one component may have different attribute values for an attribute, there must exist
a selection strategy to filter the wanted extra-functional property values. In the right part of
Figure 5.5, the attributes having a gray background color are deselected.

Look [GLRR15], [Loo17, Section 4.3] et. al. present an approach to derive tag languages
and their tag schema languages systematically from existing domain specific languages (DSLs).
The advantage of this approach are “clean, readable, and reusable” [GLRR15] DSLs as well as
the tags follow a defined type schema. Look et. al. derive the tag schema and the tag model
languages based on an existing DSL. This “systematic derivation considerably reduces the effort
necessary to implement the tag language” [GLRR15].
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Figure 5.5.: Attribute Type Registry to define extra-functional properties (copied from [SSCC09,
Fig. 2]). Right: Attribute configuration and selection (copied from [SSCC09, Fig.
8]).

Figure 5.6.: Tagging approach of Look et. al. (copied from [GLRR15, Fig. 2]).

Figure 5.6 shows that based on an existing language grammar LG and the predefined common
tagging LTag

Common and schema LSchema
Common languages, the grammar files of the tag model LTag

G and
the tag schema LSchema

G languages are derived. The schema model MLSchema
G

is a model of the
LSchema
G language and it defines new schemas, e.g., extra-functional property ones. The tag model

M
LTag
G

is a model of the LTag
G language and it enriches models MLG

with extra information
conforming to an MLSchema

G
tag schema model.
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Besides annotating models via tags, stereotypes, profiles or typed attributes; in literature
also exist transformation languages and tools to transform models into a version enriched with
appropriate information [Loo17]. Examples of transformation languages or tools are UMLAUT
[HJLGP99], XSLT [MVG06], Atlas Transformation Language [JK06], concrete syntax-based
graph transformation [GMPO09], MontiTrans [Wei12b, HRW15], T-Core [SVL15], and QVT
Relations [Wes18]. This section does not take a closer look at this transformation languages
and tools, as results of transformations are large models polluted with many extra-functional
properties. And this thesis prefers an approach separating extra-functional properties as suggested
by Haugen et. al. and Look et. al.

5.3. Requirement Analysis

Based on the literature survey of extra-functional properties (cf. Section 5.1), and already existing
approaches (cf. Section 5.2) to enrich models (esp. C&C models) with information, our tagging
mechanism should satisfy the following requirements:

• (T1) Modeling of extra-functional properties should be done in separated files due to
separation of concerns.

• (T2) Tagging mechanism must support (a) to define new extra-functional property types
and (b) to annotate models with consistent values to these types.

• (T3) Tagging mechanism must support units, because most extra-functional properties in
embedded systems have units.

• (T4) Tagging mechanism should support tables, since prices (e.g., quantity discount), and
mechanical properties (e.g., transmission ratios for gears) are specified in tables.

• (T5) Extra-functional properties may restrict its tagging capabilities, e.g., extra-functional
property delay should tag connector elements in a C&C model.

• (T6) Elements may be tagged multiple times by extra-functional properties of the same
type.

• (T7) Support to add meta-data (cf. Sentilles) to property types. Tags must be able to be
tagged again.

• (T8) Tag values may specify multiple extra-functional properties, e.g., structures or sets.
• (T9) Mechanism to select extra-functional property attributes based on its meta data or

based on values of these properties (cf. Sentilles).
• (T10) Conditions when an attribute of a type maybe reused (cf. Sentilles); e.g., to express

dependencies on extra-functional property types.
• (T11) Definition of syntactical constraints about C&C models enriched with (different)

tags.

(T1) is crucial, because “it is reasonable to assume that hundreds of attribute types or more
will be introduced” [SSCC09, p. 5], and they should not all be defined in one file.

(T2) is needed when the extra-functional properties should be further processed; and due to the
different structure (values, statistical distributions) of extra-functional properties there exists not
one general abstract syntax structure.
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(T3) is obvious, when looking at units of the extra-functional properties: jitter in ms, response
in ms, throughput in Gbit/s, processor speed in GHz, memory in MB, energy usage in W, price in
Euro, or temperature working area in ◦C.

(T4) is not needed, but it makes defining many key-value pairs easier as tagging one element
several times with a structure representing a single row of table. A common example is rights
management, where a table contains user names with trusted levels such as user or administrator
for a component.

(T5) helps to have a consistent tagging of information.
(T6) is needed when modeling a product-line of hardware, because the same user functionality

has different extra-functional properties such as down-time, accuracy, throughput, and price.
Most tags are enriched with meta data such as version number, date created, date modified,

or source. Enriching tags with meta data (T7) enables to define the meta in one central place,
and multiple tags can be tagged with the same meta-data, plus the extra-functional tags (latency,
price) are not polluted with all the meta-data which is quite uninteresting for the extra-functional
property expert.

(T8) it is often needed as the examples in MARTE NFP and ProCom’s attribute framework
(Figure 5.4 and Figure 5.5) showed.

(T9), (T10), and (T11) are beyond just enriching models with data. These requirements deal
with more complex mathematical expressions between extra-functional property values. Some
remarks to (T11): Enriching a C&C model with tags adds new properties and constraints to the
model. However, tags may lead to inconsistent C&C models. Therefore, the tagging mechanism
must support a way to define syntactical constraints to identify when C&C models enriched
with (multiple) extra-functional properties are consistent. The syntactical constraints about extra-
functional tags are derived by the semantics of the extra-functional tag types. For example, a
constraint may restrict that the tagged price of a component is larger equals to the sum of the
tagged prices of its subcomponents; this constraint is based on the meaning of the tag type price
that bought items in the real world (i.e., our subcomponents) cost some money.

The next chapter explains how to express constraints to filter (return only elements satisfying
this constraint) or to check properties with OCL expressions. This OCL framework also supports
to define constraints or dependencies of different domain elements enriched with extra-functional
properties.

5.4. Running Example

Figure 5.7 shows the turbine controller C&C model that is used as running example to explain
the tagging mechanism in this chapter. The C&C architecture without extra-functional properties
is a modified version of a Simulink wind turbine controller (cf. [SSCS16, Fig. 4]) of an
industrial prototype. Wind Turbine System: An Industrial Case Study in Formal Modeling and
Verification [SSS+13] formalizes this turbine controller model as timed automata and it also
shows simulation results executing this model. The paper Wind Turbine Control Using PI Pitch
Angle Controller [HK12] presents recommended coefficients for a wind turbine controller to have
the best performance of a 5 MW wind turbine without destroying the wind turbine - if it is too
windy, the blades get in less optimal positions to limit the turbine performance. The v in the
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Figure 5.7.: Turbine controller model enriched with extra-functional properties (architecture
slightly modified from [SSCS16, SSS+13]; power limitation table copied from
[HK12]).

powerLimitation table presents the actual wind speed in meter per second, lambda is the
tip speed ratio, Cp is the power coefficient of the wind turbine, and beta is the blade pitch angle.

The turbine controller consists of eight subcomponent instances. The Filtering subsystem
transduces, filters and scales the wind and plant signals [SSS+13]. The main controller handles
the performance and operations of the wind turbine to maximize the energy production and to
prevent any damage [SSS+13]. Based on the environment conditions such as wind state, the
controller selects the turbine’s operational model, i.e., park, start-up, generating, or braking
[SSS+13]. The pitch controller calculates the proper pitch angles to steer the rotor blades when
starting up the turbine or when generating power [SSS+13]. The two brake controllers ensure the
safety of the wind turbine, e.g., during wind turbulences [SSS+13]. The pitch estimator guesses
the current pitch of the wind turbine by using interpolated history of sensor data.

Teams being responsible for different aspects (e.g., intellectual property, efficiency, and safety)
of the wind turbine added important extra-functional properties to the turbine controller model.
Since the main controller is bought-in as hardware solution, its size is completely specified. The
overall size of the turbine controller chip is also specified, as the controller hardware must fit in
the plant. The brake controller types specify the amount of energy they are allowed to use for
braking; more energy does not work due to cooling issues. The two brake controller instances
brake with different intensity, and, therefore, they have a different maximum energy consumption.
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component TurbineController {

port out B parkPosition;

instance Filtering filter;

instance MainController mainController;

instance PitchEstimator piEst;

instance BrakeCtrl(50%)  brCoA; 

instance BrakeCtrl(100%) brCoB;

instance ParkController paCo;

connect brCoA.brakeControl -> paCo.brakeControlA;

connect brCoB.brakeControl -> paCo.brakeControlB;

connect paCo.parkPosition -> parkPosition;

}

1

2

3

4

5

6

7

8

9

10

11

12

EMA ...

component Filtering {

port out (0 m/s : 20 m/s) filteredSpeed;

}

13

14

15

EMA ...

component MainController {

ports in (0 m/s : 20 m/s) filteredSpeed,

out (-5°/s^2 : 0°/s^2) pitchBrake,

(0 °/s : 10°/s) turbineState;

}

16

17

18

19

20

EMA ...

component PitchEstimator {

ports in (0 m/s : 20 m/s) filteredSpeed;

}

21

22

23

EMA ...

component PitchRegulator { }24

EMA ...

component BrakeCtrl ( (0% : 100%) maxBrakeForce ) { 

ports in (-5°/s^2 : 0°/s^2) pitchBrake,

(0 °/s : 10°/s) turbineState;

}

25

26

27

28

EMA ...

component ParkController { 

ports in (-5°/s^2 : 0°/s^2) brakeControlA,

(-5°/s^2 : 0°/s^2) brakeControlB,

out B parkPosition;

}

29

30

31

32

33

EMA ...

Main-Component-Instantiation: TurbineController turbineCtrl;34

Main.txt

Figure 5.8.: EmbeddedMontiArc code of TurbineController C&C model of Figure 5.7.
Only the elements, enriched with extra information, are shown.
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The brake values, shared between the brake controllers and the park controller, are estimated
values how hard the actuators actually brake. These brake values are not 100% reliable, its actual
braking depends on the outside weather conditions. In contrast, the Boolean park condition
connection from the park controller to the turbine controller is 100% reliable as the systems
knows for sure whether the rotor blades are locked or not.

To protect the intellectual property from reverse engineering of the bought-in main controller
chip, the communication of the speed input port and both output ports are encrypted. The Fil-
tering component type uses an Apache 2 licensed library, and the pitch regulator component
uses a library licensed under BSD 2. The main controller hardware is bought-in and thus has a
commercial license. All other components are in-house developments and have no licenses, yet.

Figure 5.8 shows the textual EmbeddedMontiArc code of the graphical C&C model of the
turbine controller in Figure 5.7. Figure 5.8 contains only the modeling elements, which are tagged
with extra-functional properties later in this chapter. The data type B in lines 2 and 31 stands
for Boolean (B := {true, false}). The other data types are numerical data types representing
a range, e.g., filteredSpeed in line 13 produces values between 0 meter per second and
20 meter per second. The instance keyword creates subcomponents of a given component
type. Line 6 and line 7 create two brCoA and brCoB subcomponents of the BrakeCtrl type,
whereby the first brake controller uses maximal 50% of the available brake force to save energy.
The connect keyword connects the source port, left of the -> arrow, with the target port, right of
the arrow, to model data flow. Line 34 says that the TurbineController component type
creates the root component turbineCtrl of this C&C model.

5.5. Tagging Mechanism for Component and Connector
Models

This section presents the tagging mechanism for EmbeddedMontiArc. The tagging mechanism of
EmbeddedMontiArc is based on the tagging engineering approach for domain specific languages
by Look et. al. [GLRR15, Loo17]. The tagging mechanism contains two languages: the tag
schema language, and the tag model language. The tag schema one defines the structure of an
extra-functional property: what elements can be tagged and what format is used. The tag model
language enriches existing C&C models with extra-functional properties from different domains
without modifying the textual EmbeddedMontiArc files.

In contrast to Look et. al. [GLRR15, Loo17] where the tagging mechanism works on the
abstract syntax tree, our tagging mechanism works on both abstract syntax structures, C&C model
and C&C instance structure (cf. Chapter 4), based on the symbol management infrastructure
[MSN17]. Thus, our tagging mechanism can address all (symbol) elements which have a concrete
or derived name. The derived names of connectors and effectors are sourcePortName ->
targetPortName.

The first part in this section presents the general approach of the tagging mechanism of
EmbeddedMontiArc. The second part elucidates the tag schema definition language, the third part
explains the tag model language, the fourth part shows the derivation process of class diagrams
based on tag schemas, and the last part presents some general consistency rules between tag
model and tag schema.
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Figure 5.9.: Overview of artifact relations used by tagging mechanism (inspired by [GLRR15,
Fig. 2], cf. Figure 5.6).

5.5.1. General Approach

Figure 5.9 illustrates the used artifacts and their relations of the tagging mechanism. The Embed-
dedMontiArc tagging approach follows the general one presented by Look et. al. [GLRR15]. The
gray parts of Figure 5.9 illustrate the artifacts and their relations explained in Chapter 4. The Tag
Model and Tag Schema grammars are extended versions of LTag

Common and LSchema
Common. Em-

beddedMontiArc grammar and the two class diagrams, C&C Model and C&C Instance
Structure, containing the abstract syntax of EmbeddedMontiArc language represent the
existing LG language in Look et. al.

The EmbeddedMontiArc tag model (EMA-Tag Model) maps to the derived LTag
G language

in Look et. al. EMA-Tag Model builds on Tag Model to reuse the grammar structure of the
five tag kinds (cf. Subsection 5.5.2), and it builds on EmbeddedMontiArc grammar to reuse
the concrete syntax rules of connectors and effectors (but the EMA-Tag Model removes the
connect and effect keywords) as well as the concrete syntax rules of arrays of ports and
component instantiations. The EMA-Tag Schema grammar is the derived LSchema

G grammar
in Look et. al. The EMA-Tag Schema grammar extends the Tag Schema one to reuse all of
its rules; the EMA-Tag Schema grammar adds only the NameScopeIdentifier rule (cf.
comment in Figure 5.9) so that after the for keyword in a tag schema model every arbitrary name
can be used. A context condition of the EMA-Tag Schema language checks whether the name
after the for keyword can be resolved to any class names of imported class diagrams. If the two
EmbeddedMontiArc class diagrams are imported, the NameScopeIdentifier restricts what
C&C elements should be enriched with this tag (satisfying (T5)). If the class diagram of another
tag schema is imported, the NameScopeIdentifier restricts what tag types of the other
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properties are allowed to enrich; this enables to enrich tags with meta-data (satisfying (T7)). The
EFP1-Tag Schema is a model of the EMA-Tag Schema. When importing the two C&C
class diagrams, the context condition checks are the two references from EFP1-Tag Schema
to C&C Model and C&C Instance Structure in Figure 5.9. These context condition
checks present the depends on arrow in Look et. al. (cf. Figure 5.6).

The EFP1-Tag schema is one tag schema model of the EmbeddedMontiArc tag
schema. This tag schema defines some extra functional property types. This approach supports
multiple tag schemas; this way for new extra-functional property types, a new tag schema
can be defined (satisfying (T2)). Besides tag schemas for extra-functional properties, a tag
schema can also be used for other properties, e.g., ROS tag schema [Hel18] or layout schema (cf.
Subsection 5.5.3). The EFP1 schema is a class diagram representing the abstract syntax of
the EFP1-Tag schema. The class diagrams are automatically derived from the defined tag
schema models (cf. Subsection 5.5.4). Both, EFP1-Tag schema and EFP1 schema, map
to MLSchema

G
in Look et. al. The EFP1 Schema class diagram and the two C&C class diagrams,

i.e., C&C Model and C&C Instance Structure, are merged to the EFP1 ⊕ C&C class
diagram. The merged class diagram enables expressing OCL constraints (cf. Chapter 6) on
EmbeddedMontiArc models enriched with tags conforming to the EFP1-Tag Schema in a
convenient way. If multiple tag schemas exist, then the merged class diagram merges all these tag
schemas with both C&C class diagrams.
Instances Tags maps to M

LTag
G

in Look et. al. Instances Tags is a model of
EMA-Tag Model which tags the TurbineController EmbeddedMontiArc model. In-
stances Tags has references to, similar as in Look et. al., the EFP Schema as well as to
Turbine Model and Turbine Instance. The Enriched Turbine Controller
object diagram is derived from the Latency Tags and the Turbine Controller models,
and it is an instance of the merged class diagram EFP ⊕ C&C.

The merged class and the enriched object diagrams provide developers a combined data
structure containing all C&C architectural elements and all extra functional property values.
The tagging approach combines the best of both worlds, i.e., tagging in separated artifacts and
enriching models with profiles/stereotypes: (1) The textual artifacts of C&C architecture and
extra-functional properties are separated (satisfying (T1)), so that independent domain experts can
work on/version them separately; and (2) the combined data structure contains all the separated
information in one object diagram, so that developers can easily access the marked elements such
as they were all defined in one artifact.

5.5.2. Tag Schema

The tag schema defines the concrete and abstract syntax of the tags used to decorate C&C models.
The tag schema language supports the five tag kinds:

K1 Simple tags, when one only cares whether a C&C element is or is not tagged with this
information, similar to a Boolean flag;

K2 Single valued tags, decorating a C&C element with a tag containing a value, such as
Boolean, Number, String, enumeration value or a JScience [Dau07] quantity (e.g.,
Power or DataAmount);

K3 Complex tags to store several values, such as estimated worst-case-execution time [SSCC09];
e.g., wcet = {time=800ms, confidence=50%};
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import embeddedmontiarc.*; // import all classes of EMA class diagrams

tagschema EFP1Schema {

tagtype traceable for Component, ComponentInst;

tagtype maxPower:Power for Component, ComponentInst;

// enumeration type: license can one of the values GPL, ..., BSD2

tagtype license: [GPL | Commercial | Apache3 | BSD2] for ComponentInst;

// ports in component types are tagged with a set

tagtype encryption: [AES |RSA | DES | DES3]* for Port; 

// ports of a component instance are tagged with at most one value

tagtype encryption: [AES |RSA | DES | DES3] for PortInst; 

// use of SI type system with ranges

tagtype reliability: (0% : 100%) for Connector;

// regex type to define multiple values, e.g., "size = 45cm x 25cm x 7cm"

tagtype size: { ${length: (0m : 100m)} x ${width: (0m : 100m)} x 

${height: (0m : 100m)} } for Component; 

// table type to define multiple key value pairs efficiently

tagtype powerLimitation: | v: (0 m/s : 100 m/s) | lambda: (0: 10) |

cp: (0 : 1)          | beta0: (0 : 40) |

for ComponentInst;

}
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Figure 5.10.: Tag schema definition for extra-functional properties presented in turbine controller
example (cf. Figure 5.7).

K4 Regex tags to store several values similar to complex tags in a more convenient way; e.g.,
ConnectorLayout = { pos = (30, 50), end = (80, 90), mid =
(70, 75) } ; and

K5 Table tags to assign a table as value to this property type; the type defines table header
being a list of columns containing of names and types; e.g. | keyCol: Type1 |
col2: Type2 | col3: Type3 |.

Our tagging paper [MRRvW16] presented the first four tag kinds. The first three tag kinds are
similar to the ones of Look et. al. The second kind (K2) adds to the approach of Look et. al. unit
support (satisfying (T3)) and support of ranges, e.g., (0 : 20). The third (K3) and fourth
(K4) kind enables multiple attributes for one extra-functional property (satisfying (T8)). The fifth
kind (K5) enables to tag C&C elements with tables (satisfying (T4)).

Figure 5.10 shows the tag schema definitions for the extra-functional properties of the turbine
controller example shown in Figure 5.7. All tags start with tagtype, have a name, and end
with for plus the C&C model or instance structure element on which the tag type can be applied.
Valued tags have after the name additionally a colon followed by a data type. Tag kinds (K2)
to (K5) are valued tags. The EFP1Schema tag schema in Figure 5.10 contains one simple tag
traceable, which can be applied to component type definitions (Component) and component
instances (ComponentInst). Additionally, this tag schema defines four single valued tags
maxPower, license, encryption, and reliability. The type of the maxPower tag
is the quantity Power; thus, it accepts values such as 7 mW, -4 W, or 100 kW.

The type of the license tag is an enumeration with the values GPL, Commercial, Apache3,
and BSD2. In contrast to the approach of Look et. al., the enumeration items do not need to be in
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quotation marks. This increases the readability a lot. The MontiCore grammar of our tag schema
separates the enumeration items based on the pipe token; quotation marks are only needed if the
enumeration item name contains spaces, the pipe token, or squared brackets.

The tag encryption is defined twice; once for ports of component types and once for ports
of component instances. A tag can only be defined multiple times with the same name when
elements it annotates are disjunctive. In this example, an element cannot be a port definition of a
component type definition and a port instance of a component instance at the same time. The
encryption tag for port definitions are a set of enumeration items (cf. * cardinality in l. 8).
The encryption tag of a port instance is a single enumeration item, because it does not contain
a * cardinality. The encryption tag for port definitions uses a list whereas the encryption tag
for port instances uses no list, because a port definition may support multiple encryption modes,
whereas a concrete port instance en-/decrypts its data using one concrete algorithm.

The tag reliability has a SI unit range type, which forces that all values are between 0% and
100%, whereby the value 0.25 is the same as 25%. The reliability tag can only be used to
enrich connectors in component type definitions; not in component instances for which the
ConnectorInst class exists.

Figure 5.10 does not show a plain complex tag as they are supported by Look et. al. Instead, it
shows in lines 14 and 15 the new regex tag type. The regex is defined between curly brackets. The
regex itself can contain any regular expression, also escaped curly brackets. The regex expression
has been extended with template variables similar to FreeMarker. A template variable is defined
between ${ and }. Each template variable includes a name and a primitive type, e.g., Boolean,
String, or even any SI unit range type. Based on the specified type, a regular expression
is generated to match the variables. The generated regular expression based on the specified
regex tag kind handles whitespaces in the same way as MontiCore does: One whitespace in the
expression can match zero up to infinite whitespace, tabs, or new line characters. This means
the regex tag kind defined in lines 14 and 15 matches 45cm x 25cm x 7cm, 45 cm x 25
cm x 7 cm, and even the bad readable one 45cmx25cmx7cm. For all these three expressions,
the generated Java code creates a size object having the following attribute values: length =
45 cm, width = 25 cm, and height = 7cm. The regex tag type facilitates creating nice
syntactic syntax for complex tag types; developers defining many of these combined tags will be
thankful.

The power limitation tag is a table tag; this means the value of one tag is a complete table.
The table of the power limitation has four columns. The first column of a table tag is always the
key column; thus, all elements in this column must be unique. The first column of the power
limitation tag accepts wind speed values between 0 m/s and 100 m/s; 10 km/h is also a
valid value. The second, third and fourth column accept values between zero and ten, zero and
one, as well as zero and fourty.

5.5.3. Tag Model

Figure 5.11 shows the TypesTags model to enrich component types, as well as ports and
connectors of component types with extra-functional properties according to the TurbineCon-
troller C&C model shown in Figure 5.7. The tag model is conforming to the previously defined
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conforms to EFP1Schema;

tags TypesTags {

tag TurbineController with maxPower = 4W, size = {45cm x 25cm x 60cm};

tag Filtering with license = Apache3;

tag Filtering.filteredSpeed with encryption = {AES, RSA, DES, DES3};

tag MainController with license = Commercial;

within MainController {

tag filteredSpeed with encryption = {DES, DES3};

tag pitchBrake, turbineState with encryption = {AES, RSA};

}

tag PitchEstimator.filteredSpeed with encryption = {DES, AES};

tag PitchRegulator with license = BSD;

tag BrakeCtrl with traceable, maxPower = 2010mW;

tag BrakeCtrl.pitchBrake, BrakeCtrl.turbineState with encryption = {AES};

within TurbineController {

tag paCo.parkPosition -> parkPosition

with reliability = 100%;

tag brCoA.brakeControl -> paCo.brakeControlA, brCoB.brakeControl ->

paCo.brakeControlB with realiability = 80%;

}

}
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Figure 5.11.: Tag model TypesTag enriching component, port, and connector definitions with
extra-functional properties.

EFP1Schema tag schema (cf. l. 1). Line 3 tags the TurbineController component defini-
tion (cf. l. 1 in Figure 5.8) with one single valued tag (K2) maxPower, and with one regex tag
(K4) size. Line 3 is a short form for tag TurbineController with maxPower =
4W and tag TurbineController with size = {45cm x 25cm x 60cm}. Line
4 tags the Filtering component definition (cf. l. 13 in Figure 5.8) with one single valued tag
(K2) of an enumeration. Similar to the tag schema defining enumeration items without quotation
marks, a tag model can use these enumeration items also without quotation marks. Line 5 tags the
filteredSpeed port (cf. l. 14 in Figure 5.8) of the Filtering component definition with
encryption. Since the encryption tag for port definitions is a set of enumeration items
(cf. * sign in l. 8 in Figure 5.10), the value of the encryption tag is a set with all four available
encryption modes.

Lines 7 to 10 open the namespace of the MainController component definition (cf. l. 16
in Figure 5.8). The tagged names of lines 8 and 9 are names inside the MainController scope.
Lines 8 and 9 enrich the filteredSpeed, pitchBrake, and turbineState ports with
lists of encryption modes. Line 8 inside the within expression is equivalent to tag MainCon-
troller.filteredSpeed with encryption = {DES, DES3} outside the within
expression. Lines 11 to 14 work in the same way as lines 3 to 6. Lines 16 to 19 tag the connectors
in the TurbineController component definition (cf. l. 1 in Figure 5.8) with reliabilities.
The concrete syntax paCo.parkPosition -> parkPosition (cf. l. 16 in Figure 5.11)
is the same one as in EmbeddedMontiArc model (cf. l. 11 in Figure 5.8); because the EMA-Tag
Model builds on the EmbeddedMontiArc grammar (cf. Figure 5.9). Reusing the same
concrete syntax makes defining tag models so intuitive.
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conforms to EFP1Schema;

tags InstancesTags {

tag turbineCtrl with powerLimitation = 

// | v: (0 m/s : 100 m/s) | lambda: (0:10) | cp: (0:1) | beta0: (0:40) |

| 13 m/s               | 7.9            | 0.39      | 2             |

| 14 m/s               | 7.3            | 0.31      | 5.85          |

| 15 m/s               | 6.8            | 0.25      | 9.65          |

| 16 m/s               | 6.4            | 0.21      | 13            |

| 17 m/s               | 6              | 0.17      | 15.75         |;

within turbineCtrl {

tag filter.filteredSpeed with encryption = DES;

within mainController {

tag filteredSpeed with encryption = DES;

tag pitchBrake, turbineState with encryption = AES; 

}

tag brCoA with traceable, maxPower = 1W;

tag brCoB with traceable, maxPower = 2010mW;

tag brCoA.pitchBrake, brCoA.turbineState, brCoB.pitchBrake,

brCoB.turbineState with encryption = AES;

}

}
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Figure 5.12.: Tag model InstancesTag enriching component and port instances with extra-
functional properties.

Figure 5.12 shows the InstancesTags model to tag the C&C instance structure of extra-
functional properties. The tagging mechanism shown in Figure 5.9 enables tagging the C&C
model and the derived C&C instance structure. The InstancesTags model is conforming to
the EFP1Schema tag schema. Lines 3 to 9 in Figure 5.12 tag the turbineCtrl component
instance (this is the main component, cf. l. 34 in Figure 5.8) with a table tag (K5). The
concrete syntax of the table tag value is based on the syntax of Markdown, but without marking
horizontal lines |--|--|. The concrete syntax is not new line sensitive; a single pipe represents
a column break and two pipes in a row (cf. end of l. 5 and beginning of l. 6) stand for a line
break. C&C instance elements are addressed via their full-qualified name regarding the main
component instance. Therefore, all other tags are inside the within clause. Line 11 tags the
filteredSpeed port instance of the turbineCtrl.filter component instance with
an encryption tag. The encryption value of a port instance is - in contrast to the port
definition - only a single item value (cf. missing star sign after enumeration type in l. 10 in
Figure 5.10).

Line 17 tags the brake controller A (brCoA) component instance with a maximal power usage
of 1 Watt, which is less than the maximal power usage of 2010 Milliwatt of its component type
definition, because the component uses at most with 50% of the available brake force (cf. l. 6 in
Figure 5.8) to save energy. Line 18 tags the brake controller B component instance - using the
complete available brake force (cf. l. 7 in Figure 5.8) - with the maximal power usage of 2010
Milliwatt.
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conforms to EFP1Schema;

tags InstancesTags2 {

tag turbineCtrl.brCoA with maxPower = 870mW;

}

1
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4

TagModel

import EFP1Schema.*; 

tagschema MetaData {

tagtype source: [Calculated | Measured | Guessed] for maxPower;

// uses simple date format of JDK 8

tagtype timestamp: Date("dd.MM.yyyy 'at' HH:mm z") for maxPower, license;

}
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TagSchema

conforms to MetaData;

tags InstancesTags2 {

within turbineCtrl.brCoA {

tag maxPower = 1W with source = Calculated;

tag maxPower = 1W with timestamp = "04.05.2017 at 17:56 GMT+01:00";

tag maxPower = 870mW with source = Measured;

tag maxPower = 870mW with timestamp = "03.09.2018 at 12:23 GMT+02:00";

}

tag PitchRegulator.license = BSD with timestamp = "01.01.2018 00:00 GMT";

}
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Figure 5.13.: Example how to enrich tags with meta data.

Tagging Meta Data

Figure 5.13 presents an example how tags are tagged again. Lines 1 to 4 define a new tag
model conforming to the existing EFP1Schema (cf. Figure 5.10). Line 3 tags the turbineC-
trl.brCoA component instance with maxPower again (satisfying (T6)). Lines 5 to 10 create
the MetaData tag schema. This tag schema does not import the class diagrams of Embedded-
MontiArc, it imports the class diagram of the EFP1Schema to create tag types for the tags of the
EFP1Schema. Lines 7 and 9 create the source and timestamp tag type for the maxPower
tag. The type of the timestamp tag is Date and the configuration string is the simple date
format of JDK 8 [Ora17f].

Lines 11 to 20 enrich the maxPower tags and one license tag with meta data. Line 13
opens the turbineCtrl.brCoA namespace which contains the port instances of the brCoA
component instance and the tags added to this namespace. Lines 14 and 15 tag the maxPower
tag, defined in Figure 5.12 (cf. l. 17), with source and timestamp meta-data (satisfying
(T7)). The tag name plus its value (e.g., maxPower = 1W) identify the tag definition uniquely.

The advantage of tagging tags again, adding meta information to extra-functional properties,
is that one meta information scheme (e.g, a company specific one containing author, cre-
atedOn, Boolean approved, approvedBy, and approvedOn) can be reused for different
extra-functional properties types. Without this meta information mechanism the company specific
fields must be always copied to all extra-functional property types.
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Tag Models as Expected Test Result

Besides specifying extra-functional properties, the tag algorithm is very useful for tests. For
example, in JUnit tests, tags describe the expected output results of algorithms of C&C models.
Due to the nice regex tag kind and that the tagging mechanism works on the concrete syntax
of EmbeddedMontiArc, the domain experts can specify the result of the algorithm without
understanding any Java specific data structures. The algorithm, e.g., the layout algorithm, tags
the C&C models or C&C instance structures with intermediate results (e.g., LayoutSymbol
representing the layout tag) via the Java API of the tagging language. Finally, the JUnit test
loads the EmbeddedMontiArc model A without tags, calls the algorithm to enrich model A
with tags, loads the EmbeddedMontiArc model B with enriched expected result tags, and calls
assertEquals on the calculated tags of model A and the expected result tags of model B. Of
course, the models A and B are the same (they have also the same package name, but they are in
different model paths) modulo tags.

Implementation projects of EmbeddedMontiArc use the tagging-based testing approach in:
• Checking the graphical layout position when generating a SVG graphic from its textual

representation;
• Propagating the execution order of component instances (similar to Simulink’s slist

[The18i]); and
• Substituting temporal variables in math expressions by the component’s input port names

to optimize the control-flow-graph [RSvW+15] for speeding up the execution time.

5.5.4. Derivation of Class Diagrams based on Tag Schemas

Figure 5.14 shows the derived and merged class diagram of the EFP1Schema (cf. Figure 5.10)
and MetaData (cf. Figure 5.13) tag schemas. Line 3 in Figure 5.10 defines the traceable
tag type (tagtype traceable for Component, ComponentInst); therefore, the
Component and ComponentInst class have an association to the Traceable class. The
Traceable class extends the Boolean class; if the traceable marker tag is present for a
component or component instance, then the value is true and otherwise it is false.

Line 4 in Figure 5.10 defines the maxPower tag type (tagtype maxPower:Power for
Component, ComponentInst); thus, the Component and ComponentInst class have
an association to the MaxPower class. Since the maxPower tag type is a valued one with type
Power, the MaxPower class extends NumberPower, which always has Power as quantity,
and NumberPower extends Number. All associations from classes of C&C model or C&C
instance structure do not go directly to basic data types, i.e., enumerations, numbers, structures,
or Boolean; because we do not want to extend the basic types when adding meta data to tag
types. Line 9 in Figure 5.13 defines the timestamp meta tag type (tagtype timestamp:
Date for maxPower - shortened); hence the MaxPower class has an association to the
Timestamp class representing the timestamp meta tag type. Due to the other source meta
tag type (tagtype source: [...] for maxPower), the MaxPower class has an
association to the Source class.

Line 6 in Figure 5.10 defines the license tag type (tagtype license: [GPL | Com-
mercial | Apache3 | BSD2] for ComponentInst); for this reason, the Compo-
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Figure 5.14.: Derived and merged class diagram of both tag schemas (cf. Figure 5.10 for
EFP1Schema and Figure 5.13 for MetaData tag schemas). Classes with solid
gray background (i.e., Component, ComponentInst, Port, PortInst, and
Connector) are classes belonging to C&C model or C&C instance structure.
Classes with chess background pattern (i.e., ESource, Source, Timestamp,
and Date) are classes belonging to derived class diagram of MetaData tag
schema.

nentInst class has an association to the License class. The License class has a value
association with cardinality 1 to the ELicense enumeration class. In contrast to the MaxPower
class extending the “normal” Number class, the “normal” License class cannot extend the
enumeration class ELicense; therefore, the License class has the association and no inheri-
tance arrow to ELicense. Line 9 in Figure 5.13 adds the timestamp meta type to the license tag
type (tagtype timestamp: Date for license - shortened); hence, the License
class has an association to the Timestamp class. This timestamp meta tag type also shows why
the ComponentInst class does not have a direct association to the enumeration ELicense
class and why the License class is not removed, because an enumeration is closed and so no
outgoing association to Timestamp class can be added later.

Line 8 in Figure 5.10 defines the encryption tag type for the port definition (tag encryp-
tion: [AES |RSA | DES |DES3]* for Port). Due to the star cardinality of the
tag type, the Port class has an encryption association to the EncryptionCollection
class, which has zero, one, or many elements of the EEncryption class. The cardinality
of the association going from Port to EncryptionCollection is a star one, because a
port definition can be tagged multiple times (cf. requirement (T7)). The EncryptionCol-
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lection can also define an empty set. Tagging an element with an empty set, e.g., tag
TurbineController.windSpeed with encryption = {}, has a different seman-
tics than not tagging the element at all. Line 10 in Figure 5.10 creates the encryption tag
type for port instances (tagtype encryption: [AES |RSA | DES | DES3] for
PortInst); therefore, the PortInst class has an association to the Encryption class
which has an association with cardinality one to the EEncryption enumeration class - it is
similar to the license tag type.

Lines 14 and 15 in Figure 5.10 define the regex size tag type for component types (tagtype
size: { ${length: (0m : 100m)} x ${width: (0m : 100m)} x
${height: (0m : 100m)} } for Component). Since the size tag type introduces
three variables, the Component class has an association to the Size class having three asso-
ciations (i.e., length, width, and height) to the Number0mTo100m class, which extends
the NumberLength class having quantity Length. Number0mTo100m has the two class
diagram tags2 Min and Max representing the valid range. Based on this tags OCL constraints and
FreeMarker templates are derived to generate user friendly error messages when violating this
range (cf. Subsection 6.1.2). For the variables length, width, and height no extra classes
are created, because the internal structure of a tag cannot be tagged again. Meta data tags can
enrich only the complete size tag resulting in a new outgoing association of the Size class.

Lines 17 to 19 in Figure 5.10 define the powerLimitation table tag type (tagtype pow-
erLimitation: | v : (0m/s : 100m/s) | lambda: (0:10) | cp:
(0:1) | beta0: (0:40) | for ComponentInst). The first column v is the key
column; hence, the class diagram contains a qualified association with v as key going from Com-
ponentInst class to the PowerLimitation class. For each column of the table header,
also for the first one, the PowerLimitation class has outgoing associations to corresponding
number classes, which are Number0mpsTo100mps, Number0To10, Number0To1, and
Number0To40. All these number classes extend NumberDimensionless, as they have the
unit ONE. The role names of the outgoing associations of PowerLimitation map the names
of the table headers.

This class diagram in Figure 5.14 is merged with class diagrams presented in Chapter 4. The
complete merged diagram (cf. EFP1 ⊕ C&C in Figure 5.9) contains a data structure to navigate
through all C&C model and C&C instance structure elements as well as all extra-functional
properties and their meta information (cf. Figure 5.13). The next chapter uses this merged
diagram to formulate semantic based consistency constraints of extra-functional properties via
OCL; e.g., the encryption mode of a port instance must be contained in the set of encryption
modes of its corresponding port definition.

5.5.5. Consistency Rules between Tag Model and Tag Schema

To ensure consistency of tag models, tag schemas as well as between both of them, the following
ten context condition rules apply:

Rule 1 Referenced data types used in a tag schema to define new tag types must exist.

2cf. http://mbse.se-rwth.de/book1/index.php?c=chapter2-5

http://mbse.se-rwth.de/book1/index.php?c=chapter2-5
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Rule 2 The scope identifier in a tag schema is either a valid C&C element defined in class
diagrams of Chapter 4 or another existing tag type.

Rule 3 The tag schema referenced by a tag model must exist.
Rule 4 Tag type names are unique per C&C model element kind.
Rule 5 Tagged C&C elements or tagged tags exist uniquely and are of the kind defined in the

schema.
Rule 6 The tag value in a tag model is of the data type defined in the schema; it is also in the

given range; and if it is an enumeration type, the tag value must contain one of the
specified enumeration items.

Rule 7 The unit of the tag is compatible with the unit in the schema, e.g., W and mW but not W
and s.

Rule 8 The tag value of a tag model fits to the specified cardinality: if the cardinality is missing
only a single value can be specified; if the cardinality is a + or a * then a set of values
must be specified, whereby the + cardinality excludes empty sets.

Rule 9 For complex and regex tags, the above (Rule 1 - Rule 8) applies to every value; for table
tags the above applies to every value in a column.

Rule 10 The values in the key column, first column, of a table tag are different.

Rule 4, Rule 5, Rule 6, Rule 7, and Rule 9 are already published in our paper Consistent Extra
Functional Properties Tagging for Component and Connector Models [MRRvW16]. Most of
these rules can also be mapped to the context conditions (TD-1 to TD-9) defined by Look [Loo17,
Subsection 4.3.3]: Rule 3 maps to TD-3; Rule 4 maps to TD-4; Rule 5 maps to TD-6, TD-7, and
TD-8; Rule 8 maps to TD-9.



Chapter 6.

OCL Framework to Describe Structural
and Extra-Functional Properties of
Component and Connector Models

This chapter presents concrete formalizations of structural and extra-functional property rules.
All formalization of this chapter can be processed automatically by tools to analyze these
constraints. This section uses the popular and expressive Object Constraint Language (OCL)
[WK99, WK03, Rum16] to specify these consistency rules for structural and extra-functional
properties of component and connector (C&C) models.

The first section shows how to define C&C consistency constraints, also called context condi-
tions, based on formal C&C definitions defined in Chapter 4. Implementation specific details,
such as parsing workflows, abstract syntax trees, and symbol table information, are abstracted
by providing C&C specific class diagrams (cf. Section 4.2, and Section 4.3), and powerful
type-inference mechanisms when checking consistency. Six complete OCL examples illustrate
how easily context conditions can be defined with this OCL framework. Additionally, this section
elucidates how to define user-friendly error messages for violated OCL constraints via FreeMarker
templates. Still it needs to be make clear that these OCL constraints generate on the sentence
of the models, and thus, are used and evaluated during design time. These OCL conditions are
designed by tool engineers, not the product developers.

The previous chapter introduced a tagging mechanism to enrich C&C models with extra-
functional properties. The tagging mechanism is general and can be reused for nearly all extra-
functional properties. The second section of this chapter explains how consistency constraints
for measurable extra-functional properties are defined via OCL. The restriction to measureable
properties is caused due to the fact that properties such as maintainability or user-friendliness
are too imprecise to be formalized with OCL. The second section extends OCL with support
for units, as many extra-functional properties describing physical properties of C&C models
contain physical units. Thus, to enable domain experts define extra-functional consistency
rules, a constraint language for them naturally should support automatic unit comparison and
conversion. The second section illustrates the OCL framework for extra-functional properties on
twelve examples, whereby three of these examples are consistency rules involving more than one
extra-functional property.

The third section explains how witnesses of OCL constraints are generated. The positive
and negative witness generation process uses the mathematical structure of OCL constraints for
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extra-functional properties. These witnesses intuitively demonstrate the reasons for consistency
or inconsistency of a C&C model enriched with many different extra-functional properties.

The fourth section elucidates how to specify transformations between the abstract syntax of
two different languages via OCL. This section explains this concept on transformations from
the abstract syntax of EmbeddedMontiArcParsing to the one of EmbeddedMontiArcTooling (cf.
Section 4.1): it presents OCL code snippets to transform name-based connections in the syntactic
sugar version of EmbeddedMontiArcParsing to connections with specified port names in Embed-
dedMontiArcTooling. The name-based connection sub1.* -> sub2.* is syntactic sugar for
sub1.portA -> sub2.portA, sub1.portB -> sub2.portB and so on; it connects
the port of sub1 with the port of sub2 if they have the same port name - Subsection 3.6.6
contains a more detailed example.

The fifth section gives some very short remarks about the implementation of the OCL language
and the OCL to Java generator. The last section compares this OCL framework with related
approaches existing in literature.

6.1. OCL Framework to Define Context Conditions of C&C
Models

This section shows (the workflow) how to formulate structural constraints on C&C models. As an
example, this section presents several OCL constraints for defining well-formedness rules (also
called context conditions) of C&C models. Context conditions constraint the abstract syntax
defined by MontiCore’s context-free EBNF-like grammar rules.

In this section, the context conditions and their identifiers are the same as the ones defined
in Haber [Hab16] to enable easier tracings between these two theses. This section shows only
a selection of Haber’s context conditions, which are valid for both languages, i.e., Embedded-
MontiArc and Haber’s MontiArc, and which do not address the resolvability of symbol names. In
the current MontiCore version the symbol management infrastructure [MSN17] handles all the
resolving constraints and throws suitable error messages.

6.1.1. Workflow to Define and Validate OCL Context Conditions

This subsection introduces the artifacts, generators and user roles being involved in the OCL
verification process. Figure 6.1 shows the design and run time of the EMA Validator. The EMA
Validator receives at run time a textual EmbeddedMontiArc model as input and it produces a
Boolean flag whether the model is valid (i.e, the model satisfies all context conditions) and
(possible empty) error messages as output (cf. right part).

The development (i.e, the design time) of the EMA Validator leverages a complete model-
based approach. The internal representation of EmbeddedMontiArc (i.e, the two class diagrams
presented in Section 4.2 and Section 4.3) is specified via three MontiCore grammars (cf. Sec-
tion 4.1). The context conditions are defined as OCL constraints and the error messages (if the
OCL constraint is violated) via FreeMarker text templates.

The MontiCore grammar generator produces Java classes for the abstract syntax based on
the three EmbeddedMontiArc grammars. EmbeddedMontiArc’s internal structure describes the
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Figure 6.1.: Workflow, artifacts, and user roles of OCL Framework.

structural relationships between these generated Java artifacts as class diagrams; this way the
OCL language can verify that EmbeddedMontiArc’s context condition are valid according to
EmbeddedMontiArc’s abstract syntax Java files. The verification of OCL constraints against the
class diagram representation of EmbeddedMontiArc is needed to avoid ugly Java compiler error
messages. Because without checking the conformance of OCL against the abstract syntax, Java
files generated by the OCL2Java generator may not be compatible to Java files generated by
MontiCore’s grammar generator.

All generated Java files plus the MontiCore runtime environment are compiled and packaged
to one EMA Validator JAR file. This JAR file has a command-line interface to specify input and
output parameter options to validate C&C models programmatically.

6.1.2. CO1: Connectors May Not Pierce Through Component Interfaces

Haber defines this context condition as following: “Qualified sources and targets of a connector
consist of two parts. The first part is a name of a subcomponent, the second part is a port name.”
[Hab16, p. 61]. But since this rule is specific to MontiArc’s concrete syntax, there exist several
exceptions due to syntactic sugars in MontiArc. The next two rules are some of these exceptions:
Haber supports writing “connect msgIn -> af.msgs” [Hab16, Listing 3.33 (line 8)] and
“[filteredMsgs -> bf.msgs]” [Hab16, Listing 3.34 (line 6)].

Instead of defining several context conditions each possibly having exceptions on the Em-
beddedMontiArc or MontiArc syntax, we suggest to define the context condition directly on its
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component Outer {

ports in (0:10) outerIn1,

(0:10) outerIn2,

out (0:10) outerOut1,

(0:10) outerOut2,

(0:10) outerOut3;

instances Filter inner1,

inner2;

connect outerIn2 -> 

outerOut2;

connect outerIn1 -> 

inner1.in1;

connect inner1.out1 -> 

inner2.in1;

connect inner2.out1 -> 

outerOut1; 

// invalid connection

connect inner2.in1 -> 

outerOut3;

}
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EMA

component Filter {

ports in  (0:10) in1,

out (0:10) out1;

}

21
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24

EMA

Outer outer

Filter inner1

in1 out1

outerIn1

outerOut1

Filter inner2

in1 out1

outerIn2 outerOut2

outerOut3

C&C

(1)

(2)

(3)

(4)

Figure 6.2.: Example EmbeddedMontiArc model for context condition Connectors may not pierce
through component interfaces. The four green connections are valid, the red one is
invalid.

underlying mathematical framework for component and connector models as defined in Chapter 4.
The advantage is not to deal with many exceptions due to syntactical sugars.

Figure 6.2 shows an example containing all four cases of valid connections:
(1) Ports of the same component instance with different directions can be connected as shown

in lines 9 and 10; connect outerOut2 -> outerIn2 would also be possible.
(2) Source and target ports are input ports, and the component of the target port is a subcompo-

nent of the source port’s component as shown in lines 11 and 12.
(3) Source port is an output port, target port is an input one; and the components of both ports

are different, but they have a common parent component - cf. ll. 13 and 14.
(4) Switched case of (2): Source and target ports are output ports, and the component of the

source port is a subcomponent of the target port’s component as shown in lines 15 and 16.
Figure 6.3 shows the OCL constraint for this context condition and the needed class diagram

parts defined in Chapter 4. Line 1 says that for all connector instance objects the following invari-
ant holds [Rum16, Fig. 3.1]. The prefix context ConnectorInst in line 1 is equivalent to
forall ConnectorInst: ..., which means that the lines 2 to 11 must hold for every



6.1. OCL Framework to Define Context Conditions of C&C Models 173

context ConnectorInst inv CO1:    

let srcCI = sourcePort.componentInst; 

tgtCI = targetPort.componentInst; 

srcD = sourcePort.direction;

tgtD = targetPort.direction;   

in

srcCI == tgtCI && srcD != tgtD || // in -> out, out -> in (loop)

tgtCI.parent == srcCI && srcD == IN && tgtD == OUT || // in -> sub.in

srcCI.parent == tgtCI.parent && tgtCI != srcCI && 

srcD == OUT && tgtD == IN || // sub1.in -> sub2.in

srcCI.parent == tgtCI && srcD == OUT && tgtD == OUT // sub.out -> out

1

2

3

4

5

6

7

8

9

10

11

OCL

ComponentInst

ConnectorInst

* subs sourcePort targetPort1 1

CD

* ports

0..1
parent

1

String fullName

PortInst

String fullName

{IN | OUT} direction

Figure 6.3.: OCL constraint for context condition CO1: Connectors may not pierce through
component interfaces.

connector instance object at each observed point in time. The first part of the let-in construct
in lines 2 to 5 defines auxiliary variables [Rum16, Subsection 3.1.2] which are used in the second
part, the actual invariant constraint, in lines 7 to 11. Line 7 maps to case (1); line 8 maps to case
(2); lines 9 and 10 map to case (3); and line 11 maps to case (4). Only eleven lines of OCL code
define this context condition mathematically.

If the constraint fails, the OCL to Java generator returns a Java object structure with the values
of the objects causing the constraint to fail. Figure 6.4 shows the object diagram representing
the negative witness structure of the connector instance connect inner2.in1 -> out-
erOut3. The variable names in the object diagram are the ones used in the OCL constraint, i.e.,
the conInst name inside the context clause and two names inside the let-in clause.

The top part of Figure 6.5 illustrates an error template for the context condition of Figure 6.3.
The bottom part of Figure 6.5 displays how the error message looks like for the example shown in
Figure 6.2. This example shows that it is possible to specify context conditions of EmbeddedMon-
tiArc via OCL constraints plus FreeMarker templates. The domain expert defining this context
condition needs no knowledge about the underlying implementation of EmbeddedMontiArc. The
expert only needs to understand the class diagrams introduced in Chapter 4, and have basic
knowledge about OCL and FreeMarker. If the four conditions in Figure 6.3 would be separated
into four OCL constraints, then even more accurate error messages are created - this thesis skips
these four single constraints to avoid too much repeating content.

The CoCo language links to the OCL condition, and contains the FreeMarker template, the
warning level, plus the OCL variables which corresponding text should be underlined in an IDE
(cf. xText context conditions). In this example, the conInst variable should be underlined.
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fullName = 

"outer.inner2.in1"

:PortInst

targetPort

ports

fullName = 

"outer.outerOut3"

:PortInst

this:ConnectorInst

sourcePort

fullName =     

"outer.inner2" 

srcCI

:ComponentInst

fullName = "outer"

tgtCI

:ComponentInst

fullName = "outer.inner1"

:ComponentInst

ports

subs
subs

OD...

variable names of the

OCL constraint

Figure 6.4.: Excerpt of generated witness structure of OCL2Java generator illustrated as object
diagram. The implementation links to Java objects of the symbol management
infrastructure; the structure of the Java objects is the same as the one presented in
this object diagram.

The connector from port "${this.sourcePort.fullName}" to port 

"${this.targetPort.fullName}" of the two components "${srcCI.fullName}" and 

"${tgtCI.fullName}" pierces through a component interface.

1

2

3

Freemarker

The connector from port "outer.inner2.in1" to port "outer.outerOut3" of the 

two components "outer.inner2" and "outer" pierces through a component 

interface.

4

5

6

Text

Figure 6.5.: FreeMarker text (cf. ll. 1-4) to produce nice error message (cf. ll. 5-7) when the
constraint is failing.

Backtracking from conInst to the its defining symbol of the type Connector, and then,
form this symbol back to the abstract syntax tree containing the start (i.e., line 18, column 2
in Outer.ema) and the end (i.e., line 19, column 27 in Outer.ema) source position enables
highlighting the text causing this error.

6.1.3. R1: Each Outgoing Port of a Component Type Definition Is Used At
Most Once As Target Of a Connector / R2: Each Incoming Port Of a
Subcomponent Is Used At Most Once As Target Of a Connector

Haber states “every receiving port only receives signals from a unique sender, while a sender
can transmit its data to more than one receiver” [Hab16, p. 62], thus, Haber wants to check that
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context ConnectorInst conInst1, conInst2 inv R1R2:    

conInst1.targetPort == conInst2.targetPort implies

conInst1.sourcePort == conInst2.sourcePort

1

2

3

OCL

PortInst

ConnectorInst

sourcePort targetPort1 1

CD

Figure 6.6.: OCL constraint for context condition R1: Each outgoing port of a component type
definition is used at most once as target of a connector. and R2: Each incoming port
of a subcomponent is used at most once as target of a connector.

different ports are not connected to the same target port. Due to the fact that Haber implemented
the context conditions for MontiArc on the objects of abstract syntax tree which are directly
derived from the concrete syntax, this context condition needs to differentiate between two
different use cases.

Figure 6.6 shows the simple context condition when defining it on the abstract syntax graph
of the C&C instance structure. This OCL definition could also be defined on connector def-
initions, because the target port and source port of a connector definition is a component
instantiation (and no component type). An example why the target port must be a com-
ponent instantiation is: component X { ports in Z in1, Z in2; instances A
a1, a2; connect in1 -> a1.in1; connect in2 -> a2.in1; }. The target
port is the component instantiation a1.in1 and a2.in1 which are different; but the port
definition of both target ports is A.in1, the port definition of the component type A, cf. Subsec-
tion 4.2.3f. for further details.

This example illustrated why it is very important that the abstract syntax matches the essence
of a language and it is not only the basic abstract syntax tree. Well-designed class diagrams, as
the one in Chapter 4, present only the mathematical essence of the abstract syntax.

6.1.4. R13: Subcomponent Instantiation Cycles in Component Type
Definitions Are Forbidden

Lines 1 to 9 in Figure 6.7 show an example of a component type cycle via subcomponent
instantiations. Lines 10 and 11 in Figure 6.7 define the derived self-association subDefs of
Component. SubDefs contains the component types of the direct subcomponent instantiations.
Line 12 and 13 in Figure 6.7 define the context condition, that no component type is part of the
transitive closure of its own subcomponent types. The two stars represent the transitive closure
operator [Rum16, Subsection 3.5.1].

A transitive closure on a binary relation R ⊆ X ×X is the smallest relation on X containing
R and being transitive: (a, b) ∈ X ∧ (b, c) ∈ X ⇒ (a, c) ∈ X . The self-association subDefs
is a binary association of Component× Component.
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context Component inv:    

subDefs == {t | s in subs, t = s.type, t instanceof Component}

10

11

OCL

*subs

ComponentInstantiation

«interface»

ComponentType

ComponentInterface

Component

type 1

/subDefs *

context Component inv R13:    

!(this isin subDefs**)

12
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OCL

transitive closure

component A {

instance B b1;

}

1

2

3

EMA

component B {

instance C c1;

}
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EMA

component C {

instance A a1;

}

7
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9

EMA

CD

A.subDefs** = {B, C, A}

Figure 6.7.: OCL constraint for context condition R13: Subcomponent instantiation cycles in
component type definitions are forbidden, and a simple example violating this con-
straint.

6.1.5. B1: All Names Of Model Elements Within a Component Namespace
Have To Be Unique

Lines 1 to 5 in Figure 6.8 show a simple example violating the context condition B1, because the
input port in line 2 has the same name as the subcomponent instantiation in line 4. Even though
this thesis does not treat cases with inner component definitions, the OCL constraint handles it
(cf. l. 8) in order to present the complete constraint. To have an elegant constraint of only three
lines (cf. ll. 9-11), the ComponentElement interface has been added.

Figure 6.9 presents optimized Java code for this context condition. First, the Java code is not
shorter than the OCL one. Second, to implement this context condition in Java you need to be
familiar with the implementation details of the symbol management infrastructure of Nazari
[MSN17]. The “stupid” OCL generator produces a nested for loop (cf. l. 10 in Figure 6.8)
to iterate over the innerElements collections. Therefore, the Java code generated by our
“stupid” OCL generator is much slower, with a run-time complexity of O(n2) operations (n are
the number of innerElements), than the optimized handwritten Java code, where the sorting
algorithm with a complexity of O(n · log(n)) is most the computing-intensive task. Since such
element-wise comparisons often occur, the OCL generator could be extended to match this pattern
and to produce an optimized Java code.
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context Component inv:

innerElements == 

ports.addAll(parameters).addAll(subs).addAll(innerComponents)
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component X {

port in C c; 

instance

Controller c;

}
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context Component inv B1:

forall e1, e2 in innerElements:

e1.name == e2.name implies e1 == e2
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String name

«interface»

Parameter
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Figure 6.8.: OCL constraint for context condition B1: All names of model elements within a
component namespace have to be unique, and a simple example violating this
constraint.

Collection<Symbol> symbols = 

componentSymbol.getSpannedScope().resolveDownMany(Symbol.KIND);

symbols = Collections.sort(symbols, Symbol::getName);

for (int j = 1; j < symbols.size(); j++) {

if (symbols.get(j-1).getName().equals(symbols.get(j))

Log.error(symbols.get(j).getName() + " is duplicated");

}

1
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4

5

6

7

Java

Figure 6.9.: Java code of context condition B1: All names of model elements within a component
namespace have to be unique.

6.1.6. CV5: In Decomposed Components, All Ports Should Be Used In At
Least One Connector / CV6: All Ports Of Subcomponents Should
Be Used In At Least One Connector

Both, CV5 and CV6, context conditions to connect all ports mean actually that all ports should
be connected unless a component is atomic and has no parent one, i.e., if the C&C model has



178 Chapter 6. OCL Framework to Describe Structural and Extra-Functional Properties

Component

component A {

ports in B b1,

B b2;

instance Delay<B> d1, d2;

connect b1 -> d1.in1;

connect d1.out1 -> d2.in1;

}
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EMA CD

Port
*

PortInstantiation Connector

sourcePort targetPort
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1 1

0..1 parent

ComponentInstantiation
subs
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component Delay<T> {

ports in T in1,

out T out1;

}

8
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EMA

0..1sub

«interface»

ComponentType

type

1

context Component cmp inv CV5:    

cmp.subs != {} || (exists ComponentInstantiation ci: ci.parent == cmp)    

implies

forall p in cmp.ports:

exists con in Connector:

(p == con.sourcePort.port || p == con.targetPort.port)
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17

OCL

context Component cmp inv CV6:

forall ci in {ComponentInstantiation ci | ci.type == cmp}, p in cmp.ports: 

exists con in Connector:            

(p == con.sourcePort.port && ci == con.sourcePort.sub || 

p == con.targetPort.port && ci == con.targetPort.sub)

18

19

20

21

22

OCL

Figure 6.10.: OCL constraint for context condition CV5: In decomposed components, all ports
should be used in at least one connector and CV6: All ports of subcomponents
should be used in at least one connector, plus a simple example violating both
conditions.

exactly one atomic component. Figure 6.10 presents the OCL constraint combining both context
conditions as well as it illustrates an example violating CV5 and CV6.

It would be much easier to formulate this context condition on the C&C instance structure
as shown in Subsection 6.1.2. The complex OCL constraints just illustrate how to deal with
connectors in the C&C model.

Line 3 in Figure 6.10 shows a warning, because output port b2 is not used. Line 10 shows a
warning because the output port out1 of the component instantiation d2 is not used. However,
the output port is used in the component instantiation d1. Therefore, it is not enough to check
only if the port is used once, the OCL constraint must check whether all ports of all component
instantiations of a given component type (cf. l. 18; in this example, the component type is
Delay) are used.
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component Convolution

<T is Dimensionless, 

(1:2:3) dim = 1, (3:oo) n> 

(symmetric Q^{n, n} 

kernel[dim]) {

ports in T imageIn [dim], 

out T imageOut[dim]; }
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// valid, uses default value 

// 1 for dim and n is derived

Main-Component-Instantiation:

Convolution

<(0 : 2^24)^{1920, 1080}> 

( [0, -1, 0; -1, 5, -1; 

0, -1, 0] )       fullHD;
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// invalid: configuration 

//parameter Q is no specified

Main-Component-Instantiation:

Convolution

<(0 : 2^24)^{1920, 1080},

1,3> fullHD;
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CD
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context ComponentInstantiation inv R9R10:

forall p in type.parameters:

!(exists p2 in type.parameters: // p can be inferred due to bounded

p2.kind == CONFIG &&        // configuration parameter p2

(p2.dimension == p || p2.type.rows == p || p2.type.cols == p)

) && 

(p.defaultValue.isAbsent implies // no default value

exists pb in values:

pb.parameter == p)
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Figure 6.11.: Positive and negative example plus OCL constraint for context conditions R9/R10:
If a component type is instantiated as a subcomponent, all generic and all configu-
ration parameters have to be assigned.

6.1.7. R9/R10: If a Component Type Is Instantiated As a Subcomponent,
All Generic And All Configuration Parameters Have To Be Assigned

Figure 6.11 shows an example and the OCL code for the context condition R9/R10. The first listing
in line 1 to 7 defines a Convolution component having three generic and one configuration
parameters. The first parameter T defines a generic port type which quantity is dimensionless. The
second parameter dim accepts the values 1 and 3, (1:2:3) represents the numeric data type
starting at 1 and ending at 3 with a step-size of 2. The third parameter n accepts values greater
equals 3; the oo symbol represents the plus infinity symbol meaning that n has no upper-bound.
The last parameter kernel has as data type a symmetric n × n matrix of rational numbers
(Qˆ{n, n} represents Qn×n), the parameter kernel is a parameter array similar to a port or a
component instantiation array (cf. Subsection 3.6.2).
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The second listing instantiates the Convolution component definition. It binds the parame-
ters T to

[
0, 224

]1 920×1 080, dim to 1 (default value), n to 3 (automatically derived) and kernel
to [0, -1, 0; ... ] being a 3× 3 matrix.

The example in lines 17 to 20 instantiates the Convolution component definition with the
following parameters: T to

[
0, 224

]1 920×1 080, dim to 1, n to 3. However, it does not bind the
configuration parameter kernel (cf. l. 5) of the component type definition; thus, this example
is invalid.

Lines 21 to 29 present the constraint for this context condition. For MontiArc the OCL
constraint would only consists of the lines 21, 22, 28, and 29. However, EmbeddedMontiArc’s
parameter definitions may have default parameters, and these parameters may not be bounded
(cf. l. 27). Additionally, EmbeddedMontiArc does not force to bind generic parameters whose
values can be derived by mandatory configuration parameters (cf. ll. 23-25) as it is the case in
our example: the component instantiation in lines 10 to 14 does not bound the parameter n, but
n is automatically bound to 3 based on the passed configuration parameter [0, -1, 0; ...
] being a 3× 3 matrix.

The expression in line 25 p2.type.rows automatically returns falsewhen an error occurs
(cf. [Rum16]), because every single OCL expression such as p2.type is executed in a Java
try-catch block. However, the type association of a Parameter is the abstract interface
Type, and this general interface does not have the associations rows and cols. To have
shorter OCL expressions without many typeif-instanceof case distinctions, we extended
the OCL generator, so that interfaces can navigate to an association when at least one class
implementing this interface contains this association. In this case, the OCL generator produces
automatic typeif-instanceof case distinctions to access the association of the classes
implementing this interface and having this association. If the object of a class does not have
this association the Boolean expression p2.type.rows == p is automatically evaluated to
false. So p2.type.rows == p is a short-form of typeif p2.type instanceof
NumericType then p2.type.rows == p else false.

In the case multiple subclasses of Type have the rows association, than a OCL context
condition checks that target types of the associations of these subclasses have a common target
type in the underlaying class diagram.

Figure 6.12 illustrates exemplary what Java code the OCL generator produces for the OCL ex-
pression p2.type.rows == p. This code is only pseudo code to present the general concept
how OCL deals with associations of interfaces. As mentioned above, every sub expression which
evaluates to Boolean, e.g., p2.kind == config, or p2.dimension == p, is surrounded
by a try-catch block as shown in lines 6 to 18 and 21. The reason is, if any of these sub ex-
pressions throw an error, the complete logical expression with !, ||, or && can still be evaluated,
and in some cases (e.g., concatenation of sub expressions) the failed sub expressions does not
matter for the combined result.

Since the Type interface does not have the rows attribute, but one class implementing the
Type interface has this attribute; the generator produces for this class the if-instanceof
block as shown in lines 10 to 14. If the p2_type object belongs to a class not having this
attribute, the code evaluates the Boolean sub expression to false as shown in line 17.
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// p2.type.rows == p with p and p2 instance of Parameter interface 

ParameterSymbol p;

ParameterSymbol p2;

boolean p2_type_rows__equals__p = false;

try {

TypeSymbol p2_type = p2.getType();

// Type interface does not have rows association, but the following

// classes, implementing Type interface, have rows association:   

// NumericType

if (p2_type instanceof NumericTypeSymbol) {

NaturalNumberSymbol p2_type_rows =

((NumericTypeSymbol)p2_type).getRows();

p2_type_rows__equals__p = Objects.equals(p2_type_rows, p);

}

else { 

// the object p does not belong to any class having the rows association

p2_type_rows__equals__p = false;

}

}

catch (Exception e) {

p2_type_rows__equals__p = false; // error evaluates to false

}
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Figure 6.12.: Generated Java Pseudo code of the OCL expression p2.type.rows == p (cf.
l. 25 in Figure 6.11).

The code in lines 11 to 13 is only added, because there exists at least one class (i.e., Posi-
tiveParameter class) implementing the NaturalNumber (left side of equals sign) as well
as the Parameter (right side of equals sign) interface1. The Java code must cast p2_type to
NumericTypeSymbol, otherwise it would result in a compilation error of the generated Java
code. Line 13 uses Objects.equals as this method is more robust, because it also works for
null references.

The here presented extension of the OCL generator is 100% compatible with the OCL semantics
defined by Rumpe [Rum16], because the navigation of an association of an interface, which
is only available by their subclasses and not by the interface itself, can be extended to longer
OCL code using several of the safe typeif - instance - then- else rules (cf. Subsection
Conditional Expressions [Rum16, SubSection 3.1.3]). This extension together with the automatic
flattening (cf. [Rum16] for more details) operators, when navigating along two or more star or
optional associations of OCL, are the main reason why context conditions formulated in OCL are
much more compact than using any general purpose programming language such as Java, or C++.

1If such a class implementing both interfaces would not exist, the left and right hand side of the equals expression
cannot be the same, and therefore, the generator would also evaluate the complete Boolean sub expression to
false.
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context ComponentInst inv Traceability:

let

selection = this;

aggregation = component.traceable;

compareTo = traceable;

in         // comparison

aggregation implies compareTo
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Figure 6.13.: OCL code for traceability consistency rule.

6.2. Defining Extra-Functional Properties in OCL

The previous section has shown how to define context conditions for EmbeddedMontiArc in
OCL. This section presents how to define consistency rules of extra-functional properties in OCL.
While these also apply during design time, it may be that product developers define and use these
constraints themselves or even the tag designers.

All consistency rules presented in this section follow the selection, aggregation, and comparison
structure introduced in our consistent extra-functional property tagging paper [MRRvW16]. This
section uses twelve illustrative examples to elucidate the OCL framework. The OCL consistency
rules are defined on the merged class diagram presented in Figure 5.14 on page 123. This
merged class diagram combines the class diagrams of EmbeddedMontiArc and the generated class
diagrams of the tag schema defining the concrete and abstract syntax of new extra-functional
property types. For better readability, all OCL constraints skip the same import statement
including all classes of the merged class diagram.

The first four rules are instantiation consistency examples. Instantiation consistency checks
whether the extra-functional property values of C&C instances are conforming to the extra-
functional property values of their definitions of the C&C model (cf. Figure 4.17 on page 123 for
relations between C&C model and C&C instance structure in the abstract syntax) [MRRvW16].

The next eight rules are composition consistency rules. Composition consistency checks extra-
functional properties across their composition [MRRvW16]. Most rules address consistency on
type and/or instance level.

Most of the consistency rules are published in one of our two extra-functional properties
papers [MRRvW16, MMR+17]. However, the OCL constraints in this thesis differ from the ones
presented in the papers, because the steady improvement of the OCL generator (esp., its type
inference algorithms) enables to shorten constraints.

6.2.1. Traceability for Component Instantiation

Consistency Rule: If the component type definition is traceable, all instances have to be
traceable.

Figure 6.13 shows (except of the one import statement) the complete OCL code to formulate
this consistency rule. All the consistency rules must define multiple selection, one ag-
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context ComponentInst inv MaxPower:

let

selection = component;

aggregation = 

max maxPower ?: 0W;

compareTo =

min selection.maxPower ?: oo W;

in         // comparison

aggregation <= compareTo
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Figure 6.14.: OCL code for maximal power consumption consistency rule.

gregation, and one compareTo variables. These variables are used to generate positive
consistency and negative inconsistency witnesses; Section 6.3 explains this in detail. Line 3
selects the current component instance. The aggregation value is true when the component
definition is tagged with traceability (cf. BrakeCtrl component definition in Figure 5.7
on page 155 and l. 13 in Figure 5.8 on page 156). Line 5 is a short-form for compareTo =
this.traceable. Line 7 is the comparison part: it says when the corresponding compo-
nent type is tagged with traceable, then this component instance must also be tagged with
traceable.

Please note that the other way around is not forced, meaning that the component instance
can be marked as traceable and the component type definition of this instance is not marked as
traceable.

The TurbineController C&C model in Figure 5.7 satisfies this constraint, because only the
BrakeCtrl component definition is marked as traceable and both instances, brCoA and
brCoB, are also marked with traceable.

6.2.2. Maximal Power Consumption for Component Instantiation

Consistency Rule: The maximal power consumption of an instance is at most the maximal
power consumption of its type.

Figure 6.14 shows the complete OCL code (except of the import statement) for component
instantiation consistency rule of maximal power consumption. Lines 3 to 7 define the mandatory
variables needed for the witness generation.

The OCL language of Rumpe [Rum16] has been extended with many new set expressions.
For example, the set expression max has as input variable any set of numbers and it returns the
largest number. However, if the set is empty, max returns {} for not present. The empty set
and the not present optional value use the same concrete syntax in the OCL language. This is
wanted, because OCL treats everything as set: 0..1 cardinality is a set with zero or one element;
1 cardinality is a set with one element; and * is a set with zero, one, or more elements. The
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context PortInst inv Encryption:

let

selection = port;

aggregation = 

selection.encryption.elements;

compareTo = encryption.value;

in         // comparison

encryption.value.size <= 1    &&

aggregation.containsAll(compareTo)
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Figure 6.15.: OCL code for encryption consistency rule.

advantage of treating everything as a set is that the set flattening operators, defined by Rumpe
[Rum16], can also be applied to optional and “normal” data types.

The Elvis operator ?: is borrowed from Kotlin [Lei17] and x ?: 0W in line 5 is equal to
x.isPresent ? x : 0W2; it is the same as x.orElse(0 W) in Java. Line 5 means:
(a) if the component instance is not tagged with any maxPower value, then 0W as default value
is used; and (b) if the component instance is tagged with multiple maxPower values (cf. (T6) in
Section 5.3), then the maximal value is used. If it is tagged with only one value, then of course
the max operator returns this one value.

The new set operators and the Elvis operator enables to define this consistency constraint in
less than 10 lines of OCL code.

The turbine controller example in Figure 5.7 satisfies this constraint, because:
(a) TurbineController component type definition is tagged with maxPower = 4W,

but the only component instance of this component type is not tagged with maxPower.
Therefore, 0W = aggregation <= compareTo = 4W.

(b) BrakeCtrl component type definition is tagged with maxPower = 2010mW, and
the two component instances are tagged with maxPower = 1W and maxPower =
2010mW.

6.2.3. Encryption for Port Instantiation

Consistency Rule: The encryption of a port instance must be in the encryption set of the
port definition.

Figure 6.15 shows the complete OCL code, modulo one line of import statement, for port
instantiation consistency of the extra-functional property encryption. Line 8 forbids tagging the
port instance multiple times. Tagging an element several times with the same value results in a
set with one value, because a set contains only different elements - in contrast to a list.

2OCL can access the content of optional values directly, so x is equals to x.get(). If the optional value is not
present, then x returns an error resulting that the Boolean expression surrounding this error is evaluated to false.
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// authentication 

tagtype auth: [Pin, Voice, FaceID, 

Finger] for Connector, ConnectorInst;
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context Connector inv Authentication:

let

selection = connectorInst;

aggregation = selection.auth.value;

compareTo = auth.value;

in         // comparison

compareTo.containsAll(aggregation)
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Figure 6.16.: OCL code for authentication consistency rule.

Lines 6 and 9 forces that the set encryption.value is a subset or equals to the ag-
gregation set. The turbine controller example satisfies this rule, e.g.: pitchBrake and
turbineState of MainController component definition are tagged with {AES, RSA}
(cf. l. 9 in Figure 5.11), and the corresponding port instances are tagged with AES (cf. l. 14 in
Figure 5.12).

Adding tag turbineCtrl.windSpeed with encryption = DES3 causes this
consistency constraint to fail, because the windSpeed port definition of the TurbineCon-
troller component definition is not tagged at all; and line 5 flats this to an empty set which
does not contain DES3.

6.2.4. Authentication for Connector Instantiation

Consistency Rule: The union of authentication methods of all connector instances must be
a subset equal to the methods of the connector definition.

Figure 6.16 shows the tag type definition in lines 2 to 3 (as this extra-functional property
have not been defined in Chapter 5), the class diagram derived of this tag type definition (cf.
Subsection 5.5.2), and the OCL consistency constraint in lines 4 to 10. In contrast to the previous
constraint starting with the instance, this constraint starts with the connector definition in line
4 and chooses all connector instances of this connector definition in line 6. OCL can navigate
against the navigation direction of associations [Rum16]. The auxiliary variable selection is
a set of connection instances (cf. star cardinality in class diagram). The aggregation variable
is a set of EAuth; due to the automatic flattening of OCL (cf. Rumpe for further information
[Rum16]) the type of aggregation is not a set of sets.

Assume we have the connector definition in1 -> out1 with the two connector instances
a.in1 -> a.out1 and b.in1 -> b.out1. Therefore, the value of selection is the set of
both connector instances. Furthermore, in1 -> out1 is tagged twice: auth = Pin and
auth = Voice. Due to automatic flattening auth.value is the set {Pin, Voice}.
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// certificates 

tagtype cert: String for ComponentInst,

Port;
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context ComponentInst inv Certificates:

let

selection = component.ports;

aggregation = intersection { s.cert |

s in selection};

compareTo = cert;

in         // comparison

compareTo.containsAll(aggregation)
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Figure 6.17.: OCL code for certificates consistency constraint.

Case A: If a.in1 -> a.out1 is not tagged, and b.in1 -> b.out1 is tagged with
auth = Voice, then aggregation is the set {Voice}. This case satisfies the consistency
constraint.

Case B: If a.in1 -> a.out1 is tagged with auth = Finger and auth = Voice
as well as b.in1 -> b.out1 is tagged with auth = Pin and auth = Voice, then
aggregation is the set {Finger, Voice, Pin}. This case does not satisfy the constraint,
because Finger is in set aggregration, but it is not in the set auth.value.

6.2.5. Certificates for Component Instances/Port Definitions

Consistency Rule: The certificates of component instances must be at most the certificates
common to all port definitions of the corresponding component type.

Figure 6.17 shows the tag type cert, the derived class diagram, and the OCL constraint to
enforce certificate consistency. Line 6 selects all port definitions of the component definition
which belongs to the given component instance. The expression { s.cert | s in selec-
tion} creates a set of sets; it is not automatic flattened, because it is no navigation expression
such as selection.cert is. The intersection operation receives as input a set of sets,
and it returns a set whereby the set is the intersection of the input. For example, interestion
{ {a, b, c}, {b, c, d} } is equals to {b, c}. The intersection operator is the unary
retainAll operator of OCL3. Therefore, intersection { {a, b, c, d, e}, {b,
c, d, e, f}, {c, d, e, f, g} } is equals to {a, b, c, d, e}
.retainAll({b, c, d, e, f}).retainAll({c, d, e, f, g}); the unary in-
tersection set operator is just more convenient. Line 11 is equivalent to compareTo ⊇
aggregation.

3cf. http://mbse.se-rwth.de/book1/index.php?c=chapterC-3

http://mbse.se-rwth.de/book1/index.php?c=chapterC-3
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context Component inv MaxPowerSubs:

let

selection1 = subs;

selection2 = this;

aggTags = 

List { max s.type.maxPower ?: 0W |

s in subs };

aggregation = sum aggTags;

compareTo = min maxPower ?: oo W;

in         // comparison

aggregation <= compareTo
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Figure 6.18.: OCL code for maximal power consumption of subcomponents.

6.2.6. Maximal Power Consumption of Subcomponent Instantiations

Consistency Rule: The combined maximal power consumption of all component defini-
tions belonging to subcomponent instantiations of the decomposed component definition is
at most the maximal power consumption of the composed component definition itself.

Figure 6.18 checks whether the aggregated value of the maximal power consumption of all
subcomponent instantiations of a component definition is smaller or equal to the maximal power
consumption of the component definition itself. Similar to Figure 6.14, max X ?: 0W for the
set X returns 0W if X is the empty set, and otherwise the element of X having the maximum value.
The aggTags variable (cf. l. 5-6) is a list which elements store the maximal power consumption
of each subcomponent instantiation inside this. Line 8 calculates the sum of all elements in the
list; e.g., sum List{2, 4, 9, 2} is equals to 17. Please note that lists can have duplicated
entries, in contrast to sets. Line 9 in Figure 6.18 is the same as line 7 in Figure 6.14.

The TurbineController in component type in Figure 5.7 violates this rule, because
it is tagged with maxPower = 4W and it contains the two component instantiations brCoA
and brCoB having the type BrakeCtrl. Therefore, aggTags is a list with two elements
{2010mW, 2010mW}. It uses the maxPower value of component definitions and not of the
component instances. The variable aggregation is 4020 mW which is the sum of both
elements. Since 4020 mW is not smaller or equals to 4W, the constraint fails.

However, if this constraint would compare the subcomponent instance values, then the turbine
controller would satisfy it. The selection1 = subs expression must be changed to se-
lection1 = componentInst.subs and the expression s.type.maxPower must be
modified to s.maxPower in Figure 6.18 when constraining the subcomponent instances instead
of the component types of the subcomponent instantiations.
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context Port inv Encryption:

let// selection is a set of sender ports

selection = portInstantiations

.endCon.sourcePort.port; 

aggregation = { p.encryption.elements

| p in selection };

compareTo = encryption.elements;

in         // comparison

forall encSrc in aggregation:

encSrc.retainAll(compareTo) != {}
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Figure 6.19.: OCL code for target ports and one simple example for encryption.

6.2.7. Encryption for Target Ports

Consistency Rule: A target port must support at least one encryption of its sender ports.
Figure 6.19 shows the OCL code for the target port consistency rule. Lines 3 and 4 are equiva-

lent to selection = { p | exists Connector con: con.sourcePort.port
== this && con.targetPort.port == p}.

For the port definition b (cf. C&C model in bottom left part) which is only a source port,
b.portInstantiations evaluates to {y1.b, y2.b} and y1.b.endCon as well as
y2.b.endCon evaluate to empty sets4. Therefore, the selection variable for the port b
context is an empty set. If selection is an empty set, then the aggregation variable is
also an empty set, and the constraint is satisfied (cf. l. 9).

For the port definition a the expression a.portInstantiations evaluates to {y1.a,
y2.a}, hence, a.portInstantiations.endCon is equals to {c -> y1.a, d ->
y2.a}. Therefore, selection is the set {c, d}. The variable aggregation evalu-
ates to the following set of sets { {RSA, DES}, {AES, DES} }. The encryption target
(cf. compareTo in line 7) is the set of encryption elements of the port definition a; it is {RSA,
AES}. Lines 9 and 10 are satisfied, because {RSA, DES}∩{RSA, AES}={RSA}6={} and
{AES, DES}∩{RSA, AES}={AES}6={}.

The example in Figure 6.19 still fails the presented OCL consistency constraint, because the
target port definition g supports only the encryption mode RSA (aggregation = {RSA}),

4Line 3 and 4 select only ports which are connected with b and b is target port. The set {e, f, g} does not count,
because in these connections b is source port.
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context ComponentInst inv PowerConsumptionWithEncryption:

let// selections are subcomponent and port instances

selection1 = subs;

selection2 = ports.addAll(subs.ports);

aggregation = sum List{ max s.maxPower ?: 0W | s in selection1 }

+ sum List{ max pi.encryption.encryptPower ?: 0W | 

pi in selection2, pi.receiver != {} }

+ sum List{ max pi.encryption.decryptPower ?: 0W |

pi in selection2, pi.sender.isPresent };

compareTo = min component.maxPower ?: oo W;

in

aggregation <= compareTo
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Figure 6.20.: OCL consistency code using two different extra-functional properties.

and its sender port definition b only the encryption modes AES and DES. Therefore, g and b
have no common encryption mode to communicate with (cf. l. 10: {AES, DES}∩{RSA}={}).

6.2.8. Power Consumption of Components considering Power needed for
Encryption and Decryption

Consistency Rule: The combined energy consumption of subcomponent definitions plus
the energy consumption needed for encryption and decryption data is at most the energy
consumption of the composed component instance.

Figure 6.20 presents an OCL constraint which uses the two extra-functional properties max-
Power consumption of component definitions and component instances as well as the encryption
kind of port instances. The OCL code uses two selection auxiliary variables; this means the
witness (cf. Section 7.3) contains the elements of selection1 and selection2.

The small C&C example shown in Figure 6.20 does not satisfy the constraint, because its
aggregation value is 109W (84W + 16W + 9W = (32W + 52W) + (7W + 5W + 2W + 2W)
+ (4W + 3W + 1W + 1W)) and this is larger than the 100W of the maximal power consumption
specified by component definition X.
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The power consumption needed for different encryption and decryption kinds are invented
numbers to have a simple example. The paper A Study of the Energy Consumption Characteristics
of Cryptographic Algorithms and Security Protocols [PRRJ06] contains realistic numbers about
the power consumption of different encryption kinds.

The expression pi.receiver != {} in line 7 evaluates to true if the port instance pi has
a receiver port instance accepting the data; this means if the port instance itself is a sender port
the expression is true; otherwise it is false. The expression pi.sender.isPresent in line 9
evaluates to true if the port is a receiver port. Please notice, that a port can be both; e.g., when the
component instance x1 is embedded into another component instance z1 and the port z1.g is
connected to x1.c, then x1.c has a sender port, i.e., z1.g, and one receiver port, i.e., y1.a.

The OCL expression can also be adapted to not add the power consumption of ports just
delegating encrypted values, as a smart implementation does not decrypt and encrypt the by-passed
values. In this case, line 7 needs to be modified to pi in selection2 && pi.receiver
!= {} && pi.sender.isAbsent, and analog line 9. This small discussion shows that
consistency rules of extra-functional properties are not fix and must be adapted to the current
context. However, the presented OCL framework enables defining these rules in few lines of
code.

The encryptPower and decryptPower associations in Figure 6.20 are added manually:
i.e., (1) add a new class diagram artifact with these two associations - all class diagrams are
merged; and (2) extend the generated EncryptionSymbol.java file via the MontiCore
top mechanism [HR17] by adding two Java methods returning for each encryption kind the
correct power consumption value. The first step (1) is needed so that OCL language accepts the
presented OCL code in Figure 6.20; the OCL language checks whether all associations exist.
The second step (2) is needed to compile the generated Java code by the OCL to Java compiler;
otherwise, an error arises that the Java methods EncryptionSymbol.getEncryptPower
and EncryptionSymbol.getDecryptPower do not exist.

Figure 6.21 defines the mapping of needed power consumption to encrypt or decrypt data
according to the used algorithm in a table tag (cf. ll. 11-14). First, lines 1 to 8 create a new
tag schema defining the table structure. Lines 4 and 5 use the same enumeration items and the
same table name as the encryption tag types (cf. ll. 8, 10 in Figure 5.10). Therefore, the tagging
generator generates a class diagram where EncryptPower has an association to Encryption
and the class diagram merger produces the class diagram shown in Figure 6.21. If this behavior
is not wanted, then the table name in line 3 must be changed. If the table is the same but the
enumeration items are different, then the class diagram merger throws an error that the diagrams
are incompatible and cannot be merged.

The class diagram marks the new elements added due to the encryptPower tag schema
bold. Lines 15 to 28 show the modified OCL code whereby the changed code parts are surrounded
by dotted lines. Since the association component.encryptPower (cf. l. 18) is a qualified
one, ep is a map and the key column encryption is the key element to access the map as it is
shown in line 20 and 23.

The expression { ep[encValue] | encValue in pi.encryption }.encrypt
is normal OCL/P as defined by Rumpe [Rum16]. Since pi.encryption has as inferred type
Collection<Encryption> (cf. star cardinality in association), the access ep[pi.en-
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tagtype encryptPower:

| encryption: 
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tags EPTable {

tag X with encryptPower =
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OCLcontext ComponentInst inv PowerConsumptionWithEncryptionTable:

let selection1 = subs;

selection2 = ports.addAll(subs.ports);

ep = component.encryptPower;

aggregation = sum List{ max s.maxPower ?: 0W | s in selection1 }

+ sum List{ max { ep[encValue] | encValue in pi.encryption

}.encrypt ?: 0W | 

pi in selection2, pi.receiver != {} }

+ sum List{ max { ep[decValue] | devalue in pi.encryption

}.decrypt ?: 0W |

pi in selection2, pi.sender.isPresent };

compareTo = min component.maxPower ?: oo W;

in

aggregation <= compareTo
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Figure 6.21.: Complete model-driven workflow to define a consistency constraint involving two
extra-functional properties.

cryption] is not defined in normal OCL/P, as ep is of type Map<Encryption, Collec-
tion<EncryptPower>>.

However, the author of this thesis thinks that the new element-wise access concepts sim-
ilar to indexOf for array access (cf. Subsection 6.2.9) helps to improve the readability of
OCL constraints. The element-wise access defines map[{key1, key2}] as {map[key1],
map[key2]}. With this new introduced OCL concept the expression { ep[encValue] |
encValue in pi.encryption }.encrypt can be simply written as ep[pi.encryp-
tion].encrypt. And this supports the concept of OCL to focus only on the logic of con-
straints and not to bother the modeler with complex looking set constraints.

The table tagging approach enables defining for each component definition its own mapping
from encryption kind to power consumption. If this mapping is the same for every component,
then the best way is to tag the main component type of the model; because from any component
instance a main association goes to the CncInstanceStructure class (cf. Figure 4.17 on
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tagtype asil: [QM |ASIL_A | ASIL_B |

ASIL_C | ASIL_D] for Component;

1

2

context ComponentInst inv ASIL:

let

asilNb = List{ QM, ASIL_A, ASIL_B, 

ASIL_C, ASIL_D }; 

selection = subs;

aggregation = min {  

min asilNb.indexOf(s.asil.value) ?: 0 |

s in selection.component };

compareTo = min asilNb.indexOf(

component.asil.value) ?: 0;

in         // comparison

aggregation >= compareTo
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Figure 6.22.: OCL code to force that composed component cannot have higher ASIL than its
subcomponents.

page 123) and from this class you can easily navigate to the component definition of the main
component instance.

6.2.9. Automotive Safety Integrity Level for Component Definitions

Consistency Rule: The ASIL (Automotive Safety Integrity Level) of all subcomponents
must be higher or equal than the ASIL of the composed component.

Figure 6.22 shows the OCL code checking that the ASIL of all subcomponents must be higher
or equal than the ASIL of the composed component. Lines 5 and 6 define the asilNb helper list.
This list maps each ASIL to a number so that a comparison of ASILs is possible. The expression
asilNb.indexOf(x) returns 0 for QM, 1 for ASIL_A, 2 for ASIL_B, 3 for ASIL_C and
4 for ASIL_D.

The indexOf5 function is extended to accept a set as parameter by applying the Java in-
dexOf operator to each element of the set; e.g., asilNb.indexOf( {QM, ASIL_C} )
returns {0, 3}. OCL extends all Java operators to set and list operators when applying it
element-wise makes sense; this way OCL expressions - often dealing with sets due to its naviga-
tions of associations - come along with less forall or exists statements, which makes the
code easier to read.

Line 9 takes the lowest number of an ASIL when a component is tagged with two different
ASIL values, and it takes 0 for QM when the subcomponent has not been tagged at all. Line 14
does the comparison.

5cf. http://mbse.se-rwth.de/book2/index.php?c=chapter3-2

http://mbse.se-rwth.de/book2/index.php?c=chapter3-2
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tagtype wcet: (0s : oo s) for Component;1

context ComponentInst inv WCET_SingleCore:

let

selection = subs;

aggregation = sum { max s.wcet ?: 0s |

s in selection.component };

compareTo = min component.wcet ?: oo s;

in         // comparison

aggregation <= compareTo
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Figure 6.23.: OCL consistency constraint for worst-case execution time (WCET) of a single core
processor.

6.2.10. Worst Case Execution Time for Single Core Processors

Consistency Rule: The worst-case execution time of a component instance is at most the
worst-case execution time of its subcomponent instances.

Figure 6.23 shows one out of three semantic interpretations of worst-case execution time.
This semantic does not parallelize anything, as it would be the case executing the model on a
single core processor. Since this OCL constraint is very similar to the one for maximum power
consumption in Figure 6.18, no further explanation is required.

6.2.11. Worst Case Execution Time for Processors with Infinite Cores

Consistency Rule: The worst-case execution time of a component instance is at most the
maximum of the worst-case execution time of parallel executable direct subcomponent
paths (we assume that the host PC has infinite many cores).

Figure 6.24 shows the second worst-case execution time semantics. The OCL code for compo-
sition consistency of worst-case execution time with the semantic interpretation to parallelize
anything. This can be used if there is not sure how many CPU or GPU cores exist in the design
phase, and if this constraint failed, the worst-case execution time constraint will fail no matter
what the exact core number is.

Line 3 selects all subcomponents which sender is the current component instance. In the C&C
example model, startSubs includes A, G, and H as these receive values directly from any input
port of X. Line 4 stores all output ports in an auxiliary variable; in this example outPorts is
the set {k, l, m}.

Lines 7 and 8 stores in selection all chains starting at any subcomponent instance of
startSubs and ending at any port of outPorts. All chain instances contain all elements
only once, thus, the cycle from C to A is contained at most once. Lines 9 and 10 filter out all
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context ComponentInst inv WCET_InfiteCores:

let

startSubs = {s in subs | this in s.sender };

outPorts = {p in ports | p.direction == OUT};

// selection: chains from subcomponents to 

// an output port

selection = { chain in startSubs.start | 

chain.end in outPorts }; 

subChains = { chain in selection |

chain.elements.retainAll(subs)};

aggChains = { sum List{ max s.wcet ?: 0s | 

s in chain.elements.component } | 

chain in subChains };  

aggregation = max aggChains ?: 0s;

compareTo = min component.wcet ?: oo s;

in

aggregation <= compareTo
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Figure 6.24.: OCL consistency constraint for worst-case execution time (WCET) using infinite
cores.

subcomponent instances of the chains (chain.retainAll(subs) is the same as chain ∩
subs). In our example, subChains consists of five chains:

• chain 1 from A to k: A→ B→ C
• chain 2 from A to k: A→ D→ C
• chain 3 from A to l: A→ D→ E→ F
• chain 4 from G to m: G→ H
• chain 5 from H to m: H

Lines 11 to 13 adds all the worst-case execution time values of one chain in subChains.
The expression max s.wcet ?: 0s is only there if one component instance has not been
tagged or has been tagged multiple times. In the example, aggChains is the set {9 ms, 11
ms, 20 ms, 17 ms}; chain 1 and chain 5 have both a runtime of 9 ms. In this example, the
worst-case execution time is 20 ms when all five chains are parallelized on different cores. Since
the decomposed component X is also tagged with 20ms, the example satisfies this constraint.

The example in Figure 6.24 does not satisfy the constrain shown in Figure 6.23, because
when all subcomponents are executed on one processor, the worst-case execution time of the
subcomponents would be 44ms which is not smaller or equal to 20ms.
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context ComponentInst inv WCET_MultiCore:

let

startSubs = {s in subs | this in s.sender };

outPorts = {p in ports | p.direction == OUT};

// selection: chains from subcomponents to 

// an output port

selection = { chain in startSubs.start | 

chain.end in outPorts }; 

subChains = {chain in selection |  

chain.retainAll(subs) };

threads = min cis.main.threads ?: 1;

// calculates all partition combinations  

combChains=subChains.listPartitions(threads);

combSubs = { { {chain | chain in partition} 

.asSet | partition in singleComb } |

singleComb in combChains };

partSums=  { { sum List{ max s.wcet ?: 0s | 

el in partition, 

s in el.component} |

partition in singleCombs } |

singleCombs in combSubs }    

maxTimeInComb = { max { p | p in singleComb }

?: 0s | singleComb in partSums };

// aggregation takes best combination 

aggregation = min maxTimeInComb ?: 0s;

compareTo = min component.wcet ?: oo s

in

aggregation <= compareTo
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Figure 6.25.: OCL consistency constraint for worst-case execution time (WCET) using a mul-
ticore processor. Yellow high-lighted lines show the difference to OCL listing in
Figure 6.24.

6.2.12. Worst Case Execution Time for Multi Thread Processors

Consistency Constraint: The worst-case execution time of a component instance is at most
the maximum of the worst-case execution time of parallelizable executable direct subcom-
ponent paths constrained by the number of available threads.

Similar to Subsection 6.2.8 combining maximal power consumption with used encryption
kind, this constraint combines the two extra-functional properties: worst-case execution time and
number of available threads.

Figure 6.25 shows the third semantics of worst-case execution time in combination with the
threads extra-functional property (cf. l. 1). The lines enclosed by a dotted rectangle (i.e., ll.
12-26) in the OCL listing are different from the OCL listing in Figure 6.24. Line 12 receives the
number of threads of the main component instance; the current component instance navigates to
its CnCInstanceStructure via cis role name and the C&C instance structure navigates
via main role name to the main component instance. For the example, we use the same C&C
model as shown in Figure 6.24, the number of available threads are 3 (cf. l. 1).



196 Chapter 6. OCL Framework to Describe Structural and Extra-Functional Properties

Line 14 creates all combinations to partition the list with 5 elements into three sub-lists; each
thread receives one sub-list executing the independent subcomponents chains.

For partitioning a list with 5 chains to three sub-lists, there exists 150 combinations. Three
randomly selected combinations are:
• [ [A→ B→ C], [A→ D→ C], [A→ D→ E→ F, G→ H, H] ]
• [ [A→ D→ C], [A→ D→ E→ F, H], [A→ B→ C, G→ H] ]
• [ [G→ H],[A→ B→ C, A→ D→ C, A→ D→ E→ F],[H] ]

The variable combChains contains 150 combinations of three lists, each containing a list of
chain instances. Lines 15 to 17 flatten the four dimensional structure combChains → 150
singleCombs → 150×3 partitions → 150×3×n chains → 150×3×n×m
element instances to the three dimensional structure combSubs → 150 single-
Combs → 150 × 3 partition → 150 × 3 × k element instances whereby the
n chain lists of m subcomponent instances are flattened to a set of k component instances.
This flattening step is done to avoid executing one component twice in the same thread. Three
combinations of combSubs, derived from the above presented combChains combinations,
are:
• {{A, B, C}, {A, D, C}, {A, D, E, F, G, H}}
• {{A, D, C},{A, D, E, F, H},{A, B, C, G, H}}
• {{G, H}, {A, B, C, D, E, F}, {H}}

Lines 18 to 22 aggregate the worst-case execution time of all subcomponents inside one
partition. This means the three dimensional structure combSubs shrinks to the two dimensional
structure partSums → 150 singleCombs → 150×3 partition WCET values.
Three combinations of partSums are:
• {9 ms, 11 ms, 37 ms}
• {11 ms, 29 ms, 26 ms}
• {17 ms, 27 ms, 9 ms}

Lines 23 and 24 take for each combination the highest time value, because the execution is only
finished when all threads are finished. Therefore, for the three combinations of partSums above,
maxTimeInComb is a set containing - among others - the values 37 ms, 29 ms, and 27 ms.
Line 26 chooses the best single combination, i.e., the minimal value of maxTimeInComb, and
stores it in aggregation. For the three combinations presented here, aggregation has the
value 27 ms by choosing the last combination. This aggregation value causes the OCL
consistency constraint to fail in line 29.

This last OCL example shown in Figure 6.25 proves that our OCL framework is suited to
describe real-world consistency constraints for extra-functional properties. The verification of
the multi core worst-case execution time is time consuming when the number of subcomponents
increases, because then the combinations how to deploy the chains of subcomponents onto
different threads/cores increases dramatically. The generated Java code uses the Java library
combinatoricslib of version 2.36 to calculate all partition combinations of line 14. This
library also supports combinations with repetitions, permutations with and without repetitions,
power sets, as well as Cartesian product calculations.

6cf. https://github.com/dpaukov/combinatoricslib#7-list-partitions

https://github.com/dpaukov/combinatoricslib#7-list-partitions
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6.3. Extracting Consistency Witnesses from the OCL
Constraints Describing Extra-Functional Properties

The normal OCL to Java generator produces witnesses based on the let-in construction
as explained in Subsection 6.1.2 for the context condition on connectors. The verification
tool of EmbeddedMontiArc for extra-functional properties extends the OCL to Java genera-
tor to produce more user-friendly positive consistency and negative inconsistency witnesses
[MRR13, MRR14, Rin14]. The generated witnesses are parseable EmbeddedMontiArc models.
However, the witnesses do not satisfy all context conditions, because they only contain the
relevant C&C elements needed to explain why a consistency constraint is satisfied or not. For ex-
ample, witnesses of Traceability (cf. Subsection 6.2.1), MaxPower (cf. Subsection 6.2.2),
contain only components and component instances. In contrast, the witnesses of Encryption
(cf. Subsection 6.2.3) would only contain port and port instances, whereas the witnesses of
Authentication would only contain connector and connector instances.

To create better readable textual witnesses and nice graphical models, the verification generator
extends the witnesses produced by the OCL to Java generator in the following way:
• The consistency witness contains all components and component instances for which a

port or a port instance exist in the OCL witness.
• The consistency witness contains for each connector definition the source and target port

instantiations inclusive the subcomponent instantiations and the port definitions.
• The consistency witness contains for each connector instance the source and target port

instances as well as their component instances.
• If an extra-functional property is stored inside aggregation or compareTo, then the

consistency witness also contains the corresponding C&C element.
Inconsistency witnesses contain the minimal C&C elements to violate an extra-functional

property. For example, if the consistency constraint forces that the costs of the sum of all direct
subcomponent instances are lower than their parent component instance; and one subcomponent
instance is already more expense than the parent component instance, then the witness includes
the parent component instance and only this one subcomponent instance. Filtering all not needed
subcomponent instances facilitates to focus why a consistency constraint fails.

The rest of this section presents one positive consistency witness and one negative inconsistency
witness. The witnesses shown in this thesis are relayouted, but no extra text or graphical elements
have been added.

6.3.1. Positive Consistency Witnesses

Figure 6.26 shows the graphical representation of all generated consistency witnesses of the
Traceability (cf. Figure 6.13) constraint for the the TurbineController example (cf. Figure 5.7
on page 155). Since the TurbineController model has 13 component instances, which are the
context of the constraint (cf. l. 1 in Figure 6.26), the verification algorithm produces 13 positive
consistency witnesses. Because the selection variable stores the current component instance,
each witness consists of exactly this one component instance. Because aggregation and
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Figure 6.26.: Positive consistency witness of Traceability (cf. Subsection 6.2.1) constraint
for TurbineController example (cf. Figure 5.7 on page 155). The values
aggregation and compareTo are skipped in this witness.

context Component inv Traceability2:

let

selection = componentInsts;

aggregation = 

and componentInsts.traceable;

compareTo = traceable;

in         // comparison

compareTo implies aggregation
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Figure 6.27.: Alternative to Figure 6.26 defining the traceable extra-functional consistency con-
straint.

compareTo address the traceable property this one is added to the witness. Please note
that all other extra-functional properties of the TurbineController example are ignored.

Figure 6.27 shows an alternative OCL constraint to Figure 6.13. The context of the new
Traceability2 constraint is the component definition. Thus, the constrain generates ten
witnesses as shown in Figure 6.28, as the turbine controller example has ten component types.
Witness 7 in Figure 6.28 contains two component instances because, the BrakeCtrl turbine con-
troller has the two brCoA and brCoB component instances which are stored in the selection
variable.
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Figure 6.28.: Generated Witnesses of alternative consistency constraint. The values aggrega-
tion and compareTo are skipped in this witness.

6.3.2. Negative Inconsistency Witnesses

Figure 6.29 shows the C&C model of a simple weather balloon sensor [MMR+17]. This models
serves to demonstrate how a negative witness looks like, because this model is inconsistent
according to the MaxPowerSubs OCL rule shown in Figure 6.18.

Figure 6.30 presents the generated negative witness for the maximal power consumption rule
of subcomponent instantiations (cf. Figure 6.18). The generated negative witness contains only of
three subcomponent instantiations, because these three are enough to violate the constraint. The
verification tool receives from the OCL to Java generator all subcomponent instantiations. Due to
the <= relation between aggregation and compareTo, the verification generator sorts the
subcomponent instantiations according to the used extra-functional property (e.g., maxPower)
and it removes from the first selection statement as long as possible elements until this constraint
is satisfied and then it adds the last removed one again. The result is a minimal inconsistency
witness. The verification tool only optimizes according selection or selection1 variable.
It always shows the elements stored in selection2 and so on, because this minimization
analysis is too complex for the generator yet.
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Figure 6.29.: WeatherBalloonSensor C&C model (adapted from [MMR+17]) to explain the
negative inconsistency witness.
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Figure 6.30.: Negative consistency witness showing that the sum of the maximal power consump-
tion of the subcomponent instantiations exceeds the maximal power consumption
of its parent component. Tooling marks the consistent extra-functional properties
green and the inconsistent ones red.
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grammar EmbeddedMontiArcTooling {

EmbeddedMontiArcArtifact = Package? ImportStatement* ComponentType;

symbol scope Component implements ComponentType = 

"component" name:Name /*...*/ "{" 

"ports" (Port || ",")* ";" 

(subs:ComponentInstantiation Connector)* "}";

enum Direction = in:"in" | out:"out";

symbol Port = 

Direction type:PortType Name "[" dimension:NaturalNumber "]";

symbol ComponentInstantiation /*...*/ =

"instance" type:Name@ComponentType /*...*/ name:Name

"[" dimension:NaturalNumber "]" ";" ;

PortInstantiation =

(sub:Name@ComponentInstantiation subIndices:Range | "this") "." 

port:Name@Port portIndices:Range;

Connector = 

"connect" sourcePort:PortInstantiation

"->" targetPort:PortInstantiation ";" ;

Range =

"[" start:NaturalNumber ":" step:NaturalNumber ":" end:NaturalNumber "]";

}
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Figure 6.31.: Excerpt of normalized EmbeddedMontiArc grammar.

6.4. OCL to Specify Transformations between Abstract
Syntax of Two Languages

The first sections of this chapter explained how to use OCL to describe structural or extra-
functional property constraints. This section shortly explains how to transform the abstract syntax
of EmbeddedMontiArcParsing to the abstract syntax of EmbeddedMontiArcTooling, and how
OCL specifies these transformations. The transformations to the C&C instance structure defined
in Section 4.3 work the same way; and thus, they are not explained in this section. In contrast to
Hölldobler and Weisemöller et. al. [RW11, Wei12b, HRW15, HHRW15, AHRW17b, HRRW17,
AHRW17a] describing transformations on the concrete syntax, OCL specifies the transformations
on the abstract syntax.

The EmbeddedMontiArc tooling developer (cf. roles described in Figure 6.1 on page 171)
specifies these OCL transformations between the abstract syntax of the three MontiCore lan-
guages EmbeddedMontiArcParsing, EmbeddedMontiArcTooling, and CnCInstanceStructure (cf.
Figure 4.1 on page 104 for relationship between these grammars).

Figure 6.31 repeats an excerpt of the EmbeddedMontiArcTooling grammar (Figure 4.2 on
page 106 presented a similar listing). MontiCore 5 generates the abstract syntax presented in
Section 4.2 based on this grammar as explained in Section 4.1; cf. Figure 4.3 on page 106 or
right part of Figure 6.34 for the derived class diagram of Figure 6.31.
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grammar EmbeddedMontiArcParsing extends EmbeddedMontiArcTooling {

start EmbeddedMontiArcArtifact;

symbol Port = 

Direction? type:PortType Name ("[" dimension:NaturalNumber "]")?;

symbol ComponentInstantiation /*...*/ =

"instance" type:Name@ComponentType /*...*/ name:Name

("[" dimension:NaturalNumber "]")? ";" ;

PortInstantiation =

(sub:Name@ComponentInstantiation subIndices:Range? | ["this"]?) 

("." port:Name@Port portIndices:Range? | nameBased:".*"

| indexBased:".**");

Range =

"[" (all:":" | start:NaturalNumber (":" step:NaturalNumber)?

":" end:NaturalNumber) "]";

}
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Figure 6.32.: Excerpt of EmbeddedMontiArc grammar; rules modified due to syntactic sugar are
underlined.

Line 3 creates Component class extending the ComponentType interface as it is explained
in Figure 4.10 on page 116. Line 5 and 6 create the ports, and subs association. The
parameters association is skipped (cf. /*...*/ in line 4). Line 6 also creates the association
from Component to the Connector class, this one is skipped in Section 4.2 as it is not needed
at all.

Line 8 creates the Port class; line 9 adds the direction enumeration attribute, and the
type plus the dimension association (cf. Figure 4.11 on page 117). Line 13 creates the
PortInstantiation class; line 14 adds the optional sub association to ComponentIn-
stantiation as well as the optional subIndices association to Range. The associations
are optional, because of the alternative (cf. pipe symbol). The expression Name@Component-
Instantiation means that the concrete syntax expects a word matching the Java name
token, and MontiCore maps this word to a ComponentInstantiation object having this
word as name. Line 15 adds to the PortInstantiation class the two associations port
and portIndices. Lines 16 to 20 define the abstract syntax of Connector and Range as
introduced in the bottom part of Figure 4.11.

However, the Connector definition in line 16 to 18 does not parse the following expression
connect controller[:].* -> merge.*[:] illustrated in Figure 3.50 on page 87.
One obvious solution is to extend the tooling grammar shown in Figure 6.31 with this nice
syntactic sugar. However, this would destroy the abstract syntax of EmbeddedMontiArcTooling
representing the essence of this language according to tool developers. Therefore, a better solution
is to create the new EmbeddedMontiArcParsing grammar extending the EmbeddedMontiArcTool-
ing one and to overwrite the inherited rules for adding syntactic sugar.
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Merge

RedundantVelocityController

newGear[1]

acceleration[1]

brakeForce[1]

VelocityController

controller[1]

newGear

acceleration

brakeForce

VelocityController

controller[2]

newGear[2]

acceleration[2]

brakeForce[2]

newGear

acceleration

brakeForce

component RedundantVelocityController(N+ n=2) {

instance VelocityController controller[n];

instance Merge<n> merge;

connect controller[:].* -> merge.*[:];

}

1
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4

5

EMAParsing

component RedundantVelocityController(N+ n=2) {

instance VelocityController controller[n];

instance Merge<n> merge;

connect controller[1:1:n].newGear[1:1:1]

-> merge[1:1:1].newGear[1:1:n];

connect controller[1:1:n].acceleration[1:1:1]

-> merge[1:1:1].acceleration[1:1:n];

connect controller[1:1:n].brakeForce[1:1:1]

-> merge[1:1:1].brakeForce[1:1:n];

}
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trafo

EMATooling

Figure 6.33.: Example code snippet how to transform EmbeddedMontiArc code to the normal-
ized EmbeddedMontiArc version. The example is a snippet from Figure 6.31 and
Figure 6.32.

Figure 6.32 shows the EmbeddedMontiArcParsing grammar extending the EmbeddedMontiArc-
Tooling one to add support for nice syntactic sugar. Line 4 in Figure 6.32 adds support to write
ports in B in1, B in2 in EmbeddedMontiArc. Line 7 enables to omit the dimension
during component instantiation when it is one. Line 9 enables omitting the subIndices when
they are [1:1:1] as well as the this keyword when not using .* or .** (this is checked
via a context condition). Lines 10 and 11 add the index- and name-based connection patterns to
EmbeddedMontiArc.

Line 13 adds the all range to the EmbeddedMontiArcParsing grammar (e.g., connect
x[:] -> y[:]) as well as step can be ignored when it is one.

The only thing which is left is to translate the abstract syntax of EmbeddedMontiArcParsing’s
syntactic sugar version to the abstract syntax of the EmbeddedMontiArcTooling version. Fig-
ure 6.33 serves as demonstration example how to transform nice EmbeddedMontiArcParsing
code to its version of the tooling grammar. Taking a first look at the difference between Embed-
dedMontiArcParsing and EmbeddedMontiArcTooling in Figure 6.33 unveils that the syntactic
sugar really makes daily life much more comfortable when writing EmbeddedMontiArc code.

The following part of this section presents two transformations: First, [:] to [1:1:$end];
and second, .* to the unfolded long version. Figure 6.34 shows the two class diagrams of the
abstract syntax of both languages; the bold text on the left side marks the difference on the
abstract syntax introduced by syntactic sugar.

Figure 6.35 shows the first OCL expressions to formalize the transformation of the Embed-
dedMontiArcParsing abstract syntax to the one of EmbeddedMontiArcTooling. These three OCL
constraints have a concrete structure so that the OCL2Trafo generator is able to generate Java
code manipulating the data structure. All classes of EmbeddedMontiArcParsing are post-fixed
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Figure 6.34.: Class diagrams of abstract syntax of EmbeddedMontiArcParsing with syntactic
sugar (left) and EmbeddedMontiArcTooling (right). The classes in the left are
marked with an apostrophe to differentiate between syntactic sugar and tooling
classes of EmbeddedMontiArc’s abstract syntax. The generated classes of both class
diagrams have the same short name, but different full-qualified names as they are in
different packages.

with an apostrophe to differentiation between both class diagrams; the implementation differs by
the package names. To improve readability the associations belonging to the syntactic sugar class
diagram are also post-fixed with an apostrophe in OCL.

The context consists always of the pair which should be transformed. The expression context
Range rn, Range’ rs inv: transforms the rs variable to rn. The generated Java code
is a function Ranges.setRange(Range rn, Range’ rs) and a visitor with the method
void visit(Range’ rs) creating a new Range object using the Ranges.setRange
method. The visit method does this transformation step. After the context is always an
equal (==) or similar7 (~~) plus an iff (<=>) expression. The OCL2Trafo generator produces
if-else Java expressions for condition implies result OCL ones (cf. ll. 7f). Line
7 handles the [:] case, lines 8 and 9 handle the “normal” case. The result is always on
the left side: Lines 8 and 9 are translated to Ranges.setStart(rn, rs.getStart());
Ranges.setEnd(rn, rs.getEnd()); Ranges.setStep(rn, rs.getStep()
.orElse(NaturalNumbers.of(1)));. Ranges and NaturalNumbers are helper
classes for Range and NaturalNumber; the tool uses the Guava notation. These helper
classes are generated to not overwrite the set methods of the abstract syntax generated by Monti-
Core or the adapted handwritten ones using the TOP mechanism.

7The similar expression has the same functionality as the equals expression. However, the equals expression checks
via context conditions whether the left and right side type are compatible to detect typos in OCL which accidentally
evaluate equals expressions always to false. Since Range and Range’ are not in relation at all, these both
types are not compatible. Therefore, the OCL expression uses rn ~~ rs instead of rn == rs.
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context Range rn, Range' rs inv:

let pi' = rs.portInstantiation';

dimension' = pi'.portIndices' == rs ? pi'.port'.dimension' ?: 1 :   

pi'.sub'.dimension' ?: 1; 

in

rn ~~ rs <=>

(rs.all' implies rn.start == 1 && rn.step == 1 && rn.end == dimension')&& 

(!rs.all' implies rn.start == rs.start' && rn.end == rs.end'   &&

rn.step == rs.step' ?: 1) 
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context Port pn, Port' ps inv:

let ports' = ps.componentType'.ports';

in

pn ~~ ps <=>

pn.name == ps.name' && pn.dimension == ps.dimension' ?: 1 &&

pn.direction == ps.direction' ?:

ports'[ports'.indexOf(ps) - 1].direction' ?: IN

10
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OCL

context PortInstantiation pin, PortInstantiation' pis inv:

let

r1' = List{Range' r | r.start' == 1 && r.end' == 1 && r.step' == 1}[0];

in

pin ~~ pis <=>

pin.port == pis.port' && pin.sub == pis.sub' &&

pin.portIndices ~~ pis.portIndices' ?: r1'    &&

pis.sub.isPresent implies pin.subIndices ~~ pis.subIndices' ?: r1'

17
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22
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24

OCL

transforms rs (source) to rn (target) -- or rn (target) is based on rs (source)

rn (target) should be equivalent to rs (source)

case distinction property of rn (target) equals number or property of rs (source)

Figure 6.35.: OCL rules to express the transformation from EmbeddedMontiArcParsing to Em-
beddedMontiArcTooling for Range, Port, and PortInstantiation.

Lines 10 to 16 show the OCL expression to transform the short to the long version of the port
abstract syntax. Line 10 generates the method Ports.setPort(Port pn, Port’ ps).
Line 16 shows the advantage of OCL to formulate the transformation: Similar to normal OCL
constraints, the OCL code supports automatic flattening when navigating through associations
and it handles all error cases automatically. Therefore, the inference of the missing direction with
a default value can be easily described without carrying about an out of bounds exception as in
Java. An error in OCL evaluates to false or to an empty set, and so the else part of the Elvis
operator in line 16 is used.

Lines 17 to 24 transforms the short to the long version of the port instantiation. Line 19 is
valid OCL code, and because the result r1 is stored into pin.subIndices, the OCL2Trafo
generator creates an object with this property if it does not exist. Whereas the normal OCL verifier
code would evaluate line 24 to false if no Range r in line 19 exists, because [0] throws an
error; OCL2Trafo handles this error situation by creating the suited object if needed. Lines 23
and 24 transforms sub.port to sub[1:1:1].port[1:1:1].

Figure 6.36 shows one of the most complex transformations. The OCL2Trafo generator
produces if - else Java expressions for condition implies result OCL ones (cf. l.
10 and 12). The expression !or ps.indexBased is equivalent to !(sps.indexBased
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context Connector cn, Connector' cs inv:

let spn = cn.sourcePort;

sps' = cs.sourcePort';

tpn = cn.targetPort;

tps' = cs.targetPort';

ps' = {sps, tps}

in

cn ~~ cs <=>

( (!or ps'.indexBased') && (!or ps'.nameBased') implies

spn ~~ sps' && tpn ~~ tps' ) &&

( or ps'.nameBased' implies

let sCmp' = sps.sub'.parent';

tCmp' = tps.component';

names' = sCmp'.ports'.name'.retainAll(tCmp'.ports'.name');

sPorts = {Port sp | sp.name in names', sp.component ~~ sCmp'};

tPorts = {Port tp | tp.name in names', tp.component ~~tCmp'};

cons = {Connector c | c.sourcePort in sPorts,

c.targetPort in tPorts,

c.sourcePort.name == c.targetPort.name};

compN = List{Component cmp | cmp ~~ cs.componentScope}[0]

in

compN.containsAll(cons); // OCLTrafo generator changes it to addAll

) /* && ... indexBased case similar to nameBased one: use position */

1

2

3

4

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

OCL

Figure 6.36.: OCL code to specify the normalization of the Connector.

|| tps.indexBased); the or operator connects all elements in a set with the || operator.
Using this set or operator leads to shorter and better readable code.

Line 11 says that the source and the target ports are similar when no special connector pattern
is used. The expression spn ~~ sps && tpn ~~ tps use the previously generated set-
Port method twice: Ports.setPort(spn, sps) and Ports.setPort(tpn, tps).

Lines 13 to 21 specify the transformation for the name-based connection pattern. The names
variable contains port names which contain the source and target component definitions. In the
example in Figure 6.33, names is equals to {“newGear”, “acceleration”, “brake-
Force”}. In the example, sPorts = {VelocityController.newGear, Veloci-
tyController.acceleration, VelocityController.brakeForce} and tPo-
rts = {Merge.newGear, Merge.acceleration, Merge.brakeForce}. Since
these connections defined in lines 18 to 20 do not exist, OCL2Trafo creates them. Line 21 selects
the component cmpN being identical to the one containing the name based connection. Line 23
adds all these connectors to the component cmpN, because containsAll is always satisfied
when these elements are added before.

The normal OCL verifier can use these constraints to check whether the transformations are
executed correctly, e.g., to test the OCL2Trafo generator.
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«interface»
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«interface»
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String Name

«interface»

Scope *

definesenclosing

interface Scope {

// returns the symbol with given name and specified kind

<S extends Symbol> Optional<S> resolve(String name, Kind k);

// goes to global scope; loads (if not already done) all models in 

// model path, and returns all elements of the specified kind

<A extends Adaptable> Collection<A> getGlobally(Kind k);

<A extends Adaptable> Collection<A> getLocally(Kind k);

} CD

Java

«interface»

Symbol

String Name

«interface»

SymbolKind

[MSN17, Figure 4.1] and [HR17, Listing 9.7]

interface Scope {

// returns the symbol with given name and specified kind

<S extends Symbol> Optional<S> resolve(String name, SymbolKind k);

// "resolves locally resolves all symbols with the specified

// symbol kind" [p. 72, MSN17] -> name does not matter

<S extends Symbol> Collection<S> getLocally(SymbolKind k);

}

«interface»

ASTNode

1 1

«interface»

Scope *

definesenclosing

1
1

Java

Adaptable presents the adaptable
abstract syntax element.
No differentiation between
ASTNode and Symbol anymore
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Kind
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GlobalScope

1
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getGlobally() 
needed for OCL 
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Figure 6.37.: Structure of new MontiCore version (top); and old MontiCore version, e.g., Monti-
Core 4.

6.5. Some Remarks about the Implementation

Previous MontiCore versions, e.g., MontiCore 4, differ between the abstract syntax tree and
symbol elements of the abstract syntax. The implementation of Nazari [MSN17] only allows to
adapt symbol elements; the new MontiCore version supports to adapt all abstract syntax elements.
For this reason the Adaptable interface is decoupled from the Symbol interface in the top
part of Figure 6.37.

Figure 6.37 shows the structure of the old MontiCore version and the structure of the new
version. As the bottom part shows, only symbols are (locally and via GlobalScope globally)
resolvable. Therefore, languages using this resolving mechanism define for each ASTNode a
corresponding Symbol, where the name is the empty String when the ASTNode is not actually a
symbol and has no unique name.

The OCL generator is able to handle both structures, the new and the old ones, of MontiCore.
For the new structure, the developer must do nothing. For the old structure, the developer must
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import de.monticore.umlcd4a.*;

tagschema OCL2JavaTags {

tagtype SymbolName:String for CDType;

tagtype ASTName:String for CDType;

tagtype AssociationName:String for CDAssociation;

}

1

2

3

4

5

7

TagSchema

Figure 6.38.: Tag schema to define the mapping for classes of the abstract syntax to Java names.

specify how the classes of the abstract syntax are mapped to Symbol or ASTNode elements.
This mapping enables the generator to resolve the corresponding associations by invoking the
specified classes and get methods. Figure 6.38 defines the tag schema to enrich classes with
this information. The new version of the OCL code generator does not use configuration files as
bridge anymore as published in [MMR+17]; it uses tag models as explained above.

In contrast to Java, OCL when used as specification language has the ability to navigate against
the navigation direction of associations. For this example association association [*]
ComponentInst -> Component [1], the OCL generator rewrites the expression con-
text Component inv: !this.componentInst.isEmpty to context Compo-
nent inv: !{ ComponentInst ci |ci.component == this}.isEmpty. The
OCL expression ComponentInst ci is mapped to the following Java code: for (Compo-
nentInst ci : getEnclosingScope().getGlobally( ComponentInst
.KIND)).

The most complex part of OCL is the type inference mechanism based on given class dia-
grams. The type inference mechanism must flatten Collection<Collection<X>>, Col-
lection<Optional<X>> and Optional<Collection<X>> automatically to Collec-
tion<X> plus Optional<Optional<X>> to Optional<X>, and it must also infer types
defined in nested sets. It is so complex, because most OCL constraints only define the types in
the context clause; also most variables introduced with the let - in construct do not provide
any further type information.

The OCL language has been extended to support units, e.g., context Person: size
< 160 cm && weight > 120 kg implies fat. Thus, OCL must be able to infer the
types of many constants, e.g., 160 cm has the Java type Number<Length> extending JScience
Amount<Length> and 120 kg has the type Number<Mass>. The type inference algorithm
must also evaluate all expressions, i.e., 160 cm + 120 kg throws an error; but 160 m / 2
s has the type Number<Velocity>.

Additionally, the OCL language supports calculation with plus and minus infinity as shown
in various OCL expressions. This enables defining no limit in constraints, esp., needed for
extra-functional properties. Similar to mathematics, the following rules hold for n as arbitrary
number, but n is not plus or minus infinity: oo + n == oo, oo * n == n < 0 ? -oo
: +oo, -oo + n == -oo, -oo * n == n > 0 ? -oo : +oo, n / oo == 0,
n / -oo == 0, n < oo == true, and n > -oo == true. However, -oo + oo and
oo / -oo result in an error.
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Figure 6.39.: Improved parsing speed of optimized OCL grammar. InstPower is the OCL
rule defined in Subsection 6.2.2, CompPower is the OCL rule defined in Subsec-
tion 6.2.6, WCET-Single Core is the OCL rule defined in Subsection 6.2.10,
and WCET-Inf Core is the OCL rule define in Subsection 6.2.11.

Besides adding unit, infinity, and type inference support to the OCL language, also the grammar
file has been improved a lot. First, the OCL X { construct is now optional; hence, the concrete
syntax of OCL is 100% compliant with the rules specified by Rumpe [Rum11, Rum16]. Now,
the OCL language supports more operations (esp., new set operations such as and, or, in-
tersection, union, max, min, sum, prod) to avoid the imperative iterate statement
whenever it is possible; Section C.2 on page 370 summarizes all OCL operators according
to their priority in a table. Figure 6.39 shows how the parsing speed of OCL text files im-
proved a lot during the grammar refactoring. For the WCET-Inf Core constraint shown in
Figure 6.39, the speed-up factor is 45! The new OCL grammar does not contain epsilon transi-
tions, i.e., MontiCore rules matching empty input; e.g., OCLContextDefinition = Type?
varNames:(Name || “,”)* (“in” Expression)? has been refactored to OCLCon-
textDefinition = Type | Type? varNames:(Name || “,”)+ (“in” Ex-
pression)?.

Additionally, the new grammar does not contain optional of empty lists anymore if there is no
concrete syntax between optional and an empty list, because Rule1 = Rule2* and Rule3 =
“word” Rule1? causes a lot of back tracking for the ANTLR parser: For Rule3 as start rule,
maps word as input to ASTRule1 = Optional.of(Collections.emptyList())
or to ASTRule1 = Optional.empty().
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6.6. Related Approaches to Constrain Structure of
Architectures

ACME [GMW00b] specifies the structure of architectures via first-order predicates. Cichetti
et. al. use the Epsilon Validation Language [KRGDP18] to define validity constraints. The
Epsilon Validation language and the ACME’s first-order predicates provide similar features as our
OCL framework. Some commercial UML tools (e.g., MagicDraw, Poseidon, XMF-Mosaic) also
provide OCL support [GBR07].

Dresden OCL has an OCL2SQL and OCL2Java generator as well as a runtime interpreter to
interpret all objects created during model execution [DW09]. Dresden OCL can also be used to
animate stateful models; e.g., to describe which parts in a graphical editor should be highlighted.
Dresden OCL also supports to query relational data bases [KPP06c]. Besides Dresden OCL, there
exists UML2NoSQL to map UML/OCL code to graph database frameworks to check consistency
of unstructured no SQL data bases [BCD+16].

Dresden OCL has support for EOL (epsilon object language). EOL also supports defining
variables, it mixes OCL constructs with constructs defined by other languages such as C++ or
Java [KPP06b]. This is very similar to our used OCL/P language. EOL also only uses the dot
operator to not differentiate between arrow or dot one as in OCL anymore. In contrast to OCL/P,
EOL supports to manipulate data with the := operator. EOL also enables reusability by importing
constraints. Our paper Encapsulation, Operator Overloading, and Error Class Mechanisms in
OCL [BRvW16] also presented a concept how to define OCL libraries and how to reuse operators
in OCL/P. The current language implementation does not support to define operators in OCL
directly; the OCL MontiCore grammar format must be extended to add new operators. Based on
EOL there exists Epsilon Merging Language to define how models are merged.

Gogolla et. al. [GBR07] present USE (UML-based Specification Environment) to define UML
diagrams. USE checks consistency between these diagrams via OCL, which is a very similar
approach to our context condition checks defined in OCL. USE has an evaluation browser used as
OCL expression debugger. USE additionally checks the consistency of models and constraints
to identify contradicting OCL constraints [GBR07]. Hilken et. al. uses USE to specify derived
properties [HSSG16]. The OCL verifier tool also supports inferring derive attributes.

In contrast to OCL/P, Dresden OCL and USE’s OCL have, similar to OMG OCL, a four value
logic. Therefore, evaluating a navigation chain fails when one of the objects is not present. This
leads to many unwanted problems evaluating Boolean expressions. Some papers, e.g., Safe
Navigation in OCL [Wil15] address this problem.

F-OML [BBD+16] is a constraint and query language to define design patterns, reasoning
about UML diagrams, and specification of DSLs. The PathLP part of F-OML supports smart
querying, e.g., ?C.student[?S].name bounds an object c to the variable ?C, and binds ?S
to an object who is a student of C and it returns its name [BK11]. The let-in construct in
OCL/P expresses the same content, but its code is much longer as all variables must be explicitly
defined.

Herrera et. al. uses OCL as bridge from concrete to abstract syntax [HWP15]. They reformu-
late the “problematic” parts of the concrete syntax. This approach is similar to our OCL2Trafo
one mapping the syntactic sugar EmbeddedMontiArcParsing grammar to the EmbeddedMon-
tiArcTooling one. Jounault et. al. [JB16] also specifies transformation via OCL and generate
incremental transformation code in Java.
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Ahmed et. al. created textual constraint language for the common data model - an abstract data
model for scientific data sets to be constrainted by OCL [AVKB14]. CdmCL translates the new
language to OCL. A similar approach is done with our C&C architecture specification language
in the next chapter. The syntax of it is also translated to OCL.

For OCL exist many tools to transform OCL to any solver, mostly any SMT solver such as
Z3, CVC4 (cf. [ADEM14]) or mapping OCL to Haskell for its functional interpretation [CV16].
In a bachelor thesis, Nicolai Strodthoff also evaluated validation performance when translating
OCL to Microsoft’s Z3 solver and when generating unoptimized Java code (e.g., forall or
exists expression are translated to for loops without any break statements). For plain
structural analysis working on scopes (using locality constraints), the Java approach was much
faster. This thesis even generated optimized SMT code (7 versions; first one is most readable one
with own data types of Z3, and last one only uses integers and also bit patterns for quantifiers
are generated). The evaluation of simple constraints, cf. constraint B1 in Section 7.1.4, for a
simple model with only 59 components and 126 symbols (ports and components) needed between
15.17 seconds (version 7) and nearly 140 seconds (version 4). In contrast, the execution of the
generated Java code to check this constraint needed less than 0.01 seconds, even for models with
over 600 symbols. For further information, see bachelor thesis of Strodthoff [Str17].

Longuet et. al. [LTW14] model class diagrams and OCL in Isabelle jEdit and proof the
constraints via Isabelle. However, they needed at least 9 GB of RAM to verify a constraint for 56
classes. If a model has 90 classes, Isabelle needs 28 GB RAM to verify constraints over it.

Grunske [Gru07] observed the need for a general language to formulate different extra-functi-
onal property types. Arjona et. al. define security constraints via OCL and translate them to
CVC4 [ADEM14].

Cicchetti et. al. present for ProCom a value context condition language, a weaker version
of our OCL framework, to define validity conditions and identify possible threads. The results
are used to recalculate the satisfaction of extra-functional properties incremental. Cicchetti et al.
[CCLS11] supports evolution of extra-functional values, and based on their change history, the
algorithm suggests what components need to be updated.

Leveque and Sentilles [LS11] present refinement of extra-functional properties through instan-
tiation and subtyping of components. Engineers can use OCL constraints to filter extra-functional
attributes of components. Sentilles [Sen12, p. 88] uses only a simple selection and filter language
supporting and conditions plus simple if - else statements. The OCL/P framework in this
thesis, invented by Rumpe [Rum16], or OMG OCL [OMG05] support quantifiers and more
complex set operations. The here presented mathematical framework with selection, aggregation,
and comparison enables defining C&C-specific OCL constraints for consistency rules beyond
simple refinement relations of extra-functional properties as presented in Sentilles et. al.

Defour et. al. describe Quality of Service extra-functional properties via a constraint logic
programing language using OCL pre- and post-conditions [DJP04].

The combination of OCL with FreeMarker to define useful error messages for OCL
constraints is new. The same holds for the mathematical structure of OCL constraints
for extra-functional properties to generate useful consistency and inconsistency C&C wit-
nesses. The author of this thesis is not aware of such a similar approach. Another highlight
rarely present in existing constraint languages is the integrated unit support.





Chapter 7.

EmbeddedMontiView : A High-Level
Design Language for Component and
Connector Models of Embedded Systems

The previous chapter elucidated how to formulate structural and extra-functional properties of
the component and connector (C&C) language EmbeddedMontiArc. Section 6.1 defined generic
structural properties (also called context conditions or well-formedness rules) of EmbeddedMon-
tiArc via OCL. This chapter introduces EmbeddedMontiView, a C&C design language, to specify
architectural design decisions of embedded and cyber-physical systems.

EmbeddedMontiView is a C&C view language extending the abstraction concepts of Maoz,
Ringert, and Rumpe [MRR13, MRR14, Rin14] and the functional net modeling approaches of
Grönniger, Kriebel, and Rumpe [GHK+07, GHK+08a, GHK+08b]. In general, a C&C view
addresses one specific concern of a large C&C model. C&C views serve as a layer between
high-level textual requirements in IBM Rational DOORS [GHK+08a] and very large and complex
logical architectures described as C&C models. The strength of C&C views is the ability to
describe abstract relations between different hierarchy levels [MRR13]: For example, C&C views
may skip C&C components and ports that are unimportant for a requirement. Furthermore, C&C
views support connecting components directly with each other, even if they are no direct siblings
in the corresponding C&C model.

A set of C&C views is called a structural specification of a C&C model; a C&C model satisfies
a structural specification if and only if it satisfies all its C&C views. A C&C model satisfies
a C&C view if and only if it concretizes all structural specifications defined in the C&C view:
For example, if a C&C view introduces an input port with the name p1 for the component
C1 and omits its port type, then the C&C model must contain a component with C1 as type
name and this component contains at least one input port with the name p1; the data type of
the port in the C&C model does not matter as it is not specified in the C&C view. Section 7.4
presents this satisfaction relation, i.e., the satisfaction relation between EmbeddedMontiArc
models and EmbeddedMontiView views. A component of a C&C model may occur in different
C&C views, each focusing on a different concern of this component: For example, one view may
specify important features/functionalities of this component by defining its (direct or indirect)
subcomponents; and another C&C view specifies the interaction of this component with its
environment (or other features) by focusing on its ports and its connections.

The OCL framework presented in the previous chapter also supports to define such structural
architecture specifications on the abstract syntax of EmbeddedMontiArc. In contrast, Embed-
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dedMontiView defines these constraints using (nearly the same) concrete syntax of Embedded-
MontiArc; this enables a much more intuitive and faster specification of design constraints.
Furthermore, the concrete1 structure (abstract syntax) of EmbeddedMontiView enables to improve
the general witness creation algorithms of OCL to generate more helpful and user-friendly (non-)
satisfaction models and natural text messages.

The structure of this chapter is the following: Section 7.1 lists all requirements and features
of the C&C view language EmbeddedMontiView; it also discusses the new abstraction concepts
(compared to previous publications [GHK+07, GHK+08a, GHK+08b, MRR13, MRR14, Rin14])
being added to EmbeddedMontiView. Section 7.2 presents related concepts for specifying
and verifying architectural design decision. Section 7.3 introduces the concrete and abstract
syntax of the EmbeddedMontiView language; it elucidates how EmbeddedMontiView extends
EmbeddedMontiArc with new modeling elements to express underspecification (not known or
unimportant information) of C&C models. Section 7.4 describes the binary satisfaction relation
between EmbeddedMontiArc and EmbeddedMontiView in detail. Section 7.5 explains three kinds
of witnesses: The satisfaction witness shows only the C&C model elements needed to reason
why an EmbeddedMontiArc model satisfies an EmbeddedMontiView artifact; the tracing witness
contains/highlights all C&C elements of an EmbeddedMontiArc model satisfying at least one
abstract element in the EmbeddedMontiView artifact; and for each C&C view element - being not
satisfied by the EmbeddedMontiArc model - its non-satisfaction witness contains C&C model
elements violating this C&C view element’s specification.

7.1. Requirements/Features on the C&C View Language

Component and Connector views as presented in several papers of Maoz, Ringert, and Rumpe
[BMR+17a, MRR13, MRR14] introduce major abstraction mechanisms over hierarchy, con-
nectivity, data flow, and interfaces. EmbeddedMontiView should support all features of the
component and connector view profile of the C&C modeling language MontiArc. These features
are (description is taken from [Rin14, Subsection 3.2.2 on p. 31ff.]):
• Hierarchy abstraction

If one component is inside another one in a C&C view, then it does not necessary mean
that the second one is a direct subcomponent of the first one. Rather, it means that the
first component contains the second one, but not necessarily directly - i.e., the transitive
closure of the subcomponent relation of the first component contains the second one. If two
components are siblings in a C&C view, then it does not necessarily express that these both
components are direct neighbors having a common parent; however, it specifies that neither
of these two components contains (directly or indirectly) the other one. This abstraction
enables to specify the hierarchical structure of an embedded system partially.
• Connectivity abstraction

C&C views model abstract connections only. This means two elements connected via
an abstract connector may not be directly connected with a single connector in the corre-
sponding C&C model. An abstract connector expresses that these two components are

1compared to general and much broader expressiveness power of OCL constraints
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connected via a chain of connectors (all transferring the same data). Whereas connectors
in C&C models only connect ports, abstract connectors in C&C views may also connect
components directly and abstract connectors may crosscut component hierarchies.

• Incomplete interfaces
If not specified differently (cf. extension points), component interfaces in C&C views are
incomplete. This means components in a C&C model may have more ports than specified
by its C&C views. Additionally, C&C views may omit port data types or the port names.

• Extension points
Engineers may add knowledge annotations to C&C views. For example, the stereotype
atomic expresses that the component does not have subcomponents or internal connectors
in any satisfying C&C model. Furthermore, the stereotype interfaceComplete
specifies that the interface of an annotated component is complete, i.e., the component
contains exactly the specified port names of the C&C view in any satisfying C&C model.

Additionally, EmbeddedMontiView should support the specification of abstract data flow2 (this
concept is already published in our C&C view case study paper [BMR+17a]):
• Data Flow Abstraction

Effectors in a view describe data flow abstracting over chains of components (via their
effectors) and connectors. In contrast to abstract connectors, the data passed from an
abstract effector’s source to its target may change. Effectors in component and connector
models are only available to model data flow between input and output ports of atomic
components. Effectors of atomic components in C&C models are not explicitly modeled,
effectors are calculated based on the behavior implementations of atomic components. In
contrast, abstract effectors in C&C views may connect any two arbitrary ports (even going
from input to an output port of two different components).

All the previously presented abstraction concepts are only based on component and connector
instance models described by the C&C view language profile MontiArcView. Since Embedded-
MontiView should provide abstraction concepts for all EmbeddedMontiArc language features
(including unit types and matrix properties as port types, port and component arrays, as well as
component types with interfaces), requirements representing major abstraction mechanisms for
these new concepts are needed:

• Support of Component Types
EmbeddedMontiArc supports component types, which can be instantiated several times.
Thus, the C&C view language should not only support component instance names, but also
component types. This requirement increases the complexity of the verification algorithm:
The adapted algorithm must explore a much larger state space, because multiple components
(having different names) may have the same component type. Since EmbeddedMontiArc
also supports component interfaces, the component type may not even be unique: For
example, the component interface type Car can be implemented by A3, A4, X3, and
SClass component types.

2It is related to the German the phrases Wirkkette and Wirkkettenanalyse; e.g., cf. [AFBL14].
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• Unit Kind Abstraction
In an EmbeddedMontiArc instance model, the port data type or the matrix domain is
completely specified by a minimum (which maybe minus infinity), a maximum (which
maybe plus infinity), as well as a concrete unit (which maybe dimensionless) such as
kilometer per hour. Therefore, port types in C&C views should support two abstraction
kinds: First, omitting the port type at all as it is already possible in Ringert [Rin14]; and
second, to specify only a unit kind instead of a concrete range with a concrete unit (e.g.,
Velocity as an abstraction of (0 km/h : 250 km/h)). In MontiArc’s Java type
system this abstraction is identical by accepting a list of interfaces or super classes with
or without generic bindings in MontiArcView; e.g., ArrayList<String> in MontiArc
satisfies Iterable & Cloneable port type in MontiArcView.
• Matrix Property and Dimension Abstraction

The C&C view language should abstract from the dimensions of tensors (also matrices
and vectors) as well as it should describe matrix properties in an abstract manner. For
example, a C&C view should specify an underspecification parameter n to specify with
port in (0 ms : 10 ms)ˆ{n, n} inport a quadratic matrix port type being
an abstraction of ports in (0 ms : 10 ms)ˆ{10, 10} inport.
• Port Array Abstraction

C&C view interfaces cannot only abstract from port types and port names, but also from
port array dimensions. A missing port array dimension in a C&C view is always an
underspecification, whereas a missing port dimension in a C&C model always represents
the default array dimension one as C&C models do not support underspecification.
• Component Instance Array Abstraction

Component instances can be instantiated multiple times via arrays. Similar to port array
abstractions, C&C views may describe component instance array dimensions in an abstract
manner.
• Support Anonymous References

A graphical model may contain an unnamed port object having two outgoing connections
to two different components. Maoz, Ringert, and Rumpe [MRR13, MRR14, Rin14] do
not support this use case, because ports used in abstract connectors automatically force
a satisfying C&C model to contain this port name. EmbeddedMontiView should support
schema variables (starting with a dollar sign) for referencing a concrete port object in the
textual language without introducing a concrete port name. This way EmbeddedMontiArc
allows to model all graphical C&C views. Transformation languages (cf. [HRW15]) use a
similar concept.

7.2. Related Concepts for Verifying Component and
Connector Models

As this thesis extends the C&C view concept and the verification process of Maoz, Ringert, and
Rumpe; this concept builds on and refines their work. This chapter discusses the differences
between our C&C view language EmbeddedMontiView and the MontiArcView language profile in
detail. One of the biggest differences between MontiArcView and EmbeddedMontiView is that the
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<<view>> component UserButton {

<<interfaceComplete>> component UserButtonReader {

port <<untyped>> in button,

<<unnamed>> out UserInput;                                     }  }

1

2

3

4

MontiArcView

view UserButton {

component UserButtonReader {

ports (c) in ? button,

out UserInput ?;                                          }  }

5

6

7

8

EMV

Figure 7.1.: Comparison of MontiArcView language profile and EmbeddedMontiView language
(inspired by [Rin14, Listing 3.13, and Listing 3.14]).

second one is a completely separate language, whereas the first one only enriches the MontiArc
language [Hab16, RRW15, RRW13a, HRR12] with stereotypes. Therefore, MontiArcView is
bounded to the concrete syntax of MontiArc; MontiArcView just disables some of MontiArc context
conditions and adds some new ones related to C&C views. As a result, EmbeddedMontiView
supports much more underspecification: For example, due to parsing restrictions, MontiArc and
thus also MontiArcView, do not support to define ports without port names and port data types.
Additionally, stereotypes make the concrete syntax longer, and their restricted positions defined
by the MontiArc grammar less intuitive.

Figure 7.1 highlights the differences between Ringert’s C&C view specification and the one
used in this thesis in a small example. The top part of Figure 7.1 (cf. ll. 1-4) shows the
UserButton view defined in MontiArc enriched with the MontiArcView profile (cf. [Rin14,
Section 3.6 on p. 40ff.], esp. [Rin14, Listing 3.13 and Listing 3.14] for more details on the
concrete syntax). Line 1 needs to add the component keyword even though a C&C view is no
component. Line 2 adds the «interfaceComplete» stereotype in front of the component
keyword to mark that that this component defines all port names. Line 3 adds the «untyped»
stereotype in front of the port direction to say that the name followed after the port direction
is the port name and that the port type is skipped. The position of the stereotype is unintuitive,
because in MontiArc the port type is defined between the port direction and the port name: so in
«untyped» button would be a better choice. The same holds for line 4 defining an unnamed
output port.

The bottom part of Figure 7.1 (cf. ll. 5-8) defines the same architecture specification in
EmbeddedMontiView (cf. Section 7.3 for more details on concrete syntax). EmbeddedMontiView
does not use stereotypes as it is a stand-alone language. Therefore, line 5 does not need the
component keyword, as well as lines 7 and 8 can just replace the port type or the port name by
question marks. The complete sign (c) (cf. [Rum16, Section 2.4] in class diagrams) specifies
that the ports are completely specified. Due to MontiCore’s language extension features, Embed-
dedMontiView can be as easy extended with new keywords as MontiArcView with new stereotypes.
An advantage of extending EmbeddedMontiView with keywords instead of stereotypes is that
newly added keywords directly appear in the generated abstract syntax of EmbeddedMontiView
(or the new language extending it), whereas newly added stereotypes in MontiArcView are not
directly visible - the Java code accessing the stereotype information must be scanned.
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All work being related to C&C views of Maoz, Ringert, and Rumpe is also related to this
chapter. A short list of “inherited” related work extended with new papers is (more detailed
information is available in [Rin14, Subsection 3.7.5 on p. 47f]):
• Kruchten’s 4+1 concurrent views [Kru95]. The 4 stands for the four views: logical, process,

physical, and development; the 1 stands for the scenario model combining these different
view kinds. Verdier et. al. [VST18] extends each of the four views in Kruchten’s 4+1
views with platform-specific variability points to model product-lines efficiently. The
views in this paper do not contain variability points; however, a separate feature model
could select which views should be valid - this way views support product-line modeling,
and additionally, the model artifacts are separated (cf. discussion in Section 5.2 for the
advantages in separating product-line modeling and domain modeling).
• Runeson [RM14] presents an adaption of the 4+1 model for industry-academia collabora-

tions; his four views are time (when), space (where), activity (how), and domain (what) -
the plus 1 stands for the scenario view.
• View-based Model-driven Software Development with ModelJoin [BHK+16] uses a DSL

to define views declarative on existing meta-models. The views help to focus on parts
of the meta-model. This approach differs from our one, as our approach does not use
meta-models; our C&C view language defines views on concrete component and connector
models. Another difference is that our C&C views are independent from the model; thus
the views can be created before the C&C model. The declarative approach for ModelJoin
needs references to an existing model. A commonality of this paper with this thesis is that
both approaches use a human-readable DSL to specify views (cf. [BHK+16, Listing 1]).
• The viewpoints in Taylor et. al. [MT10] specify different perspectives of design decisions

related to a common concern.
• IEEE 1471 standard [Hil00] uses views to define a representation of a whole system

according to a specific perspective related to a set of concerns.
• For Giese and Vilbig [GV06], architectural views represent a partial software of a C&C

model to a particular concern.
• Clements et. al. [CGL+03] add the relationship aspects of different aspects to view

definitions.
• For Sabetzadeh and Esterbrook [SE06] views are a typed graph representing parts of an

architecture.
• The AADL language [FG12] supports refinement of architectural elements.
• Chechik et al. [SFC12] present a mechanism for incomplete models. Chechik et. al.

[SCFG15] use partial MAVO (may, abs, var, and OW partiality) models to express incom-
plete information, which can be refined to reduce uncertainty. The formal approach of
Chechik et. al. [SCFG15] supports defining formal correctness conditions for partial model
refinement transformations. Our C&C view approach is also a model refinement, because
every C&C model is also a C&C view (cf. Subsection 7.3.11).

The C&C view language profile MontiArcView is inspired by functional net modeling of
Grönninger, Kriebel, and Rumpe. In contrast to the approach of Maoz, Ringert, and Rumpe, C&C
views of Grönninger et. al. also model environment elements in C&C views. The environment
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elements provides better understanding of closed loop controllers interacting with actuators than
just considering the control part [GHK+07]. C&C views satisfaction relation can simply ignore
environment components.

Besides environmental blocks, their views also support external blocks. Both blocks may not
have a counter-part in the corresponding C&C model. The external block may be bought-in or is
developed by a different department. “Non-signal communication is modeled by connectors that
are connected to special ports in which ’M’ represents mechanical influence, ’H’ hydraulics, and
’E’ electrical interactions.” [GHK+08a, p. 3]. This separation of the influences of environment is
not needed, because in the high-level design phase only the interaction should be modelled and the
underlying physical law. If the brake works electrical, hydraulic or mechanical is uninteresting;
if this decision has influence on the physical output of the brake, e.g., deceleration range, then
this range should be modeled. Also the separation of external and environment is not needed,
because an external component is logical the same as an environment component: it is modeled to
understand the closed-loop, but it may not have a counterpart in the C&C model. Furthermore, a
simulator must simulate both environment and external components; maybe external components
are easier to simulate when a supplier delivers a DLL to the OEM.

Grönninger, Kriebel, and Rumpe introduce additional communication diagrams to views model-
ing the behavior of data-flow between connections in one concrete scenario. EmbeddedMontiView
does not support behavior modeling; it focuses on the specification of structural design decisions.

Similar approaches to functional modeling are UML-RT [FOW01], SysML [OMG15], service
oriented modeling of automotive systems [RFH+05, WFH+06], complex interface descrip-
tion including extra-functional properties [DVM+05], ATESST project based on EAST-ADL
[GHK+08b].

Pittou and Tripakis [PMRT18] use multi-view modeling to describe the system under develop-
ment by distinct models capturing different perspectives of the system. Reinecke and Tripakis
[RT14, Subsection 3.2] interpret a view as an incomplete picture of a system. However, Reinecke
and Tripakis only consider views for behavior and not for structural properties.

The Society of Automotive Engineers (SAE) Architecture Analysis & Design Language
AS5506 [FLV06], provides a model-based development lifecycle including system specification
(similar to views), their analysis as well as evolution of views via lifecycles.

Behere, Törngren, and Chen [BTC13] use views to describe conceptional and logical layers of
reference architectures.

O’Reilly, Bustard, and Morrow [OBM05] use structures similar to views for team coordination.
They present four different views concerning different tasks: (i) conveying effort, (ii) create a
shared understanding of the context of different software pieces, (iii) track the implementation
progress, and (iv) highlight conflicts during development activities.

A systematic literature review of Williams and Carver [WC10] unveiled five different logical
views (dependency relationships, layers, inheritance structures, module decomposition, source
structure) which are often suggested in literature to understand large and complex software
projects.

Tools checking the consistence of Java/C/C++ software architecture projects create views to
provide a better overview and understanding of large projects. Examples of such tools are the
following:
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• ArchAngel [OMB03] is a light weight architecture model describing the components of a
system and their inter-relationship (containment and communication). They use a graph
structure. “The main requirements of ArchAngel that have emerged so far are that it should:
(i) support the building and maintenance of simple architectural descriptions; (ii) support the
linking of an architectural description to an implementation; (iii) be proactive in determining
whether or not an evolving implementation conflicts with the defined dependencies; and (iv)
notify stakeholders (software engineers and architects) of inconsistencies that are detected”
[OMB03]. ArchAngel also provides verification tools similar to our ones; but they do not
create witnesses for satisfaction or non-satisfaction.
• JDepend [Mik17] is a free developer tool that can perform the same type of Java package

constraint checking as the ArchAngel system.
• Adele [BEM93] provides a system model that is bound to the kernel of a software configu-

ration management system.
• Mae is integrated into source code management environments [vdHMRRM01] to analyze

the evolution of software architectures.
• The tools of [MMM02] and [SSC96b] check coding rules and compliance ones according

to high-level design models.
• The Architecture Alignment Checker [MSN11] checks consistencies between Java imple-

mentations and their architectural descriptions specified in MontiArc (cf. [Hab16] for
further information). Since this tool is based on an older MontiCore version, it needs a
mapping language from Java to MontiArc. EmbeddedMontiArc supports this mapping
via the adaption mechanism of the symbol management infrastructure [MSN17]. Embed-
dedMontiView supports more abstraction mechanisms than the Architecture Alignment
Checker.
• RefJava [Flo02] works similar as the Architecture Alignment Checker. However, it also

detects, besides architecture inconsistencies, bad smells [MSN11].
• Passos et. al. [PTV+10] present the dependencies of components in a quadratic dependency

structure matrix instead of modeling it via associations as it is done in C&C views.
• Greifenberg, Müller, and Rumpe [GMR15] use a dependency constraint language for

features of architectures. This language also enables to forbid architecture styles, e.g., bad
design decisions. C&C views work in a similar way: positive views define dependencies
via abstract connectors or abstract effectors, and negative views (skipped in this thesis, but
they work the same as presented by Ringert [Rin14, p. 30]) forbid relationships between
components. The dependency checker of Greifenberg et. al. is similar to our satisfaction
verifier (cf. Section 7.4).
• EVA: A tool for visualizing software architecture evolution [NLM18] uses abstractions

similar to our C&C views to present relations between modules, e.g., classes of a software
component are inside one large circle, and different colors present the different groups
of dependencies (effectors or connectors in our case). For different concerns, EVA uses
different views, i.e., single-release architecture view, 3-D architecture-evolution view, and
pairwise architecture-comparison view. C&C views (cf. Daimler Case Study on C&C
views in Chapter 8) can also be used for software evolution.
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view RedundandVelcoityControllerPorts {

enum Gear { D1 | D2 | D3 | D4 | D5 | D6 | D7 | R | N | P }

component RedundantVelocityController {

ports in (0km/h : 250km/h) currentVelocity, // full specified port

? wishedVelocity, // untyped port

Gear              ?, // unnmamed port

out ? ?, // untyped and unnamed port

(-oo m/s^2 : oo m/s^2) $acceleration, // anonymous port

? $brakeForce; // untyped anonymous

}

}
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Figure 7.2.: EmbeddedMontiView model showing underspecification of ports.

• The paper An extensible benchmark and tooling for comparing reverse engineering ap-
proaches [CN15] presents UML tools (generating UML class diagrams instead of SysML
block diagrams) to analyze existing code bases. The best tools, all having 100% score
in the class detection benchmark, are [CN15, TABLE IV]: ArgoUML [RVR+10], Astah
Professional [Cha18], BOUML [Pag18], Enterprise Architect [Spa17], Rational Rhapsody
[IBM18], and MagicDraw [No 18].

All these mentioned tools enable to create smaller viewpoints (e.g., only focusing on user
interactions or class structures) based on a large software architecture. The witness extraction
presented in Section 7.5, esp. the complete tracing witness in Subsection 7.5.2, creates viewpoints
on an existing large architectural C&C model focusing on the important details of the viewpoint,
i.e., in our case the specified C&C view.

7.3. Concrete and Abstract Syntax of EmbeddedMontiView
Language

This section explains the concrete syntax of the EmbeddedMontiView language by examples. The
EmbeddedMontiView syntax is similar to the EmbeddedMontiArc syntax. EmbeddedMontiView
extends EmbeddedMontiArc by adding concrete syntax for underspecification. Additionally, this
section presents the abstract syntax of EmbeddedMontiView and highlights the differences of the
abstract syntax between EmbeddedMontiView and EmbeddedMontiArc.

7.3.1. Abstract Component Type Definition

Figure 7.2 shows how to define an abstract component type in EmbeddedMontiView. This figure
is an abstraction of Figure 3.49 and of Figure 3.50 on page 87. All EmbeddedMontiView models
start with the keyword view and a name (as shown in l. 1). In general, C&C views are small and
focus only on a very specific part of a C&C model, and multiple small views specify one large
C&C model. To reference a view later (e.g., for positive or negative witnesses) each view must
have a unique name.
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view RedundandVelcoityControllerPortsComplete {

enum Gear { D1 | D2 | D3 | D4 | D5 | D6 | D7 | R | N | P }

component RedundantVelocityController {

ports (c) // (c) stands for complete

in (0km/h : 250km/h)      currentVelocity, 

? wishedVelocity, 

Gear                   currentGear, 

? obstacleSpeed, // added

? obstacleDistance, // added

out ? newGearMerged, 

(-oo m/s^2 : oo m/s^2) accelerationMerged, 

? brakeForceMerged; 

}

}
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Figure 7.3.: Specify complete port interface in EmbeddedMontiView.

Analog to EmbeddedMontiArc, components in EmbeddedMontiView communicate with each
other only via their component interface containing input and output ports. There are different
abstraction levels to define abstract ports in EmbeddedMontiView (port array dimensions are
handled later):

1. Line 4 specifies the port completely as it is done in EmbeddedMontiArc.
2. Line 5 specifies a port incompletely by omitting its data type.
3. Line 6 specifies the port incompletely by omitting its name; it means the component has at

least one ingoing port with a Gear data type.
4. Line 7 specifies the port very abstractly by only presenting its direction; this means the

component has at least one output port plus the output ports defined in lines 8 and 9, the
name and the datatype does not matter.

5. Line 8 is similar to the third case. Both specify only the datatype. In contrast to line 6, line
8 defines the anonymous port name via a schema variable (starting with the $ sign), which
is an anonymous placeholder to create connections to or from anonymous ports.

6. This case is similar to the fourth one; the data type is not specified and the name is an
anonymous placeholder (cf. l. 9).

Since Figure 7.2 defines three anonymous output ports, a model satisfying this view has at
least three outgoing ports. The view does not specify the names of the outgoing ports, so a port
array with three elements matches these three ports defined in lines 7 to 9.

A (c) after the ports keyword, as shown in line 4 in Figure 7.3, specifies that the view defines
completely all port names. Figure 7.3 specifies that RedundandVelcocityController
has exactly five ingoing and three outgoing ports with these names. A specified port can also be
a port array, thus the controller may have more ports, but the controller must not have another
port with a name different from the specified one. EmbeddedMontiView does not support to
specify ports with the compete symbol and to omit the port names (e.g., via schema variables or
question mark signs for port names). Rumpe [Rum16, Section 2.4], [PFR01] already introduced
the syntactical symbol (c) for complete information.
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APort

String name [0..1]

{in | out} direction
dimension0..1

0..1

CD

«interface»

APortType

«interface»

AComponentType

ports*

«interface»

AParameter

parameters*

String name[0..1]

boolean portsComplete

«interface»

NaturalNumber

max

1

min1

ADimension

type

«interface»

AType0..1

type

Figure 7.4.: Abstract syntax of abstract port class (APort) and abstract component type interface
(AComponentType).

view WheelSensor {

component Car {

instance ? wheelSensor;

instance ? controller;

connect wheelSensor.airPressure -> controller;

}

}
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Figure 7.5.: Abstract component instantiations with unknown component type in EmbeddedMon-
tiView. The red text highlights the differences between the internal structures of
EmbeddedMontiView and EmbeddedMontiArc.

Figure 7.4 shows the abstract syntax of the abstract port class (APort) and the abstract
component type interface (AComponentType). The bold text highlights the differences between
EmbeddedMontiArc and EmbeddedMontiView. As shown in the examples in Figure 7.2 and
Figure 7.3, a port may omit the port type, the dimension or the name (cf. question mark signs
in EmbeddedMontiView examples). An abstract component type also may not have a name,
see examples in Subsection 7.3.7. The optional dimension of an abstract port is an abstract
dimension defining the minimum and maximum number of the port dimension, see examples in
Subsection 7.3.3. An abstract component type may be marked as interface complete (cf. (c)
sign after ports in Figure 7.3).
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view RedundandVelocityControllerInstances {

instance VelocityController vc1;

instance VelocityController vc2;

}
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Figure 7.6.: Abstract component instantiations in EmbeddedMontiView.

7.3.2. Abstract Component Instantiations

Similar to EmbeddedMontiArc, C&C views can also define an (abstract) hierarchical decomposi-
tion of component types as it is the case with the Car component type in line 2 in Figure 7.5.
EmbeddedMontiView also supports to define component instantiations without knowing the com-
ponent type of this instantiation as it is shown in lines 3 and 4 in Figure 7.5. The instantiation
names are only local names of the view and may not match the instantiation names of a C&C
model. The WheelSensor view specifies that there exists a Car component type which in-
stances have (directly or indirectly) at least two different subcomponent instances and one of
these instances has an output port airPressure being connected (directly or indirectly) to
any input port of the other instance. The semantics of EmbeddedMontiView supports that there
exist other component instances in a corresponding3 C&C model between the Car instance and
the wheelSensor instance. EmbeddedMontiView supports defining ports via connectors: Line
5 states that the wheelSensor instance has an airPressure output port with an unknown
type. EmbeddedMontiView forces to write this.$portName when referring to an port of
the enclosing component type. For example, controller -> this.controlOutput
introduces the controlOutput port for the component type Car.

In contrast to EmbeddedMontiArc having exactly one top level component instance (cf. main
component instantiation in Subsection 3.6.7), a C&C view may have multiple abstract component
instantiations in its top level. Figure 7.6 shows such an example. The abstract component type
VelocityController may not be defined in this C&C view. This view only specifies that
there exist two C&C instances having the component type VelocityController, and that
neither of these two instances is contained in the other one. The component type Velocity-
Controller can be defined in (multiple) other views. Since a model must satisfy all views,
the semantics does not change whether VelocityController is completely defined in one
or in multiple views.

7.3.3. Array of Abstract Component Instances and Abstract Ports

Analog to EmbeddedMontiArc, EmbeddedMontiView supports specifying dimensions for abstract
port definitions or abstract component instantiations as shown in Figure 7.7. However, in
contrast to EmbeddedMontiArc, where omitting the dimension as shown in lines 7 and 15
automatically sets the port or component instantiation dimension to 1, omitting the dimension
in EmbeddedMontiView is interpreted as underspecification stating that the dimension is not

3This thesis uses the phrase corresponding C&C model in context of a C&C view, if and only if the C&C model
satisfies this C&C view.
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view Arrays {

component SensorProcessing {

ports in

// specification of port array dimension with at least 10

C signal[10],

// is the same as always, specification of port array size >= 1 

C signal2, 

// concrete specification of port array dimension (here it's 1)

C signal3[!1], 

// define an allowed range

out (0m : 0.5m : 25m) distance[2-7]; 

instance Filter1 filter[3]; // minimum three Filter1 instances

// underspecification of instance array dimension (same as in line 17)

instance Filter2 filter2; 

// minimum of one instance array dimension (here it is 1)

instance Filter3 filter3[1]; 

// maximum of one Filter4 component types (directly or indirectly)

instance Filter4 filter4[!1];

}

}
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Figure 7.7.: EmbeddedMontiView example with arrays of abstract ports and abstract component
instances.

known or not important. In EmbeddedMontiView, the dimension one (cf. [!1]) must be
explicitly modeled as shown in lines 9 and 19. The exclamation in line 19 means that the
component type Filter4 exists exactly once in the transitive closure of all subcomponent
instances of SensorProcessing. EmbeddedMontiView uses the exclamation mark before
the array dimension number in the concrete syntax and not after the number, because 3! can be
confused with faculty of three (being six).

The differences of interpreting the omitted array dimension in the concrete syntax of Em-
beddedMontiArc and EmbeddedMontiView result on the fact that EmbeddedMontiView is used
in a design phase and EmbeddedMontiArc is used in the implementation phase of the logical
architecture: In the design phase, all decisions should be modeled explicitly and the language
takes as less as possible default interpretations; in contrast, the logical architecture contains
no underspecification anymore and therefore, the default interpretations are syntactic sugar for
frequent use cases. Every EmbeddedMontiArc model saved as EmbeddedMontiView artifact (i.e.,
by simple surrounding an EmbeddedMontiArc text with view $Name { and }) satisfies its
own EmbeddedMontiArc model. The array dimensions are satisfied, because a missing dimension
in EmbeddedMontiView is an underspecification, the missing dimension in EmbeddedMontiArc is
an array of size one and an array dimension underspecification satisfies every EmbeddedMontiArc
dimension.
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view ViewWithCompleteInstances {

component FlipFlop {

ports (c) in B r, B s,

out B q, B notQ;

instances (c) Switch[2]; Not; Memory;

}

}
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Figure 7.8.: EmbeddedMontiView example with complete component instances.

view ViewWithDirectInstances {

component FlipFlop {

ports (c) in B r, B s,

out B q, B notQ;

instances direct Switch[2]; direct Not;

}

}
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Figure 7.9.: EmbeddedMontiView example using the direct keyword.

7.3.4. Completeness of Abstract Component Instances

Similar to Figure 7.5 on page 223, marking an abstract component type as interface complete, the
complete marker (c) also exists for instances as shown in Figure 7.8. The (c) in line 5 means
that transitive closure of all subcomponent instances of FlipFlop includes two instances of
the Switch component type, one instance of the Not component type and one instance of the
Memory component type. For example, a C&C model having an instance of the Not component
type inside an instance of the Memory component type also satisfies this model. If the keyword
instances (c) is used, then no other instance or instances rules are allowed inside
this component body. All array dimensions of instances defined after the complete sign are
exact array dimensions. Therefore, line 5 is equivalent to instances (c) Switch[!2],
Not[!1], Memory[!1].

Figure 7.9 specifies that the FlipFlop component type directly contains the instances of types
Switch and Not. The memory block (cf. Figure 7.8) can be represented by any component
instance. The direct keyword forces that the C&C model FlipFlop directly contains (and
not via other intermediate component instances) two instances of the Switch and one of the
Not component type.

EmbeddedMontiView also enables defining a complete component hierarchy as shown in
Figure 7.10. Line 5 says that the component instantiations of two Switch, one Not and
one Memory component type are complete and also direct; therefore, these three component
types must be atomic, too. To specify atomic components, not having any subcomponents
themselves, explicitly, the atomic keyword exists; e.g., atomic component Not. The
atomic keyword actually defines a negative view, specifying what is forbidden. Negative views
are fine for C&C views verification, but they may cause runtime efficiency problems to C&C
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view ViewWithNoUnderspecification {

component FlipFlop {

ports (c) in B r, B s,

out B q, B notQ;

instances (c) direct Switch[2]; direct Not; direct Memory;

} }
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Figure 7.10.: EmbeddedMontiView example with no underspecification in component hierarchy.

AComponent

* implements

AComponentInterface

String name[0..1]

boolean direct

AComponentInstantiation
type

0..1

dimension

0..1

CD

ADimension

* subs

«interface»

AParameterBinding

«interface»

AParameter

*parameters

boolean instComplete

boolean atomic

«interface»

AComponentType

values*
parameter

1
*
bindings

ARange
1

range

«interface»

AValue

value1

0..1

type

«interface»

AType

«query» boolean isCom

patibleTo(Type t)

String name[0..1]

Figure 7.11.: Abstract syntax of abstract component instantiation class
(AComponentInstantiation).

views synthesis. The Boolean flag atomic in AComponent is present to support all language
features of C&C views of Ringert [Rin14].

Figure 7.10 only contains underspecification of the data-flow, as no connectors or effectors are
modeled.

Figure 7.11 shows the abstract syntax of the component instantiation class (AComponent-
Instantiation). The bold text highlights the differences of the abstract syntax between
EmbeddedMontiView and EmbeddedMontiArc. As shown in Figure 7.5, an abstract component
instantiation may not have an abstract component type. As shown in Figure 7.7 an abstract
component instantiation may have an optional abstract dimension similar to abstract ports. As
shown in Figure 7.8 an abstract component may not have a name and an abstract component may
mark its abstract component instantiations as complete. As shown in Figure 7.9 a component
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view TypeParameters {

component Max<T> {

ports in T values,

out T maxValue;

}

}
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component Max<T, N+ n=2> { /* copied from Figure 3.28 */

ports in T values[n],

out T maxValue;

}
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Figure 7.12.: EmbeddedMontiView model with abstract type parameters.

view TypeParameterInst1 {

instance Max<T=N+> naturalNumberMax;

instance Max<T=Q+> posNumberMax;

}
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view TypeParameterInst2 {

struct Vec3 {R x, y, z; }

instance Max<T=Vec3> vecMax;

}
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Figure 7.13.: Abstract type parameter bindings in EmbeddedMontiView.

instantiation may be marked as direct. As the next section shows abstract component instantiations
also contain values binding abstract parameters.

7.3.5. Abstract Type Parameters

Component type definitions in EmbeddedMontiView may also contain type parameters as shown
in Figure 7.12. The C&C view in lines 1 to 6 specifies what kind of type parameters are present,
but the concrete C&C model as shown in lines 7 to 10 may have more type parameters. Type
parameters in C&C views support to define library components in the design phase. The type
parameter T in this example prevents that a non-generic (e.g., just for N+) maximum component
is developed. Due to the underspecification of port arrays, the max component can be even more
general by introducing another generic parameter n (cf. l. 7).

The usage of instances with type parameters introduces automatically component types having
type parameters as it is shown in lines 1 to 4 in Figure 7.13. Thereby, no is-type is derived,
because multiple views (cf. both views in Figure 7.13) use the defined component type. Embed-
dedMontiView binds type parameters only via names (cf. ll. 2, 3, 7); binding via position as it is
the case in EmbeddedMontiArc is not possible, since the parameter list in EmbeddedMontiView is
incomplete.
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view TypeParameterInst3 {

instance Max<T=N0> naturalNumberMax;

instance Max<T=Q+> posNumberMax;

}
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component Controller {

instance Max<n=3, T=N0> naturalNumberMax3;

instance Max<4, Q+> posNumberMax4; // n=4 and T=Q+ see positions in l. 6

}
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/* n and T are switched on purpose for this example */

component Max<N+ n=2, T> { 

ports in T values[n],

out T maxValue;

}
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Figure 7.14.: EmbeddedMontiArc model satisfying parameter bindings.

The Controller component model in lines 10 to 13 in Figure 7.14 satisfies the TypePa-
rameterInst3 view in lines 1 to 4 in Figure 7.14, because the Controller contains two
instantiations of a Max component type with the correct generic parameter bindings (l. 11→ l.
2 and l. 12→ l. 3). Please notice: The instance name is not important for subcomponents; the
instance names are only needed to identify the correct connections of (sub)instances; and the
concrete model may have more parameters (cf. parameter n and T in l. 6) and in a different order
than the abstract view (only parameter T introduced indirectly in ll. 2, 3).

7.3.6. Matrices as Abstract Port Types

The view language supports defining underspecification parameters as shown in line 4 in Fig-
ure 7.15. These parameters express matrix or tensor dimension ratios such as 16:9 or 4:3 for
TV formats. The ranges of these parameters may depend on previously defined parameters, cf.
parameters k and l. Sure it would be a better strategy to model the LogoAdder with a generic
parameter for reusability reasons. This simple and intuitive example should only demonstrate
how EmbeddedMontiView abstracts from concrete matrix dimensions. The view does not specify
concrete picture sizes, the C&C view only specifies that the image ratio is 16:9, and that the logo
is smaller than the picture.

If the specification contains no constraints about matrix dimensions, then a question mark
as shown in Figure 7.16 instead of underspecification parameters can be used. Please notice,
that Q as data type in EmbeddedMontiView is no underspecification as it is the case with port
dimensions. If the dimension is unknown, then the expression Qˆ? or Qˆ{?, ?} is used as
data type. The reason for this decision is the fact that most port types of EmbeddedMontiArc and
EmbeddedMontiView are single value ones.
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rgbPic

rgba
Logo

top

left

rgbPic
With
Logo

view Matrix {

component LogoAdder {

// these parameters are no generics (only to express underspecification)

underspecification params N+ n, (1:16*n) k, (1:9*n) l, N+ m; 

ports in (0:255)^{16*n, 9*n, 3} rgbPic, // 3 is for red, green, blue

(0:255)^{k, l, 4} rgbaLogo, // 4 is for red, green, blue, alpha

(1:16*n-k+1) left,     // left position where the logo starts

(1:9*n-l+1)   top,     // top position where the logo starts

// picture is rescaled automatically

out (0:255)^{16*m, 9*m, 3} rgbPicWithLogo; 

}

}
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component LogoAdder {

ports in (0:255)^{320, 180, 3} rgbPic,

(0:255)^{100, 20, 4} rgbaLogo,

(1:220) left,

(1:160) top,

out (0:255)^{1920, 1080, 3} rgbPicWithLogo;

}
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Figure 7.15.: EmbeddedMontiView model with underspecification parameters for matrix dimen-
sion in ports.
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view Matrix2 {

component ProcessMatrices {

ports in Q^? vector, // rational vector with unknown length

Q^{?,?} matrix, // rational matrix with unknown dimensions

tridiagonal invertible Q^{?,?} matrix,

// any arbitrary tensor with unknown dimensions and data type 

out ?^{?, ?, ?} arbTensor,  

}

}
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Figure 7.16.: EmbeddedMontiView model with unknown dimensions of vectors, matrices, and
tensors.

ANumericType

rows cols depth0..1 0..1 0..1

«interface»

Quantity

quantity 0..1

String name

{CONFIG | GENERIC} kind

boolean underspec

CD

dimension

0..1
ADimension

«interface»

AParameter

NaturalNumber

«interface»

AType

«interface»

APortType

0..1

1

type

type

«interface»

AValue

«interface»

APortValue

Figure 7.17.: Abstract Syntax of abstract numeric type.

Figure 7.17 shows the abstract syntax of the abstract numeric type. Its optional rows, columns,
and depth are abstract natural numbers extending abstract parameters. Abstract parameters have
an additional field underspec to define that these parameters are underspecified ones and that
these abstract parameters may not exist as generic parameters in a component type of the C&C
model. The rows, cols, and depth associations are empty, when the question mark operator
is used. If the port type is ?ˆ{?, ?, 2}, then abstract numeric type has no quantity; whereas
Qˆ{?, ?, 2} has the quantity dimensionless.
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EmbeddedMontiView supports specifying matrix properties as shown in line 5 in Figure 7.16.
Line 5 forces a quadratic matrix; the algebraic property pseudo-invertible forces that the
domain of the matrix are real or complex numbers so that the Moore-Penrose-Inverse [Moo20,
Pen55] matrix expression Aˆ+ exists (A ·A+ ·A = A and A+ ·A ·A+ = A+); the pseudo-inverse
matrix A+ solves linear compensation problems used in logistics [CCF55].

7.3.7. Abstract Connections

MontiArcView, presented by Ringert [Rin14], always connects ports at the most outside-level.
In EmbeddedMontiView connections can be inside every scope. The expression component
ParkingAssistant { connect this.signal -> filter; } is mapped to con-
nect ParkingAssistant.signal -> ParkingAssistant.filter.

EmbeddedMontiView also supports convenient syntactic sugar to focus only on the parts you
want to specify. Lines 1 to 15 in Figure 7.18 shows the syntax of EmbeddedMontiView using
syntactic sugar whereas the lines 16 to 37 show the same C&C view without syntactic sugar;
the underlined text shows the added information. For example, syntactic sugar enables to access
ports in connectors, even though these ports are not explicitly specified in the C&C view. Paths in
views are relative ones to access elements, but these paths may not exist in the model satisfying
this view. Reasons for this are: (1) hierarchies in views are abstract so that the path dis-
tronic::tempomat.distanceFront in EmbeddedMontiView may be mapped to a path
containing other elements in between such as distronic.distronic_enabled.speed-
Control.tempomat.distanceFront in EmbeddedMontiArc; (2) additionally, instance
names in a view are only for internal representation and may not match instance names in the com-
ponent model satisfying the view, so the path distronic::tempomat.distanceFront
in EmbeddedMontiView may satisfy dist.temp.distanceFront in EmbeddedMontiArc.

EmbeddedMontiView may pierce through component borders as shown in line 10 and it
enables to directly connect subcomponent instantiations. Therefore, EmbeddedMontiView
introduces the double colon :: operator to navigate from a component instantiation to its
subcomponent instantiation according to this view. Without this new double colon operator,
distronic.tempomat.distanceFront would not be unique: does it means (a) the dis-
tanceFront port or (b) the distanceFront subcomponent instantiation. With this new op-
erator distronic::tempomat.distanceFrontmeans the port and distronic::tem-
pomat::distanceFront means the subcomponent instantiation. Due to the four well-
formedness rules of connectors (cf. CO1 rule in Subsection 6.1.2), the port direction of a port
introduced by a connector may be derived as done in lines 22, 25, and 33. If the direction of a
port cannot be inferred, e.g., when connecting new ports within the same component (connect
this.portA -> this.portB), then the direction must be added to the target port (e.g.,
connect this.portA -> this.portB {in}), which indicates that portA is an out-
going port and portB is an incoming one.

Figure 7.19 shows how to connect arrays of ports in EmbeddedMontiView. The syntax similar
to line 12 signal -> filter[:].signal in EmbeddedMontiArc means that the one
signal port (having dimension one) is connected to the signal ports of all filter instances.
The same line in EmbeddedMontiView means that there exists for each filter instance one
signal port of ParkingAssistant which is connected to the signal port of the filter
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view AbstractConnectorsSyntacticSugar {

component ParkingAssistant {

// automatically introduces instance `filter` and both `signal` ports

connect this.signal -> filter.signal; 

}

component ADAS { // Advanced Driver Assistant System

instance ParkingAssistant parkingAssistent; 

instance Distronic distronic;

// can pierce through component borders, :: to go through components

connect this.distanceFront -> distronic::tempomat.distanceFront;

}

component Distronic {

instance Tempomat tempomat;

}

}
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view AbstractConnectorsLongForm {

component ParkingAssistant {

port in ? signal;

instance ? filter;

}

component ? {

port in ? signal;

}

component ADAS { 

port in ? distanceFront;

instance ParkingAssistant parkingAssistent; 

instance Distronic distronic;

}

component Distronic {

instance Tempomat tempomat;

}

component ? {

port in ? distanceFront;

}

connect ParkingAssistant.signal -> ParkingAssistant::filter.signal; 

connect ADAS.distanceFront -> ADAS::distronic::tempomat.distanceFront; 

}
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Figure 7.18.: How syntactic sugar of abstract connectors in EmbeddedMontiView is mapped to its
long-form which is similar to Ringert [Rin14].

instance; this is less restrictive, because multiple connections in EmbeddedMontiArc can satisfy
this abstract connection; e.g., signal[:] -> filter[:].signal[1] or signal[1]
-> filter[:].signal[1], where by the dimension of ParkingAssistant’s signal
in the first case is ten and in the second case it is one. If EmbeddedMontiView does not restrict
the dimension of ParkingAssistant’s signal both models are valid. If the modeler does



234 Chapter 7. EmbeddedMontiView: A High-Level Design Language

view AbstractConnectors {

component ADAS {

ports in ? signal[20];

instance ParkingAssistant pa[2]; //for longitudinal&transverse parking

// one signal port must be connected to any port of one filter instance

connect this.signal -> pa::filter;

// only one signal port must be connected with the signal port of

// any filter port

connect this.signal -> pa::filter.signal; 

// each filter instance exists a signal port so that it connect to this

// signal port

connect this.signal -> pa[:]::filter[:].signal; 

// long-form of line 12

forall i in 1..2, j in 1..10: 

connect this.signal -> pa[j]::filter[i].signal;  

// forces that each signal port is connected to a different filter 

// instance

connect this.signal[:] -> pa[:]::filter[:]; 

// concrete connection (no abstraction anymore)

connect this.signal[:] -> pa[:]::filter[:].signal; 

// long-form of line 20

forall i in 1..2, j in 1..10: 

connect this.signal[(j-1)*10+i] -> pa[j]::filter[i].signal;        }

component ParkingAssistant { ports in ? signal[10]; instance Filter filter[10]; }}
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Figure 7.19.: Abstract Connection in EmbeddedMontiView.

not want this underspecification, then the second case must be defined explicitly: signal[1]
-> filter[:].signal in EmbeddedMontiView.

Figure 7.20 shows the abstract syntax of the abstract connector. The cmpNav / cmpNavIn-
dices list associations maps the optional sub / subIndices associations of PortInstan-
tiation in EmbeddedMontiArc. The abstract range in EmbeddedMontiView extends the normal
range with the two Boolean attributes all when explicitly defining [:] and notSpecified
when no range is specified in the concrete syntax. In contrast to EmbeddedMontiArc, the [:]
cannot be resolved to a range with minimum and maximum, as the maximum (which is the
dimension of a port or a component instantiation) may not be specified in EmbeddedMontiView.

7.3.8. Abstract Effectors

Abstract effectors model the data-flow between components, abstract effectors may cross-cut
component hierarchies. For example, an abstract effector can specify that the emergency brake
component has (structural) impact on the brake output port of an advance driver assistant system;
an EmbeddedMontiArc model satisfies this specification only if there exists a data-flow from an
output port of this emergency brake component to the brake output port of the advance driver
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Port

APort
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1 1
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ATypeOrAInstantiation
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e.g., ADAS::distronic[:]::tempomat[1:2] is
cmpNav = {ADAS, distronic, tempomat};
subIndices = {n.s., all, 1:2}Range

boolean all

boolean notSpecified

* {ord

ered}

context APortInstantiation inv:

port.isPresent == portIndices.isPresent &&

cmpNav.size == cmpNavIndices.size

1

2

3

OCL

ARange

Figure 7.20.: Abstract syntax of abstract connector class (AConnector).

AEffector APortInstantiation

source

Port

target

Port
1 1

CD

Figure 7.21.: Abstract syntax of abstract effector (AEffector).

assistant system. The abstract effector only forces a structural data-flow from its source to
its target port; i.e., the behavior impact of the source to the target may be very less or even
zero. However, the structural data-flow in C&C models is a necessary condition for behavioral
data-flow.

Abstract effectors have the same abstract syntax (cf. Figure 7.21) and nearly the same concrete
syntax - but with an effect instead of a connect keyword at the beginning - as abstract
connectors. Abstract effectors must specify the direction of ports they introduce, for both source
and target ports, because it exists no rules similar to CO1 (cf. Subsection 6.1.2). The syntactic
sugar of introducing instances and ports in a connector or an effector statement saves much code,
especially if the effector goes from the top level component to a very deeply nested inner one. The
next section Satisfaction-Relation between C&C Views and C&C Models explains the semantical
difference between abstract connectors and abstract effectors.

7.3.9. Imports and Full-Qualified Names

The C&C view language supports full-qualified component type names. If an EmbeddedMon-
tiView artifact defines a package or an import statement, then an EmbeddedMontiArc model
satisfies this view only if it matches all full-qualified names of the component types. If the compo-
nent type of an abstract component instantiation is not fully qualified in an EmbeddedMontiView,
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import p1.CmpA;

view Valid {

instance CmpA;

}

1

2

3

4

EMV

import p2.CmpA;

view Invalid {

instance CmpA;

}

5

6

7

8

EMV

package p1;

component Cmp {

ports …;

instance CmpA cmpA;

connect …;

}

9

10

11

12

13

14

EMA

Main-Component-Instantiation: p1.Cmp main;15

Main.txt

Figure 7.22.: EmbeddedMontiView artifacts with import statements.

AEffector

CD

AConnector

AComponentInstantiation

«interface»

AComponentType*

*

*

*

CnCView

Figure 7.23.: Abstract Syntax of a C&C View.

then an EmbeddedMontiArc model satisfies this view if the short names of abstract and concrete
component type names are equal.

The C&C model on the right (cf. ll. 9 - 15) in Figure 7.22 satisfies the top-left view Valid
(cf. ll. 1-4), because the model has an instance with the full-qualified component type p1.CmpA.
The C&C model does not satisfy the bottom-left view Invalid (cf. ll. 5-8) as the model does
not has an instance with the full-qualified component type p2.CmpA.

7.3.10. Component and Connector View

The CnCView class of C&C views is analog to the CnCModel class (cf. Figure 4.16) of C&C
models. Figure 7.23 shows the abstract syntax of it. A C&C View (CnCView) may consist of
multiple abstract component type definitions (AComponentType), multiple abstract component
instantiations (AComponentInstantiation), multiple abstract connectors (AConnector)
and multiple abstract effectors (AEffector). In contrast to a C&C model having exactly one
main component instantiation, a C&C view may have multiple, one, or no top-level abstract
component instantiations.
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7.3.11. Some Remarks

Similar to Grönniger, Kriebel, and Rumpe, EmbeddedMontiView can be easily extended with an
environment keyword, e.g., environment BrakeActuator { ports in (0V:12V)
brakeSignal; }. The C&C view verification ignores environment blocks. Thus, nearly no
adaption of the verification algorithm is needed. However, modeling the environment enables
simulating closed-loop controllers later, e.g., by adding physical constraints. Furthermore, the
environment may be visualized in the graphical representation of EmbeddedMontiView.

Every Component and Connector Model is also a Component and Connector View when
surrounding the content of every EmbeddedMontiArc model with view $fileName { and }
and rename the file ending from ema to emv. It is the case as EmbeddedMontiView only extends
concrete and abstract syntax of EmbeddedMontiArc with underspecification.

7.4. Satisfaction Relation between EmbeddedMontiView and
EmbeddedMontiArc

The satisfaction relation between EmbeddedMontiArc and EmbeddedMontiView is straight for-
ward: An EmbeddedMontiArc model satisfies an EmbeddedMontiView artifact if and only if, the
EmbeddedMontiArc model refines all specified elements in an EmbeddedMontiView artifact.

This section calls the C&C view models of EmbeddedMontiView, EmbeddedMontiView artifacts
and not EmbeddedMontiView models to avoid confusion with the C&C models of Embedded-
MontiArc which are called EmbeddedMontiArc models.

For example, the EmbeddedMontiView artifact shown in Figure 7.3 on page 222 is semantically
equivalent to the OCL constraint displayed in Figure 7.24. This means, based on the abstract
syntax of EmbeddedMontiView a generator could produce the OCL code shown in Figure 7.24.
An even easier solution is to formulate OCL constraints between the abstract syntax of Embed-
dedMontiView artifacts and EmbeddedMontiArc models (where ever it is possible). This solution
avoids to write an OCL generator, and we can only focus on the domain knowledge of these two
languages specified in the MontiCore format. The next subsections define some of the satisfaction
relations via OCL. However, some of the satisfaction relations are only described as text to avoid
repeating OCL constraints having very similar patterns.

7.4.1. Abstract Ports

Figure 7.25 shows the satisfaction between abstract ports and ports. The satisfaction relation is not
part of the concrete or abstract syntax of EmbeddedMontiView. The satisfaction relation describes
the semantics of EmbeddedMontiView, i.e., the set of EmbeddedMontiArc models satisfying the
specified C&C view.

The top part of Figure 7.25 shows the abstract syntax of EmbeddedMontiView. The abstract
syntax of EmbeddedMontiArc has the following changes: The port name is not optional; the
dimension association from Port to NaturalNumber has cardinality one; the type asso-
ciation from Port to PortType has cardinality one; the component type name is not optional;
and the ComponentType does not have the Boolean property portsComplete.
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«interface»

ComponentType

String name

Component

Port

* {ordered}

String name

{in | out} direction

ports

n
a

m
e port

1

«interface»

PortType

type1

NumericTypeNumber

min 1max 1

CD

«EMA»

inv RedundandVelocityControllerPorts:

exists c in Component:

let cV = c.port["currentVelocity"]; wV = c.port["wishedVelocity"]

in

// component RedundantVelocityController {

c.name == "RedundantVelocityController" &&

// 3x ports in and 3x ports out 

{p in c.ports | p.direction == IN}.size >= 3 &&

{p in c.ports | p.direction == OUT}.size >= 3 &&

// ports in (0km/h : 250km/h) currentVelocity

cV.direction == IN && cV.type instanceof NumericType

cV.type.min == 0km/h && cV.type.max == 250km/h &&

// ports in ?                 wishedVelocity

wV.direction == IN &&

// ports in Gear              ?

(exists p in c.ports: p != cV && p != wV && p.direction == IN

&& p.type instanceof EnumType && p.type.name == "Gear") && 

// ports out (-oo m/s^2 : oo m/s^2) $acceleration

(exists p in c.ports: p.direction == OUT && p.type instanceof

NumericType && p.min == -oo m/s^2 && p.max == oo m/s^2)     

1
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OCL

Figure 7.24.: OCL constraint being semantically equivalent to C&C view model of Figure 7.3 on
page 222.

The expressions X ?== Y, X ?> Y, X ?>= Y, X ?< Y, X ?<= Y mean if X is not
present (i.e., Optional.empty() in Java) they evaluate to true, and if X is present they
evaluate to X == Y, ..., X <= Y whereby X is the present value (i.e., is X.get() in Java).
These operators enable efficient specifications of constraints including underspecification, because
the comparison between X and Y must only be satisfied if X is specified.

The first constraint in lines 1 to 3 says when the abstract component type is marked as
portsComplete then there must exist a component type which port names match the abstract
port names of the abstract component type; see Figure 7.3.

The second constraint in lines 4 to 9 forces that the EmbeddedMontiArc model defines more
ports (respecting the port dimensions) than the EmbeddedMontiView model. The expression
ports in B in1[4], out B out1[2] defines four input ports (cf. ll. 6, 7) and two
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APort

String name [0..1]

{in | out} direction
dimension0..1

0..1

CD

«interface»

APortType

«interface»

AComponentType

ports*

String name[0..1]

boolean portsComplete

boolean atomic

«interface»

NaturalNumber

max

1

min1

ADimension
type

«EMV»

context AComponentType inv PortsComplete:

portsComplete implies exists ComponentType c: name ?== c.name && 

ports.name == c.ports.name

1

2

3

OCL

context AComponentType inv NbOfPorts:

exists ComponentType c: name ?== c.name &&

sum {ap.dimension.min ?: 1 | ap in ports, ap.direction == IN} <= 

sum {p.dimension | p in c.ports, p.direction == IN} && 

sum {ap.dimension.min ?: 1 | ap in ports, ap.direction == OUT} <= 

sum {p.dimension | p in c.ports, p.direction == OUT} 

4

5

6

7

8

9

OCL

name ?== c.name is equal to 
c.name == name ?: c.name or
name.isPresent implies name == c.name

context AComponentType inv PortNames:

exists ComponentType c: name ?== c.name &&

forall ap in {ap in ports | ap.name.isPresent}: // ap: abstract port

exists p in c.ports: p.name == ap.name && p.direction == ap.direction

&& ap.type ?~~ p.type && ap.dimension.min ?<= p.dimension &&

ap.dimension.max ?>= p.dimension

10

11

12

13

14

15

OCL

context AComponentType inv PortTypes:

exists ComponentType c: name ?== c.name &&

forall ap in {ap in ports | !ap.name.isPresent && ap.type.isPresent}:

exists p in c.ports: !ports.name.contains(p.name) && 

p.direction == ap.direction && ap.type ~~ p.type &&  

ap.dimension.min ?<= p.dimension && ap.dimension.max ?>= p.dimension

16

17

18

19

20

21

OCL

Figure 7.25.: Satisfaction relation between port in EmbeddedMontiArc and abstract port in Em-
beddedMontiView.

output ports (cf. ll. 8, 9) according to Figure 7.25. The second constraint handles the abstract
input/output ports with unknown name and unknown datatype. The second constraint matches to
lines 8 and 9 in Figure 7.24.

The third constraint in lines 10 to 15 in Figure 7.25 forces that the EmbeddedMontiArc
model has the ports with the same name (cf. l. 13) as the named abstract ports (cf. l. 12) in
EmbeddedMontiView. Furthermore, ports in EmbeddedMontiArc have the same direction (cf. l.
13), and same type (if present, cf. l. 14) as the abstract ports. Additional, the port dimension of
the EmbeddedMontiArc port must be in the specified range, minimum (cf. l. 14) to maximum (cf.
l. 15), of the dimension of the abstract port. This is equal to lines 11, 12, and 14 in Figure 7.24.
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The fourth constraint in lines 16 to 21 forces that there exist ports in EmbeddedMontiArc match-
ing the type and dimension of the abstract ports whereby ports already matching abstract ports
in the second constraint (cf. !ports.name.contains(p.name) in l. 19 in Figure 7.25)
cannot be used twice. This is equal to lines 16, 17, 19, and 20 in Figure 7.24.

Figure 7.25 omits the case ports in ? ?[4] which forces that a port in EmbeddedMon-
tiArc exists having an arbitrary type but matching the dimension; ports in B in1[2], B
in2[2] satisfies this constraint, because these are four input ports with the same type; whereas
ports in Z in1[3], B in2[2] does not satisfy this constraint. Of course, this con-
straint also does not enable matching EmbeddedMontiArc ports several times, i.e., matched ports
of the last two constraints in lines 10 to 21. This means ports in B ?[2], ? ?[3] is
satisfied by ports in B in1[2], Z in2[4]. However, it is not satisfied by ports in
B in1[3], Z in2, because B ?[2] is already matched by B in1[3] due to the Boolean
data type and ? ? [3] can again only be matched by B in1[3] due to the dimension. The
avoidance of matching ports in EmbeddedMontiArc several times blows up the OCL constraint.
This OCL constraint is too long to present it in this thesis and printing this constraint will not
further help in understanding the satisfaction relation.

7.4.2. Abstract Subcomponent Instantiations

The OCL constraints to describe the satisfaction relation between EmbeddedMontiArc’s compo-
nent instantiations and EmbeddedMontiView’s abstract component instantiations are very similar
to the one of the port to abstract port relation: similar with the complete sign, similar to the
minimum and maximum dimension, component types work analog to port types.

One difference is that for the not direct case, the abstract component instantiations must
match elements in the transitive closure of the component instantiations of an EmbeddedMontiArc
component type. The transitive closure of an EmbeddedMontiArc component instantiations of
a component type C is the set S of all direct component instantiations of C plus all component
instantiations of the component types of the elements in S (i.e., for all elements in S the component
instantiation function calls itself recursively on the component type of the corresponding element).

The other small difference is that the OCL constraints to describe this satisfaction relation
do not compare the names of the component instantiations, because the (abstract) component
instantiation names are only internal names and must not match.

Additionally, the following constraints hold: If an abstract component is marked as atomic, the
matched EmbeddedMontiArc component does not have any subcomponent instantiations.

7.4.3. Abstract Type Parameters

Figure 7.26 shows the satisfaction relation between EmbeddedMontiArc parameters and Em-
beddedMontiView abstract ones. For all abstract parameters (which are not underspecification
parameters as in line 3) defined by an abstract component type, the EmbeddedMontiArc compo-
nent type must contain a corresponding parameter (cf. l. 4). Corresponding parameter means in
this case:

(i) the names and kinds of abstract and concrete parameter are identical (cf. l. 5);
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«interface»

AComponentType
«interface»

AParameter

«interface»

Parameter

String name

{config | generic} kind

dimension0..1

ADimension

parameters

*

parameter1

*

context AComponentType inv Parameters:

exists ComponentType c: name ?== c.name && 

forall ap in {ap in parameters | !ap.underspec}:

exists p in c.parameters:

ap.name == p.name && ap.kind == p.kind && ap.type ?~~ p.type &&

(forall t in ap.bindings.value.type: t.isCompatibleTo(p.type)) &&

ap.dimension.min ?<= p.dimension && ap.dimension.max ?>= p.dimension

1
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7

OCL

bindings

«interface»

ParameterBinding

«interface»

Value

parameter

1

«interface»

Type
0..1

type

1 type

CD

«interface»

AParameterBinding

String name

{config | generic} kind

boolean underspec

Figure 7.26.: Satisfaction relation between parameter definition in EmbeddedMontiArc and ab-
stract parameter definition in EmbeddedMontiView.

(ii) if the abstract parameter defines a type; then the EmbeddedMontiArc parameter must also
match this type (cf. l. 5); plus,

(iii) the values of parameter bindings of abstract parameter are assignable to the type of the
concrete parameter (cf. l. 6); and the

(iv) the concrete parameter satisfies the dimension specifications of the abstract parameter if
they are defined.

The function AType::isCompatibleTo(Type t) in case (iii) is pretty much the same
as the compatibility one as defined in the OCL constraint in Figure 4.11 on page 117; non-numeric
types are only compatible when they are identical. Case (iii) is needed when introducing parame-
ters indirectly via abstract component instantiations. For example, view V1 { instanti-
ation And<1>; } is not satisfied by component And<(2:oo) n> { ports in B
in1[n], ... }, because the value 1 does not belong to the type 2:1:oo.

7.4.4. Abstract Tensors as Port Types

A tensor in an EmbeddedMontiView artifact satisfies an abstract tensor, if and only if:
• If the abstract tensor has a type for the matrix elements, both tensor types must be equal.
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• Missing dimension elements in the concrete syntax of the abstract tensor are interpreted as
one. For example, Q is interpreted as Qˆ{1, 1, 1}, Qˆ4 is interpreted as Qˆ{4, 1,
1}, and Qˆ{4, 3} is interpreted as Qˆ{4, 3, 1}. Underspecification in dimensions
must be explicitly modeled; e.g., Qˆ{4, 3, ?}.
• Every dimension of the concrete matrix must match the specified dimension of the abstract

matrix unless it is not specified (i.e., only the ? sign) or it is expressed via underspecification
parameters.
• If the underspecification parameters add constraint to the ratios of the dimensions of

abstract matrices, the dimensions of the concrete matrix must respect these ratios.
• The concrete tensor/matrix has all the algebraic properties which are introduced by the

abstract tensor.

7.4.5. Abstract Connections

Abstract connections and abstract effects are very complex to formulate in OCL, because there
must exist a connection chain satisfying a specified pattern in the transitive closure of all con-
nection chains. Therefore, this subsection starts with the translation of a C&C view abstract
connector to an example OCL constraint.

Figure 7.27 shows in the left part a C&C model satisfying the C&C view in the right part. Line
9 forces that the component Car exists and line 10 specifies that this component has at least one
input port with the name signal. Line 11 says that the Car component must have directly
or indirectly two instances of the same type: The C&C model Car has indirectly (ADAS is in
between) the two instances longitudinal and transverse with the same component type,
i.e., ParkAssistance. Lines 14 and 17 force that the component type of the two instances in
line 11 have again directly or indirectly one instance whose type has the input port signal: In the
C&C model the ParkAssistance component type has three (i.e., f1, f2, f3) subcomponent
instantiations which type has one signal input port.

Lines 19 and 20 defines that all port instances of the Car’s signal port are connected via a
connection chain to at least one signal port instance of f1, f2, and f3 each being inside longi-
tudinal, and transverse subcomponent instantiation. The expression parkAss[1:2]
in line 20 specifies that only the two of the ParkAssistance (or any component type being
in Car and having two instances) component types must be connected with Car’s signal port;
if Car or ADAS would contain another ParkAssistance instance not being connected with
Car’s signal port, then the constraint would still be satisfied.

Lines 1, 3, 4, and 5 in Figure 7.28 are similar to the condition 5 (c) of Definition 3.8 in Ringert’s
PhD thesis [Rin14, p. 37]. Line 2 only states that the elements contain all connectors. The
elements attribute of a connector chain instance contains all elements (e.g., ports and components)
involved in the connector chain. The second OCL constraint in lines 6 to 7 map to condition
5 (b) of Defintion 3.8 in Ringert’s PhD thesis. The third OCL constraint in lines 8 and 9
introduces the subs association for component instantiations, which is the subs association of
the component type of the component instantiation; this subs association is a self-association as it
goes from ComponentInstantiation to ComponentInstantiation, and therefore,
the transitive closure subs** exists. The fourth OCL constraint in lines 9 and 10 introduces the
association allSubs of the component type which first navigates via subs to all subcomponent
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C&C ...

view SignalConnections {

component Car {

port in ? signal;

connect this.signal[:] ->

parkAss[1:2]::filter[:].signal;

}

}

EMV

view SignalConnections {

component Car {

port in ? signal;

instance $PA parkAss[2];

}

component $PA {

instance $F filter;

}

component $F {

port in ? signal;

}

connect Car.signal[:] ->

Car::parkAss[1:2]::filter[:].signal;

}

EMVNormalized
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Figure 7.27.: Right side describes one C&C view: Right top part shows the short syntax with syn-
tactic sugar, and the right bottom part shows the normalized EmbeddedMontiView
syntax. The left side shows an excerpt of a C&C model satisfying this view.

instantiations and then calls there the transitive closure subs** one. The derived allSubs
association goes from Component to Set<ComponentIntantiation>, and not from
Component to Set<Component> as it would be the natural subs** one.

Additionally, the ConnectorChainInst class contains the two derived associations start-
Component (which is startPort.componentInst) and endComponent (which is
endPort.componentInst). These two associations are only skipped in Figure 7.28 due to
clarity reasons to avoid crosscutting association lines.

Based on the class diagram with the new introduced derived associations in Figure 7.28, the
C&C view in Figure 7.27 can be expressed as OCL constraint shown in Figure 7.28. Line b4

in Figure 7.29 maps to Car in line 20 in Figure 7.27. The syntax Car[:] would result in a
forall expression instead of an exists on in line b. Lines c and d map to Car.signal[:]
in line 19; the : operator is mapped to the forall operator, which is independent from the
number of port array size of the signal port in line 10; the port array number of signal is
underspecified.

4Lines have letters as identifiers to reference in one sentence lines of two different figures later: where the one figure
uses numbers and the other one letters as identifiers.
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context ConnectorChainInst inv:

elements.containsAll(connectors) &&

connectors[0] == start && connectors[connectors.size - 1] == end &&

forall i in {0 .. connectors.size - 1}:

connectors[i].targetPort == connectors[i+1].sourcePort

1

2

3

4

5

OCL

context ConnectorChainInst inv:

startPort == start.sourcePort && endPort == end.targetPort

6

7

OCL

context ComponentInstantiation inv:

subs == typeif type instanceof Component then type.subs else {}

8

9

OCL

context Component inv:

allSubs == subs.subs**

9

10

OCL

Figure 7.28.: Abstract syntax of ConnectorChainInst class plus OCL constraints for de-
rived associations.

OCL lines e to h map to ::parkAss[1:2] in line 20. The containsAll function in line
g is equals to the mathematical subset equals operator. The [1:2] specifies that there must
exist at least two different parkAss component instances being involved in the connection
chains; cf. l. h. The satisfaction relation may not match the component indices, as these
differ between C&C model and C&C view anyway. These indices differ, because the C&C
view may omit intermediate component (cf. ADAS component in C&C model in Figure 7.27).
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inv SignalConnections:

(exists car in {c in ComponentInst | c.component.name == "Car"}:

(forall PortInst car_signal in {p in car.ports |

p.name == "signal" && p.direction == IN}:

(exists ComponentType tParkAss:

(exists Set<ComponentInst> parkAss: 

{s in car.subs**| s.component == tParkAss}.containsAll(parkAss) &&

parkAss.size == 2 &&

(exists ComponentType tFilter:

(forall ComponentInst filter in {s in parkAss.subs**)|

s.type == tFilter}:

(exists PortInst filter_signal in {p in filter.ports |

p.name == "signal" && p.direction == IN}:

(exists ConnectorChainInst cci in car_signal.startPorts:  

cci.endPort == filter_signal

) ) ) ) ) ) ) )

a
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f

g

h

j
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m

n

o

p

q

OCL

Figure 7.29.: OCL constraint derived from C&C view SignalConnections in Figure 7.53.

The indices in EmbeddedMontiView are used to indicate whether there must exist one element
connecting multiple other ports, e.g., parkAss[1:2] and parkAss[2:4] have one common
port instance parkAss[2:2] which must satisfy both conditions. Lines k and l map to
::filter[:] in line 20.

Line o forces that the connector chain instance starts at a port instance of the Car.signal
port. Line p states that this connector chain instance finishes at a port instance of filter.sig-
nal.

This example also unveils the expressive nature of EmbeddedMontiView: 16 lines of OCL code
(cf. Figure 7.29) can be expressed by only seven lines of EmbeddedMontiView code (cf. ll. 1-7
in Figure 7.27). Additionally, the EmbeddedMontiView code is easier to read as it constraints
the architecture on the concrete syntax whereas the OCL code constraints the architecture on the
abstract syntax. The mapping of the EmbeddedMontiView syntax to Boolean OCL constraints
about EmbeddedMontiArc models defines the semantics of EmbeddedMontiView uniquely.

For the complex abstract connector definition exists no OCL/P formula as it is the case
in Ringert [Rin14], because the [:] and [1:2] operators may introduce mixed exists -
forall - exists quantifiers as shown in Figure 7.29. These mixed quantifiers require to define
lambda functions when iterating over the cmpNav parts of the abstract syntax of EmbeddedView’s
abstract connector (cf. Figure 7.20). Lambda functions map forall x in X: boolean_-
expression(x) to boolean_expression → and { boolean_expression(x)
| x in X}. Lambda functions are not supported by the current OCL version.

To present the semantics of the abstract connector, we use a FreeMarker template which
generates, based on the EmbeddedMontiView’s abstract syntax, the OCL expression for the
EmbeddedMontiArc abstract syntax.

Figure 7.30 shows an excerpt of the FreeMarker template to generate the OCL code. This
FreeMarker template can be interpreted as higher-order function having the signature FTL :
AConnector → OCL and OCL : EmbeddedMontiArc → B. During the runtime of the C&C
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${tc.signature("ac")} 

<#-- ac is the abstract syntax of the abstract connector -->

inv SignalConnections:

<#assign sNav = ac.sourcePort.cmpNav>

<#assign tNav = ac.targetPort.cmpNav>

<#-- (1) handle sourcePort.cmpNav -->

<#list sNav as cmp>

<#if cmp?is_first><#assign prevName=cmp.name?lower_case>

<#else><#assign prevName=sNav[cmp?index-1].name?lower_case></#if>

<#assign cmpName = cmp.name?lower_case>

<#assign ns = ac.cmpNavIndices[cmp?index].notSpecified>

<#assign all = ac.cmpNavIndices[cmp?index].all>

<#assign isCT = cmp.class.simpleName == "AComponentType">

<#assign isCINoType = cmp.class.simpleName == "AComponentInstantiation"

&& !cmp.type.isPresent()>

<#if isCINoType>exists ComponentType t${cmp.name?cap_first}: </#if>

<#if ns || all>

<#if ns>(exists<#elseif all>(forall</#if>

<#if isCT>${cmpName} in {c in ComponentInst | 

c.component.name == "${cmp.name}"}:

<#else>${cmpName} in {s in ${prevName}.subs** |

<#if isCINoType>s.type == t${cmp.name?cap_first}

<#else>s.type.name == "${cmp.type.name.get()}"

</#if> }:   

<#else>(exists Set<ComponentInst> <= <#-- ... -->

</#if>

1
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27

FTL... :EMV→OCL

<#-- handle ...

(2) sourcePort.port, 

(3) targetPort.cmpNav (skips elements handled by (1))

(4) targetPort.port

-->   

(exists ConnectorChainInst cci in 

<#assign sNavLast = sNav[sNav?size-1].name?lower_case>

<#if ac.sourcePort.port.isPresent() && ac.sourcePort.port.get().name.isPresent()>

${sNavLast}_${ac.sourcePort.port.get().name.get()}.startPort:

<#else> ${sNavLast}.startComponent: </#if>

<#assign tNavLast = tNav[tNav?size-1].name?lower_case>

<#if ac.targetPort.port.isPresent() && ac.targetPort.port.get().name.isPresent()>

cci.endPort == ${tNavLast}_${ac.targetPort.port.get().name.get()}.endPort

<#else> cci.endComponent == ${tNavLast}.endComponent: </#if>

<#-- close brackets: counters are skipped here -->
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Figure 7.30.: Excerpt of FreeMarker template generating OCL code from abstract syntax of
EmbeddedMontiView’s abstract connector.

views verification tool, the FreeMarker template is executed to produce OCL code and this OCL
code is directly afterwards evaluated to create the Boolean satisfaction answer.

The FreeMarker template is more complex than the OCL listings shown in Figure 7.25,
and Figure 7.26. This is also the reason that the satisfaction relations in the previous sub-
sections are defined via OCL constraints representing a function with the signature: OCL :
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EmbeddedMontiV iew × EmbeddedMontiArc → B. This FreeMarker template approach is
only used because OCL/P does not support higher order logic functions [Rum11, Section 3.5];
Rumpe states that the higher order logic functions can be emulated by using query functions of
classes. This section uses FreeMarker instead of many query functions implemented in Java.

Using the FreeMarker DSL to describe the transformation process from an abstract connector
to an OCL constraint has the following advantages:

1. Expressions in FreeMarker are navigated as in OCL, e.g., ac.sourcePort.cmpNav is
interpreted as the Java code ac.getSourcePort().getCmpNav() [HR17, p. 151].

2. FreeMarker has many build-in functions for collections, e.g., collection[index] is
mapped to collection.get(index) or 1..4 defines the same list as in OCL, and
for strings.

However, FreeMarker is not typed; thus, the FreeMarker template may cause runtime excep-
tions when executing it. Line 1 in Figure 7.30 only says that the template is invoked with one
parameter (cf. TemplateController class in [HR17, p. 166]), but this line does not state the
type of ac. To overcome this problem in future, the TemplateController may be extended
with a method signatureTypes and line 1 will be then replaced by ${tc.signature
(“ac”)} ${tc.signatureTypes(“embeddedmontiview.AConnector”)}. Based
on the additional type information of the template parameter, MontiCore would be able to resolve
all types (e.g., against Java classes or CD4A class diagrams).

Our example C&C view in lines 19 and 20 in Figure 7.27, binds sNav={Car}, tNav={Car,
parkas, filter, signal}. Lines 7 to 27 (esp., ll. 17-19) in Figure 7.30 create line b in
Figure 7.29. The handling of targetPort.cmpNav works very similar to the handling of
the sourcePort.cmpNav except that for elements which are also in sNav, i.e. Car in our
example, no new OCL forall or exists text is produced. Therefore, the lines 7 to 27 for
tNav create the lines e to l in Figure 7.29. Lines 33 to 42 produce lines o and p.

7.4.6. Abstract Effectors

The satisfaction relation of abstract effectors is similar to satisfaction relation of abstract con-
nectors. First, a ConnectorEffectorChainInst is defined in a similar way as the Con-
nectorChainInst in Figure 7.28. The ConnectorEffectorChainInst in Figure 7.31
also extends ChainInst, it also has a startPort, startComponent, endPort, and an
endComponent derived association. The only difference is that the conEffs chain contains
effector instances and connector instances. The addition of effector instances enables to express
data flow going through atomic components.

The satisfaction relation of abstract effectors is the same as the one of abstract connectors
except that in line 33 in Figure 7.30 the exists ConnectorChainInstmust be replaced by
exists ConnectorEffectorChainInst and that the variable ac for abstract connector
is replaced by ae for abstract effector in Figure 7.30.

7.4.7. Some Remarks

Chapter 4 (Abstract Syntax of EmbeddedMontiArc) and Section 7.3 (Concrete and Abstract Syntax
of EmbeddedMontiView) introduced the formal definitions of component and connector models,
their C&C instance structure, and C&C views by presenting the abstract syntax of these two
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«interface»

ElementInst

ChainInst

*

* {ordered}

start end
1

1

elements

conEffs

CD

ConnectorEffector

ChainInst

PortInst

sourcePort

targetPort

/ startPort

/ endPort

11

*
*

1

1

«interface»

ConnectorOrEffectorInst

ConnectorInst

EffectorInst

context ConnectorChainInst inv:

elements.containsAll(connectors) &&

connectors[0] == start && connectors[connectors.size - 1] == end &&

forall i in {0 .. connectors.size - 1}:

connectors[i].targetPort == connectors[i+1].sourcePort

1

2

3

4

5

OCL

context ConnectorChainInst inv:

startPort == start.sourcePort && endPort == end.targetPort

6

7

OCL

context ComponentInstantiation inv:

subs == typeif type instanceof Component then type.subs else {}

8

9

OCL

Figure 7.31.: Abstract syntax of ConnectorEffectorChainInst for EmbeddedMontiArc.

languages in class diagrams. This section formally defined the satisfaction relation between the
component and connector models/instance structures and component and connector view artifacts
in OCL, or by templates generating OCL code.

Please note, the class diagrams, esp. the textual CD4A syntax in Appendix B of the graphical
class diagram representations of this chapter, is as formal as the tuple definitions of C&C models
and C&C views presented by Maoz, Ringert, and Rumpe [MRR13, MRR14, Rin14, BMR+17a]:
The translation of tuple structures to class diagram representations is straight forward; whereas
the inverse translation of class diagrams to tuple structures is more challenging due to the missing
inheritance features of tuple structures. This is also the main reason why this thesis uses the more
powerful UML class diagram notation to formalize EmbeddedMontiArc and EmbeddedMontiView.
In a first version of this thesis both languages were defined via tuples similar to Ringert [Rin14];
however, the tuple structures of EmbeddedMontiArc became very complex and hard to read, as
EmbeddedMontiArc (including the powerful port type system with units) has much more language
features than Ringert’s MontiArc C&C model [Rin14, Definition 2.2 on p. 15], [Rin14, Definition
6.8 on p. 164f.].

The same holds for the specification of the satisfaction relation between EmbeddedMontiView
and EmbeddedMontiArc: The formal OCL constraints in Figure 7.25, Figure 7.26, and Figure 7.28
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context AComponentType inv Parameters:

exists ComponentType c: name ?== c.name && 

forall ap in {ap in parameters | !ap.underspec}:

exists p in c.parameters:

ap.name == p.name && ap.kind == p.kind && ap.type ?~~ p.type &&

(forall t in ap.bindings.value.type: t.isCompatibleTo(p.type)) &&

ap.dimension.min ?<= p.dimension && ap.dimension.max ?>= p.dimension

4

5

6

7

8

9

10

OCL

context AComponentType inv PortsComplete:

portsComplete implies exists ComponentType c: name ?== c.name && 

c.ports.name == this.ports.name

1

2

3

OCL

... (other OCL constraints)

satisfaction constraints under assumption of one loaded C&C model and one loaded C&C view:

"merging" of OCL constraints

context CnCModel cncm, CnCView cncv inv:

cncm.satisfies(cncv) <=> 

forall act in cncv.aComponentTypes:

// constraint PortsComplete

(act.portsComplete implies exists c in cncm.componentTypes:

act.name ?== c.name && c.ports.name == act.ports.name)

&& // constraint Parameters

(exists c in cncm.componentTypes: act.name ?== c.name && 

forall ap in {ap in act.parameters | !ap.underspec}:

exists p in c.parameters:

ap.name == p.name && ap.kind == p.kind && ap.type ?~~ p.type &&

forall t in ap.bindings.value.type: t.isCompatibleTo(p.type))&&

ap.dimension.min ?<= p.dimension && 

ap.dimension.max ?>= p.dimension)

&& // ... (other OCL constraints)
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one satisfaction constraint without any assumption:

Figure 7.32.: “Merging” of multiple OCL constraints with assumption that only one C&C model
and one C&C view is loaded in OCL universe to one OCL constraints with no
assumption.

plus the high-level function defined in Figure 7.30, define the same mathematical relations
between C&C views and C&C models as the binary satisfaction relation defined by Maoz and
Ringert et. al. (cf. [Rin14, Definition 3.8 on p. 36f]). The OCL definitions in this section
assume that the C&C model and the C&C view, which are checked against each other, are the
only available C&C model/view elements in the OCL universe. Thus, all C&C elements being
available in expressions such as exists ComponentType (cf. l. 2 in Figure 7.25) belong
to this one C&C model. This assumption enables splitting the satisfaction relation into multiple
smaller OCL constraints, and it also only forces to write an OCL constraint generator for abstract
connectors and abstract effectors. Then all (also the generated) OCL constraints can be merged to
one large OCL constraint as shown in Figure 7.32 which defines the complete satisfaction relation
between C&C models and C&C views.
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The modular development of this satisfaction constraint enables easier understanding and
multiple developers can easier work together where one developer is responsible for a set of small
OCL constraints.

Defining the satisfaction relation in OCL has the additional advantage that the OCL framework
presented in Chapter 6 can translate this specification to executable Java code.

7.5. Witnesses Based on Satisfaction-Relation between
EmbeddedMontiArc and EmbeddedMontiView

C&C views (such as EmbeddedMontiView artifacts) document design decisions and relations
between different elements in C&C models (such as EmbeddedMontiArc ones) [Rin14, p. 49].
Thus, every EmbeddedMontiView artifact is a specification which should be satisfied by an
EmbeddedMontiArc model.

The previous sections presented the mathematical relation when an EmbeddedMontiArc model
satisfies an EmbeddedMontiView artifact. However, the EmbeddedMontiArc/EmbeddedMontiView
modeler is not only interested in a Boolean answer, he is also interested in why a C&C model
satisfies the corresponding C&C view or why this relation is not satisfied. An additional case
study with many interviews [BMR+17a] unveiled that the modeler is also interested in receiving
all tracing information between C&C models and their corresponding views.

Therefore, this section handles three witness kinds: The first subsection introduces witnesses
justifying positive verification results by listing all needed EmbeddedMontiArc elements to satisfy
a given EmbeddedMontiView element. The next section generates larger tracing witnesses by
showing all elements in an EmbeddedMontiArc model which are satisfied by at least one element
in an EmbeddedView artifact. The last subsection contains a small subset of elements of the
EmbeddedMontiArc model violating a specific EmbeddedMontiView element, and thus, justifying
a negative verification result. The concepts of the first and last subsections are similar to the ones
presented by Maoz, Ringert, and Rumpe (e.g., cf. [Rin14, Subsection 4.3.1], [Rin14, Subsection
4.3.2]).

Every witness is itself a partially correct (corresponding to the textual syntax as well as to the
formal constraints given in the textual model) EmbeddedMontiArc model, so that the modeler
does not need to learn an additional modeling language. The witness is not a complete correct
model, as e.g., ports are not connected or some components neither have input nor output ports.

7.5.1. Satisfaction Witnesses

This subsection extends Ringert’s satisfaction witnesses [Rin14, MRR13] to support new language
features of EmbeddedMontiArc and EmbeddedMontiView.

This subsection presents eleven rules for all features of the component and connector view
language EmbeddedMontiView. Additionally, it explains how the corresponding local minimal
witness looks like. The eleven rules to generate satisfaction witnesses are:
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(1) Hierarchy abstraction
Similar to Ringert [Rin14, ll. 7-10 in Procedure 6], the witness contains all compo-
nent instantiations in the view plus all component instantiations needed to satisfy rule 5
(connector-effector-chain witnesses may introduce additional component instances) and
all parent component instances until their least common parent component instance (cf.
[Rin14, ll. 5,6 in Procedure 6]).

(2) Connectivity abstraction
Similar to Ringert [Rin14, ll. 10-15 in Procedure 6], the witness contains the connector
chains to satisfy all abstract connectors in the view. If an abstract connector can be satisfied
by two connector chains, then the witness contains the shorter connector chain. If for an
abstract connector already exists a connector chain in the witness satisfying this abstract
connector, then no additional connector chain is added.

(3) Incomplete interfaces
Similar to Ringert [Rin14, ll. 16-26 in Procedure 6], the witness contains all ports including
their data types. Port dimensions are only added if they have a corresponding satisfaction
relation in the view; whereby the port dimension 1 is explicitly modeled when expressed in
the C&C view. If the witness does not contain a dimension it is interpreted in Embedded-
MontiArc as one, and thus, only one port instance of the port array is needed to satisfy the
view. The witness additionally contains the ports needed for all witness connector-chains
of rule 2 or needed for all witness connector-effector-chain instances of rule 5.

(4) Atomic, Direct and Complete Subcomponents as well as Interface Complete
The witnesses for atomic components, which are also atomic in the view, contain their
implementation body as proof. Witnesses for direct subcomponents are marked with a
comment direct to show it. Witnesses for complete subcomponents contain the comment
subcomponent instances complete to mark that the model does not contain any other sub-
component instance. Witnesses for components, which are marked as interface-complete
in the view, contain a (c) comment as there is no other valid way to express in the witness
that it is complete as the EmbeddedMontiArc model does not support this notation.

(5) Data Flow Abstraction
Similar to our C&C view case study paper [BMR+17a], the witness contains connect
and effect statements (with only the needed index ranges) belonging to the connector-
effector-chain-instances satisfying all abstract effectors in the view. If an abstract effector
can be satisfied by two connector-effector-chain-instances, then the smaller (in terms of
connector and effector elements) one is present in the view. Especially, unneeded feedback
loops are not part of the witness.

(6) Support of Component Types
The witness contains all component types which are referenced by an component instance
added by rule 1. If a component type in a view implements component interfaces (directly or
indirectly), then the witness also implements the corresponding interfaces. The component
type in a witness only contains the generic and configuration parameters which are needed
to satisfy the view. The parameter order of the witness is the one of the C&C model.
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(7) Unit Kind Abstraction
If the port in a view has only an abstract port type such as Length, then the witness
creates a comment after the port’s data type with the in the C&C view specified quantity.
This adds the information to see directly that the unit kind abstraction has been verified.

(8) Matrix Property and Dimension Abstraction
All matrix properties and port type dimensions specified in a C&C view are directly added
to the witness.

(9) Port Array Abstraction
As it is valid to omit ports in the witness [Rin14], the port array size is skipped and is only
present if it is forced by the view. If the view also contains a maximum dimension, then
this is marked by a comment to easily verify that the actual dimension is in the specified
range.

(10) Component Instance Array Abstraction
Similar to port arrays: The witness contains the subcomponent instantiation array dimen-
sion, if it is also present in the corresponding view element; and C&C view ranges are
added as comment.

(11) Order of View elements and Order of Model Elements control Order of Witness ele-
ments
Since the rules (1) to (10) massively depend on single view elements and for one view
element several (even shortest) model elements may exist, the algorithm applies the fol-
lowing rule: the algorithm creates witness elements in the order of the view elements.
This means that for a first view element connect cmp -> cmp2 the connector-chain
cmp.portIn1 -> cmp2.portIn1 would be added to the witness; and for a sec-
ond view element connect cmp.portIn4 -> cmp2.portIn3 another connector
chain is added to the witness. The second chain is also added to the witness as the first
chain of the witness does not satisfy the second abstract connector. If the two abstract
connect statements would be switched, then only one witness chain would be created, as
the witness chain for connect cmp.portIn4 -> cmp2.portIn3 already satisfies
the abstract connector connect cmp -> cmp2.

Also for the first view element connect cmp -> cmp2 the order of the model plays
a role as portIn1 comes before portIn2 in both component instances, the algorithm
takes cmp.portIn1 -> cmp2.portIn1 and not cmp.portIn2 -> cmp2.port-
In2 even though both have the same length. Since the formal definitions of port instances
and connector instances are sets, the witness contains no identical elements.

If for satisfying one view element multiple witness elements are generated (e.g., for
a connector-effector-chain or a connector-chain), then the order of these elements is the
same as the one in the textual model. Since EmbeddedMontiArc and EmbeddedMontiView
are textual models, the order of the elements can be uniquely determined. How it is done is
unimportant, it only must be unique. One possible solution would be to order the absolute
paths of all textual models and then take the line and column number of the start position
of the abstract syntax rule inside one textual model.
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The implementation of the witness generation process can also generate the witnesses as
EmbeddedMontiView artifact instead of an EmbeddedMontiArc model. The only difference
when generating an EmbeddedMontiView witness is that in rule 4 the comments direct and (c)
are keywords; additionally, the comment subcomponent instances complete is mapped to the
keywords instances (c) and instead of showing the implementation body of an atomic
component the atomic keyword is used. Generating both kinds of witnesses enables to further
process witness models with the wanted toolchain (e.g., generate C&C model visualisation with
navigation between component hierarchies or C&C view artifact one with all components in one
picture).

Examples of Satisfaction Witnesses

The witness of the first simple car example covers rules (1), (2), (3), and (5). The witness of the
second simple parking assistant example covers rules (3), (4), (6), (7), (9), and (10).

Rule (11) is followed by both witnesses, for rule (8) no extra example is presented as only
properties form the C&C view to the witness are copied.

Simple Car Example Figure 7.33 shows an example C&C model of a car software com-
ponent. This example model is an extension of the C&C model presented in the C&C views
case study paper [BMR+17a, Fig. 1]. This C&C model is composed of interior functions (cf.
InteriorFunctions component) affecting the functionality of the car (i.e., electrical seat
movements and seat heating) and of functions influencing the car’s driving and exterior light
behavior. This example is very basic, real car software consists of much more such functionalities.
Examples of further functionalities are [Dai18c]: heated power side mirrors, automatic dimming
of interior and exterior mirrors, automatic power fold-in for exterior mirrors, electrical movement
of mirrors, two zone front and two zone back automatic air cooling and air heating system,
rain-sensing windshield wipers, heated wipers, and much more. Thus, real-world component and
connector models contain thousands of components interacting with each other.

The input port on the left side of this C&C model receive sensor data and wished user input.
The components calculate the output (output ports on the right side) to control the actuators to
achieve the desired driving behavior (e.g., defined maximal road speed considering distance to
car in front) or user behavior (e.g., correct seat position and temperature).

The ExteriorFunctions subsystem controls the car’s acceleration, brake, and light
signals and consists of the two subcomponents Driving and ALS (Adaptive Light System). The
component Driving is hierarchically decomposed into three components: ADAS (Advanced
Driver Assistance System), ParkAssist, and Switch propagating outputs of ADAS when
driving forward and outputs of ParkAssist when parking.

The C&C view CA1 shown in Figure 7.34 describes the ADAS component. This C&C view and
the text explaining it is already published in our C&C view case study paper [BMR+17a, Fig. 2].
This C&C view describes only the high-level ADAS functionality of the car software. The ADAS
software component is inside the ExteriorFunction ones; it also receives inputs unmodified
from ExteriorFunction one (left three abstract connectors from ExteriorFunctions
to ADAS) and its Acceleration and Brake output values effect the corresponding output val-
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Figure 7.33.: Graphical representation of Car C&C model (enhanced example C&C views case
study paper [BMR+17a, Fig. 1]).
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name

abstract connector

Figure 7.34.: Graphical representation of C&C view CA1 (copied from [BMR+17a, Fig. 2]).

ues of the ExteriorFunction component. The values of the Brake output port additionally
effect the BrakeLight port: as harder the car brakes as brighter the braking light gets.

The C&C view in Figure 7.34 with two abstract components, eight abstract ports, three abstract
connectors, and three abstract effectors is much smaller than the larger simple C&C model in
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Brake
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Figure 7.35.: Graphical representation of satisfaction witness for C&C model in Figure 7.33
satisfying C&C View in Figure 7.34 (copied from [BMR+17a, Fig. 3]).

Figure 7.33 with eleven components, 80 ports, 56 connectors, and 29 (in the graphic omitted)
effectors. This much smaller nature of C&C views facilitates to focus on the communication
between these two components by omitting all for this view unimportant information.

Figure 7.35 shows the graphical representation of the generated satisfaction witness for the
C&C model and C&C view in Figure 7.33 and Figure 7.34.

Due to rule (1), the witness contains the least common parent component, i.e., Exterior-
Functions in the C&C model. The least common parent component of ExteriorFunc-
tions and ADAS is ExteriorFunctions; it is not Car. Further examples of the least com-
mon parent component are: The least common parent component of ADAS and ParkAssist is
Driving; the least common parent component of ADAS and ALS is ExteriorFunctions;
the least common parent component of ADAS and Heating is Car.

Additionally, rule (1) states that all components between the least common parent component,
i.e., ExteriorFunctions, and the components matching the abstract ones in the view are
part of the witness. Therefore, the witness contains additionally the component Driving.

Rule (2) specifies that the witness contains all connector chains to satisfy the abstract con-
nectors, and all ports and components referenced by the connectors. This rule adds the nine
ports - three incoming ports V_Vehicle, V_Obj, and Dist_Obj to each of the components
ExteriorFunctions, Driving, and ADAS - to the witness. Additionally, this rule adds
the six connectors between ExteriorFunctions, Driving, and ADAS as shown in the left
part in Figure 7.35 to the witness.

Rule (3) adds the outgoing ports of ADAS and of ExteriorFunctions to the witness. Rule
(4) is not applied, because the C&C view in Figure 7.34 does not have atomic, direct, complete
markers for ports or subcomponent instantiations.

Rule (5) adds the elements to match the abstract effectors. The first abstract effector going
from Acceleration port of ADAS to the same named port of ExteriorFunctions adds
the Switch component, the most top input and output ports of the Switch component to the
witness, and the Acceleration port of Driving as well as the connections from ADAS’s
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Figure 7.36.: Graphical Model of ParkingAssistant (adapted from [KRRvW17]). Some
port types are omitted; cf. textual model in Figure 7.37.

Acceleration to Switch’s top input port, from top output port of Switch to the Accel-
eration port of Driving, and from Acceleration port of Driving to the same named
port of ExteriorFunctions. The abstract effector from ADAS’s Brake output port to the
ExteriorFunctions one adds the two ports below to the Switch, and also one output port
to Driving plus the three connections following the schema described above. The abstract
effector going from ADAS’s Brake to ExteriorFunctions’ BrakeLight adds the ALS
component plus the Brake and BrakeLight ports of the ALS component to the witness as
well as the connections from Driving’s Brake port to ALS’s Brake port and from ALS’s
BrakeLight port to ExteriorFunctions’s BrakeLight port.

Rule (6) adds no further information to the witnesses as no component type in the C&C model
in Figure 7.33 extends any component interface. Rules (7), (8), (9), and (10) do not apply because
no arrays of ports or component instantiations or unit/matrix port type exist in the C&C model.

Simple Parking Assistant Example Figure 7.36 and Figure 7.37 show an incomplete
driver assistance software system. A slightly modified version of this C&C model is presented in
our paper Modeling Architectures of Cyber Physical Systems [KRRvW17]. This driver assistance
software system provides automated emergency braking and visual user feedback. The generic
ParkingAssistant component (cf. l. 1) receive signals (cf. input ports on the left side in
Figure 7.36) needed for component computations including the GPS position (cf. l. 2), steering
angle of the vehicle (cf. l. 2), speed (cf. l. 3), as well as a port array for complex radar signals (cf.
l. 3) containing in-phases and quadrature components for object movement detection. Output
ports on the right hand side in Figure 7.36, represent the calculated results, i.e., user feedback
(cf. l. 5) for the dashboard and a brakeForce array (cf. l. 6) controlling the car’s four brakes.
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component ParkingAssistant<N+ n> { 

ports in GPS posCar, (-90° : 0.1° : 90°) direction,

C signal[n], 

(0 km/h : 0.2 km/h : 250 km/h) speed, 

out UserFeedback feedback, 

(0N:1N:200kN) brakeForce[4]; 

instance SensorManager<n>(SimpleFilter) sm; 

instance BrakeActuator ba; 

instance Feedback fb; instance EmergencyBrake eb;                        }

1

2

3

4

5

6

7

8

9

EMA

component SensorManager<N+ n> (Filter F) { 

ports in GPS posCar, C signal[n], 

out (0m : 0.2m : 10m) mergedDistance; 

instance F flt[n]; 

instance SensorFusion<n> sf;                                            }

10

11

12

13

14

EMA

component SimpleFilter implements Filter<(0m : 0.2m : 10m)> { 

implementation Math { /* skipped */ } }

15

16

EMA

component interface Filter<T is Length> { 

ports in C signal, GPS posCar, out T distance;  }

17

18

EMA

component SensorFusion<N1 n> ( (-90°:90°)^{1,n} ) tilt = zeros(1,n) ) {

ports in (0m : 0.2m : 10m) distance[n],

out (0m : 0.2m : 10m) mergedDistance; }

19

20

21

EMA

component Feedback {

ports in (0m : 25m) distance, out UserFeedback feedback; }

22

23

EMA

component EmergencyBrake { ports in (0 km/h:300 km/h) vehicleSpeed,

in (0m : 50m) obstacleDistance, out (0% : 100%) brakeIntensity; }

24

25

EMA

component BrakeActuator {

ports in (-90° : 90°) carDirection, (0 : 1) brakeIntensity,

out (0N : 5N : 200 kN) brakeForce[4]; }

26

27

28

EMA

Main-Component-Instantiation: ParkingAssistant<10> parkAssist;29 Main.txt

Figure 7.37.: EmbeddedMontiArc model of ParkingAssistant. Connections and implemen-
tation part of atomic components are skipped in textual model, cf. graphical model
in Figure 7.36 for connections.

The behavior of the ParkingAssistant (i.e., its concrete computation) is decomposed into
several subcomponents each handling one specific task: managing the sensor data (cf. Sensor-
Manager in l. 8), calculating overall emergency brake effort (cf. EmergencyBrake in l. 9)
depending on the distance, assigning concrete brake forces to each wheel (cf. BrakeActuator
in l. 8) relative to the car’s direction, and creating user feedback (cf. Feedback in l. 9).

The tasks of the SensorManager are so complex that this component (cf. ll. 10-14) is
further decomposed into filtering signals (cf. component interface Filter in ll.10, 13), and
fusioning sensor data (cf. SensorFusion in l. 14).
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ParkingAssistant

SensorManager

brakeForce[3]:Force

brakeForce[2]:Force

brakeForce[1]:Force

brakeForce[4]:Force

EMV
output port
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©

©

©

©

array complete

BrakeActuator

direct

Parking1

?l[1]:�

�

?[n]:�

input port

unknown port name

port type

SensorManager
Filter[1]

Filter[n]

� Sensor

Fusion�

EMV

©
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Distance:
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subcomponent
complete

interface
complete

atomic

?:?

?:?

signal:�

signal:�

Parking2

port array

Figure 7.38.: Graphical design view of ParkingAssistant (graphical view is complete).

EmbeddedMontiArc does not support instantiating interfaces. Therefore, line 7 passes, in
contrast to line d in Figure 7.39, the SimpleFilter component as configuration parameter to
SensorManager, and line 13 instantiates this SimpleFilter component. The Simple-
Filter component implements the component interface Filter (cf. l. 15), and thus, the
SimpleFilter component has all the ports (cf. l. 18) of the Filter interface.

The connectors, depicted by solid arrow lines in Figure 7.36, represent directed data flows
between subcomponents. The textual EmbeddedMontiArc model omits all connect statements
as they are not needed for our witnesses later.

Figure 7.38 and Figure 7.39 show two parking assistant views. The first view has a generic
abstract ParkingAssistant component with one abstract generic parameter n (cf. l. b).
The abstract ParkingAssistant component has one unknown abstract input port (cf. l. c),
which accepts complex numbers and has an array size of n, as well as the brakeForce abstract
output port (cf. l. d), which emits values of the unit kind Force and has an exact array size of
4 (cf. exclamation mark in l. d). The abstract ParkingAssistant component has at least
one abstract SensorManager subcomponent (cf. l. e) and one abstract BrakeActuator
subcomponent (cf. l. f ). Since in line e the abstract component parameter n is bound, the abstract
component SensorManager has automatically at least one abstract generic parameter n. This
is automatically derived even though the abstract SensorManager component is not modeled
in the first view - this syntactic sugar enables textual views to concentrate only on important
information of the specification; additionally, textual views do not need to carry around duplicated
information in form of boiler plate code.

Since the second view is completely independent of the first one, it may be the case that the
second view has redundant information as it is the case in line h where the second view also states
that the SensorManager component has at least one abstract generic parameter with name n.
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view Parking1 {

component ParkingAssistant<n> { 

ports in C ?[n], 

out Force brakeForce[!4]; // Unit Abstraction

instance SensorManager<n=n>;  

instance direct BrakeActuator ba;                                   }   }

a

b

c

d

e

f

EMV

view Parking2 {

component SensorManager<n>{ 

instances (c) Filter [n]; SensorFusion<n=n>; 

}

atomic component SensorFusion<n> { 

underspecification params Length maxDist, deltaDist; 

ports (c) in (0m:deltaDist:maxDist) distance[!n], 

out (0m:deltaDist:maxDist) mergedDistance; 

}

component interface Filter { 

ports in C signal, 

out ? ?;                                                 }     }

g

h

j

k

l

m

n

o

p

q

r

s

EMV

Figure 7.39.: Textual EmbeddedMontiView model of Figure 7.38.

In line k, the second view adds additional information to SensorManager component type by
forcing that a model that satisfies this view needs to have at least n subcomponents of the type
(or a compatible type) Filter as well as one SensorFusion subcomponent type. Please
note, C&C views can instantiate component interfaces which is not possible in C&C models. The
atomic keyword in line l for the abstract component SensorFusion states that a satisfying
SensorFusion component in a C&C model does not have any subcomponents. The abstract
SensorFusion component also specifies an abstract generic parameter (cf. l. l). The under
specification parameters maxDist and deltaDist (cf. l. m) specify that the port types of
distance (cf. l. n) and mergedDistance (cf. l. o) are the same and that these port types
are of unit kind length and that these port types start at 0m. As the ports keyword is marked
with an additional (c) in line n, the abstract SensorFusion component is interface-complete,
meaning that a satisfying model must not contain more port names than these two specified
ones. Line q defines an abstract component interface Filter having at least one complex typed
abstract input port signal (cf. l. r) and one abstract output port with an unknown type and
name (cf. l. s).

Figure 7.40 presents the generated witness to prove that the C&C model in Figure 7.36 satisfies
the first C&C view in Figure 7.39. Line A in Figure 7.40 concretizes the abstract parameter n in
line b in Figure 7.39 with the type information N+ of line 1 in Figure 7.36. Line B is a witness
for line c showing the port information of line 3. Line C is a witness for line d whereby the
comment /* exact */ in the witness means that the array size of this port was exactly specified in
the view. Line B does not contain this comment, because the view in line c only forces to have at
least n port instances with a complex port type. Line C adds the type information of line 6 to the
witness; the comment /* Force */ shows that the port type in the view is underspecified (cf. l. d).

Since in line e the instantiation for the abstract SensorManager subcomponent already binds
the generic type parameter n to the abstract parameter n of the abstract ParkingAssistant
component and it also binds the abstract Filter component interface, this information is also
present in the witness in line D. And to show that the SimpleFilter is really a Filter as
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ParkingAssistant parkAssist

SensorManager sm

signal[1]:ℂ

�

signal[10]:ℂ

BrakeActuator

ba
brakeForce[3]:0..200kN

brakeForce[2]:0..200kN

brakeForce[1]:0..200kN

brakeForce[4]:0..200kN

EMA
Witness for

Parking1

component ParkingAssistant<N1 n> { 

ports in C signal[n], 

out (0N:1N:200kN) /* Force */ brakeForce[/* exact */ 4]; 

instance SensorManager<n>(SimpleFilter) sm; 

instance /* direct */ BrakeActuator ba;                                  }

A

B

C

D

E

EMA

component SensorManager<N+ n> (Filter F) { } F EMA

component BrakeActuator { } G EMA

component SimpleFilter implements Filter { } H EMA

component interface Filter { } J EMA

Figure 7.40.: Graphical representation of EmbeddedMontiArc Witnesses (top part) and generated
textual EmbeddedMontiArc witness for first view Parking1 of Figure 7.39. The
graphical and the textual witness shown in this figure are complete; both witnesses
do not contain any connectors, because the C&C view in Figure 7.39 also does not
contain any abstract connector or any abstract effector.

it is forced in line e, the witness also contains the lines H and J with the information of lines
15 and 17. Line E is the witness for lines f and 8; the /* direct */ comment indicates that this
instantiation was directly forced in the view.

Figure 7.41 shows the second witness. Line A in Figure 7.41 corresponds to line h in
Figure 7.39 and to line 10 in Figure 7.37. The configuration parameter F in line A is only
present as this one is needed for subcomponent instantiation in line C, otherwise it would be
omitted in the witness. The comment /* subcomponent instances complete */ in line B is added
due to the (c) in line j. The subcomponent instantiations flt and sf (cf. lines C, and D)
correspond to lines j, 13, and 14. Both (cf. ll. C, D) contain the parameter n as this one is
present in the view.

The rest follows the same schema: Lines E, and F satisfy lines n, r, and s and map to lines
17 and 18. The generic parameter T (cf. line E) is only present as it is needed to match the
unknown data type of the output port (cf. l. s). For the component SensorFusion, the
underspecification parameters in line m force that the type of the two ports in lines n and o are
the same and that they start at the interval 0m as this shows the witness in lines H and J mapping
to lines 20 and 21. The comment /* (c) */ in the witness in line H satisfies the (c) in line j
and maps to lines 20 and 21. The /* exact */ comment satisfies the exclamation mark in line n
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component SensorManager<N+ n> (Filter F) { 

/* subcomponent instances complete */

instance F flt[n]; 

instance SensorFusion<n> sf;                                             }

A

B

C

D

EMA

SensorManager sm

SimpleFilter

flt[1]

SimpleFilter

flt[10]




Sensor

Fusion

sf



signal:ℂ

signal:ℂ

distance:0..25m

distance:0..25m

distance:0..25m

distance:0..25m
mergedDistance:

0..10m

EMA
Witness for

Parking2

component interface Filter<T is Length> {

ports in C signal, out T distance;                                      }

E

F

EMA

component SensorFusion<N1 n> { /* (T) */

ports /* (c) */ in (0m : 0.2m : 10m) distance[/* exact */ n], 

out (0m : 0.2m : 10m) mergedDistance;

implementation Math {}                                                  }

G

H

J

K

EMA

Figure 7.41.: EmbeddedMontiArc witness for second view (Parking2) (this textual model is
complete; the witness does not contain any connectors as the view does neither
contain them).

and maps to line 20. Line K shows an empty implementation body to witness that the abstract
component in the view has been marked as atomic in line l.

Every Satisfaction Witness satisfies its View If an EmbeddedMontiArc model M satis-
fies an EmbeddedMontiView V and W is the generated satisfaction witness, then W also satisfies
V and the generated witness W’ is the same as W.

This rule follows directly from the construction of the witnesses and this property is inherited
from Ringert’s C&C witness construction: “Interestingly, all witness are their own witness for
satisfaction, when checked against the same C&C model.” [Rin14, p. 57].

Satisfaction Witnesses may not be minimal The satisfaction witness is only locally
minimal (minimal for one abstract connector, or for one abstract effector), but it may be already
not minimal for two abstract connectors. Since the textual models of EmbeddedMontiArc and
EmbeddedMontiView are finite, it would be possible to calculate a global minimal satisfaction
witness (cf. discussion in Ringert [Rin14, Subsection 4.5.2 on p. 87]).

Ringert’s witness generation algorithm does not handle abstract effectors, and therefore Rin-
gert’s witnesses are minimal in number of components. But the algorithm, specified in this
thesis, creates for abstract effectors connector-effector-chain instances also containing component
instances, and similar to abstract connectors (both using a breadth-first search), the algorithm
does not create a global minimal for all effector chains.



262 Chapter 7. EmbeddedMontiView: A High-Level Design Language

view Redundancy {

component Cmp1 {

ports in ? port1;

instance Cmp2 cmp2;

connect this -> cmp2; 

connect this.port1 -> cmp2; // Is l.7 subsuming l.8? It is not clear!

connect this -> cmp2.port2;

connect this.port1 -> cmp2.port2;

}

component Cmp2 {

ports in ? port2;                                                  }  }

1

2

3

4

5

6

7

8

9

10

11

12

EMV

Figure 7.42.: Example redundant connectors.

Also as already discussed in rule (11), it might be possible to remove elements from the
witness, and then the witness would still satisfy the view. At the first thought an easy sorting of
abstract connectors from most concrete to most general may resolve this problem, then at least
one abstract connector would not have multiple satisfaction chains in the witness. For example,
line 9 in Figure 7.42 is more concrete than line 7 and line 7 is more concrete than line 6; and line
9 is more concrete than line 8 and line 8 is more concrete than line 6. However, line 7 is not more
concrete than line 8 and line 8 is not more concrete than line 7. Thus, it is not always clear when
an abstract connector is more general then another abstract connector, and so no fast algorithm
(by only sorting elements) for generating a global minimal witness exists.

Even though we do not have minimalism for the generated satisfaction witnesses, we still have
one very user-friendly property:

If V is a view, M a model satisfying V, W is the generated satisfaction witness, and V’ is
derived from V by adding view elements at the end (corresponding to the defined order in rule
(11)) as well as M still satisfies V’, then the generated satisfaction W’ contains all the elements of
W. This means that the witness structure does not completely change by adding new constraints
to the view as long as the model still satisfies the view. This is especially useful when showing
witnesses directly, e.g., during the textual creation of views for already existing models. This
property would not be true, if we would create globally minimal witnesses or if we would sort
the abstract connector or abstract effectors according to any metric.

7.5.2. Tracing Witnesses

The case study with Daimler AG [BMR+17a] (the next chapter provides more information about
this case-study) unveiled two new application areas of C&C views: documentation and tracing.
One drawback of satisfaction witnesses as presented in the previous subsection is that they show
only elements needed to satisfy the satisfaction relation (e.g., only one connector chain for an
abstract connector); even though many other model elements in the component and connector
model or its derived component and connector instance structure would also satisfy the given view
element (e.g., showing all connector chains satisfying one abstract connector). Tracing witnesses
also enable to use EmbeddedMontiView as a convenient query language for EmbeddedMontiArc
to find important information in very large models. This tracing information is useful for internal
audits or scrum meetings.
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Figure 7.43.: Requirement, derived view and Satisfaction Witness (requirement and view copied
from [BMR+17a]). Some witness components have the same port names for input
and output ports - this is because the names in the graphical witness are the displayed
names of the Simulink model (cf. Subsection 8.3.5).

Ringert [Rin14, Subsection 4.5.3 on p. 87] suggests an alternative representation inside the
corresponding model. For tracing witnesses and for using EmbeddedMontiView as query language
to find the right components, the author of this thesis thinks that this alternative representation of
witnesses is well suited (esp., for graphical models such as Simulink or textual models having
an automatic visualization algorithm as it is the case for EmbeddedMontiArc [Sch18]). The
tracing witness generation applies rules (1) to (11) in Subsection 7.5.1 as far as possible; the only
difference is that the tracing witness algorithm does not stop if it founds one witness satisfying a
view element.

Figure 7.43 shows the satisfaction witness according to the view FA-21. Figure 7.44 displays
the tracing witness of the same view. The two figures of the tracing witness show only the
graphical representation of the tracing witness. Besides displaying the graphical representation
of the tracing witness, it is also possible to copy the original C&C model and highlight all
tracing elements in the witness. One highlighted Simulink model representing a tracing witness is
available under5:

http://www.se-rwth.de/materials/cncviewscasestudy/ADASv4_FA21/webview.html

5If in Simulink a name started with an underscore, then this is ignored in the Figures as this is only a technical
constraint and it is filtered out during our translation process [BMR+17a]. Our transformation resolves virtual
busses, which are only used to group signals visually, into their own lines. Additionally, internal variables are also
transformed to input and output ports; as it is done in Figure 7.44 for the variable DEMO_FAS_V_CCSetValue
(in the figure the DEMO_FAS prefix has been skipped).

http://www.se-rwth.de/materials/cncviewscasestudy/ADASv4_FA21/webview.html
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Figure 7.44.: Tracing Witness (the inner part of Tempomat shows nearly all connector-effector-chains
going from V_Vehicle_kmh port to V_CC_delta_kmh port; this means this figure is the tracing
witness for one abstract effector presented in the view in Figure 7.43. Connector-effector-chains of
CC_ChangeSetValue_Lvl2_Repeater component are skipped.)
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Since the complete model with over 650 blocks and more than 1 500 ports is too large, this thesis
does not show any complete highlighted tracing witness of our case study. However, Section A.2
contains screenshots of some graphical layers to illustrate how highlighted tracing witnesses look
like.

In contrast to Figure 7.43, the top part in Figure 7.44 contains the most-outside DEMO_FAS
component6. The tracing witness contains all elements satisfying any element of the view and
the most outside satisfies it the same way as the most inside one, because component contains
relations in views are always indirect (unless otherwise stated with the direct keyword). The
satisfaction witness uses according to rule (1) the least common parent to satisfy the hierarchy
constraints, and this is already satisfied by the most inside DEMO_FAS component.

The tracing witness of the abstract effector going from Tempomat’s V_Vehicle_kmh port
to Tempomat’s V_CC_delta_kmh port is presented in bottom part in Figure 7.44. In contrast
to the satisfaction witness (cf. Figure 7.43) where only one shortest path is shown, the tracing
witness shows all paths in the model going from the input port to the output port. This enables
finding all functions (calculations, components and their interaction) which are involved in
the relationship between the input and output port. The tracing witness in Figure 7.44 is not
even complete (as the connector-effector-chains inside the CC_ChangeSetValue_Lvl2_-
Repeater component are skipped). This means effects from one input to an output port may be
very complex and the tracing witness helps understanding their relationships. The presence of all
components between an abstract effector’s source and target port helps to narrow down an error if
the starting and end point is known.

7.5.3. Non-Satisfaction Witnesses

Similar to Ringert [Rin14, Subsection 4.3.3 on page 62], the verification algorithm creates its own
C&C witness model for every non-satisfaction reason. This means for every C&C view element,
there exists a rule how to create a non-satisfaction witness when this view element is not satisfied
by a corresponding model. This subsection summarizes the rules for creating these witnesses.
The rules are ordered according to EmbeddedMontiView’s main features in Section 7.1.

(i) Hierarchy abstraction
Similar to Ringert [Rin14, Table 4.10 on p. 66], the algorithm distinguishes between three
different cases: (a) hierarchy is reverse; (b) two components are independent in the view,
but not in the model; and (c) two components are not independent in the view but they are
in the model.

(ii) Connectivity abstraction
Similar to Ringert [Rin14, Table 4.11 on p. 66], exists the case (a) where an abstract
connection is present in the C&C view, but no connection chain is present in the model.
As a concretization, our algorithm additionally supports the case where (b) an abstract
connection is present in the view, and the direction of the connection chain is switched
(goes from abstract connector’s target port to its source port). Furthermore, the algorithm
supports the case (c) where an abstract connection is present in the view, but only a

6The Simulink model contains three times a subsystem with the name DEMO_FAS - e.g., the most outside one is
needed for configuring TargetLink
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connector-effector-instance chain is present in the model (assume that case (b) is not
true). This is a special case of Ringert’s (a) [Rin14, Table 4.11 on p. 66]; however, we
separated it to give better error messages indicating that the specification may used the
wrong abstraction type. In addition, there exists the case (d) where the connection chain is
present but too less indices in port or component arrays are connected, the case (e) where
too many indices for ports are connected in the model, and case (f) where the wrong indices
are connected.

(iii) Incomplete interfaces
The first three cases of Ringert [Rin14, Table 4.12 on p. 67] are also present in this
algorithm: (a) A port with a given name is present in the view but not in the model,
(b) a specified port has the wrong direction, and (c) a specified port has the wrong type.
Additionally, case (d) the model does not contain enough different ports is present, since
in EmbeddedMontiView’s abstract port instance can have no type and no name - Ringert
[Rin14, Section 3.6 on p. 40ff.] supports only to skip the name or the type, but not both,
because Ringert models C&C views as MontiArc models using the MontiArcView profile
containing of stereotypes.

(iv) Atomic, Direct and Complete Subcomponents as well as Interface Complete
If a view contains an atomic abstract component and the corresponding component is
not abstract in the C&C model, then the witness contains this component plus all direct
subcomponents to prove that it is not atomic.

If in a view the abstract component instance A contains directly the abstract subcomponent
instance B, and it is violated in the C&C model than the witness contains all components
needed to model the hierarchy between A and B.

If in a view an abstract component is marked as subcomponent complete and the corre-
sponding model has more subcomponents, then the C&C model witness contains only the
additional subcomponents having no match in the C&C view.

If ports of an abstract component are marked as interface-complete and it is not the case in
the corresponding C&C model, then the witness contains the corresponding component
plus all ports which are in the C&C model and not mentioned in the C&C view to show
that the model has too many ports.

(v) Data Flow Abstraction
Similar to connectivity abstraction we have the cases: (a) for an abstract effector does
not exist a connector-effector chain, (b) for an abstract effector exists only an inverse
connector-effector chain, (c) for an abstract effector exist only connector chains7, (d)
connector-effector chain is present but too less indices in port or component arrays are
affected, (e) the view limits the effects of port indices in connector-effector chains and this
limit is violated, and (f) the wrong port indices affect each other in the connector-effector
chain.

7This is not an error, but it generates a warning to indicate that the too powerful abstract effector is used and an
abstract connector would be more accurate.
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(vi) Support of Component Types
Similar to Ringert [Rin14, Table 4.9], the algorithm throws an error if the (a) view contains
a component type which is not present in the model. In Ringert the matching is done on
the names as the names are the unique types. Additional to (a), the following new cases
exists: (b) the component type is an interface in the view and there exists no compatible
component type in the model; (c) if the component type in the view has parameters which
are not present in the model; and (d) if the parameter type or values in the view are not
compatible to the parameter type in the model.

(vii) Unit Kind Abstraction
If in a view a port type is constrained by a specific unit kind (e.g., Length), and the port
type of the corresponding port in the model does satisfy this unit kind, than an witness
containing the component with this port is generated.

(viii) Matrix Property and Dimension Abstraction
Similar to unit kind abstraction, this is also a kind of a special issue to incomplete interface
abstraction as a given port also violates a constraint, e.g., the algebraic property, or the
matrix dimension. Since one matrix can have multiple algebraic properties, (a) the witness
contains only these properties which are violated. For the wrong dimension we separate
between (b) dimensions are switched, as it often occurs when some modeler favors to
work with column vectors and another with row vectors; and the other case (c) where the
dimensions do not fit at all.

(ix) Port Array Abstraction
There are two cases for the non-satisfaction of port arrays: (a) the port array size is too
small or (b) the port array size is forced with a limit using the exclamation mark. In
both cases the non-satisfaction witness contains the component and the port including
the dimension (dimension of one is explicitly modeled as [1]), only the textual message
describing the cause of the mismatch differs for case (a) and (b).

(x) Component Instance Array Abstraction
The witness structure is similar to port array abstraction.

The bottom part of Figure 7.45 shows an example of a non-satisfaction witness. This negative
non-satisfaction witness is generated by checking the C&C view in the top part of Figure 7.45
against the park assistant C&C model in Figure 7.36 on page 256. Similar to Ringert [Rin14, p.
65ff.], every non-satisfaction witness includes two parts: The C&C model showing the reason
for violating the C&C view constraint plus a natural language description. The non-satisfaction
witness is generated by the template (ii) connectivity abstraction.

The case study with Daimler AG unveiled that the natural language is often more helpful than
the actual C&C witness model. Especially, non-satisfaction witnesses of abstract connectors (or
even abstract effectors) are very large, since the non-satisfaction witness contains all possible
connection chains starting at the source port of the abstract connector and ending at any target
port being different than the one of the abstract connector.

Further examples of non-satisfaction witnesses are available in the C&C view case study paper
[BMR+17a, Fig. 3] or in the bachelor thesis Extension of the C&C View Language and its
Verification for Embedded Systems [Kah17b, Fig. 4.7 on p. 23], [Kah17b, Fig. A.9 on p. 46].
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ParkingAssistant

EmergencyBrake

C&C View

BrakeActuator

Braking

The direction of the abstract connector going from "BrakeActuator" to "EmergencyBrake"

does not match the direction of available connections between these both components. 

ParkingAssistant

BrakeActuator

Witness

EmergencyBrake
Braking

force:0%..100% force:0%..100%

Figure 7.45.: Example of a non-satisfaction witness for the given C&C view and the ParkingAs-
sistant C&C Model in Figure 7.36 on page 256.



Chapter 8.

Industrial Case Study on Component and
Connector Views

The previous chapter introduced EmbeddedMontiView, a high-level design language for compo-
nent and connector (C&C) models of embedded systems. This chapter presents a case study on
component and connector views based on industrial-size Simulink models provided by Daimler
AG. Most content of this case study (which was a team work together with Vincent Bertram,
Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and me) has already been published in our
conference papers [BMR+17a, BMR+18].

The case study together with Daimler AG translated Simulink models to C&C models [Bru17b],
and automotive domain experts modeled the C&C views in PowerPoint. Later, the graphical
C&C views were manually transformed to textual EmbeddedMontiView models. For the 2017
case study, we also translated the textual witnesses, produced by the C&C views verification tool,
to graphical representations in PowerPoint in order to discuss the C&C views verification results
with the industrial partner. The aim of the 2017 industrial case study was to figure out scenarios
where C&C views and its verification may support developers in industry.

Due to the master theses of Manual Schrick [Sch18] and Tayfun Özen [Oez18], our C&C views
verification toolchain is able to generate the graphical representation of EmbeddedMontiArc,
the language for C&C models and generated witnesses, automatically. In 2018 we executed a
subsequent study to evaluate the complete toolchain including the graphical representation of the
witnesses. The aim of the 2018 industrial case study was to analyze how helpful the generated
graphical witnesses are and how much development time the C&C views verification toolchain
may save developers in the scenarios identified in the 2017 case study.

8.1. Overview of Three Stages of Industrial Case Study

This section introduces the main research questions of the industrial case study applied in an
automotive setting. The questions Q1 to Q4 are already discussed in our conference papers
[BMR+17a, BMR+18].

Q1 Which challenges in automotive contexts can be addressed by C&C views?
Q2 How much effort do experts need to create C&C views and do experts miss any features of

C&C views?
Q3 Does C&C views verification work on existing automotive industry models and is its

verification time for large C&C models reasonable?
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Q4 Are the satisfaction witnesses of the C&C views verification of use for the engineers?
Q5 How helpful are the graphical representations of tracing witnesses of C&C views verifica-

tion?
Q6 How much time need engineers with/without C&C views verification to detect important

elements?

The case study execution has three stages: The first stage answers the first research question
Q1. The second stage answers the research questions Q2 to Q4 based on the results of Q1. The
research questions Q5 and Q6 were identified during the first part of the case study execution in
the first half of 2017. Therefore, a separate case study part for these research questions was done
at the end of 2018. This chapter refers the first stage as preliminary study, the second stage as
main study, and the third stage as subsequent study. The preliminary study and the main study
were executed in the first part in 2017, the subsequent study was executed in the second part in
2018.

The main task of the preliminary study was to find and interview automotive industrial partners
to understand the general industrial development process in the automotive domain. Additionally,
the aim of the preliminary study was to identify the most time consuming tasks which can be
addressed by C&C views and their verification.

The main study was executed on four different evolution models of an advanced driver assis-
tance system (ADAS), and an adaptive light system (ALS); both systems represent safety-critical,
distributed control systems [PBKS07]. The main study was executed together with Daimler AG
due to existing automotive research collaborations and the availability of models and requirements
which can be made public available. We want to thank Daimler AG to provide us all these artifacts
and to allow us to make them in a restricted way1 available to the public. Two domain experts
created together 50 C&C views based on 183 textual industrial requirements generated from
IBM Rational DOORS. The most challenging part of the main study was to translate the five
Simulink block diagrams to C&C models, so that these models can be verified against the created
C&C views (cf. Section 7.4 for verification algorithm). The witnesses of the verification tool
were large textual models and so hard to understand. Therefore, we manually created graphical
C&C models in PowerPoint matching the textual witnesses. The linguistic output messages and
the graphical C&C models have been showed to the two domain experts of this case study to
evaluate the helpfulness of these witnesses according to the two identified challenges: evolution
and traceability.

During the translation process of textual requirements to C&C views, the industrial partner
identified a missing abstraction concept in C&C views. This was the hour of birth of the abstract
effector (cf. Subsection 7.3.8). The main case study unveiled that domain experts can easily
create C&C views based on given requirements to highlight implementation details in Simulink
models. However, the industrial partner noticed that the generated satisfaction witnesses2 did not
contain all implementation elements. To address this issue, a new kind of positive witnesses -
tracing witnesses - have been added to C&C views verification. Tracing witnesses enable even
more accurate tracings between requirements and Simulink models.

1Daimler AG granted us the rights to upload web exports of the Simulink model to our homepage, so that reviewers
are able to inspect them. However, we are not allowed to upload the executable Simulink models themselves.

2Tracing witness were invented in 2018 based on the feedback of the main case study.
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The main study also showed that C&C views verification scales for industrial models, and the
verification algorithm even returned the result immediately (average execution time of verification
algorithm was always below two seconds in all our experiments).

The main study on C&C views helped the domain experts to discover several inconsistencies
between requirements and their implementations (cf. [BMR+17a], Section 8.4, and Section A.3).
The subsequent study was carried out more than one year later after the visualisation algorithm
has been successfully implemented. The subsequent study evaluated whether the generated
graphical tracing witnesses helped to identify all for a requirement important Simulink blocks.

The author of this thesis spend much effort to make all artifacts of both parts of this industrial
case study executed in 2017 and 2018 public available in a convenient way by creating several
web pages. The material is public available from EmbeddedMontiArc’s GitHub pages3. These
materials include the web exports of the five Simulink models provided by Daimler AG, original
textual requirements in German and an English translation, 55 textual and graphical C&C views
inclusive a colored mapping to see which textual fragments resulted in what C&C view element,
verification results, textual and graphical models of satisfaction and tracing witnesses, as well as
many statistics about these two case study parts.

All three stages (i.e., preliminary, main, and subsequent study) of this industrial case study
follow the guidelines of Runeson and Höst for conducting and reporting case studies in software
engineering [RH08]. Specifically, each stage section defines research questions, the objective,
theory, method, and selection strategy, as well as it presents hypotheses, case study execution,
and results to answer these research questions.

8.2. Preliminary Study

The preliminary study investigated research question Q1: Which industrial contexts in automotive
domain are relevant for C&C views and what challenges can C&C views address?

This question has been split into the following subquestions:
Q1a What industrial development processes in the automotive domain may C&C views address?
Q1b What industrial artifacts are public available for this industrial case study?
Q1c What documents are suited to create C&C views?

8.2.1. Execution of Preliminary Study

The Objective of the preliminary study explored industrial settings in automotive domain using
C&C models; we skipped all development steps implementing C/C++ code directly. Of specific
interest were the challenges developers are facing in daily life during the industrial development
process to figure out where C&C views verification may assist developers.

Furthermore, one main aim was to find an industrial partner for the main study. Finding an
industrial partner for our main study was not easy, because the participating industrial person
needs experience in C&C modeling and the person needs to spend altogether two weeks of
working time for our main study.

3https://embeddedmontiarc.github.io/webspace/

https://embeddedmontiarc.github.io/webspace/
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Additionally, the author of this thesis wants to have a comprehensible case study, and so the
data plus development models should be made public available in a restricted way. This was an
obstacle for many industrial partners, because anonymizing (replacing configuration parameters
in models with random data) models and data also takes much time. Daimler AG spends six
months working time to remodel the Simulink models to provide all research partners of SPES XT
[Man15] a public industrial demonstrator containing the complexity and structure of real-world
industrial models, but not containing any protected intellectual property anymore.

The Theory of the preliminary study is based on the ability of C&C views to express structural
properties on C&C models (cf. Section 7.3), plus the automatic C&C views verification (cf.
Section 7.4) with its intuitive witness generation (cf. Section 7.5).

The Method included the following activities: First, establishing contact with previous automo-
tive partners of the Prof. Rumpe’s chair; examples of partners are DSA [Mül18], VW [BBH+15a,
BBH+14b], FEV [RSRS15, RRS+16, KMS+17], BMW [GHK+08b, KKRvW18, HKK+18,
KKRvW18], Daimler [RSvW+15, BRRvW16, BRvW16, BMP+16], E-Go [RWT18a], and
Thales Group [ZPK+11]. We want to explain the partners the aim of our study. Second, a
two- to three-day long workshop should introduce the main concepts of C&C views and their
verification to the chosen industrial partner based on already existing examples. The workshop
should also be the starting point for many informal discussions to get some insights about the
current development process and the challenges which could be addressed by C&C views and
their verification.

As already mentioned the Selection Strategy of industrial contacts was based on former and
current research collaborations of Bernhard Rumpe. The industrial case study was done in
collaboration with Daimler AG, because the author of this thesis already worked together with
Daimler AG, esp. with Bertram Vincent, in previous collaborations on evolution of Simulink
models [RSvW+15, BMP+16] provided by Daimler AG, and therefore, the author of this thesis
already had a very good understanding of the involved Simulink/TargetLink tool infrastructure
as well as a pretty good overview of the models. Additionally, Simulink models look kind of
similar to our C&C models. Furthermore, the public demonstrator models contain user-experience
features selectable in car configurations at German car dealers; and so most readers of this thesis
understand the underlying domain of these models. During the preliminary study, the author
of this thesis could also inspect other domains of C&C models, i.e., engine control or battery
charging; however, explaining these models require at least 20-pages of background material
about electrical and mechanical engineering.

8.2.2. Results of Preliminary Study

The following subsections presents the identified challenges and it explains the two Simulink
models provided by Daimler AG. This chapter skips the development process of Daimler AG as
Subsection 2.1.1 explains it already in detail.

Based on the suggestion to improve the development process in Subsection 2.1.2, the answer
of research question Q1c is that C&C views can be created based on textual requirements of these
given Simulink models. The names of C&C views are the IBM Rational DOORS’ identifiers of
the corresponding requirements.
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Identified Challenges

The main aim of the preliminary study is to find existing challenges in the context of Component
and Connector models that C&C views verification can address or even solve. Vincent Bertram,
an employee of Daimler AG, identified Traceability and Evolution as challenges to address for
this C&C views case study.

Traceability/Documentation. Traceability creates links between artifacts impacting each
other [BQ06]. Requirement traceability links domain model elements or code fragments to
requirements they are implementing. In safety relevant domains requirement traceability is
mandatory; many norms such as DO178C Software Considerations in Airborne Systems and
Equipment Certification, ISO26262 Road vehicles - Functional safety, and IEC61508 Func-
tional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems provide
guidelines for traceability.

At Daimler AG documentation and tracing of requirements is done for the following purposes
[BMR+17a]:

1) Preparing technical reviews after implementing requirements; this is done once a week
for sprint reviews. To create review documents, e.g., PowerPoint presentations, engineers
need to locate relevant blocks and their interactions.

2) Improving (e.g., decrease memory usage or increase runtime performance) the imple-
mentation of a requirement. During this phase, the engineers needs to identify relevant
blocks and information flows between them to modify the requirement’s implementation.

3) Testing of user stories based on requirements. In this case, software testers need to find
all relevant subsystems and ports according to the requirements of the user story in order to
set up tests.

As already explained in Subsection 2.1.1 engineers, asked at Daimler AG, add tracing infor-
mation manually (similar blocks as the VERSION_INFO one shown in the Simulink web export
[Dai13g]) to Simulink subsystems. These blocks list the IDs of (and automatically link to) textual
requirements implemented by the subsystem.

Evolution. Software evolution is the repeated change of software architectures and their
implementations for various reasons [BR00]. For the industrial partner the evolution challenge
is: What is the impact of changing user-experience or architectural requirements to the Simulink
implementation? Based on this decision the amount of work (and thus, time and cost) can be
estimated for software evolution.

According to our interviews, the following scenarios occur at Daimler AG [BMR+17a]:

1) Adding or changing a requirement. In this scenario, the engineer studies the existing
implementation and analyzes what other requirements have impact on this implementation.

2) Evolving the model, e.g., to add new functionality. During this process, engineers check
that the new implementation does not violate other requirements.

3) Refactoring of models. During time more and more features are added to a Simulink
model, and so the architectural design of this model must be cleaned up, e.g., by splitting
too large subsystems into multiple smaller ones, and thus, changing the names of signals.
After a refactoring, engineers check whether the new Simulink model still satisfies all
requirements.
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The process description [Man13], created by an experienced employee at Daimler AG, states
that engineers at Daimler AG manually determine whether a new set of requirements are (back-
ward) compatible to the existing version. The author of this documents also states that the
documentation of component dependencies is very complex (cf. [Man13, point 3 in Section 2.4])
and that updating (e.g., bug-fixing one component version) is very risky and not comprehensible
if no good documentation exists (cf. [Man13, point 1 in Section 2.4]).

Tempomat

Limiter

Velocity Control

Figure 8.1.: Functional layer of ADAS version 1 (complete model is available from: [Dai13c])

BrakeAssistant

Tempomat

Limiter

Distancewarner

Distronic
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EmergencyBrake

Velocity Control

FAS_Input

Figure 8.2.: Functional layer of ADAS version 4 (complete model is available from: [Dai13g])
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Figure 8.3.: Screenshot of change log of requirement document version 4 for ADAS by Daimler
AG [Dai13k, p. 3].

Available Models

This paragraph introduces the two different industry models: The Advanced Driver Assistance
System and the Adaptive Light System. The first one consists of four different Simulink models
containing the four evolution steps.
Advanced Driver Assistance System (ADAS)

The main task of an ADAS is to assist the driver in the overall driving process to increase the
general road safety. The four evolution models of the ADAS provided by Daimler AG receive
as input (cf. left input ports in Figure 8.1 and Figure 8.2) the current sensor data of a vehicle
such as current vehicle speed, detected speed sign, as well as current speed, and distance of
detected objects in front of the vehicle. Based on this sensor data plus the current user input, the
ADAS calculates the brake force and acceleration values of the current vehicle as well as optical
and acoustical feedback signals. Examples of signals based on driver’s input are: activating the
parking brake, angle of acceleration and brake pedals, movement direction of cruise control lever,
and (de)activation of cruise control by pressing a button.

Daimler AG gave us four different versions, as shown in Figure 8.3, of the ADAS system (text
is borrowed from requirements of ADAS [Dai13k]):

1. ADASv1 is the oldest version of the ADAS system. This system has only the following
user-experience features:

a. Cruise control so that the vehicle automatically accelerates to reach the set speed of
the driver, and

b. Limiter lets the vehicle automatically brake if the car is getting to fast (e.g., when
driving downhill decreasing the acceleration may not be enough).

2. ADASv2 extends the first version. This system has the following changes of user-
experience features:

a. The cruise control lever with three values down, neutral, and up is replaced by a
two-stage lever having two values for down and up, and

b. It adds brake assistant which automatically sets the brake force to 100% when the
driver pushes the brake pedal hard enough.
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3. ADASv3 extends the second version and it adds the following user-experience features:

a. Cruise control supports maintaining the speed-dependent safety distance automati-
cally,

b. Sign detection which is coupled with the limiter to avoid speeding,
c. Distance warner notifies the driver with an optical and acoustical signal if the distance

to the car in front is getting too close.
4. ADASv4 is the last and most complete ADAS system in our case study. This system

extends version 3 with the following user-experience features:

a. Traffic jam following enables the vehicle to accelerate from a standstill when the
vehicle in front starts driving again,

b. Distronic (also called adaptive cruise control) extends the cruise control and limiter
so that the vehicle brakes until a full standstill if necessary, and

c. Emergency brake assistant automatically brakes when the distance to the car in front
is getting in a critical range.

Figure 8.1 and Figure 8.2 show the hierarchy levels of the two Simulink models (on hierar-
chy level 6) of ADASv1 and ADASv4, which contain the subsystems representing the above
mentioned user-experience functions. Section A.1 contains more screenshots of the ADASv4
Simulink model.

Table 8.4 presents statistics about the Simulink models provided by Daimler AG. The first row
contains the number of Simulink blocks; it also includes all atomic blocks and subsystems, but it
excludes inport and outport blocks as these are counted as ports. The second row contains the
number of subsystems which are all blocks of the first row not being atomic ones. The third
row reports the hierarchy depth of the models; the hierarchy depths says how deep subsystems
are nested to describe complex functionalities. The fourth row lists the number of VERSION_-
INFO_BLOCK blocks; engineers at Daimler AG added for every important functional block

ADASv1 ADASv2 ADASv3 ADASv4 ALS
Blocks (not counting port blocks) 327 686 664 655 1065
SubSystem 122 211 203 195 184
Hierarchy Depth 12 12 12 13 10
VERSION_INFO_BLOCK 27 43 49 48 24
Total blocks 550 1050 1030 1044 1646
Ports (also counting ports of atomic
blocks)

701 1454 1480 1513 2753

EnablePort/TriggerPort/ ActionPort 4/9/5 3/19/11 3/19/14 6/15/11 0/0/10
BusCreator/BusSelector 10/13 14/15 19/20 20/27 22/25
DataStoreMemory/DataStoreRead/
DataStoreWrite

2/7/9 2/10/19 2/10/19 2/8/15 0/0/0

UnitDelay (internal variables) 9 43 18 15 35

Table 8.4.: Statistics about the different Simulink models. More statistics about the Simulink
subsystems are available from: [vW17b].
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Figure 8.5.: Control theory details in ADASv2 compared to details in ADASv3 and ADASv4.

such an information block containing the copyright information and tracing information to its
requirements. The fifth row contains the total number of blocks (without port blocks of atomic
blocks). The sixth row lists the number of port blocks which is the sum of all inport and
outport blocks of subsystems and atomic blocks; however special control-flow ports listed in
the next row are not counted. The seventh row presents the numbers of Enable-, Trigger-,
and ActionPorts; these ports model control-flow and so they cannot be 1:1 transformed to
ports of a C&C model. The eighth row contains the numbers of bus creator and bus selector
blocks; in Simulink these blocks are only there to graphically group signals to design a readable
representation without too many crossing signal lines. The ninth row contains the number of
global variables, and how often these variables are read and how often they are written. The last
row lists the number of unit delay blocks which store the value of the previous time step, e.g., to
examine whether the current value is larger or lower than the previous one.

ADASv2 has with 1 050 total blocks and 43 unit delay blocks more blocks than all the
other ADAS versions even though it has less functionality. The reason is that ADASv3 and
ADASv4 only contain simple placeholders for controllers regulating the increase or decrease of
the car’s velocity inside the tempomat’s subsystem (probably due to intellectual property reasons).
Figure 8.5 illustrates this fact. The left side shows an excerpt of the control part of the Repeater
in ADAS version 2 (full model available from [Dai13d]). The right side shows an excerpt of the
simplified model in ADASv4 where the controller has been replaced by a constant zero and a
simple switch block (simplified model available from [Dai13e]).
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Schluessel

Blinken

Fahrtrichtungsanzeiger

Abschaltung

Scheinwerfer

DefektErkennung

Figure 8.6.: Functional Overview Layer of Adaptive Light System (complete model is available
under: [Dai13i]).

Adaptive Light System (ALS)

Adaptive light system controls adaptive high and low beam, turn signals as well as cornering
and ambient light. Adaptive high and low beam adjust headlamps to the traffic situation and
provides optimized illumination without dazzling others [Dai18b]. Cornering light illuminates
the area to the side of a vehicle to take a look around the bend [Dai18b]. Ambient light welcomes
the driver with an indirect light [Dai18b].

Figure 8.6 illustrates the hierarchy level containing the high-level (user-experience) functions.
The ALS model contains only German names: Schluessel means vehicle key, it maps the
current CAN value of the key status to two Boolean signals Schluessel_b (it is true if the
key is present in the ignition) and Motor_b (it is true if the key is in the ignition and the key
position is at motor running).
Blinken means flashing lights; the four input signals (from top to down) are left directional

flashing (it is true if the driver moves the directional flashing lever down to indicate that the car
should flash left), right directional flashing, hazard flashing, and key is present. The five output
signals are left directional flashing is active (the value is true if the systems should activate left
directional flashing - e.g., if the driver holds the directional flashing lever down shortly, the car
flashes left only three times), right directional flashing is active, hazard flashing is active, flashing
right is active (in the provided Simulink model flashing right may have value true even though
directional flashing right has value false), and flashing left is active.
Fahrtrichtungsanzeiger means direction indicators; it receives as input signals left

directional flashing is active, right directional flashing is active, and hazard flashing is active;
and it emits the light status to the car lights: FRAVL_b is a short-form for the German word
Fahrtrichtungsanzeiger_vorne_links_b and it represents the front left flashing
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light bulb; FRAHL_b is a short-form for Fahrtrichtungsanzeiger_hinten_links_b
and it represents the back left flashing light bulb; FRAAL_b is a short-form for Fahrtrich-
tungsanzeiger_außen_links_b and it represents the light bulb in the left mirror; and
the next three output signals are the equivalent light bulbs on the right side.
Scheinwerfer means head light. The 13 input signals are: flashing left is active, flashing

right is active, motor is running, key is present, status of rotary light switch, external brightness,
unlocked (true if the car is unlocked via vehicle remote control), door is open, vehicle speed,
vehicle in front (true if a vehicle or a person is in front of this car or is in the visible area of the
opposite lane), high beam is activated, vehicle voltage, and darkness switch (it is only available
in armored vehicles such as the Mercedes-Benz S 600 Pullman Guard). The six output signals
are: dimmed headlights left, dimmed headlights right, illumination light right, illumination light
left, cornering light right, and cornering light left.
DefektErkennung means defect detection. It receives as input the status signal of all

exterior light bulbs of the vehicle, and it produces for each status signal a Boolean signal
representing whether the light bulb is defect. The Boolean signal is used to activate an optical
signal in the driver’s dashboard.
Abschaltung means switch-off. This subsystem receives as input all output values of the

direction indicators4, all output values of head light, and all Boolean output values of defect
detection. If a light bulb is identified as defect, the subsystem sets its value to zero to switch it
off to avoid further damage. The output signals are all output signals of the direction indicators
subsystem plus all output signals of the head light subsystem.

Figure 8.7 shows the most important functions of the head light subsystem: Tagfahrlicht
means daytime running lights, Umfeldbeleuchtung means ambient lights, Adaptives-
Fernlicht means adaptive high beam, Abbiegelicht means cornering light, and Ue-
berspannungsschutz means over voltage protection.

In contrast to the advanced driver assistance system model, the adaptive light system model
contains functional safety blocks such as defect detection or over and sub voltage protection.

The last column in Table 8.4 lists statistics about the ALS model. This Simulink model has more
blocks than any Simulink model of the different ADAS versions. However, the ALS Simulink
model has less info blocks than even the smallest ADAS version. Vincent Bertram, our industrial
partner at Daimler AG, reports that the info blocks in ALS implement more complex functionality
than in any version of ADAS.

8.3. Main Study

The Objective of this main study is the evaluation of the improved development process for
Daimler AG; Subsection 2.1.2 (esp., Figure 2.2 on page 23) presents this new process and how
C&C high-level design models (i.e., C&C views) and automatic structural consistency checks for
design (i.e., C&C views verification) are involved in this new improved process.

The studied Case is to observe how domain experts create C&C views based on given require-
ments (cf. Table 8.8 for number of available requirements), and to evaluate whether C&C views

4All the output values of the direction indicators are bundled to a signal bus and then passed to switch-off.
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Tagfahrlicht

Umfeldbeleuchtung

AdaptivesFernlicht

Abbiegelicht

Ueber-
spannungs-
schutz

Figure 8.7.: Refinement of Head Light (German: Scheinwerfer) layer (complete model is available
from: [Dai13j]).

ADASv1 ADASv2 ADASv3 ADASv4 ALS
Requirements 33 Not available Not available 68 82

Table 8.8.: Available requirements to create C&C views (copied from [BMR+17a, Table I]).

plus generated witnesses assist developers addressing the traceability and evolution challenges
(cf. Subsection 8.2.2).

The Theory of the main study are the results of the preliminary study (cf. Subsection 8.2.2),
the theory of the two languages EmbeddedMontiArc (cf. Chapter 3 and Chapter 4) and Em-
beddedMontiView (cf. Section 7.3), C&C views satisfaction algorithm (cf. Section 7.4, and
[MRR13, MRR14, Rin14]), as well as the witness generation algorithm (cf. Section 7.5). The
tools to execute C&C views verification and to automatically generate witnesses are also part of
the theory.

The Method is to create graphical representations of C&C views together with the industrial
partner to collect his opinions during this process. The industrial partner should not start to model
directly in EmbeddedMontiView to first focus on the concepts and not on the textual syntax of
the modeling language; he should start modeling C&C views in PowerPoint. Later, we want to
translate the first PowerPoint C&C views to the textual MontiView language (the predecessor
of EmbeddedMontiView and the successor of MontiArcView language profile) together with the
domain experts. Finally, the domain experts should create the textual files for the missing C&C
views by themselves. Since C&C views are small, the domain experts can do this translation.
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Q2 Can domain experts create C&C views with reasonable effort and are they missing any
language features?

Q2a How much knowledge/training of C&C views is necessary?
Q2b How much knowledge about the provided models need domains to have in order to

create C&C views?
Q2c How long does it take to create a C&C view?
Q2d What missing features would domain experts like to have in C&C views (verification)?
Q2e Are there more preferable ways (with respect to methodology or tooling) to create C&C

views?

Q3 Is C&C views verification applicable to automotive industry models?
Q3a What is the effort to use industrial Simulink models as input for C&C views verification?
Q3b Does the verification scale on industrial models?

Q4 Are the verification outputs of use for the engineers?
Q4a What are the most useful elements in the representation of the witnesses?
Q4b What elements are missing in the witnesses?

Table 8.9.: Overview of Research Questions in the Main Case Study (summary of [BMR+17a]).

However, the textual witnesses produced by the verification tool are too large for the industrial
partner5, so the author of this thesis was chosen to create the graphical representations of these
witnesses manually. The graphical representations of the witnesses are much easier to understand,
and thus, showing them to the industrial partner is more promising to receive useful feedback.
The subsequent study addresses the manual step of creating graphical witnesses later.

The Selection strategy is dominated by the four Simulink models of the ADAS system and the
one Simulink model of the ALS system (cf. results of preliminary study in Subsection 8.2.2) as
well as two requirement documents [Dai13a, Dai13b] (cf. [Dai13k] for English translation of
original German documents) provided by Daimler AG. The number of requirements, shown in
Table 8.8, represent the number of distinct IBM Rational DOORS requirement identifiers [TJ11].
Daimler AG did not provide us requirement documents of ADASv2 and ADASv3. Unfortunately,
Daimler AG was not able to provide us informal design models nor traceability information
within these Simulink models.

Table 8.9 shows an overview of all research questions of the main study. The next two sections
try to answer them.

Our industrial partner at Daimler AG created all C&C views in the main study. The author
of this thesis assisted the industrial partner in creating C&C views. This chapter refers to these
persons as domain experts.

5It would take too much time (which was not available for the case study) to let the industrial partner create graphical
witnesses based on the textual output.
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8.3.1. Addressing Traceability

The hypotheses of traceability are:
1. Engineers, having good background and domain knowledge about the requirements and

the implementation, are able to create C&C views based on given textual requirements.
2. Engineers need only a reasonable time to create a C&C view.
3. The modeled C&C views help engineers to understand relations between Simulink blocks

and other requirements.
4. The graphical witnesses support engineers to trace down important Simulink elements

for this requirement. As already mentioned earlier, the C&C views verification tool only
creates textual witnesses and the graphical representation has been created manually.

To examine the first hypothesis our industrial partner, being unfamiliar with C&C views at
the beginning of this case study, received papers [MRR13, MRR14] and additional materials6

about C&C views. Additionally, the C&C views experts introduced the semantics of C&C views
in a two-hour Skype session to the industrial partner. In a separate session, the experts created
interactively some C&C views in PowerPoint together with the industrial partner.

Afterwards, the domain experts developed C&C views based on textual requirements and
based on the Simulink models of ADAS and ALS. Our industrial modeled the C&C views in
PowerPoint slides based on a given template. Since the first case study at beginning of 2017 only
evaluated the methodology and usefulness of C&C views and it did not focus on tooling (support),
the industrial partner did not model the C&C views directly in EmbeddedMontiView. Fifteen
months later the tooling has been already optimized as there exists an IDE for EmbeddedMontiArc
and for EmbeddedMontiView and a good layout algorithm to create graphical representations of
textual EmbeddedMontiArc models/witnesses. The subsequent study evaluates the tooling, esp.
the generated graphical representation of tracing witnesses, later.

We expected that our industrial partner was able to create C&C views for each requirement
(Q2a, Q2d) based on the provided materials and Skype sessions. Furthermore, we expected that
the domain experts do not need more than one hour (Q2c) to model a C&C view in PowerPoint
and mark the important text parts in the requirement text.

Specifically, we asked the domain experts to create a C&C view for every ADASv1 and
ADASv4 requirement. The author of this thesis worked with all the ADAS Simulink models more
intensively at the end of 2015 and at beginning of 2016 in context of a collaboration research
project together with Daimler AG. The industrial partner did not work with these models in detail
at all.

In addition, we asked the domain experts to create C&C views for some requirements of the
ALS Simulink model. The industrial partner had deep insight knowledge about the light system at
this point of time. The author of this thesis did not really work with this large model before. As
the ALS requirement document is with 82 requirements (cf. Table 8.8) the largest one and also
the ALS Simulink model is with 1 646 blocks and 2 753 ports the most complex one, the industrial
partner decided to focus only on the requirements related to sub- and over-voltages. This decision
was made due to timing constraints, we could not create for each of the 82 requirements a C&C

6The extra material included a bachelor thesis [Kah17b] and its PowerPoint presentations as well as an explanatory
video [Kah17a] about EmbeddedMontiView.
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view, and that functional safety blocks (cf. Subsection 8.2.2) are only available in the ALS
Simulink model.

During the creation of the C&C views, we measured the time it took domain experts to create
C&C views based on given requirements and based on existing Simulink models (Q2c). Besides
the requirement documents, the domain experts needed the Simulink models to identify the
correct names of ports and component types. The domain experts could also create C&C views
without inspecting Simulink models; however, this requires to create a mapping between names
in requirement documents and signal names in Simulink models.

To examine the second hypothesis, we asked the domain experts to rate the effort to create
C&C views (a) for models they did not work with before and (b) for models they did not inspect
for more than a year (Q2b). During the C&C view creation process and directly after them, we
interviewed the domain experts and asked them whether there would exist a more preferable way
how to create or derive C&C views from (Q2e).

To examine the last two hypotheses, a two stage experiment has been set up. In a first step,
the domain experts selected randomly ten different requirements of ADASv1 and ADASv4.
For each of these ten requirements, the domain experts should highlight all important elements
inside the Simulink model. This first step was done without using any C&C views. The domain
experts executed the first step experiment before they created the C&C views for the requirements,
because otherwise the creation of the C&C views could have impact how to interpret these
requirements.

The second step works with C&C views and their verification. To examine the third hypothesis,
we presented the graphical representation of C&C views to the domain experts and asked them
whether they would now highlight different elements in the Simulink models.

To examine the fourth hypothesis, we showed the domain experts the graphical representation
of the witnesses generated by the C&C views verification tool. Please note, the process involved a
manual translation of the textual C&C witnesses to PowerPoint slides. Then we asked the domain
experts how they interpret the difference between the graphical C&C witnesses and their perfect
traceability Simulink models created in the first stage (Q4); esp. we wanted to know from the
domain experts what are the most useful elements in C&C views (Q4a), and do the domain expert
miss any elements in graphical C&C witnesses (Q4b).

8.3.2. Example of a Requirement, C&C View, and Graphical Witness

The top part of Figure 8.10 shows the translated text of the ADAS requirement FA-6. The
prefix FA is an abbreviation of Fahrerassistenzsystem which is the German word for
ADAS. The bottom part of Figure 8.10 shows the C&C view created by the domain experts
according to this requirement. The requirement FA-6 is part of the functions describing the
Adaptive Cruise Control (cf. [Dai13k, Subsection 2.2.1]), which maps to the Dis-
tronic subsystem in the Simulink model. The colors in the text and in the C&C view show how
the requirement names are mapped to Simulink signal names. The names in the if condition phrase
are mapped to input ports, as the Distronic subsystem needs to read these values to produce
the correct reaction. The vehicle word matches to the DEMO_FAS Simulink subsystem, because
the ADAS (German short-form is FAS) is the most high-level software component of the vehicle
in this Simulink model. The environment component (German Umgebung) is only present in the
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FA-6: (d) If the distance to the preceding vehicle increases above the speed-

dependent safety distance again, the vehicle accelerates with a maximum of 2 m/s² 

until the set speed is reached. 

DEMO_FAS

Distronic

DecelerationDistance_Object_m

V_Obj_rel_kmh

V_Vehicle_ms

Tempomat
V_CC_delta_kmh

Acceleration_pc

abstract

connector
abstract

effector
port XYZ component

Translated Requirement FA-6

ADASv4: view FA-6

Key

Figure 8.10.: Requirement FA-6 of unit Distronic of ADASv4 (top) and the view created for
this requirement by the domain experts (bottom); copied from [BMR+17a, Fig. 5].

Simulink model to simulate the closed-loop of the ADAS system, but the environment component
is not part of the ADAS system.

The solid arrows in Figure 8.10 represent abstract connectors. The left top abstract connec-
tor going from DEMO_FAS to the Distance_Object_m abstract port of the Distronic
components states that the DEMO_FAS subsystem has an input port which delegates its value
without modifying it to an input port of the Distronic subsystem having the signal name
Distance_Object_m.

The dashed arrows in Figure 8.10 represent abstract effectors. The top right abstract effector
going from the abstract port Deceleration of the Distronic component to Acceler-
ation_pc of the DEMO_FAS component states that the output port with the signal name
Deceleration of the Distronic subsystem influences the value of the output port with the
signal name Acceleration_pc of the DEMO_FAS subsystem. Influence means that value of
Deceleration may be modified by other atomic Simulink blocks.

The abstract port Deceleration is not mentioned in the FA-6 requirement. However, the
domain experts included this abstract port in the C&C view as the deceleration value (100%
deceleration means the car is not accelerating at all, 0% deceleration means that the car accelerates
with its maximal acceleration) is a limiting factor of the vehicle’s acceleration, and the domain
experts meant that this port is crucial to understand the implementation of this requirement.
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Figure 8.11.: Satisfaction Witness of view FA-6 (copied from [BMR+17a, Fig. 6]).

Figure 8.11 shows the generated satisfaction witness of the C&C view shown in Figure 8.10.
The C&C views verification algorithm only creates textual output of witnesses; Figure 8.11 shows
the graphical PowerPoint presentation which has been manually created based on the textual file.
On average, the author of this thesis needed for each witness about one hour7 to transform one
textual witness into a graphical PowerPoint witness. This finding and the finding that textual
witnesses are not really helpful, let to the decision to develop a layout algorithm and to redo parts
of the main study in a new subsequent study using the generated graphical representations based
on the layout algorithm.

The blue highlighted connectors in the bottom left part of Figure 8.11 belong to the connector
chain of the witness representing the abstract connector going from DEMO_FAS (unknown port)
to Distronic’s V_Obj_rel_kmh port in the C&C view. Additionally, Figure 8.11 highlights
the witness elements (i.e., upper colored atomic blocks and signal lines in the Simulink model)
belonging to the abstract effector starting at the Distance_Object_m port and ending at
Deceleration_pc port of the Distronic subsystem.

Figure 8.11 shows all elements of the generated satisfaction witness, i.e., it contains all
components (subsystems or atomic blocks), ports, and connectors so that all elements of the C&C
view in Figure 8.10 are matched at least once. Please note, that the satisfaction witness shows
for each abstract connector and abstract effector only the shortest path in the Simulink model (cf.
Subsection 7.5.1).

7The witness of the view FA-6 is one of the smaller ones.
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8.3.3. Design Decisions for Creating C&C Views

Every C&C view contains Simulink subcomponents mentioned in the requirement text. Addition-
ally, every C&C view includes for every output port, mentioned in the requirement, the Simulink
subsystem being the target of this output port. The same holds for input signals mentioned in
the requirement. By adding the target subsystems, C&C views underline the component interac-
tion between high-level Simulink subsystems to model dependencies between user-experience
functions/requirements.

As already shown in Figure 8.10, nearly all textual requirements follow a trigger-action pattern
(if-then sentences). Abstract effectors in C&C views mostly start from trigger ports and end at
action ports.

The two domain experts tried to create for all requirements of ADASv1 and ADASv4 a C&C
view if this was possible. They created 17 C&C views for ADASv1 and 26 C&C views for
ADASv4. For ADASv2 and ADASv3 no separate requirement documents were available. Due
to time restrictions (cf. Subsection 8.3.1) the domain experts created only 7 C&C views for the
ALS focusing on functional safety blocks.

Table 8.12 and Table 8.13 show the numbers of components, connectors, effectors, and ports
of the C&C views created by the domain experts. Table 8.12 lists the sizes of C&C views for
ADASv1, and Table 8.13 lists the sizes of C&C views for ADASv4. This thesis skips the sizes of
C&C views for the ALS as the domain experts modeled only 7 out of 82 requirements.

The last two rows in Table 8.12 and Table 8.13 demonstrate that the average and median size
of C&C views of ADASv1 and ADASv4 are about the same. This result is surprising when
considering that the Simulink model of ADASv4 is about twice as complex according to the total
number of blocks (cf. Table 8.4) than the Simulink model of ADASv1.

8.3.4. Addressing Evolution

The hypotheses of the evolution challenge are:
1. C&C views verification helps to identify violations of existing requirements due to archi-

tecture updates.
2. The generated witnesses assist developers to locate and fix violations in Simulink models.
To examine the first hypothesis, the domain experts analyzed the Change of Documentation

table (cf. Figure 8.3) in the requirement document of ADASv4 to figure out which requirements
were updated in which ADAS version. All C&C views belonging to not updated requirements of
ADASv1 (i.e., all other ADAS versions such as ADASv2, ADASv3, and ADASv4) should be
satisfied by all four ADAS versions.

To examine the second hypothesis, ADASv1 to ADASv3 are tested against the C&C views
belonging to the requirement documentation of ADASv4. The generated witnesses by the not-
satisfied C&C views should link to the Simulink elements which are missing as these feature are
only introduced in ADASv4. For the experiment of the first hypothesis, domains experts identified
five C&C views (FA-29, FA-23, FA-24, FA-35, and FA-36) related to the cruise control lever
which ADASv2 should not satisfy. These five C&C views are invalid as the two input ports of
Tempomat’s LeverUp_b and LeverDown_b are only valid for the one-stage cruise control
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Table 8.12.: View Sizes for ADASv1 (copied
from [vW17a]).
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Table 8.13.: View Sizes for ADASv4 (copied
from [vW17a]).

lever, which was updated to a two-stage one in ADASv2 (cf. Figure 8.3). However, ADASv2
did not satisfy any of the 17 C&C views of ADASv1, because the signal names of ADASv1
and ADASv2 differ. For example, CC_active_b has been changed to CC_enabled_b in
ADASv2, similar Limiter_active_bwas modified to Limiter_enabled_b in ADASv2.
The error message of the verification algorithm No match for port “CC_active_b” of component

“Tempomat” helped us to quickly locate the problem.
However, updating the signal names in the Simulink model of ADASv2 to the signal names used

in ADASv1 caused only positive verification results even though the domain experts identified
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five C&C views that should fail. Further investigations unveiled that the two-stage cruise control
lever is only available in ADASv3 and ADASv4; these two models do not satisfy these five C&C
views. Hence, C&C views verification with its generated witnesses located a mismatch between
Simulink models and the requirement change history.

To examine the second hypothesis, the domain experts should locate and explain which features
are available in ADASv4 but not in ADASv3. Based on this information, we could identify the
C&C views which should be satisfied by ADASv4, but not by ADASv3. Applying the Simulink
model of ADASv3 against the C&C views of ADASv4 showed the same name mismatch as the
one between ADASv1 and ADASv2. Fixing this name issue, the C&C view verification failed
exactly on the five identified C&C views (FA-15, FA-4, FA-5, FA-99, and FA-84) describing the
emergency brake and follow to stop features being only available in ADASv4.

8.3.5. Translating Simulink Block Diagrams to EmbeddedMontiArc

All models provided by Daimler AG for the main study were Simulink block diagrams. At
a first look, the graphical layouts of Simulink block diagrams are very close to the graphical
representations of EmbeddedMontiArc models: Simulink subsystems and atomic blocks map to
EmbeddedMontiArc components, Simulink in- and outport blocks map to EmbeddedMontiArc
ports, and Simulink signal lines map to EmbeddedMontiArc connectors.

However, Simulink also contains many special model elements:

1. Enabled subsystems [The18n, pp. 10-11 to 10-19]
2. If-Then-Else Blocks [The18n, p. 10-33]
3. Merge Blocks [The18n, p. 10-6]
4. Triggered subsystem [The18n, pp. 10-21 to 10-25]
5. Data Store, Data Store Read, Data Store Write [The18n, pp. 42-125 to 42-131]
6. Goto block, From block [The18n, p. 63-3]

The four ADAS Simulink versions use the first three kinds of Simulink model elements to
express variability. Figure 8.14 illustrates the feature diagram model extracted from the ADAS
version 4 Simulink model. The Simulink models provided by Daimler AG use pure::variants
[pur14] to activate via constant values in combination with enabled subsystems or if-else construc-
tions one specific variant in the 150% product line [HKM+13] model. The ALS uses the first three
kinds of Simulink model elements to express conditional execution for different vehicle modes
(cf. mode transition diagrams [BBR+05], and component modes for dynamic reconfiguration
[HKR+16]). Example of a mode transition in the ALS is the switch between normal mode to
sub or overvoltage modes at runtime according to the current battery voltage; e.g., in sub voltage
mode the car turns off the adaptive high beam light to save battery (cf. [Dai13h]).

The triggered subsystems are kind of a special case of the enabled subsystems, but the five
Simulink models use the triggered subsystems to react on user events instead of modeling
variability. A prominent example of a triggered subsystem is the subsystem reacting on the event
when the driver pulls up the cruise control lever: neutral position of the cruise control lever
has value zero, and pulled up position of the cruise control lever has value one or two; a rising
triggered subsystem is only executed if the value at time step t is higher than the value at the
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Figure 8.14.: Feature diagram model extracted from ADAS version 4 Simulink model. (Feature
diagram created by Christoph Schulze and Michael von Wenckstern.)

previous time step t− 1. The falling triggered subsystem is only executed when the driver pulls
down the cruise control lever.

The fifth kind of Simulink model elements introduce global variables to communicate between
different Simulink subsystems. The data store block defines a global variable, the data
store read block reads the value of the global variable, and the data store write
block updates the global variable to a new value.

The last kind of Simulink model elements creates a connection between Simulink subsystems
without drawing a signal line. A value written in a Goto block with a specific label, can be read
by a From block with the same label [The18h]. Developers use this kind of communication to
reduce the effort to pass a value through many subsystem hierarchies, and to have not too many
cross-cutting signal lines resulting in unreadable Simulink models. However, using this signal
exchange pattern hides communications between subsystems.

To perform the C&C views case study on the Simulink industry models provided by Daimler AG,
we developed a converter tool translating Simulink models to MontiArcLight ones (these models
are similar to the C&C instance structure presented in Section 4.3) [Bru17b]; MontiArcLight
models are later converted to EmbeddedMontiArc ones. The next paragraphs shortly introduce the
main ideas behind the algorithms to translate Simulink models to MontiArcLight models. Later
MontiArcLight models, storing all information of Simulink elements such as type of blocks in
stereotypes, are translated to C&C models as defined in Chapter 3 and Chapter 4. The bachelor
thesis of Stefan Brunecker [Bru17b, Bru17a] contains implementation details of the Simulink
converter tool.
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Figure 8.15.: Example how an enabled subsystem with global variables is removed (left side is a
copy of [Bru17b, Figure 4.4] and right side is a copy of [Bru17b, Figure 4.5]).

Model references

Simulink block diagrams may contain model reference blocks referencing to Simulink library
blocks. The model reference block matches the component type instantiation in EmbeddedMon-
tiArc. The library block is the component type in EmbeddedMontiArc.

Simulink specific blocks

As stated above, Simulink models may have special blocks that cannot be directly mapped
to components in a C&C model. Thus, first all special blocks are transformed to behavior
equivalent subsystems including only standard blocks and connectors in Simulink. Figure 8.15
shows an example how an Enabled Subsystem, containing the global variable A inside, is
transformed to standard blocks (global variable A is removed). This transformation is complex,
as the execution order of the special blocks must be considered (e.g., in what order are variables
written and read). The combination of variables with conditional or reconfiguration ports is very
difficult, as variables are not always updated (e.g., Simulink elements inside an enabled subsystem
are only executed when its corresponding enabled port receives true as input signal) and normal
subsystems are executed every time (meaning that all internal variable inside this subsystem are
always updated). Therefore, the converter tool generates a suitable a reset mechanism (cf. loop
around unit-delay block in the right part in Figure 8.15) for global variables used inside these
special blocks. Second, these standard blocks are translated to C&C models. The first translation
of Simulink specific blocks to C&C equivalent subsystems and atomic blocks is done in Simulink
to easier test this transformation step: the original and the transformed Simulink models are black
box tested with the same input values (using Simulink signal builder component [The18n, p.
62-119]), and the test succeeded when the transformed model produced the same output values as
the original one.

Signal buses

Since Simulink is a visual modeling language without any automatic layout mechanism, engineers
use (even nested) signal buses to group signal lines going from one subsystem to another one.
Figure 8.16 shows an example hierarchy of the ALS using buses to graphically group signal
lines to avoid many cross-cutting lines in the graphical representation. Since these buses exist
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Figure 8.16.: Screenshot showing the usage of nested buses to group signal lines graphically;
model available from [Dai13i]

only for representation purposes, the Simulink translator removes all Bus Creator and Bus
Selector blocks as well as the it connects the subsystems’ output and input ports directly with
each other. If this translation step would not exist, the translated model would never satisfy an
abstract connector between two user-experience subsystems as always a Bus Creator or a
Bus Selector block would be between the abstract connector; thus the C&C views would
only contain abstract effectors.

Translation results

Table 8.17 shows the sizes of C&C models resulting from our automated translation. This transla-
tion increases the size of all models as shown in the third and sixth row. The factor how much
the number of components and ports are increased depends on the number of specific Simulink
elements being present in the Simulink models. The translation increases the number of ports
and components only slightly for the adaptive light system (last column), since this model has
no DataStoreMemory, DataStoreRead, or DataStoreWrite blocks (cf. Table 8.4).
The slightly increase results from the ActionPorts. ADASv2 and ADASv3 have the most
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ADASv1 ADASv2 ADASv3 ADASv4 ALS
Simulink Blocks (not counting port
blocks)

327 686 664 655 1 065

C&C Components 639 2 309 2 278 1 396 1 086
Blocks Increased by Factor 1,95 3,37 3,43 2,13 1,02
Simulink Ports (also counting ports of
atomic blocks)

701 1 454 1 480 1 513 2 753

C&C Ports 1 528 9 009 8 981 3 596 3 193
Ports Increased by Factor 2,18 6,20 6,07 2,38 1,15

Table 8.17.: Translation Results (partially copied from [BMR+17a, Table I]).

significant increase, and this is due to the many DataStoreRead, DataStoreWrite, and
UnitDelay blocks in combination with the special ports such as EnablePort, Trigger-
Port, and ActionPort (cf. Figure 8.15).

The translation tool does not create a minimal EmbeddedMontiArc model based on a given
Simulink model. Figure 8.18 shows the Simulink hierarchy V_SetValuePlusLvl2 of ADASv4.
Figure 8.19 shows the graphical representation of the translated EmbeddedMontiArc model. As
described in the previous part of this subsection, the EmbeddedMontiArc model replaces the write
statement of the global variable DEMO_FAS_V_CCSetValue with output ports. However,
the validation tool creates for each write-read pair of global variables one communication path
(component-connector- chain) to handle special blocks such as the Trigger port shown in
Figure 8.18 (cf. Figure 8.15 for more details). Therefore, Figure 8.19 contains seven output ports
for the DEMO_FAS_V_CCSetValue global variable.

The translation tool could be improved to do a further control-flow graph analysis to merge
parts of communication paths together as long as it is possible; this would decrease the number
of ports and connectors in the translated EmbeddedMontiArc model. Therefore, the Increased
by Factors rows in Table 8.17 must be considered with caution.

8.4. Results of Main Study

This section summarizes the results of the main study. Subsection 8.4.1 to Subsection 8.4.3
present the results to answer research questions Q2 to Q4. Subsection 8.4.4 presents the outcomes
addressing traceability and evolution.

8.4.1. Feasibility and Effort to Create C&C Views

This case showed that engineers can create for many (but not all) requirements C&C views to
capture design decisions of Simulink implementations. For UI-related requirements, e.g., AL-72:
The rotary light switch has the following positions: Off; Auto (automatic position); Exterior
light on; as well as extra-functional requirements, e.g., FA-53: The safety classification of the
system speed control is ASIL B no C&C views could be created. The Simulink model covers
only functional requirements, and thus, UI-related ones are not present. The ASIL B safety
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Figure 8.18.: Screenshot of Simulink hierarchy V_SetValuePlusLvl2 of ADASv4. DEMO_-
FAS_CC_Lvl2_Round is a constant bounded at compile time. DEMO_FAS_V_-
CCSetValue is a Data Store Write block to save the value of the last sum
component into the global variable DEMO_FAS_V_CCSetValue.

Figure 8.19.: Screenshot of the graphical representation of the EmbeddedMontiArc model, which
has been automatically generated by the Simulink one shown in Figure 8.18.

requirement can also not be verified with the Simulink model alone, because hardware-specific
failures needed for a fault-tree analysis are additional necessary. In future, an extension of the
C&C views verification algorithm, also considering behavioral properties, would enable to verify
these safety requirements. UI-related requirements are in the opinion of the author of this thesis
out of scope for C&C views verification.

For ADASv1 the domain experts created 17 C&C views covering 21 out of 33 requirements.
Sometimes one C&C view contains multiple requirements. For example, the C&C view FA-14
of ADASv1 shown in Figure 8.20 includes the requirements FA-15 and FA-16. For ADASv4
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Figure 8.20.: Example of C&C view covering multiple requirements (copied from [BvW17, slide
1]).

the domain experts created 26 C&C views covering 50 out of 68 requirements. This means, the
domain experts created C&C views for 70% (71 out of 101) of the requirements belonging to
ADASv1 and ADASv4.

The domain experts needed on average half an hour to model one C&C view in PowerPoint;
answering question Q2c. As training the two-day workshop and modeling some C&C views
together with the industrial partner as well as providing existing materials (including one video)
about C&C views and their verification was enough; thus we conclude that within one-week
domain experts are able to learn the C&C views modeling techniques - answering Q2a.

For the domain experts it was really helpful to have a basic understanding of the domain of
the models to understand the textual requirements and the Simulink models. The answer of the
industrial partner to question Q2b was that it is helpful if the domain expert knows Simulink to
understand the specific Simulink blocks (cf. Subsection 8.3.5) in the Simulink models provided by
Daimler AG and the domain expert should have a basic understanding of the requirement domain;
but the domain expert may not have been worked with the Simulink models before.

As already mentioned before, we extended the C&C views language with the abstract effector
concept to be able to model the requirements; the industrial partner also wants to model conditional
abstraction connectors and effectors (more information in Section 8.6) - this answers Q2d.

As an alternative way the industrial partner wants to create C&C views in a graphical manner
by removing elements in the Simulink model. The supposed advantage of this workflow is that
the industrial partner does not need to learn a new tool and it is less error-prone as no signal name
typos could occur. This answers Q2e; however, we had no time to create such a tooling, and to
evaluate whether domain experts are really faster with this proposed methodology.

8.4.2. Technical Applicability

Our first opinion that Simulink models are very similar to C&C models must be corrected
during the case study. The development of the transformation tool involved two bachelor theses
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Model Average Pos-
itive Verifica-
tion Time

Average Neg-
ative Verifica-
tion Time

Average Time to
Create One Posi-
tive Satisfaction
Witness

Average Time to Cre-
ate All Negative Non-
Satisfaction Witnesses

ADASv1 62 ms 61 ms 27 ms 42 ms
ADASv2 1 809 ms 1 174 ms 615 ms 6 443 ms
ADASv3 1 459 ms 1 303 ms 566 ms 5 928 ms
ADASv4 404 ms 506 ms 114 ms 963 ms
ALS 218 ms 126 ms 82 ms 175 ms

Table 8.21.: Average verification and witness generation time (copied from [BMR+17a, Table
III]). Individual verification times are available in Subsection A.4.1. Time measured
on Windows 7 Professional notebook with 4 cores plus hyper-threading.

[Ern16, Bru17b]; transforming Simulink models to C&C ones needed much more technical effort
than estimated.

The most complex task in the Simulink transformation tool was to analyze control-flow graphs
of Simulink models. The control flow graphs depend not only on the visible elements in the
Simulink models, but also on the specified settings defining how often blocks are executed. All
this information must be considered to eliminate global variables and replace them by connectors.
But at the end, our transformation tool was finally able to translate all given Simulink models to
equivalent C&C models. The transformation tool only supports the 83 Simulink block diagram
elements needed for this industrial case study. All supported Simulink block diagrams are
available from [vW17b].

The answer to research question Q3a is the following: C&C views verification can now be
applied to Simulink models. However, the transformation tool must be extended when supporting
additional Simulink libraries such as SimBiology [She10], Signal Processing Toolbox [PI04], or
DSP System Toolbox [KK00].

To answer question Q3b whether the C&C views verification scales, we measured the running
time of our C&C views verification tool. Table 8.21 lists the average times for C&C views
verification, split into positive and negative results; as well as it also reports the time needed for
positive and negative witness generation.

These first two columns in Table 8.21 demonstrate that C&C views verification is very fast
and scales up to real-size industry models. Generating all negative non-satisfaction witnesses is
the most time consuming task (cf. last column for ADASv2 and ADASv3) as for every C&C
view element, which is not satisfied by the Simulink model, its own non-satisfaction witness is
generated8.

8For abstract effectors not satisfying the Simulink model our verification tool does not generate a negative non-
satisfaction witness, because the witnesses would contain too many possible elements. This case study also showed
that the natural error message text is the most useful part of the non-satisfaction witness.
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8.4.3. Helpfulness of Witnesses

During the execution of the main study, being part of the first experiment in beginning of 2017
[BMR+17a], we manually translated the textual output of our tool to graphical C&C witnesses
in PowerPoint to analyze the results with the domain experts. Due to a master thesis extension
[Oez18], it is now possible to visualize the textual model as a graphical result; the subsequent
study evaluates these generated graphical representations.

Table 8.22 and Table 8.23 present the sizes of generated positive satisfaction witnesses of
ADASv1 and ADASv4. Even though the median (cf. last rows in Table 8.12 and Table 8.13)
for the view sizes of ADASv1 and ADASv4 are nearly the same, the median (cf. last rows in
Table 8.22 and Table 8.23) of connectors and ports of the witness size of ADASv4 is about
10%-20% larger than the witness size of ADASv1. The reason for the difference of the median
witness sizes is probably the fact that the Simulink model of ADASv4 is two and a half times
larger than the one of ADASv1. The median of the component sizes is the same for witnesses of
ADASv1 and ADASv4. The satisfaction witness in this experiment contains all components up
to the main component instance instead of only up to the least common parent one; this change
was made to easier locate the witness elements in the large Simulink models.

The large graphical positive satisfaction witnesses were no obstacle for the industrial partner,
because he is used to work with very large graphical Simulink models with hundreds of subsystems
and thousands of signal lines. The domain experts found all element kinds (i.e., components,
ports, connectors, and effectors) of the witnesses useful; answering Q4a for positive satisfaction
witnesses.

Comparing the manual colored Simulink models with the generated witnesses, we figured out
that Simulink (version R2016a) only supports to color all signal lines going from one source port
to all other destination ports. Thus, the domain experts could not colorize the Simulink models as
they preferred to, and these models contain too many highlighted lines.

Nevertheless, the domain experts missed some Simulink blocks and signal lines (they do not
mean the accidental colored lines mentioned in the sentences above) in the generated witness.
This was also the reason to introduce the tracing witness kind in Subsection 7.5.2. The subsequent
study tries to answer Q2b finally whether tracing witnesses still miss important Simulink elements.

During the execution of the evolution challenge, we presented the domain experts negative
non-satisfaction witnesses; these witnesses did not contain elements for abstract effectors. The
natural language description explaining in one sentence why a Simulink model does not satisfy
a C&C view is also part of the C&C witness, and this natural description was according to the
domain experts the most useful information for non-satisfaction witnesses. The domain experts
had so deep knowledge about the Simulink models that they were able to locate the problem
directly in Simulink after reading the natural-language description. Therefore, we conclude that
the natural language descriptions for non-satisfaction witnesses are the most useful elements;
answering Q4a for negative witnesses.
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Slide 1 14 9 2 4 15
Slide 2 19 20 25 32 77
Slide 3 27 23 26 35 84
Slide 4 28 27 45 57 129
Slide 5 29 17 33 40 90
Slide 6 25 21 26 34 81
Slide 7 22 11 17 21 49
Slide 8 23 25 31 42 98
Slide 9 24 25 31 42 98
Slide 10 30 13 14 18 45
Slide 11 26 18 31 38 87
Slide 12 33 15 18 22 55
Slide 13 38 19 21 27 67
Slide 14 34 24 38 49 111
Slide 15 35 27 34 46 107
Slide 16 36 28 35 48 111
Slide 17 37 15 18 22 55
Average 19,82 26,18 33,94 79,94
Median 20 26 35 84

Table 8.22.: Size of positive Satisfaction Wit-
nesses for ADASv1.
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Slide 1 15 18 30 39 87
Slide 2 3 25 48 62 135
Slide 3 4 39 77 105 221
Slide 4 5 25 54 69 148
Slide 5 6 26 46 63 135
Slide 6 99 27 46 60 133
Slide 7 86 17 34 42 93
Slide 8 84 20 34 46 100
Slide 9 19 19 23 30 72
Slide 10 20 11 11 14 36
Slide 11 21 17 27 33 77
Slide 12 22 17 33 40 90
Slide 13 23 27 37 51 115
Slide 14 24 20 25 34 79
Slide 15 25 27 33 46 106
Slide 16 26 27 33 46 106
Slide 17 27 15 16 22 53
Slide 18 28 18 31 38 87
Slide 19 30 19 23 30 72
Slide 20 31 20 22 29 71
Slide 21 32 25 40 53 118
Slide 22 65 29 36 50 115
Slide 23 67 30 37 52 119
Slide 24 35 15 18 22 55
Slide 25 77 16 21 26 63
Slide 26 75 12 11 14 37
Slide 27 24B 30 79 100 209
Slide 28 25B 69 91 138 298
Slide 29 26B 72 94 145 311
Slide 30 30B 22 26 36 84
Slide 31 75B 16 15 22 53
Average 24,84 37,13 50,23 112,19
Median 20 33 42 93

Table 8.23.: Size of positive Satisfaction Wit-
nesses for ADASv4; C&C views of slide 27 to
slide 31 are created during subsequent study (cf.
Section 8.5).
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8.4.4. Results from Addressing the Identified Challenges

Traceability

This main study showed that C&C views and the generated satisfaction witnesses assist engi-
neers to collect traceability information between textual IBM Rational DOORS requirements
and Simulink model implementations. Furthermore, C&C views verification helps to identify
mismatches between requirement documents and different Simulink model implementations. For
example, C&C views verification unveiled typos in signal names in the Simulink models as well
as inconsistencies of encoded types in signal names (e.g., ending _b stands for Boolean type,
_stat for an integer range representing an enumeration, _m for meter, and _kmh for kilometer
per hour).

The generated satisfaction witnesses were useful to locate the high-level user-experience
subsystems in the Simulink models. The manual inspection of the graphical representation of the
satisfaction witnesses also identified that the Limiter subsystem has not been updated according
to the requirement FA-68 when replacing the one-stage cruise control lever by a two-stage one.
Figure A.22 on page 332 shows the C&C view containing the abstract effector LeverDown_-
stat -> VMax_kmh which is not behaviorally satisfied by Limiter_SetValue Simulink
subsystem in Figure A.23 (cf. Figure A.24 to see that the Tempomat subsystem satisfies a similar
requirement by containing two subsystems SetValueMinus and SetValueMinusLvl2 to
decrease the value by N or to the next ten’s place).

However, the domain experts, esp. the industrial partner, needed a complete mapping from a
requirement to all Simulink blocks and their interaction to fully satisfy the traceability requirement.
However, for every element in a C&C view the satisfaction witness contains only the smallest
number of Simulink elements to demonstrate its satisfaction. Thus, the satisfaction witness
helps to assist engineers in the traceability challenge, but it does not completely solve it. The
subsequent study evaluates whether the graphical representation of the tracing witness satisfies
the expectations of the domain experts.

Evolution

C&C views and their verification confirmed our two evolution related hypothesis:
1. C&C views verification is able to check whether all structural properties of the evolved

Simulink model still satisfies all unchanged requirements.
2. C&C views verification is able to verify that structural changes, related to requirement

updates, of the architecture design have been implemented in the Simulink model.
During the evaluation of the first hypothesis, we located inconsistencies of signal names in

different Simulink versions. The evaluation of the second hypothesis (cf. case study execution in
Subsection 8.3.4) unveiled that the Simulink model of ADASv2 does not implement the two-stage
cruise control lever in contrast to its requirement document (cf. changelog in Figure 8.3).

Please remind that C&C views, as introduced in Chapter 7, only describe structural properties.
Therefore, C&C views verification is not able to verify any behavioral properties of an imple-
mentation. To verify behavioral properties of a system other methodologies and verification tools
(e.g., LTL [MR15], CTL [BK08], underspecification automata [Rum96]) exist. The analyzes
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of behavior models of Simulink systems is much more complex, because the semantics of a
Simulink block diagram depends heavily on the specified solver settings (cf. [The18g]). Our
paper Behavioral Compatibility of Simulink Models for Product Line Maintenance and Evolution
[RSvW+15] formalizes the semantics of Simulink models using the fixed-step discrete solver.
Thus, C&C views verification cannot address all evolution challenges [MMR10].

Nevertheless, the experiments helped to identify inconsistencies between requirement docu-
mentations and Simulink models. And most important, the evolution study reused all C&C views
created for traceability. Hence, there are no additional expenses for industry to execute C&C
views verification for model evolution, if C&C views are used in combination for generating
tracing information/links.

8.5. Subsequent Study

The preliminary (cf. Section 8.2) and the main study (cf. Section 8.3 and Section 8.4) together
with Daimler AG unveiled that textual C&C models and textual C&C witnesses are hard to
comprehend. Furthermore, creating graphical representations9 based on textual witnesses is a
tedious and time consuming work (the author of this thesis needed on average one hour to manually
translate a textual witness into a graphical representation). Therefore, an algorithm generating
graphical C&C representations of textual EmbeddedMontiArc models has been developed (cf.
[Sch18]). The subsequent study, explained in this section, tries to answer the two research
questions:

Q5: How helpful are graphical representations of tracing witnesses of C&C views verification?
Q6: How much time need engineers with/without C&C views verification to detect important

elements?

Execution of Subsequent Study

For the execution of the subsequent study we used the same framework as for the preliminary and
main study. The Objective of the subsequent study is the evaluation of graphical representations
of tracing witnesses for the traceability challenge. The subsequent study should evaluate whether
the tracing witness addresses the drawbacks of the satisfaction witness according to the traceability
challenge (cf. Subsection 8.4.4).

The studied Case is to figure out what tracing information domain experts still miss in graphical
representations of the traceability witnesses. Furthermore, the studied case should evaluate
graphical representations themselves (e.g., is the representation intuitive to the domain experts).
Additionally, the studied case should evaluate how much working time engineers save for the
traceability challenge (cf. Subsection 8.2.2) when providing C&C views with their generated
graphical tracing witnesses to engineers.

9The graphical representation does not mean the PowerPoint slides which are presented during talk sessions. In
the first study, the textual witness has been first completely modeled in PowerPoint. This graphical PowerPoint
witness was very large for the complex industrial size Simulink model. In a next step, the first graphical witness has
been remodeled (e.g., splitting up the model into several slides and hiding some port or component names) to be
presentable. The aim of the subsequent study is to skip the first PowerPoint modeling step completely to directly
create presentable PowerPoint slides based on the generated and easier to understand graphical representation.
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The Theory of the subsequent study are the theory (cf. Section 8.3) and the results of the
main study (cf. Section 8.4), the new tracing witness kind (cf. Subsection 7.5.2), as well as
the layout algorithm (cf. Subsection 8.5.1) to automatically create graphical representations of
textual EmbeddedMontiArc models.

The Method is to generate textual tracing witnesses (instead of satisfaction ones) with the
algorithm presented in Section 7.4 and to use the layout algorithm to generate graphical repre-
sentations. We show the graphical representations to the domain experts to receive feedback. To
measure the saved time, in a first step domain experts should trace down all Simulink blocks of a
given requirement without C&C views, and in a second step they should trace down all blocks
of a given requirement with C&C views and with the graphical representation of the generated
tracing witnesses; the difference is the saved time.

As Selection strategy we divided the 26 requirement groups (one requirement groups are
the requirements belonging to one C&C view) of ADASv4 among the three domain experts
participating on the subsequent study. Due to the time consuming task in inspecting all tracing
witnesses, which are expected to be larger than the satisfaction ones, the evaluation is only done
on the larger ADAS model.

8.5.1. Generation of Graphical Representations of C&C Models and
Witnesses

This subsection presents the requirements, and the high-level steps of the algorithm to generate
graphical representations of C&C models based on textual EmbeddedMontiArc models. Further-
more, this subsection compares the generated graphical representation of ADASv4 against the
Simulink subsystem provided by Daimler AG.

Requirements for Graphical C&C Models

The generated graphical C&C representations should be similar to the ones of the visual Simulink
models and to C&C model representations of existing papers of our chair (e.g., cf. [MRR13,
MRR14, Rin14, Hab16, Wor16]). Thus, the generated graphical representation should satisfy the
following requirements (some of this requirements are already published in [Sch18, Chapter 2]):

V1: Components are displayed as rectangles.
V2: The size of components may vary, e.g., based on number of ports.
V3: The component name/type is inside the component rectangle and it is in the top part.
V4: Ports are displayed as squares.
V5: All ports have the same size.
V6: All input ports are on the left side of a component.
V7: The text of an input port belonging to a subcomponent/outer component is right/left of the

input port square.
V8: All output ports are on the right side of a component.
V9: The text of an output port belonging to a subcomponent/outer component is left/right of

the output port square.
V10: Connectors consist of horizontal and vertical lines.
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V11: The head of every connector is a right arrow.
V12: Connectors start and end with a horizontal line.
V13: Junctions of connectors are displayed as small filled circles.
V14: Connectors having the same source and target component instance are combined as buses

(similar to Simulink).
V15: Bus creators and bus selectors have unique indices to match the ingoing and outgoing

signals of buses; the graphical order may not match.
V16: Connectors should go from left to right whenever possible; only feedback-loops should go

from right to left.
V17: All elements (except of connector lines) should not overlap each other.
V18: The number of cross-cutting lines should be as small as possible.
V19: All graphical elements should be inside the canvas’ bounds; port names of the outer

component should also be visible (via scrolling).
V20: The size of the canvas should be as small as possible.
V21: The output should be static (client-side) HTML pages. Each hierarchy layer is one HTML

page.
V22: The URL of the HTML page maps to the full-qualified name of the displayed outer

component. This way readable links to a specific hierarchy presentation can be shared via
e-mail.

V23: The HTML page should contain a navigation bar to navigate to direct and indirect parent
components.

V24: Ports and all atomic components have a white background color.
V25: Non-atomic components have a light-gray background color.
V26: Clicking into a non-atomic component opens the graphical representation of this clicked

subcomponent.

Since the graphical representation of one hierarchy layer may become very complex, and thus
also large, the algorithm should support four different abstractions for each layer:
V27 - Simplified: The graphical representation contains only components with simple instance

names and connections between components.
V28 - No Port Names: The graphical representation consists only of components with simple

instance names, ports without names and without types, and connections between ports.
V28 - Standard: The graphical representation contains components with simple instance names,

ports with names, and connections between ports.
V29 - Extended: The graphical representation consists of components with component types in

bold font and simple instance names in normal font, ports with names and types, connec-
tions between ports, as well as tag information for components, ports, and connections in
small font.

V30: The URLs of the four different graphical representations are unique to share them.
V31: All graphical elements in all hierarchy levels and all graphical abstractions have unique

identifiers in the generated HTML page. The unique identifiers correlate with the full-
qualified name of the visualized textual C&C element.
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The extended representation (cf. V29) is also used for the interactive simulator, where the
simulator replaces the text of port data types with their current port values. The interactive
simulator updates the values in the graphical representation via JavaScript using the unique
identifiers (cf. V31).

Algorithm Creating Graphical C&C Models

This paragraph summarizes the algorithm how to generate the graphical representation of C&C
models. A more complete description of the algorithm is available in the master thesis Visu-
alisation of Textual Component and Connector Models [Sch18, Chapter 5] supervised by this
author.

The main steps of this algorithm are (summary of [Sch18, Chapter 5]):
1. The algorithm creates for each component instance in the abstract syntax (presented in

Chapter 4) of the textual EmbeddedMontiArc model a new directed graph. Each graph
contains nodes of all direct subcomponent instances plus one left and one right node
representing the borders of the current component instance. An edge between nodes exists
when ports of the corresponding subcomponent instances are connected.

2. Since the dataflow should go from left to right, the algorithm separates the graph in a set
of paths. Every edge is part of exactly one path, two paths share at least two nodes, and a
shared node must not be a middle node in both paths.

3. The algorithm inserts temporary nodes (nodes not matching any component instance) for
feedback loops (cycles), buses (new nodes are inserted for bus creator and bus selector),
and to avoid parted components.

4. The algorithm permutes over the set of paths to find a “readable” vertical ordering of
the paths. A fitness function evaluates the readability of a current permutation result to
minimize the number of parted nodes, edge crossings, the number of edge bends, and
the length of vertical edge segments. The permutation’s heuristic is based on simulated
annealing10 [Cha96] with a logarithmic temperature function.

5. After the fourth step, the layout (row and column position) of the component instances
(node positions) is fixed. This step merges two paths to one path if they do not have nodes
in the same column.

6. A component may be represented by multiple nodes and these nodes may not be row
neighbors, so the algorithm switches the paths in a way so that the component nodes are
not parted anymore.

7. The algorithm assigns for each component instance hierarchy coordinates for the elements
inside this hierarchy based on the final set of paths calculated in step 6. The width of a
component is based on the length of its component instance name, its component type
name, and the names of its ports. The height of a component is based on the positions of
the input and output ports.

8. The layout after step 7 is a table-based layout where all components are below or next each
other. Due to busses and feedback-loops the space between the component columns may

10The algorithm of simulated annealing is inspired by the annealing process in metallurgy heating and cooling down
material to reduce the number of dislocated atoms and thus to change the plastic deformation of the material
[Sch18].
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become pretty large. Therefore, the algorithm moves all components (with their ports and
their port connections) inside the same row as far as possible to the left.

9. Based on final coordinate positions, the algorithm generates for each layer an HTML and
SVG file using FreeMarker templates. Every generated HTML file contains a navigation
bar and the SVG image. Each graphical element in the SVG file has a unique identifier
which can be derived from the full-qualified name of its port or component instance, the
identifiers of connector elements are based on the full-qualified name of the unique target
port.

The layout algorithm also supports a mode to generate more Simulink equivalent graphical
representations. This mode replaces the component instance names, component type names, and
port names of atomic components of specific component types with text fragments being more
similar to the visual representation of the corresponding atomic Simulink block. For example,
the component type GreaterEquals is replaced by >= and the instance name of this atomic
component is skipped in the graphical representation. Another example is the And component
type, the layout algorithm skips the component instance name and the port names (as they are
irrelevant). This mode should make the graphical representation as intuitive as possible for the
domain experts participating in the subsequent study. A nice side effect of these text replacements
is that the sizes of these special components becomes much smaller, which results in a better
readable graphical representation.

Evaluation of Graphical C&C Models

Figure 8.24 shows a screenshot of the CC_On_Off subsystem of the ADASv4 Simulink model
provided by Daimler AG. Figure 8.25 shows a screenshot of the generated graphical representation
of the translated EmbeddedMontiArc model. Figure 8.25 shows the standard view (cf. requirement
V28) containing the same information as the Simulink model. Figure A.9 on page 323 shows the
simplified view (cf. requirement V27); and Figure A.10 on page 324 shows the extended view
(cf. requirement V29) containing additional information hidden in Simulink dialog boxes.

First, both graphical representations are good readable as both have less cross-cutting lines.
The Simulink model (layout is created manually) contains no cross-cutting signal lines at all,
and the generated one consists of only one cross-cutting connector (connector starting at in-
put port CruiseControl_b and going to the OR block intersects the connector going from
limiter_b to NOT). Furthermore, the data-flow in both graphical representations goes only
from left to right. However, the concrete representation differs; as the graphical representation
of Figure 8.25 is generated on a textual model containing no information about the graphical
position of the corresponding Simulink blocks. Therefore, a 1:1 matching of both graphical
representations is not so easy possible.

Still, the domain experts stated that the generated graphical representation shown in Figure 8.25
is very comprehensible for them; the industrial partner also liked the simplified representation
(cf. Figure A.9 on page 323) containing component instances and their communication to
receive a first overview. The extended representation (cf. Figure A.10) was not so useful
for the industrial partner, because the component and port data types are already encoded in
component instance names or in component port names; and the larger image size of the extended
representation caused more scrolling activities. Interviews of the author of this thesis with other
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Figure 8.24.: Screenshot of CC_On_Off subsystem in Simulink (cf [Dai13f]).

EmbeddedMontiArc developers unveiled the need for the extended representation. The other
developers created among others PacMan, ImageCluster, SuperMario, or a racing car controller
in EmbeddedMontiArc; all these models have in common that data types and port names do not
correlate at all with port names or component instance names.

Section A.1 lists more screenshots comparing the manual layout of Simulink models against
the automatically generated layout of our visualisation tool. This section also demonstrates that
the simplified representation creates much smaller layouts which are very helpful to receive an
overview between the communication of component instances.

Our visualisation tool creates 1129 SVG and HTML files11 for the graphical representation
of the ADASv1 C&C model with its 639 component instances; the running time to create all
these files is 5 minutes and 35 seconds. For the C&C model of ADASv4, having 1396 component
instances, our visualisation tool generated 1865 SVG and HTML files in 20 minutes and 26
seconds. However, our visualisation tool is also capable to just update the visualisation of one
hierarchy level, e.g., when changing just one EmbeddedMontiArc file, and this needs only about
one second. Developers need to generate the complete graphical representation only once; later

11For each non-atomic component instance four HTML and four SVG files are generated.



8.5. Subsequent Study 305

Figure 8.25.: Screenshot of generated graphical representation of translated EmbeddedMontiArc
model which shows the port names and the component names (layer 3). This version
shows similar information as the Simulink models.

this graphical representation can be updated incrementally based the textual changes in a few
seconds (depending how many hierarchy layers have been modified). Hence, the runtime of our
visualisation tool is still capable for industry.

When generating only one view, e.g., the standard one described in requirement V28, the
web visualisation for ADASv1 needs less than 3 minutes with our tool. The time to create
only one out of four views is not divided by four, as tasks like starting the program (cold-start
time of JVM), parsing all textual models and creating the symbol table as well as transforming
EmbeddedMontiArc models to C&C instance structures is only done once and not for every view
representation kind. Executing the same task in Simulink also needs about 3 minutes (ca. 30s
to start MATLAB, ca. 60s to load the Simulink model, and ca. 90s to generate the web export of
ADASv1 for all subsystems and library components); and Simulink does not need to calculate
any layout information as it uses the graphical layout created by the user. Thus, we conclude that
the performance of our tool generating the graphical representation as web files is similar to the
performance of the most used industrial tool Simulink.

The performance of the complete C&C views verification toolchain is important to illustrate
that C&C views verification may be integrated into the industrial development process (cf.
Subsection 2.1.2 and Subsection 2.2.2) to improve quality.
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8.5.2. Results of Subsequent Study

The three domain experts of the subsequent study needed 2-5 hours to identify all Simulink models
being related to one requirement without the usage of C&C views; each domain expert analyzed
only five requirements, because this task was so time intensive12. At least two hours are needed
to analyze communications between blocks belonging to the ADAS system and the closed-loop
involving the environment. Five hours are needed when the domain experts must analyze the
data-flow between subsystems via global variables to identify side-effects. In contrast, given the
graphical representation of the tracing witnesses, the domain experts only needed 30 minutes
to identify all relevant elements in the Simulink model. They needed these 30 minutes, because
the tracing witness is generated based on the EmbeddedMontiArc model and this differs (due
to special Simulink blocks, cf. Subsection 8.3.5) from the Simulink one; therefore, the domain
experts still needed some time to match the graphical witness components to the correct Simulink
subsystems/blocks. Together with the 30 minutes to create a C&C view (cf. Subsection 8.4.1),
the domain experts spend all together about one hour to trace down one Simulink requirement
using C&C views and the graphical tracing witness. This is a very good result when considering
the 2-5 hours they needed without using C&C views. For the 26 C&C views of ADASv4 this
saves about 7 days of working time; answering research question Q6.

Table 8.26 and Table 8.27 list the sizes of the generated satisfaction witnesses. The average sum
and the average difference (last two columns in the penultimate line) show that tracing witnesses
are about 40% / 60% larger than the satisfaction witnesses of ADASv1 / ADASv4. This confirms
the impression of the industrial partner that satisfaction witnesses skip many elements according
to the traceability challenge. This statistic also demonstrates that a graphical representation of
tracing witnesses containing all elements in one layer similar to the graphical representation of
satisfaction witnesses as shown in Figure 8.11 is not suited, because tracing witnesses with a
median value of 46 components (cf. third column in last row in ADASv4) are too large.

First, we generated only graphical representations of tracing witnesses. However, the domain
experts complained that the layout of these graphical witness representations differ too much;
this is caused by the automatic layout process. Therefore, we showed the domain experts an
alternative representation of witnesses, which highlights all elements of the tracing witness in
the complete graphical representation. This way, the graphical representations of all witnesses
of different requirements have the same layout, and the highlighted parts show all elements
addressed by this requirement. Even though the graphical representations of the highlighted
witnesses are much larger13, the domain experts preferred this highlighted version. In general,
the domain experts liked the graphical representations of highlighting the tracing witnesses inside
the ADASv4 EmbeddedMontiArc model. Only some graphical representations of components
at deeper hierarchy levels, e.g., CC_SetValue hierarchy level of colorized tracing witness of

12We repeated the manual task to trace down requirements (cf. Subsection 8.3.1 where it has been done the first time),
because the main study did not exclude very similar requirements (e.g., Limiter and Tempomat requirements,
as well as only evolved requirements from ADASv1 to ADASv4). The subsequent study excluded similar
requirements as it evaluates the average time is when just tracing down one requirement at a time (e.g., to create a
new test or to create a presentation to present the implementation during a sprint review meeting).

1346 components (median size of components in witnesses) vs 1396 ones (number of components in ADASv4)



8.5. Subsequent Study 307
Tr

ac
in

gA
D

A
S1

.p
pt

x

FA
-

C
om

po
ne

nt
s

C
on

ne
ct

or
s

Po
rt

s

Su
m

D
iff

er
en

ce
to

Sa
tis

fa
ct

io
n

Slide 1 14 9 2 4 15 0
Slide 2 19 38 70 90 198 121
Slide 3 27 37 46 65 148 64
Slide 4 28 48 90 117 255 126
Slide 5 29 30 56 72 158 68
Slide 6 25 21 26 34 81 0
Slide 7 22 11 17 21 49 0
Slide 8 23 41 54 76 171 73
Slide 9 24 42 55 78 175 77
Slide 10 30 13 14 18 45 0
Slide 11 26 38 79 101 218 131
Slide 12 33 15 18 22 55 0
Slide 13 38 26 35 48 109 42
Slide 14 34 33 64 81 178 67
Slide 15 35 41 60 85 186 79
Slide 16 36 45 67 95 207 96
Slide 17 37 15 18 22 55 0
Average 29,59 45,35 60,53 135,47 55,53
Median 33 54 72 158 67

Table 8.26.: Size of positive Tracing Witnesses
for ADASv1; the difference in the
last column is the difference be-
tween the sum in this table and the
sum in Table 8.22.
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Slide 1 15 18 39 51 108 21
Slide 2 3 47 98 129 274 139
Slide 3 4 81 167 224 472 251
Slide 4 5 48 108 140 296 148
Slide 5 6 71 144 193 408 273
Slide 6 99 78 157 210 445 312
Slide 7 86 25 52 65 142 49
Slide 8 84 46 100 133 279 179
Slide 9 19 19 23 30 72 0
Slide 10 20 11 11 14 36 0
Slide 11 21 45 84 108 237 160
Slide 12 22 45 90 115 250 160
Slide 13 23 65 114 157 336 221
Slide 14 24 53 84 117 254 175
Slide 15 25 53 92 124 269 163
Slide 16 26 53 92 124 269 163
Slide 17 27 46 91 118 255 202
Slide 18 28 41 82 107 230 143
Slide 19 30 20 25 33 78 6
Slide 20 31 23 27 37 87 16
Slide 21 32 54 100 135 289 171
Slide 22 65 42 61 87 190 75
Slide 23 67 46 68 97 211 92
Slide 24 35 16 20 25 61 6
Slide 25 77 17 23 29 69 6
Slide 26 75 51 97 125 273 236
Slide 27 24B 94 189 253 536 327
Slide 28 25B 129 211 304 644 346
Slide 29 26B 138 227 329 694 383
Slide 30 30B 24 30 42 96 12
Slide 31 75B 55 101 133 289 236
Average 50,13 90,55 122,19 262,87 150,68
Median 46 91 118 255 160

Table 8.27.: Size of positive Tracing Witnesses
for ADASv4; the difference in the
last column is the difference be-
tween the sum in this table and the
sum in Table 8.23.

FA-26, were not so comprehensible for the domain experts; because the graphical representation
of the EmbeddedMontiArc model differs much from the Simulink one due to switch components
added during the translation process. This answers research question Q5. Section A.2 presents
some graphical representations of C&C views, satisfaction and tracing witnesses, as well as the
graphical representation highlighting witnesses. All graphical representations of C&C views and
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all positive satisfaction and tracing witnesses are online available from EmbeddedMontiArc’s
GitHub pages14. The author of this thesis explicitly allows to reuse these materials and results for
further case studies.

The evaluation of the domain experts in this subsequent study also unveiled that some C&C
views of ADASv415 were not detailed enough to trace down all Simulink elements implementing
one requirement. For this reason, the domain experts updated the C&C views of the requirements
FA-24, FA-25, FA-26, FA-30, FA-65, FA-67, and FA-75. As already mentioned in Subsec-
tion 8.4.4 the Limiter subsystem of ADASv4 does not implement the two-stage cruise control
lever, thus the updated C&C views of FA-65 and FA-67 are not satisfied, and so neither a satis-
faction nor a tracing witness is generated. For all other C&C views, the satisfaction and tracing
witnesses are available from EmbeddedMontiArc’s GitHub pages; the extension views and the
witnesses end with a B such as FA-24B.

The average time to check positive satisfaction and to generate the positive satisfaction witness
is below half a second (cf. Table A.37) per C&C view. Surprisingly, the verification time and the
generation of the larger tracing witness is also below half a second (cf. Table A.38). Generating
the graphical representation of satisfaction and tracing witnesses needs on average below 10
seconds per textual witness (cf. Table A.37); however, large tracing witnesses may need about
one minute (cf. FA-26b in Table A.38).

Highlighting graphical elements needs on average about 2-5 seconds per textual witness,
because our implementation loads the already generated HTML and SVG files and just modifies
via JSOUP [Hou13] the line color attribute in the DOM (document object model of websites).
The mapping from the abstract syntax of a witness to the DOM elements is straight forward, as
all DOM elements in the graphical representation have an identifier encoding the full-qualified
name of the C&C instance structure of the EmbeddedMontiArc model satisfying the view (cf.
requirement V31).

Using the engineers’ preferred representation by highlighting the tracing witness elements in
the C&C model, the execution of the complete toolchain (tracing verification, textual witness
generation, and highlighting the graphical representation) needs about 3 to 6 seconds per C&C
view. This means the engineers receives the tracing results of a C&C view nearly instantly. Most
important, the fast execution time of the entire toolchain does not interrupt the workflow of
developers. Section A.4 contains the measured runtime for all C&C views.

8.6. Additional Observations and Desired Extensions

Interviews during the main study in 2017 unveiled that engineers at Daimler AG create Simulink
models with manually highlighted blocks or manually deleted elements to present only important
information (slices) when discussing requirement implementations or analyzing defects. For
this purpose, the University of Ulm developed for Daimler AG a tool to highlight effect chains.
C&C views verification enables validating the existence of effect chains automatically, e.g.,
during nightly builds, and tracing witnesses also support to highlight (if it is present) effect
chains. The automatic generated graphical representations of witnesses even supports generating
14https://embeddedmontiarc.github.io/webspace/
15Due to time reasons we only extended the C&C views of ADASv4.

https://embeddedmontiarc.github.io/webspace/


8.6. Additional Observations and Desired Extensions 309

Figure 8.28.: Different Modes of High Beam subsystem; cf. [Dai13h].

different graphical overview levels (cf. Subsection 8.5.1). However, our toolchain still cannot
generate defect slices (or its highlighting in Simulink) full-automatically, because our verification
algorithm does not support conditional abstract effectors. For defect tracing it is important to
look at effects occurring only under special conditions such as at highways where the speed is
larger than 60 km/h. Our algorithm would now find all effects between the corresponding input
and output ports and then the modeler needs to remove manually all for this situation unimportant
component-connector chains.

This case study also figured out that requirements describing different modes of subsystems
are not so well suited for C&C view verification on Simulink models. In the presented examples
the modes are modeled via enabled subsystems or via if/else subsystems as shown in Figure 8.28.
C&C views verification can check that the subsystems (also the modes) are contained in Simulink
models, but C&C views verification does not support modes as modeling feature to specify that
only one of the subsystems should become active. For this feature, the EmbeddedMontiView
language, and thus also the C&C views verification and witness generation algorithms, could be
extended with a Modi mechanism as it exists in MontiArcAutomaton [HKR+16].
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8.7. Threats to Validity

This industrial case study is based on Simulink models released by Daimler AG for evaluation
and demonstration purposes. Therefore, the ADAS and ALS Simulink models are simplified
by removing subsystems containing intellectual property as well as by removing AUTOSAR
integration frames. Thus, it is possible that these removed elements would require additional
C&C views (verification) features. However, it is neither allowed to describe these features in
public publications, nor to make this models public available; thus, there exists no way to address
this thread.

We were not able to evaluate the use of C&C views on pure C&C industrial models, because
EmbeddedMontiArc and its tooling is not used by industry (yet). Hence, all three studies in this
chapter evaluated Simulink models; Simulink block diagrams are close to C&C models, however,
Simulink supports additional communication paradigms and control-flow modeling. To mitigate
this threat, Subsection 8.3.5 explained in detail how Simulink block diagrams were automatically
translated to C&C models. Black-box tests ensured that Simulink block diagrams and the created
EmbeddedMontiArc models have the same behavior.

It is important to note that all three studies (i.e., preliminary, main, and subsequent study) in this
chapter worked on existing models and on existing requirements. Furthermore, all materials used
for this industrial case study are online available as structured websites for further investigations
and to enable replication of this industrial study.

8.8. Similar Studies

The C&C views approach for requirement is not completely new. This technique has already
been investigated by Grönniger, Hartmann, Krahn, Kriebel, and Rumpe in the paper View-Based
Modeling of Function Nets [GHK+07]. However, the authors of the function net paper state:
“While the results of smaller case-studies are promising, a detailed evaluation of the method with
an example of realistic size still needs to be carried out” [GHK+07, Conclusion]. This industrial
case study addressed their last point by evaluating the C&C views approach on five industrial
size models with real-world requirements. Furthermore, our industrial case study showed that
C&C views may support engineers in industry.

The paper Modeling Variants of Automotive Systems using Views [GKPR08] by Grönniger,
Krahn, Pinkernell, and Rumpe uses views to model variants and features. The advanced driver
assistant system (ADAS) also contains different features (cf. feature diagram in Figure 8.14),
and the C&C views derived from the requirements belong to different features. The evolution
challenge in our case study used C&C views to figure out whether any features were accidentally
removed during model evolution or whether all required features are implemented; this industrial
case study unveiled that the two-stage cruise control lever was added to requirements in ADASv2,
but it was only implemented in ADASv3.

In 2014, Broy figured out during his study that description and verification of requirements are
one of the biggest challenges: “To capture the requirements right (i.e. complete and consistent) is
the basis for the development of software. The study participants report that the description and
the verifiability of the requirements and the reconciliation OEM - supplier are currently the biggest
challenges they face in the requirements analysis” [BKKS14]. The interviews with our industrial
partner confirmed this statement. Furthermore, Broy’s survey unveiled: “Study participants report
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that up to 15 000 requirements per function has become a normal value”. Therefore, we can
conclude that the system used in this case study with its 150 requirements (ADASv4 plus ALS
requirements) is one of the smaller ones in industry. Addressing the traceability challenge in
this case study manually was already a lot of work; we needed two to five hours of work for
each requirement. With the support of C&C views, this work can be reduced by two hours per
requirement; for the 15 000 requirements (mentioned by Broy) this would save about 15 person
years of work, and thus, also a lot of money.

Another study by Mäder and Egyed unveiled that “subjects with traceability performed on
average 24% faster on a given task and created on average 50% more correct solutions - suggesting
that traceability not only saves effort but can profoundly improve software maintenance quality”
[ME15]. Thus, C&C views may help to improve the quality of software. Indeed, our case study
identified a missing component in ADASv4 for requirement FA-67, and wrong connected signals
in ALS (cf. appendix A3). Hence, our case study confirmed the observation by Mäder and Egyed.

8.9. Summary of Industrial Case Study

Maoz et. al. [MRR13, MRR14] already suggested C&C views and its verification as formal
and intuitive structural specification of C&C models. This chapter described the experience in
applying C&C views verification to address traceability and evolution in an industrial automotive
setting at Daimler AG. Besides conceptional questions whether C&C views verification may (and
in what context) help engineers (cf. preliminary and main study in Section 8.2 to Section 8.4
based on the industrial case study paper [BMR+17a]), this thesis also evaluated the usefulness
of the tooling around C&C views verification (adapted witness generation, generating graphical
representations, and highlighting witnesses directly in C&C models) and how much time engineers
may actually save when integrating this tooling into their development process (cf. subsequent
study in Section 8.5).

Even though this case study has only been applied with one automotive company, we know
based on other industrial collaborations [KKRvW18, HKK+18, RRS+16] that traceability is
for many other automotive OEMs or suppliers a very important issue and that the links and the
verification between the design model (cf. SMARDT level 2 in Figure 2.3 on page 29) and
the logical model (cf. SMARDT level 3 in Figure 2.3) are yet done manually, and thus, time
consuming and error-prone.

Although these three studies focused on the automotive domain, the evaluation results of these
studies on C&C views verification may also relate to other industrial companies in embedded
or cyber-physical domains, e.g., avionics [FG12], wind power systems [AB17, BPB17] robotics,
assembly and production systems [BKL+18], or telecommunication [HB06].

This industrial case study showed that C&C views verification with its tooling to auto-
matically generate a graphical representation for tracing witnesses supports engineers to
address the traceability challenge. It also unveiled that C&C views verification with its nat-
ural language error description helps developers to locate accidently broken requirements
during the evolution challenge.

The overall effort to develop the algorithmic concepts plus all prototype implementations
and documentations of the used toolchain to execute these preliminary, main, and subsequent
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studies involved about 65 person months of working time. Examples of the developed algorithmic
concepts are: translating Simulink models to C&C models, adapting the C&C views verification
algorithm of Ringert [Rin14] to support abstract effectors, adapting the witness generation process
to generate tracing witnesses, and automatically generate graphical representations of textual
EmbeddedMontiArc models and witnesses as well as highlighting existing C&C models in an
efficient way.



Chapter 9.

Summary and Conclusion

This thesis aims to improve the development process of software systems engineering for em-
bedded and cyber-physical systems. Therefore, this thesis provides domain specific languages to
develop component and connector (C&C) models, as well as to specify structural design decisions
and extra-functional properties of C&C models in an efficient, agile, and intuitive way. Section 9.1
shortly summarizes the main results of this thesis. Section 9.2 concludes the contribution of this
PhD thesis.

9.1. Main Results

The goal of this thesis was to improve the software development process of large and complex
C&C models for embedded and cyber-physical systems; esp. in the automotive domain. The
approach of this thesis follows the current model-based development process of large car manufac-
tures, and it addresses the engineering challenges traceability and evolution. Main achievements
of this work is to provide automatic consistency checks between requirements, high-level design
models, functional C&C models, as well as extra-functional properties.

Chapter 3 and Chapter 4 introduced the new functional C&C modeling language Embedded-
MontiArc. EmbeddedMontiArc is a textual domain-specific language which enables an efficient
development of the logical/functional layer of embedded systems by providing the following
language features:

(i) SI unit system to model physical quantities used in the interaction between components
and its environment.

(ii) Component types including component interfaces to enable reusability and model architec-
tural flexibility.

(iii) Arrays of component instantiations and ports to avoid copy and paste.
(iv) Powerful component libraries with parameters for port types, array dimensions, and com-

ponents themselves to support configuration of internal/external components.
(v) Comfortable name- and index-based connection patterns to increase readability and to

speed up modeling of large C&C architectures.
(vi) Component types as configuration parameters enables flexible product-line modeling.
(vii) Strict type system supporting algebraic matrix types detects model inconsistencies dur-

ing compile time to reduce time-consuming error analysis due to wrongly connected
components.

(viii) First level integration for black-box unit and integration tests to increase product quality.
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Chapter 5 presented a tagging mechanism, which improves the systems engineering process by
providing a non-invasive way to enrich C&C models with consistent extra-functional properties.
Advantages of this new introduced methodology compared to existing annotation-, comment, or
stereotype-based solutions are:

(ix) C&C models are not polluted with many different extra-functional properties.
(x) C&C models may have different sets of extra-functional properties (e.g., different hardware

deployments).
(xi) Strict separation of concerns allows multiple domain experts to decorate a C&C model

with different extra-functional properties in parallel by just focusing on their domain.
(xii) Tagging mechanism is typed (e.g., with physical units) to prevent careless mistakes (e.g.,

slipping in lines or typos).
(xiii) Tag schemas supports definition of new extra-functional properties in an efficient way.
(xiv) Tagging mechanism includes consistent meta- and table-based tags.

The OCL framework, introduced in Chapter 6, improves the development process by enabling
efficient (in very less lines of OCL code) definition of context condition, company specific
guideline rules for C&C models, as well as consistency rules for many kinds of extra-functional
properties. Our OCL framework improves the systems engineering process in the following way:

(xv) Definition of company specific guideline rules in very few lines of code.
(xvi) Automatic generation of expressive error messages.
(xvii) Providing a mathematical framework to specify consistency rules on extra-functional

properties.
(xviii) Automatic generation of positive consistency and negative inconsistency witnesses based

on defined consistency rules on extra-functional properties.
(xix) OCL rules depend only on internal structure of EmbeddedMontiArc specified via class

diagrams; thus, no knowledge about EmbeddedMontiArc’s Java implementation is needed.
(xx) Verification and witness generation is very fast and scales up to industry-size models.

The C&C design language EmbeddedMontiView, elucidated in Chapter 7, improves the C&C
development process by providing an intuitive and formal way how to specify concrete architec-
tural design decisions for one specific embedded and cyber-physical system. The specification
language EmbeddedMontiView extends the concrete syntax of EmbeddedMontiArc with intuitive
underspecification concepts. Therefore, no knowledge about the abstract syntax or any theoret-
ical complex theory such as SMT theory is necessary to formulate concrete design decisions.
Furthermore, the specific syntax of the C&C design language enables to automatically generate
positive satisfaction witnesses to explain why a logical architecture (C&C model) satisfies a
design specification. Additionally, non-satisfaction witnesses with its natural language descrip-
tion of errors and the model elements causing the incompatibility between logical architecture
and elements of design specifications enables to locate and understand these inconsistencies.
EmbeddedMontiView supports the development process with the following features:

(xxi) Intuitive specification of structural properties of C&C models.
(xxii) Fast verification algorithm to check whether a logical C&C architecture satisfies all design

specifications.
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(xxiii) Generation of non-satisfaction witnesses to locate inconsistencies between specification
and architecture.

(xxiv) Generation of positive satisfaction witnesses to explain why an architecture satisfies a
specific design specification.

(xxv) Generation of positive tracing witnesses to trace down all architectural elements belonging
to a design specification.

Chapter 8 evaluated the improved development process together with Daimler AG during an
industrial case study. To increase acceptance of the developed methodology in industry, our
toolchain has been extended by the following features:

(xxvi) Automatic generation of graphical representations of textual C&C models with four
different abstraction levels.

(xxvii) Highlighting all important elements of an architecture according to a C&C view.
(xxviii) C&C view verification tool supports besides EmbeddedMontiArc also Simulink files as

C&C model input.

The industrial case study in Chapter 8 also proofed that the methodologies presented in this
thesis scale for real-world industry models and that the improved methodology saved much
working time of developers for the traceability challenge.

9.2. Conclusion

This thesis presented novel modeling languages for the development of embedded and cyber-
physical systems.

The EmbeddedMontiArc language family defines the structure and behavior of C&C systems
to model the functional and logical layer of cyber-physical systems in an efficient, agile, and
intuitive way. EmbeddedMontiArc supports to define modular and reusable architectures by
introducing a comprehensive component type system as well as arrays of port and component
instantiations.

In contrast to most graphical C&C modeling languages in industry, EmbeddedMontiArc is a
textual one. The textual nature of EmbeddedMontiArc enables a seamless integration into existing
DevOps lifecycle platforms such as GitLab or GitHub. These platforms support among others
versioning, branching, merging of EmbeddedMontiArc artifacts, as well as they provide powerful
difference tools, an issues (tickets) system, continuous integration tests, code analyses and code
reviews linking to line numbers of EmbeddedMontiArc artifacts.

EmbeddedMontiArc itself is completely model-based developed by empowering MontiCore’s
grammar format to define the concrete syntax (cf. EmbeddedMontiArcParsing grammar) and its
internal structure (cf. EmbeddedMontiArcTooling and CnCInstanceStructure grammars). The
context conditions of EmbeddedMontiArc as well as the two transformations between the abstract
syntax of these three EmbeddedMontiArc grammars are specified via OCL in a model-based way.

The tagging mechanism of this thesis also uses a model-based approach to define new kinds of
extra-functional properties via tag schemas and to enrich C&C models with these extra-functional
properties via tag models. All valued tags in tag schemas are typed which enables to check
concrete extra-functional property values to reduce modeling failures. Constraints about C&C
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models enriched with a specific extra-functional property type are also specified via OCL in
a model-based manner. This thesis also presented techniques to validate whether an enriched
EmbeddedMontiArc model satisfies all extra-functional property constraints. Additionally, the
result of this validation is a positive or a negative consistency witness model to help the developer
to understand the validation result.

The C&C view language EmbeddedMontiView specifies structural properties of Embedded-
MontiArc artifacts in a model-based, expressive and intuitive way. The strength of C&C views
is the ability to describe abstract relations between different hierarchy levels. EmbeddedMon-
tiView provides abstractions/underspecification for hierarchy, connectivity, interface completeness,
data flow, component types, port types with units, as well as arrays of ports and component
instantiations.

The development of EmbeddedMontiView also uses a model-based approach: The concrete and
abstract syntax of this language are defined by an MontiCore grammar; and its context conditions
as well as the satisfaction relation between EmbeddedMontiArc and EmbeddedMontiView are
specified via OCL.

For the extra-functional consistency checks as well as for the verification of the C&C views
satisfaction relation we implemented a prototype. This prototype and its integration in an
industrial C&C development process has been evaluated during a case study together with
Daimler AG. All results of this industrial case study have been uploaded to the GitHub pages1

of EmbeddedMontiArc to make all these artifacts public available for further exploration and
research.

The author of this thesis believes that our work provides promising results to improve the
model-based development process of embedded and cyber-physical systems in industry.

1https://embeddedmontiarc.github.io/webspace/

https://embeddedmontiarc.github.io/webspace/
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Appendix for Industrial Case Study

A.1. Screenshots of Visualisation

This section contains additional screenshots of graphical representations generated by our visuali-
sation tool. It also shows some Simulink models. Please note that the Simulink model and the
translated C&C model do not match 1:1; cf. Subsection 8.3.5 for details. Therefore, the graphical
representation of the C&C models may have more ports as well as more connections to show the
communication between components which exchange data in Simulink via global variables.

Figure A.1.: Screenshot of EmergencyBrake_Function subsystem in ADASv4 Simulink
model.
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Figure A.2.: Screenshot of EmergencyBrake_Function hierarchy in the graphical repre-
sentation of ADASv4 EmbeddedMontiArc model (normal view kind); equivalent
representation to Figure A.1.

Figure A.3.: Screenshot of DEMO_FAS subsystem in ADASv4 Simulink model.
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Figure A.4.: Screenshot of DEMO_FAS hierarchy in the graphical representation of ADASv4 Em-
beddedMontiArc model (normal view kind); equivalent representation to Figure A.3.
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Figure A.5.: Simplified view of Figure A.4. It is much smaller to focus on the main component
interactions.

Figure A.6.: Screenshot of Tempomat_Function subsystem in ADASv4 Simulink model.
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Figure A.7.: Screenshot of Tempomat_Function hierarchy in the graphical representation of
ADASv4 EmbeddedMontiArc model (normal view kind); equivalent representation
to Figure A.6.
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Figure A.8.: Simplified view of Figure A.7. It is much smaller to focus on the main component
interactions.
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Figure A.9.: Screenshot showing the No Port Names (cf. requirement V28) representation of
CC_On_Off. It skips the port names to focus on the component communication.
Corresponding Simulink model is displayed in Figure 8.24.
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Figure A.10.: Excerption of a screenshot representing the full graphical information of the CC_-
On_Off EmbeddedMontiArc models. It additionally shows the component type
(cf. bold text in components) and the port data type (cf. second text line of ports).
Corresponding Simulink model is displayed in Figure 8.24.
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A.2. Screenshots of Graphical Representation of C&C Views,
Satisfaction/Tracing Witnesses, and Highlighted
Witnesses

The graphical representation of C&C views is manually created in PowerPoint. The graphical
representation of all witnesses is generated.

A.2.1. FA-24

DEMO_FAS

ADASv4: view FA-24

Tempomat

V_CC_delta_kmh

VelocityControl

V_Vehicle_kmh

Acceleration_pedal_pc

BrakeForce_pedal_pc

CCSetValue_kmh

Translated Requirement FA-24

FA-24: As long as the cruise control is activated, the vehicle maintains the current 

vehicle speed of without the driver having to press the accelerator or the brake

pedal. 

Figure A.11.: C&C view of requirement FA-24 of ADASv4.

Figure A.12.: Generated graphical representation of DEMO_FAS_Funktion layer of satisfac-
tion witness for C&C view of FA-24 shown in Figure A.11. The component type
of the component instance dEMO_FAS_Funktion is DEMO_FAS_Funktion;
just capitalize the first letter of the component instance.
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Figure A.13.: Generated graphical representation of DEMO_FAS_Funktion layer (top) and
main component layer (bottom) of tracing witness for C&C view of FA-24 shown
in Figure A.11. Tracing includes feedback over environment (German: Umgebung).
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Figure A.14.: Generated graphical representation of DEMO_FAS_Funktion layer highlighting
the tracing witness of FA-24 shown in the top part of Figure A.13.
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A.2.2. FA-4

DEMO_FAS

ADASv4: view FA-4

Distronic

Distance_Object_m
BrakeForce_Distronic_pc

VelocityControl

BrakeForce_pc

V_Obj_rel_kmh

V_Vehicle_ms

EmergencyBrake
Distance_Object_m

V_Obj_rel_ms

V_Vehicle_ms

BrakeForce_Emergency_pc

Translated Requirement FA-4

FA-4: (b) If the distance to the vehicle ahead falls below the specified speed-dependent

safety distance (see FA -78), the vehicle brakes automatically. The maximum 

deceleration is 5m/s². 

Figure A.15.: C&C view of requirement FA-4 of ADASv4.

Figure A.16.: Generated graphical representation of DEMO_FAS_Funktion layer of satisfac-
tion witness for C&C view of FA-4 shown in Figure A.15.
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Figure A.17.: Generated graphical representation of DEMO_FAS_Funktion layer of tracing
witness for C&C view of FA-4 shown in Figure A.15. Tracing includes feedback
over environment (German: Umgebung).
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A.2.3. FA-5

DEMO_FAS ADASv4: view FA-5

EmergencyBrake

Acusti_warn_b

Distance_Object_m

V_Obj_rel_ms

V_Vehicle_ms

Distancewarner
Acusti_warn_bDistance_Object_m

V_Vehicle_ms

Translated Requirement FA-5

FA-5: (c) If the maximum deceleration of 5 m/s² is insufficient to prevent a collision 

with the vehicle ahead, the vehicle warns the driver by two acoustical signals (0.1 

seconds long with 0.2 seconds pause between) and by this demands to intervene. 

Figure A.18.: C&C view of requirement FA-5 of ADASv4.

Figure A.19.: Generated graphical representation of EmergencyBrake_Function layer of
satisfaction witness for C&C view of FA-5 shown in Figure A.18.
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Figure A.20.: Generated graphical representation of EmergencyBrake_Function layer of
tracing witness for C&C view of FA-5 shown in Figure A.18.

Figure A.21.: Generated graphical representation of EmergencyBrake_Function layer
highlighting the tracing witness of FA-5 shown Figure A.20.
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A.3. Identified Errors during Case Study

A.3.1. ADAS

ADASv4: view FA-67

DEMO_FAS

VelocityControl
Limiter

LeverDown_stat Vmax_kmh

Limiter_active_b

Translated Requirement FA-67

FA-67: If the driver presses the speed limiting lever downwards within the first 

resistance stage and speed limit function is activated, the speed limit is decreased by 

N. 

FA-68: If the driver presses the speed limiting lever downwards beyond the first 

resistance stage (i.e. beyond the pressure point) and speed limit function is activated, 

the speed limit is decreased to the next ten’s place (e.g. starting speed limit 57 km/h 

� target speed limit 50 km/h). 

Figure A.22.: C&C view (top) and translated requirement (bottom) of FA-76 of ADASv4.
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Figure A.23.: Screenshot of Limiter_SetValue Simulink subsystem to show that the limiter
has not been updated when introducing the two-stage cruise control lever (cf.
only one SetValueMinus subsystem for FA-67, but no extra subsystem for
FA-68).
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Figure A.24.: Screenshot of CC_ChangeSetValue_Lvl2_no_Repeater showing that
tempomat has been updated to react on two-stage cruise control lever (cf. two sub-
systems SetValueMinus and SetValueMinusLvl2 to decrease the value
by N or to the next ten’s place).
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A.3.2. ALS

Figure A.25.: Screenshot of No_Over_Voltage_Protection (German: Keine_Ue-
berspannung) hierarchy in ALS Simulink model. The left ambient light inport
(number 4) is connected with the right ambient light outport (also number 4).

A.4. Statistics about Running Time of Verification Tool

This section presents time measurements about the running time of the verification tool. Subsec-
tion A4.1 presents the time values for the verification tool only generating textual satisfaction or
non-satisfaction witnesses. Subsection A4.2 lists the time values for the complete C&C views
toolchain including the verification and generation of textual satisfaction and tracing witnesses,
as well as the times for highlighting the textual witnesses in the graphical representation of the
C&C model, and times for generating a graphical representation for the textual witnesses.
The measured times may vary when executing the experiment on the same hardware multiple
times due to influences of the operating systems (e.g., when Windows starts background tasks).
However, the time values are very good indicator for the speed of the C&C views verification
toolchain applied on an industrial-size C&C models and on C&C views based on real-world
requirements.



336 Appendix A. Appendix for Industrial Case Study

A.4.1. Running Time of Verification Tool Generating Textual
(Non-)Satisfaction Witnesses

The measurements for the case study in 2017 were executed on a laptop with Windows 7
Professional and 4 cores plus hyperthreading.

ADAS version 1

negative verification time time to create all negative
non-satasfaction Witnesses

Non-Satisfying Views Set v1

Non-Satisfying Views Set v4
FA15 214 651 142 ns 151 924 564 ns
FA22 75 192 753 ns 123 679 721 ns
FA23 72 515 288 ns 16 476 476 ns
FA25 71 263 115 ns 35 377 395 ns
FA26 51 887 733 ns 50 549 191 ns
FA3 67 194 220 ns 61 162 790 ns
FA4 48 949 636 ns 33 771 752 ns
FA5 3 034 360 ns 3 866 858 ns
FA6 24 875 658 ns 2 144 788 ns
FA65 80 260 418 ns 86 210 806 ns
FA67 82 986 206 ns 85 039 677 ns
FA75 1 224 778 ns 4 597 768 ns
FA77 141 342 545 ns 3 084 964 ns
FA84 39 853 787 ns 3 429 301 ns
FA86 1 351 859 ns 1 876 927 ns
FA99 1 518 892 ns 3 931 160 ns

Total time for Set v1 and v4 978 102 390 ns 667 124 138 ns
Average time for Non-Satisfaction 61 131 399 ns 41 695 259 ns

61,13 ms 41,70 ms

Table A.26.: Negative verification time and to time create textual (non-)satisfaction witnesses of
ADASv1.
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positive verification time time to create one positive
satisfaction Witness

Satisfying Views Set v1
FA14 195 863 988 ns 34 083 749 ns
FA19 27 734 614 ns 26 476 734 ns
FA22 99 359 950 ns 10 094 619 ns
FA23 65 071 119 ns 31 149 457 ns
FA24 66 861 677 ns 14 321 414 ns
FA25 69 930 660 ns 21 510 278 ns
FA26 13 740 416 ns 16 866 852 ns
FA27 54 928 180 ns 15 015 798 ns
FA28 106 497 067 ns 29 039 674 ns
FA29 87 832 429 ns 27 316 843 ns
FA30 86 955 414 ns 21 063 209 ns
FA33 5 297 858 ns 15 179 787 ns
FA34 63 692 246 ns 96 834 298 ns
FA35 63 318 992 ns 29 512 615 ns
FA36 62 849 855 ns 26 889 940 ns
FA37 4 113 031 ns 21 370 260 ns
FA38 74 604 144 ns 25 108 894 ns

Satisfying Views Set v4
FA19 25 497 368 ns 32 920 230 ns
FA20 116 344 371 ns 11 562 145 ns
FA21 78 295 600 ns 22 479 370 ns
FA24 74 878 854 ns 52 393 395 ns
FA27 76 756 161 ns 20 273 325 ns
FA28 20 979 503 ns 21 447 878 ns
FA30 4 334 854 ns 14 906 218 ns
FA31 55 162 177 ns 14 867 029 ns
FA32 62 788 977 ns 64 877 453 ns
FA35 4 371 761 ns 17 167 054 ns

Total time for Set v1 and v4 1 668 061 266 ns 734 728 518 ns
Average time for Satisfaction 61 780 047 ns 27 212 167 ns

61,78 ms 27,21 ms

Table A.27.: Positive time and to time create textual (non-)satisfaction witnesses of ADASv1.
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ADAS version 2

positive verification time time to create one positive
satisfaction Witness

Satisfying Views Set v1
FA14 3142729789 ns 183291277 ns
FA25 1803037175 ns 514979271 ns
FA27 2187723534 ns 219687987 ns
FA30 2111294589 ns 716196668 ns
FA38 1323611843 ns 250141159 ns

Satisfying Views Set v4
FA23 2286551187 ns 1523150544 ns
FA24 1942190415 ns 1453652874 ns
FA27 1943854271 ns 410080236 ns
FA31 1332652901 ns 384827899 ns
FA75 12525530 ns 499375246 ns

Total time for Set v1 and v4 18 086 171 234 ns 6 155 383 161 ns
Average time for Satisfaction 1 808 617 123 ns 615 538 316 ns

1.808,62 ms 615,54 ms

Table A.28.: Positive time and to time create textual (non-)satisfaction witnesses of ADASv2.
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negative verification time time to create all negative
non-satasfaction Witnesses

Non-Satisfying Views Set v1
FA19 296 804 468 ns 12 010 391 016 ns
FA22 1 871 029 270 ns 6 322 232 589 ns
FA23 2 224 769 731 ns 12 137 403 014 ns
FA24 1 837 631 914 ns 6 439 046 858 ns
FA26 218 727 266 ns 6 649 886 311 ns
FA28 1 785 386 146 ns 6 642 069 269 ns
FA29 1 604 410 874 ns 3 590 740 467 ns
FA33 29 440 704 ns 4 352 925 845 ns
FA34 960 024 077 ns 4 932 671 849 ns
FA35 1 092 647 073 ns 4 986 885 480 ns
FA36 937 912 254 ns 2 683 010 480 ns
FA37 29 060 981 ns 4 940 373 986 ns

Non-Satisfying Views Set v4
FA15 5 106 570 120 ns 2 697 026 366 ns
FA19 291 553 028 ns 8 704 530 651 ns
FA20 1 607 261 079 ns 6 177 247 290 ns
FA21 1 925 449 123 ns 6 235 629 503 ns
FA22 1 917 484 453 ns 11 075 575 900 ns
FA25 2 099 563 509 ns 16 477 961 992 ns
FA26 2 144 198 838 ns 15 700 983 779 ns
FA28 249 046 507 ns 11 732 586 773 ns
FA3 2 153 140 209 ns 10 983 738 498 ns
FA30 31 836 611 ns 8 724 166 664 ns
FA32 1 193 269 468 ns 4 594 818 113 ns
FA35 32 525 667 ns 8 684 050 343 ns
FA4 1 059 863 056 ns 6 658 849 ns
FA5 12 455 521 ns 3 689 552 ns
FA6 238 179 506 ns 2 035 209 ns
FA65 1 302 069 985 ns 13 387 441 824 ns
FA67 1 165 265 091 ns 7 091 391 095 ns
FA77 2 281 286 812 ns 4 633 801 734 ns
FA84 1 023 672 187 ns 2 045 862 ns
FA86 7 977 987 ns 2 625 720 ns
FA99 7 198 375 ns 2 079 344 ns

Total time for Set v1 and v4 38 737 711 890 ns 212 607 722 225 ns
Average time for Non-Satisfaction 1 173 870 057 ns 6 442 658 249 ns

1.173,87 ms 6.442,66 ms

Table A.29.: Negative verification time and to time create textual (non-)satisfaction witnesses of
ADASv2.
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ADAS version 3

positive verification time time to create one positive
satisfaction Witness

Satisfying Views Set v1
FA14 2 799 473 563 ns 180 125 651 ns
FA25 1 612 764 018 ns 383 784 612 ns
FA27 1 990 565 521 ns 201 657 236 ns
FA30 1 559 489 421 ns 450 883 331 ns
FA38 1 183 900 051 ns 210 071 637 ns

Satisfying Views Set v4
FA23 2 201 448 350 ns 867 542 896 ns
FA24 2 030 827 948 ns 2 633 941 372 ns
FA27 1 817 309 887 ns 450 453 765 ns
FA31 1 302 620 165 ns 353 799 817 ns
FA6 969 451 707 ns 631 071 001 ns
FA75 11 312 547 ns 275 801 755 ns
FA86 34 760 249 ns 153 027 586 ns

Total time for Set v1 and v4 17 513 923 427 ns 6 792 160 659 ns
Average time for Satisfaction 1 459 493 619 ns 566 013 388 ns

1.459,49 ms 566,01 ms

Table A.30.: Positive time and to time create textual (non-)satisfaction witnesses of ADASv3.
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negative verification time time to create all negative
non-satasfaction Witnesses

Non-Satisfying Views Set v1
FA19 346 088 549 ns 9 219 592 867 ns
FA22 1 811 755 964 ns 5 336 977 482 ns
FA23 1 631 465 183 ns 11 928 356 401 ns
FA24 1 667 889 288 ns 4 171 003 549 ns
FA26 246 795 184 ns 5 591 848 817 ns
FA28 1 696 936 191 ns 5 639 255 210 ns
FA29 1 691 816 780 ns 5 197 700 203 ns
FA33 56 535 344 ns 4 752 727 309 ns
FA34 1 002 402 376 ns 2 663 982 480 ns
FA35 1 143 568 376 ns 6 861 807 862 ns
FA36 1 109 897 833 ns 3 800 018 035 ns
FA37 55 627 129 ns 4 811 308 895 ns

Non-Satisfying Views Set v4
FA15 6 775 152 270 ns 22 387 674 ns
FA19 232 850 068 ns 7 901 431 837 ns
FA20 1 932 733 868 ns 5 376 298 212 ns
FA21 2 138 170 451 ns 9 666 516 121 ns
FA22 2 125 506 804 ns 9 791 245 598 ns
FA25 2 017 120 634 ns 5 136 009 683 ns
FA26 2 089 346 374 ns 9 380 971 314 ns
FA28 306 923 057 ns 9 505 684 049 ns
FA3 1 594 087 585 ns 8 637 332 244 ns
FA30 50 118 102 ns 8 104 505 233 ns
FA32 1 361 075 811 ns 8 245 492 027 ns
FA35 64 710 041 ns 8 145 681 204 ns
FA4 1 034 351 229 ns 3 177 422 ns
FA5 38 338 701 ns 1 829 366 ns
FA65 1 314 264 494 ns 8 316 544 734 ns
FA67 1 268 583 215 ns 8 309 564 376 ns
FA77 2 461 610 695 ns 7 238 676 798 ns
FA84 1 106 678 178 ns 2 457 165 ns
FA99 5 952 671 ns 2 159 627 ns

Total time for Set v1 and v4 40 378 352 445 ns 183 762 543 794 ns
Average time for Non-Satisfaction 1 302 527 498 ns 5 927 823 993 ns

1.302,53 ms 5.927,82 ms

Table A.31.: Negative verification time and to time create textual (non-)satisfaction witnesses of
ADASv3.
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ADAS version 4

negative verification time time to create all negative
non-satasfaction Witnesses

Non-Satisfying Views Set v1
FA23 674 355 613 ns 1 219 144 657 ns
FA24 665 441 255 ns 1 268 736 931 ns
FA29 526 630 449 ns 1 213 924 037 ns
FA35 332 354 982 ns 551 305 973 ns
FA36 332 523 917 ns 560 949 338 ns

Non-Satisfying Views Set v4

Total time for Set v1 and v4 2 531 306 216 ns 4 814 060 936 ns
Average time for Non-Satisfaction 506 261 243 ns 962 812 187 ns

506,26 ms 962,81 ms

Table A.32.: Negative verification time and to time create textual (non-)satisfaction witnesses of
ADASv4.
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positive verification time time to create one positive
satisfaction Witness

Satisfying Views Set v1
FA14 750 137 735 ns 83 790 168 ns
FA19 101 756 998 ns 102 683 096 ns
FA22 493 050 081 ns 38 427 353 ns
FA25 615 667 871 ns 124 281 266 ns
FA26 88 579 318 ns 108 265 176 ns
FA27 519 148 994 ns 94 486 332 ns
FA28 537 741 722 ns 134 598 088 ns
FA30 908 990 151 ns 175 116 961 ns
FA33 75 323 259 ns 91 646 019 ns
FA34 606 336 503 ns 307 998 685 ns
FA37 38 877 466 ns 65 917 697 ns
FA38 345 615 988 ns 68 773 228 ns

Satisfying Views Set v4
FA15 2 479 638 783 ns 103 626 316 ns
FA19 99 658 249 ns 87 273 498 ns
FA20 441 415 750 ns 61 662 746 ns
FA21 389 932 852 ns 51 534 263 ns
FA22 471 465 229 ns 109 261 283 ns
FA23 447 579 590 ns 157 227 748 ns
FA24 514 867 028 ns 488 289 847 ns
FA25 591 947 363 ns 122 951 855 ns
FA26 605 106 779 ns 120 453 979 ns
FA27 462 655 123 ns 84 400 845 ns
FA28 85 422 444 ns 91 928 719 ns
FA3 515 579 675 ns 118 809 146 ns
FA30 37 260 789 ns 68 875 579 ns
FA31 338 551 924 ns 68 851 989 ns
FA32 337 564 188 ns 192 374 189 ns
FA35 38 049 152 ns 66 391 780 ns
FA4 389 051 652 ns 104 377 391 ns
FA5 79 931 300 ns 70 942 748 ns
FA6 288 750 384 ns 180 870 638 ns
FA65 336 929 159 ns 86 338 269 ns
FA67 317 479 964 ns 55 333 776 ns
FA75 5 914 241 ns 77 955 447 ns
FA77 637 599 344 ns 100 381 169 ns
FA84 301 520 566 ns 83 706 842 ns
FA86 22 324 514 ns 66 766 556 ns
FA99 36 093 465 ns 134 107 263 ns

Total time for Set v1 and v4 15 353 515 593 ns 4 350 677 950 ns
Average time for Satisfaction 404 039 884 ns 114 491 525 ns

404,04 ms 114,49 ms

Table A.33.: Positive time and to time create textual (non-)satisfaction witnesses of ADASv4.
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A.4.2. Running Time of Toolchain Including Verification and Generation
of Graphical Representation

The satisfaction time addressed in columns in this subsection represents the time for executing
the verification and the time for generating the textual witness. The values in this column in this
subsection represents the sum of the values of the columns positive/negative verification time
plus time to create (non-)satisfaction witnesses in the previous subsection A4.1. The values may
also differ, as the two case study in the beginning of 2017 and at the end of 2018 are executed on
different hardware. However, the changes are not dramatically and below one second, so that the
developer executing these tools will not notice any difference.

Figure A.34.: Screenshot of PC configuration executing the measurements for the C&C views
verification toolchain including generation of graphical representations.
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Times for Satisfaction Witnesses of ADASv1

Tooling Option 1 Tooling Option 2
(Satisfaction (Satisfaction

FA- Satisfaction Coloring Layouting + Coloring) + Layouting)
14 217,00 ms 480,00 ms 1 312,00 ms 697,00 ms 1 529,00 ms
19 192,00 ms 1 312,00 ms 5 344,00 ms 1 504,00 ms 5 536,00 ms
22 158,00 ms 753,00 ms 3 846,00 ms 911,00 ms 4 004,00 ms
23 190,00 ms 2 211,00 ms 7 009,00 ms 2 401,00 ms 7 199,00 ms
24 148,00 ms 1 817,00 ms 6 842,00 ms 1 965,00 ms 6 990,00 ms
25 148,00 ms 1 582,00 ms 5 245,00 ms 1 730,00 ms 5 393,00 ms
26 81,00 ms 2 402,00 ms 5 591,00 ms 2 483,00 ms 5 672,00 ms
27 118,00 ms 1 802,00 ms 5 792,00 ms 1 920,00 ms 5 910,00 ms
28 141,00 ms 2 247,00 ms 8 402,00 ms 2 388,00 ms 8 543,00 ms
29 136,00 ms 4 469,00 ms 5 711,00 ms 4 605,00 ms 5 847,00 ms
30 92,00 ms 739,00 ms 2 974,00 ms 831,00 ms 3 066,00 ms
33 80,00 ms 1 613,00 ms 3 790,00 ms 1 693,00 ms 3 870,00 ms
34 101,00 ms 1 298,00 ms 5 136,00 ms 1 399,00 ms 5 237,00 ms
35 122,00 ms 2 611,00 ms 7 570,00 ms 2 733,00 ms 7 692,00 ms
36 96,00 ms 2 190,00 ms 8 252,00 ms 2 286,00 ms 8 348,00 ms
37 119,00 ms 874,00 ms 4 507,00 ms 993,00 ms 4 626,00 ms
38 82,00 ms 1 292,00 ms 8 012,00 ms 1 374,00 ms 8 094,00 ms

Average 130,65 ms 1 746,59 ms 5 607,94 ms 1 877,24 ms 5 738,59 ms

Table A.35.: Time measurement of Running Time of Satisfaction Verification Toolchain; evalu-
ated on ADASv1.
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Times for Tracing Witnesses of ADASv1

Tooling Option 1 Tooling Option 2
(Satisfaction (Satisfaction

FA- Satisfaction Coloring Layouting + Coloring) + Layouting)
14 192,00 ms 307,00 ms 1 487,00 ms 499,00 ms 1 679,00 ms
19 138,00 ms 3 004,00 ms 10 668,00 ms 3 142,00 ms 10 806,00 ms
22 126,00 ms 794,00 ms 3 025,00 ms 920,00 ms 3 151,00 ms
23 119,00 ms 3 761,00 ms 12 775,00 ms 3 880,00 ms 12 894,00 ms
24 119,00 ms 5 912,00 ms 13 773,00 ms 6 031,00 ms 13 892,00 ms
25 106,00 ms 1 270,00 ms 5 848,00 ms 1 376,00 ms 5 954,00 ms
26 113,00 ms 2 954,00 ms 12 778,00 ms 3 067,00 ms 12 891,00 ms
27 138,00 ms 2 711,00 ms 11 723,00 ms 2 849,00 ms 11 861,00 ms
28 118,00 ms 6 069,00 ms 16 356,00 ms 6 187,00 ms 16 474,00 ms
29 99,00 ms 2 833,00 ms 10 291,00 ms 2 932,00 ms 10 390,00 ms
30 84,00 ms 602,00 ms 3 170,00 ms 686,00 ms 3 254,00 ms
33 76,00 ms 1 015,00 ms 4 243,00 ms 1 091,00 ms 4 319,00 ms
34 96,00 ms 2 881,00 ms 9 564,00 ms 2 977,00 ms 9 660,00 ms
35 107,00 ms 4 053,00 ms 12 076,00 ms 4 160,00 ms 12 183,00 ms
36 95,00 ms 3 820,00 ms 14 466,00 ms 3 915,00 ms 14 561,00 ms
37 65,00 ms 1 004,00 ms 4 297,00 ms 1 069,00 ms 4 362,00 ms
38 84,00 ms 2 118,00 ms 7 697,00 ms 2 202,00 ms 7 781,00 ms

Average 110,29 ms 2 653,41 ms 9 072,76 ms 2 763,71 ms 9 183,06 ms

Table A.36.: Time measurement of Running Time of Satisfaction Verification Toolchain; evalu-
ated on ADASv1.
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Times for Satisfaction Witnesses of ADASv4

Tooling Option 1 Tooling Option 2
(Satisfaction (Satisfaction

FA- Satisfaction Coloring Layouting + Coloring) + Layouting)
3 293,00 ms 4 469,00 ms 9 548,00 ms 4 762,00 ms 9 841,00 ms
4 277,00 ms 4 282,00 ms 11 413,00 ms 4 559,00 ms 11 690,00 ms
5 177,00 ms 2 963,00 ms 7 846,00 ms 3 140,00 ms 8 023,00 ms
6 261,00 ms 2 548,00 ms 6 996,00 ms 2 809,00 ms 7 257,00 ms
15 911,00 ms 1 461,00 ms 4 227,00 ms 2 372,00 ms 5 138,00 ms
19 192,00 ms 1 257,00 ms 5 283,00 ms 1 449,00 ms 5 475,00 ms
20 296,00 ms 848,00 ms 2 554,00 ms 1 144,00 ms 2 850,00 ms
21 258,00 ms 1 549,00 ms 5 185,00 ms 1 807,00 ms 5 443,00 ms
22 290,00 ms 1 817,00 ms 5 744,00 ms 2 107,00 ms 6 034,00 ms
23 302,00 ms 1 842,00 ms 6 658,00 ms 2 144,00 ms 6 960,00 ms
24 288,00 ms 1 732,00 ms 5 253,00 ms 2 020,00 ms 5 541,00 ms
24b 349,00 ms 2 201,00 ms 10 847,00 ms 2 550,00 ms 11 196,00 ms
25 330,00 ms 2 178,00 ms 7 068,00 ms 2 508,00 ms 7 398,00 ms
25b 541,00 ms 7 473,00 ms 22 431,00 ms 8 014,00 ms 22 972,00 ms
26 304,00 ms 1 717,00 ms 7 050,00 ms 2 021,00 ms 7 354,00 ms
26b 480,00 ms 8 699,00 ms 23 103,00 ms 9 179,00 ms 23 583,00 ms
27 274,00 ms 860,00 ms 3 158,00 ms 1 134,00 ms 3 432,00 ms
28 159,00 ms 1 730,00 ms 5 559,00 ms 1 889,00 ms 5 718,00 ms
30 142,00 ms 1 810,00 ms 5 092,00 ms 1 952,00 ms 5 234,00 ms
30b 192,00 ms 1 704,00 ms 5 815,00 ms 1 896,00 ms 6 007,00 ms
31 241,00 ms 1 455,00 ms 4 732,00 ms 1 696,00 ms 4 973,00 ms
32 263,00 ms 1 671,00 ms 5 638,00 ms 1 934,00 ms 5 901,00 ms
35 143,00 ms 1 097,00 ms 4 051,00 ms 1 240,00 ms 4 194,00 ms
65 228,00 ms 2 643,00 ms 7 824,00 ms 2 871,00 ms 8 052,00 ms
67 221,00 ms 2 772,00 ms 8 537,00 ms 2 993,00 ms 8 758,00 ms
75 141,00 ms 694,00 ms 2 729,00 ms 835,00 ms 2 870,00 ms
75b 206,00 ms 771,00 ms 3 743,00 ms 977,00 ms 3 949,00 ms
77 364,00 ms 1 763,00 ms 3 638,00 ms 2 127,00 ms 4 002,00 ms
84 220,00 ms 1 684,00 ms 5 756,00 ms 1 904,00 ms 5 976,00 ms
86 145,00 ms 1 324,00 ms 5 348,00 ms 1 469,00 ms 5 493,00 ms
99 159,00 ms 2 555,00 ms 4 663,00 ms 2 714,00 ms 4 822,00 ms

Average 278,94 ms 2 308,68 ms 7 015,77 ms 2 587,61 ms 7 294,71 ms

Table A.37.: Time measurement of Running Time of Satisfaction Verification Toolchain; evalu-
ated on ADASv4.
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Times for Tracing Witnesses of ADASv4

Tooling Option 1 Tooling Option 2
(Satisfaction (Satisfaction

3 343,00 ms 3 959,00 ms 16 631,00 ms 4 302,00 ms 16 974,00 ms
4 329,00 ms 6 846,00 ms 25 534,00 ms 7 175,00 ms 25 863,00 ms
5 238,00 ms 3 384,00 ms 14 566,00 ms 3 622,00 ms 14 804,00 ms
6 322,00 ms 4 203,00 ms 20 163,00 ms 4 525,00 ms 20 485,00 ms
15 920,00 ms 1 147,00 ms 5 347,00 ms 2 067,00 ms 6 267,00 ms
19 163,00 ms 1 413,00 ms 5 017,00 ms 1 576,00 ms 5 180,00 ms
20 260,00 ms 511,00 ms 2 594,00 ms 771,00 ms 2 854,00 ms
21 377,00 ms 3 602,00 ms 19 448,00 ms 3 979,00 ms 19 825,00 ms
22 384,00 ms 3 537,00 ms 14 246,00 ms 3 921,00 ms 14 630,00 ms
23 369,00 ms 35 684,00 ms 17 250,00 ms 36 053,00 ms 17 619,00 ms
24 366,00 ms 8 297,00 ms 16 155,00 ms 8 663,00 ms 16 521,00 ms
24b 404,00 ms 7 021,00 ms 30 572,00 ms 7 425,00 ms 30 976,00 ms
25 335,00 ms 4 148,00 ms 16 317,00 ms 4 483,00 ms 16 652,00 ms
25b 668,00 ms 14 911,00 ms 54 820,00 ms 15 579,00 ms 55 488,00 ms
26 339,00 ms 4 154,00 ms 17 351,00 ms 4 493,00 ms 17 690,00 ms
26b 642,00 ms 17 148,00 ms 55 368,00 ms 17 790,00 ms 56 010,00 ms
27 357,00 ms 2 605,00 ms 12 407,00 ms 2 962,00 ms 12 764,00 ms
28 217,00 ms 3 535,00 ms 12 569,00 ms 3 752,00 ms 12 786,00 ms
30 148,00 ms 1 370,00 ms 5 981,00 ms 1 518,00 ms 6 129,00 ms
30b 212,00 ms 2 114,00 ms 6 204,00 ms 2 326,00 ms 6 416,00 ms
31 235,00 ms 2 298,00 ms 5 883,00 ms 2 533,00 ms 6 118,00 ms
32 327,00 ms 4 159,00 ms 13 435,00 ms 4 486,00 ms 13 762,00 ms
35 154,00 ms 1 566,00 ms 4 510,00 ms 1 720,00 ms 4 664,00 ms
65 236,00 ms 3 983,00 ms 12 946,00 ms 4 219,00 ms 13 182,00 ms
67 232,00 ms 4 114,00 ms 14 226,00 ms 4 346,00 ms 14 458,00 ms
75 205,00 ms 2 892,00 ms 15 920,00 ms 3 097,00 ms 16 125,00 ms
75b 306,00 ms 3 168,00 ms 22 674,00 ms 3 474,00 ms 22 980,00 ms
77 379,00 ms 1 208,00 ms 3 995,00 ms 1 587,00 ms 4 374,00 ms
84 285,00 ms 3 245,00 ms 13 226,00 ms 3 530,00 ms 13 511,00 ms
86 190,00 ms 1 520,00 ms 10 010,00 ms 1 710,00 ms 10 200,00 ms
99 263,00 ms 7 816,00 ms 22 351,00 ms 8 079,00 ms 22 614,00 ms

Average 329,19 ms 5 340,58 ms 16 377,94 ms 5 669,77 ms 16 707,13 ms

Table A.38.: : Time measurement of Running Time of Tracing Toolchain; evaluated on ADASv4.
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Class Diagram in CD4A Syntax

The CD4A syntax is the nearly the same as the one of Roth [Rot17]. The CD4A language has
been extended with the read-only keyword for associations to mark that the association as
read-only. Additionally, the CD4A language uses only the EBNF context conditions1; hence,
interfaces may have non-static fields.

1 classdiagram EmbeddedMontiArc {
2

3 /////////////////////////////////////////////////
4 //// below specific for EmbeddedMontiArc only
5 /////////////////////////////////////////////////
6

7 // Figure 4.4
8 interface PortType extends Type {
9 boolean isCompatibleTo(PortType pt); // Figure 4.11

10 }
11 interface PortValue extends Value;
12 class Unit {
13 double prefix;
14 }
15 association [1] Unit (baseUnit) <-> Quantity [1];
16

17 interface Value;
18 interface Type extends Value; // Figure 4.7
19 interface Quantity extends Type;
20

21 read-only association Value -> (type) Type [1];
22 read-only association PortValue -> (type) PortType [1];
23

24 // Figure 4.6
25 class Tensor implements PortValue;
26 class EnumItem implements PortValue;

1https://git.rwth-aachen.de/monticore/cd4analysis/cd4analysis/tree/
9baf060e2d94065b90772049b2ae353621de5990/src/main/java/de/monticore/
umlcd4a/cocos/ebnf

https://git.rwth-aachen.de/monticore/cd4analysis/cd4analysis/tree/9baf060e2d94065b90772049b2ae353621de5990/src/main/java/de/monticore/umlcd4a/cocos/ebnf
https://git.rwth-aachen.de/monticore/cd4analysis/cd4analysis/tree/9baf060e2d94065b90772049b2ae353621de5990/src/main/java/de/monticore/umlcd4a/cocos/ebnf
https://git.rwth-aachen.de/monticore/cd4analysis/cd4analysis/tree/9baf060e2d94065b90772049b2ae353621de5990/src/main/java/de/monticore/umlcd4a/cocos/ebnf
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27 class Boolean implements PortValue {
28 boolean value;
29 }
30 class Matrix extends Tensor;
31 class Vector extends Matrix;
32 class Number extends Vector <<Quantity = "Any">> {
33 double value; // Figure 3.18
34 boolean isPlusInf;
35 boolean isMinusInf;
36 }
37 class NaturalNumber extends Number;
38 association Tensor -> (elements) Number [*] <<ordered>>;
39 association Tensor (tensorOfRows) -> (rows) NaturalNumber

↪→ [1];
40 association Tensor (tensorOfCols) -> (cols) NaturalNumber

↪→ [1];
41 association Tensor (tensorOfDepth) -> (depth) NaturalNumber

↪→ [1];
42 association Tensor -> Quantity [1];
43 association Number -> Unit [1];
44

45 // Figure 3.18
46 interface AlgebraicProperty;
47 class NumericType implements PortType;
48 association min NumericType -> Number [1];
49 association max NumericType -> Number [1];
50 association res NumericType -> Number [0..1];
51 association NumericType -> Quantity [1];
52 association NumericType -> (algebraicProperties)

↪→ AlgebraicProperty [*];
53 class EnumType implements PortType;
54 association [1] EnumType <-> (items) EnumItem [*];
55 class BooleanType implements PortType;
56

57 class Struct implements PortValue;
58 class StructItem {
59 String name;
60 }
61 association Struct [[name]] -> (item) StructItem [1];
62 association / Struct -> (items) StructItem [*];
63 association StructItem -> (value) PortValue [1];
64 class StructTypeItem {
65 String name;
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66 }
67 association StructTypeItem -> (type) PortType [1];
68 class StructType implements PortType {
69 String name;
70 }
71 association StructType [[name]] -> (item) StructTypeItem

↪→ [1];
72 association / StructType -> (items) StructTypeItem [*];
73 association Struct -> (type) StructType [1];
74 association StructItem -> (type) StructTypeItem [1];
75

76 // Figure 4.7
77 enum ParameterKind {
78 CONFIG, GENERIC;
79 }
80 interface Parameter extends ComponentElement { //

↪→ Figure 6.8
81 String name;
82 ParameterKind kind;
83 }
84 association Parameter -> (dimension) NaturalNumber [1];
85

86 interface ParameterBinding;
87 association ParameterBinding -> Range [1];
88 read-only association ParameterBinding -> Parameter [1];
89

90 // Figure 4.8
91 class GeneralTypeParameter implements Parameter;
92 association GeneralTypeParameter -> (defaultValue) PortType

↪→ [0..1];
93 class GeneralParameterBinding implements ParameterBinding;
94 association GeneralParameterBinding -> (value) Type [1];
95 association GeneralParameterBinding -> (parameter)

↪→ GeneralTypeParameter [1];
96

97 class QuantityParameter implements Parameter;
98 association QuantityParameter -> (defaultValue) Quantity

↪→ [0..1];
99 class QuantityParameterBinding implements ParameterBinding;

100 association QuantityParameterBinding -> (value) Quantity
↪→ [1];

101 association QuantityParameterBinding -> (parameter)
↪→ QuantityParameter [1];
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102

103 class NumericTypeParameter extends NumericType implements
↪→ Parameter;

104 association NumericTypeParameter -> Quantity [1];
105 association NumericTypeParameter -> (defaultValue)

↪→ NumericType [0..1];
106 class NumericTypeParameterBinding implements

↪→ ParameterBinding;
107 association NumericTypeParameterBinding -> (value)

↪→ NumericType [1];
108 association NumericTypeParameterBinding -> (parameter)

↪→ NumericTypeParameter [1];
109

110 class TensorParameter extends Tensor implements Parameter;
111 association TensorParameter -> (type) NumericType [1];
112 association TensorParameter -> (defaultValue) Tensor [0..1];

↪→
113 class TensorParameterBinding implements ParameterBinding;
114 association TensorParameterBinding -> (value) Tensor [1];
115 association TensorParameterBinding -> (parameter)

↪→ TensorParameter [1];
116

117 class NaturalNumberParameter extends NaturalNumber
↪→ implements Parameter;

118 association NaturalNumberParameter -> (type) NumericType
↪→ [1];

119 association NaturalNumberParameter -> (defaultValue)
↪→ NaturalNumber [0..1];

120 class NaturalNumberParameterBinding implements
↪→ ParameterBinding;

121 association NaturalNumberParameterBinding -> (value)
↪→ NaturalNumber [1];

122 association NaturalNumberParameterBinding -> (parameter)
↪→ NaturalNumberParameter [1];

123

124 class EnumTypeParameter extends EnumItem implements
↪→ Parameter;

125 association EnumTypeParameter -> (type) EnumType [1];
126 association EnumTypeParameter -> (defaultValue) EnumItem

↪→ [0..1];
127 class EnumTypeParameterBinding implements ParameterBinding;
128 association EnumTypeParameterBinding -> (value) EnumItem

↪→ [1];
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129 association EnumTypeParameterBinding -> (parameter)
↪→ EnumTypeParameter [1];

130

131 class BooleanTypeParameter extends Boolean implements
↪→ Parameter;

132 association BooleanTypeParameter -> (type) BooleanType [1];
133 association BooleanTypeParameter -> (defaultValue) Boolean

↪→ [0..1];
134 class BooleanTypeParameterBinding implements

↪→ ParameterBinding;
135 association BooleanTypeParameterBinding -> (value) Boolean

↪→ [1];
136 association BooleanTypeParameterBinding -> (parameter)

↪→ BooleanTypeParameter [1];
137

138 class StructTypeParameter extends Struct implements
↪→ Parameter;

139 association / StructTypeParameter -> (type) StructType [1];
140 association StructTypeParameter -> (defaultValue) Struct

↪→ [0..1];
141 class StructTypeParameterBinding implements

↪→ ParameterBinding;
142 association StructTypeParameterBinding -> (value) Struct

↪→ [1];
143 association StructTypeParameterBinding -> (parameter)

↪→ StructTypeParameter [1];
144

145 class ComponentParameter extends BoundComponentType
↪→ implements Parameter;

146 association / ComponentParameter -> (type) ComponentType
↪→ [1];

147 association ComponentParameter -> (defaultValue)
↪→ BoundComponentType [0..1];

148 class ComponentParameterBinding implements ParameterBinding;
↪→

149 association ComponentParameterBinding -> (value)
↪→ BoundComponentType [1];

150 association ComponentParameterBinding -> (parameter)
↪→ ComponentParameter [1];

151

152 // Figure 4.10
153 class BoundComponentType implements Value;
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154 association BoundComponentType -> (values) ParameterBinding
↪→ [*];

155 association BoundComponentType -> (type) ComponentType [1];
156

157 class ComponentInstantiation extends BoundComponentType
↪→ implements ComponentElement { // Figure 6.8

158 String name;
159 }
160 association ComponentInstantiation -> (dimension)

↪→ NaturalNumber [1];
161

162 interface ComponentType extends Type {
163 String name; // Figure 4.15
164 }
165 class ComponentInterface implements ComponentType;
166 class Component implements ComponentType, ComponentElement;

↪→ // Figure 6.8
167 association Component -> (implements) BoundComponentType

↪→ [*];
168

169 // Figure 4.11
170 enum PortDirection {
171 IN , OUT;
172 }
173 class Port implements ComponentElement { // Figure 6.8
174 String name;
175 PortDirection direction;
176 }
177 association Port -> (type) PortType [1];
178 association Port -> (dimension) NaturalNumber [1];
179

180 class PortInstantiation;
181 association [*] PortInstantiation (portInstantiations) ->

↪→ Port [1]; // Figure 6.19
182 association PortInstantiation -> (sub)

↪→ ComponentInstantiation [0..1];
183 association PortInstantiation -> (portIndices) Range [1];
184 association PortInstantiation -> (subIndices) Range [0..1];
185

186 class Connector;
187 association Connector (startCon) -> (sourcePort)

↪→ PortInstantiation [1];
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188 association Connector (endCon) -> (targetPort)
↪→ PortInstantiation [1];

189

190 class Range;
191 association start Range -> NaturalNumber [1];
192 association end Range -> NaturalNumber [1];
193 association step Range -> NaturalNumber [1];
194

195 // Figure 4.13
196 class Effector;
197 association sourceIndex Effector -> Range [1];
198 association targetIndex Effector -> Range [1];
199 association Effector (startEff) -> (sourcePort) Port [1];
200 association Effector (endEff) -> (targetPort) Port [1];
201

202 // Figure 4.15
203 association [1] ComponentType -> (ports) Port [*] <<ordered

↪→ >>;
204 association ComponentType [[name]] -> (port) Port [1];
205 association ComponentType -> (parameters) Parameter [*] <<

↪→ ordered>>;
206 association [0..1] Component (parent) <-> (subs)

↪→ ComponentInstantiation [*];
207

208 // Figure 4.16
209 class CnCModel {
210 boolean satisfies(CnCView cncv); // Figure 7.32
211 }
212 association CnCModel -> (depends) CnCLibrary [*];
213 association CnCModel -> (main) ComponentInstantiation [1];
214 association / CnCModel -> (effectors) Effector [*];
215 association / CnCModel -> (connectors) Connector [*];
216 association / CnCModel -> (componentTypes) ComponentType

↪→ [*];
217

218 class CnCLibrary;
219 association / CnCLibrary -> Effector [*];
220 association / CnCLibrary -> Connector [*];
221 association [0..1] CnCLibrary <-> ComponentType [*];
222

223 // Figure 4.17
224 class ComponentInst implements ElementInst {
225 String fullName;
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226 }
227 association ComponentInst -> ComponentInstantiation [1];
228 association / ComponentInst (componentInsts) -> Component

↪→ [1];
229 association ComponentInst -> (params)

↪→ TensorParameterBinding [*];
230 association [0..1] ComponentInst (parent) <-> (subs)

↪→ ComponentInst [*];
231 association ComponentInst -> (ports) PortInst [*];
232 class CnCInstanceStructure;
233 association CnCInstanceStructure (cis) -> (main)

↪→ ComponentInst [1];
234 association [1] CnCInstanceStructure <-> CnCModel [*];
235

236 class ConnectorInst implements ElementInst;
237 association ConnectorInst (startCon) -> (sourcePort)

↪→ PortInst [1];
238 association ConnectorInst (endCon) -> (targetPort) PortInst

↪→ [1];
239 association ConnectorInst -> Connector [1];
240

241 class PortInst implements ElementInst {
242 String fullName;
243 PortDirection direction;
244 }
245 association PortInst -> PortInstantiation [1];
246 association / PortInst -> Port [1];
247 association PortInst -> (type) PortType [1];
248

249 class EffectorInst implements ElementInst;
250 association EffectorInst (startEff) -> (sourcePort)

↪→ PortInst [1];
251 association EffectorInst (endEff) -> (targetPort) PortInst

↪→ [1];
252 association EffectorInst -> Effector [1];
253

254 // Figure 4.18
255 interface ElementInst;
256 class ChainInst;
257 association ChainInst -> (elements) ElementInst [*];
258 read-only association start ChainInst -> ElementInst [1];
259 read-only association end ChainInst -> ElementInst [1];
260
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261 association / PortInst (invInfluencee) -> (influencee)
↪→ PortInst [*];

262 association / PortInst (invInfluencer) -> (influencer)
↪→ PortInst [*];

263 association / PortInst (invSender) -> (sender) PortInst
↪→ [0..1];

264 association / PortInst (invReceiver) -> (receiver) PortInst
↪→ [*];

265

266 association / ComponentInst (invSender) -> (sender)
↪→ ComponentInst [*];

267 association / ComponentInst (invReceiver) -> (receiver)
↪→ ComponentInst [*];

268

269 // Figure 3.18
270

271 // support for units comes with the jscience library
272 // http://jscience.org/api/javax/measure/quantity/Quantity.

↪→ html
273 class Acceleration implements Quantity;
274 class Angle implements Quantity;
275 class QuantityOfSubstance implements Quantity;
276 class AngularAcceleration implements Quantity;
277 class AngularVelocity implements Quantity;
278 class Area implements Quantity;
279 class CatalyticActivity implements Quantity;
280 class DataQuantity implements Quantity;
281 class DataRate implements Quantity;
282 class Dimensionless implements Quantity;
283 class Duration implements Quantity;
284 class DynamicViscosity implements Quantity;
285 class ElectricCapacitance implements Quantity;
286 class ElectricCharge implements Quantity;
287 class ElectricConductance implements Quantity;
288 class ElectricCurrent implements Quantity;
289 class ElectricInductance implements Quantity;
290 class ElectricPotential implements Quantity;
291 class ElectricResistance implements Quantity;
292 class Energy implements Quantity;
293 class Force implements Quantity;
294 class Frequency implements Quantity;
295 class Illuminance implements Quantity;
296 class KinematicViscosity implements Quantity;
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297 class Length implements Quantity;
298 class LuminousFlux implements Quantity;
299 class LuminousIntensity implements Quantity;
300 class MagneticFlux implements Quantity;
301 class MagneticFluxDensity implements Quantity;
302 class Mass implements Quantity;
303 class MassFlowRate implements Quantity;
304 class Money implements Quantity;
305 class Power implements Quantity;
306 class Pressure implements Quantity;
307 class RadiationDoseAbsorbed implements Quantity;
308 class RadiationDoseEffective implements Quantity;
309 class RadioactiveActivity implements Quantity;
310 class SolidAngle implements Quantity;
311 class Temperature implements Quantity;
312 class Torque implements Quantity;
313 class Velocity implements Quantity;
314 class Volume implements Quantity;
315 class VolumetricDensity implements Quantity;
316 class VolumetricFlowRate implements Quantity;
317

318 association NumericType (numericTypeOfRows) -> (rows)
↪→ NaturalNumber [1];

319 association NumericType (numericTypeOfCols) -> (cols)
↪→ NaturalNumber [1];

320 association NumericType (numericTypeOfDepth) -> (depth)
↪→ NaturalNumber [1];

321

322 class Diagonal implements AlgebraicProperty;
323 class Symmetric implements AlgebraicProperty;
324 class Invertible implements AlgebraicProperty;
325

326 // Figure 6.7
327 association / Component -> (subDefs) Component [*];
328

329 // Figure 6.8
330 interface ComponentElement {
331 String name;
332 }
333

334 association Component -> (innerComponents) Component [*];
335 association / Component -> (innerElements) ComponentElement

↪→ [*];
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336

337

338 /////////////////////////////////////////////////
339 // EXTENSION VIA TAGGING (uses merging of class diagrams)
340 /////////////////////////////////////////////////
341

342 // Figure 6.13
343 class Traceable extends Boolean;
344 association Component -> Traceable [1];
345 association ComponentInst -> Traceable [1];
346

347 // Figure 6.14
348 class NumberPower extends Number <<Quantity = "Power">>;
349 class MaxPower extends NumberPower;
350 association Component -> MaxPower [*];
351 association ComponentInst -> MaxPower [*];
352

353 // Figure 6.19
354 class EncryptionCollection;
355 enum EEncryption {
356 AES, RSA, DES, DES3;
357 }
358 association Port -> (encryption) EncryptionCollection [*];
359 association EncryptionCollection -> (elements) EEncryption

↪→ [*];
360

361 // Figure 6.16
362 enum EAuth {
363 Pin, Voice, FaceID, Finger;
364 }
365 class Auth;
366 association Auth -> (value) EAuth [1];
367 association Connector -> (auth) Auth [*];
368 association ConnectorInst -> (auth) Auth [*];
369

370 // Figure 6.17
371 class Cert extends String;
372 association Port -> (cert) Cert [*];
373 association ComponentInst -> (cert) Cert [*];
374

375 // Figure 6.20
376 class Encryption;
377 association Encryption -> (value) EEncryption [1];
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378 association PortInst -> (encryption) Encryption [*];
379 association Encryption -> (decryptPower) NumberPower [1];
380 association Encryption -> (encryptPower) NumberPower [1];
381

382 // Figure 6.21
383 class EncryptPower {
384 Encryption encryption;
385 }
386 association EncryptPower -> (encrypt) NumberPower [1];
387 association EncryptPower -> (decrypt) NumberPower [1];
388 association Component [[encryption]] -> (encryptPower)

↪→ EncryptPower [*];
389

390 // Figure 6.22
391 enum EAsil {
392 QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D;
393 }
394 class Asil;
395 association Asil -> (value) EAsil [1];
396 association Component -> (asil) Asil [*];
397

398 // Figure 6.23
399 class NumberDuration extends Number <<Quantity = "Duration

↪→ ">>;
400 class Wcet extends NumberDuration;
401 association Component -> (wcet) Wcet [*];
402

403 // Figure 6.25
404 class Threads extends NaturalNumber;
405 association ComponentInst -> (threads) Threads [*];
406

407 /////////////////////////////////////////////////
408 // Syntactic Sugar Diagram (added here in same CD,
409 // so that OCL does not need different packages)
410 // ‘Component’‘ in slide matches to ‘ComponentSugar‘
411 // same is for the rest
412 /////////////////////////////////////////////////
413

414 // Figure 6.34
415 // this association is only needed to express the

↪→ transformations
416 association [1] Component (componentScope) <-> (

↪→ definedConnectors) Connector [*];
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417

418 interface ComponentTypeSugar;
419 association [1] ComponentTypeSugar (componentType) -> (

↪→ ports) PortSugar [*] <<ordered>>;
420

421 class ComponentSugar implements ComponentTypeSugar;
422 association [1] ComponentSugar (componentScope) <-> (

↪→ definedConnectors) ConnectorSugar [*];
423 association [0..1] ComponentSugar (parent) <-> (subs)

↪→ ComponentInstantiationSugar [*];
424

425 class PortSugar {
426 String name;
427 }
428 association PortSugar -> (direction) PortDirection [0..1];
429 association PortSugar -> (type) PortType [1];
430 association PortSugar -> (dimension) NaturalNumber [0..1];
431

432 class PortInstantiationSugar {
433 boolean indexBased;
434 boolean nameBased;
435 }
436 association PortInstantiationSugar -> (port) PortSugar [1];
437 association PortInstantiationSugar -> (sub)

↪→ ComponentInstantiationSugar [0..1];
438 association PortInstantiationSugar -> (portIndices)

↪→ RangeSugar [0..1];
439 association PortInstantiationSugar -> (subIndices)

↪→ RangeSugar [0..1];
440 // one PortInstantiationSugar can have zero to two

↪→ RangeSugars (cf. portIndices, subIndices),
441 // but one RangeSugar belongs to one PortInstantiationSugar
442 association RangeSugar -> (portInstantiation)

↪→ PortInstantiationSugar [1];
443

444 class ComponentInstantiationSugar;
445 association ComponentInstantiationSugar -> (dimension)

↪→ NaturalNumber [0..1];
446

447 class ConnectorSugar;
448 association ConnectorSugar -> (sourcePort)

↪→ PortInstantiationSugar [1];
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449 association ConnectorSugar -> (targetPort)
↪→ PortInstantiationSugar [1];

450

451 class RangeSugar {
452 boolean all;
453 }
454 association RangeSugar -> (start) NaturalNumber [0..1];
455 association RangeSugar -> (end) NaturalNumber [0..1];
456 association RangeSugar -> (step) NaturalNumber [0..1];
457

458 /////////////////////////////////////////////////
459 //// classes for EmbeddedMontiView language, they are all
460 //// merged in this class diagram, so that OCL does not
461 //// need different packages
462 //// classes of EmbeddedMontiView are not complete -> only
463 //// the once differ of EmbeddedMontiArc are listed below
464 /////////////////////////////////////////////////
465

466 // Figure 7.4
467 class ADimension;
468 association ADimension -> (min) NaturalNumber [1];
469 association ADimension -> (max) NaturalNumber [1];
470

471 interface AType extends AValue { // Figure 7.11
472 boolean isCompatibleTo(Type t);
473 }
474

475 interface AParameter extends AType {
476 boolean underspec;
477 String name;
478 ParameterKind kind;
479 }
480 association / AParameter -> (type) AType [0..1];
481

482 class APort {
483 PortDirection direction;
484 }
485 association APort -> (name) String [0..1];
486 association APort -> (dimension) ADimension [0..1];
487 association APort -> (type) APortType [0..1];
488

489 interface AComponentType extends ATypeOrAInstantiation { //
↪→ Figure 7.20
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490 boolean portsComplete;
491 boolean atomic; // Ch07_SatisfactionPort
492 }
493 association AComponentType -> (name) String [0..1];
494 association AComponentType -> (parameters) AParameter [*];
495 association AComponentType -> (ports) APort [*];
496

497 interface APortType extends AType;
498

499 // Figure 7.11
500 class AComponentInstantiation implements

↪→ ATypeOrAInstantiation { // Figure 7.20
501 boolean direct;
502 }
503 association AComponentInstantiation -> (name) String [0..1];

↪→
504 association AComponentInstantiation -> (dimension)

↪→ ADimension [0..1];
505 association AComponentInstantiation -> (values)

↪→ AParameterBinding [*];
506 association AComponentInstantiation -> (type)

↪→ AComponentType [0..1];
507

508 interface AParameterBinding;
509 association [*] AParameterBinding (bindings) -> (parameter)

↪→ AParameter [1];
510 association AParameterBinding -> (range) ARange [1];
511 association AParameterBinding -> (value) AValue [1];
512

513 interface AValue;
514 read-only association AValue -> (type) AType [0..1];
515

516 class AComponentInterface implements AComponentType;
517

518 class AComponent implements AComponentType {
519 boolean instComplete;
520 boolean atomic;
521 }
522 association / AComponent -> (name) String [0..1];
523 association AComponent -> (implements)

↪→ AComponentInstantiation [*];
524 association AComponent (parent) -> (subs)

↪→ AComponentInstantiation [*];
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525

526 // Figure 7.17
527 class ANumericType implements APortType;
528 association ANumericType -> (quantity) Quantity [0..1];
529 association ANumericType -> (rows) NaturalNumber [0..1];
530 association ANumericType -> (cols) NaturalNumber [0..1];
531 association ANumericType -> (depth) NaturalNumber [0..1];
532

533 interface APortValue extends AValue;
534 read-only association APortValue -> (type) APortType [1];
535

536 // Figure 7.20
537 class ARange extends Range {
538 boolean all;
539 boolean notSpecified;
540 }
541

542 class AConnector;
543 association AConnector -> (sourcePort) APortInstantiation

↪→ [1];
544 association AConnector -> (targetPort) APortInstantiation

↪→ [1];
545

546 class APortInstantiation;
547 association APortInstantiation -> (portIndices) ARange

↪→ [0..1];
548 association APortInstantiation -> (cmpNavIndices) ARange

↪→ [*] <<ordered>>;
549 association APortInstantiation -> (port) APort [0..1];
550 association APortInstantiation -> (cmpNav)

↪→ ATypeOrAInstantiation [*] <<ordered>>;
551 interface ATypeOrAInstantiation;
552

553 // Figure 7.21
554 class AEffector;
555 association AEffector -> (sourcePort) APortInstantiation

↪→ [1];
556 association AEffector -> (targetPort) APortInstantiation

↪→ [1];
557

558 // Figure 7.23
559 class CnCView;
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560 association CnCView -> (aComponentTypes) AComponentType [*];
↪→

561 association CnCView -> (aComponentInstantiations)
↪→ AComponentInstantiation [*];

562 association CnCView -> (aConnectors) AConnector [*];
563 association CnCView -> (aEffectors) AEffector [*];
564

565 // Figure 7.24
566 association Type -> (name) String [1]; // a type has a

↪→ short name which can be derived
567

568 // Figure 7.26
569 association AParameter -> (dimension) ADimension [0..1];
570

571 // Figure 7.28
572 class ConnectorChainInst extends ChainInst;
573 association / ConnectorChainInst -> (start) ConnectorInst

↪→ [1];
574 association / ConnectorChainInst -> (end) ConnectorInst [1];

↪→
575 association ConnectorChainInst -> (connectors)

↪→ ConnectorInst [*] <<ordered>>;
576 association / [*] ConnectorChainInst -> (startPort)

↪→ PortInst [1];
577 association / [*] ConnectorChainInst -> (endPort) PortInst

↪→ [1];
578 association / ComponentInstantiation -> (subs)

↪→ ComponentInstantiation [*];
579 association / Component -> (allSubs) ComponentInstantiation

↪→ [*];
580

581 /////////////////////////////////////////////////
582 //// support for standard types and operations in OCL
583 /////////////////////////////////////////////////
584

585 class Class;
586

587 class Object;
588 class Collection {
589 boolean containsAll(Collection c);
590 boolean contains(Collection c);
591 int size();
592 boolean isEmpty();
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593 Collection addAll(Collection c);
594 Collection retainAll(Collection c);
595 Set asSet();
596 Collection flatten(); // see http://mbse.se-rwth.de/book1/

↪→ index.php?c=chapter3-3#x1-560003.3.6
597 Collection listPartitions(int length); // see https://

↪→ github.com/dpaukov/combinatoricslib#7-list-
↪→ partitions

598 boolean areCompatibleTo(Collection algebraicProperties);
↪→ // boolean Collection<AlgebraicProperty>::
↪→ areCompatibleTo(Collection<AlgebraicProperty>
↪→ algebraicProperties)

599 }
600

601 class List extends Collection {
602 boolean nonEmpty();
603 List addAll(List c);
604 List add(Object o);
605 int indexOf(Object o);
606 }
607

608 class Set extends Collection {
609 Set addAll(Set c);
610 List asList();
611 Set add(Object o);
612 }
613

614 class Optional {
615 Set asSet(); // Optional.empty => {} and Optional.of(X) =>

↪→ { X }
616 boolean isAbsent();
617 boolean isPresent();
618 }
619

620 class Map {
621 int size();
622 }
623

624 class Date;
625 class Time {
626 static Time now();
627 boolean lessThan(Time that);
628 }
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629

630 class Integer extends Number;
631 class Double extends Number;
632 class Float extends Number;
633 class Long extends Number;
634 class Character;
635 class String {
636 boolean contains(String s);
637 String replaceAll(String s1, String s2);
638 String replace(String s1, String s2);
639 boolean endsWith(String s);
640 int length();
641 }
642

643 class Math {
644 static double abs(double v);
645 }
646 }

Listing B.1: Merged class diagram in CD4A syntax of all graphical class diagram
representations of this PhD thesis.
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Other Material

C.1. MontiCore 5 grammar for C&C instance structure

grammar ComponentAndConnectorInstanceStructure

extends embeddedMontiArc.Types {

CnCInstanceStructure = main:ComponentInst;

interface ElementInst;

ComponentInst implements ElementInst = 

"cmp-i" NameWithDollar

"(" params:(MParameterBinding || ",")* ")"

"{" bodyElements:ElementInst* "}" 

;

MParameterBinding = 

Type Name ("[" dimension:PositiveNumber "]")

"=" Value

;

PortInsts implements ElementInst =

"port-i" (PortInst || ",")+ ";" 

;

PortInst = direction:("in" | "out") Type NameWithDollar;

EffectorInst implements ElementInst =

"eff-i" sourcePort:NameWithDollar "->" targetPort:NameWithDollar ";"

;

ConnectorInst implements ElementInst =

sourcePort:NameWithDollarAndDot "->" targetPort:NameWithDollarAndDot ";"

;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

MC5

Figure C.1.: MontiCore 5 grammar for C&C instance structure. This grammar is no official
modeling grammar. It is only a test grammar to validate the transformation from
EmbeddedMontiArc’s C&C abstract syntax to the C&C instance structure abstract
syntax.

This C&C instance structure language as shown in Figure C.1 is no official modeling language to
create C&C models. It is only a test language to verify the transformation from C&C models
to C&C instance structures, because this way the expected test result can be formulated in a
convenient way.
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C.2. Operator Priority in OCL

Table C.2.: OCL/P Operator Priority. Higher priority binds stronger. It is incomplete, the table
shows only operators needed in OCL expressions in this PhD thesis. The priority
order is the same as in [Rum11, Tabelle 3.12]; however, the actual priority numbers
do not fit as new operators have been introduced. Section 6.5 discusses the differences
between the OCL versions of this PhD thesis and the one of Rumpe [Rum11].

PRIORITY EXPRESSION TYPE EXAMPLE

17 numbers, literals 7 m/sˆ2, “normal text”, true
16 qualified primary component, component.ports[0], x**
15 parentheses (2+3)*4

sets {1, 2, 3}, {x*x | x in {1 .. 7 } }
14 function call method1(3, 3)
13 collection prefixes min {1, 2}, sum List{ 1, 1, 7 .. 19}, or List{true,

false}, intersection set1
12 logical not !cond1
11 multiplication, division 2*3, sum/size
10 plus, minus 3+4, a-2
9 greater/smaller (equals) 1 > 2, 2 >= 3, 3 < a, b <= c

optional greater/smaller
(equals)

opValue ?> 2, opValue ?>= 3, opValue ?< 4, opValue
?>= 5

instanceof value instanceof NumericType
in, isin comp in Component, 1 isin {1, 2}

8 elvis operator opValue ?: defaultValue
7 equals/not equals x == 1, x != y

similar/not similar p ~~ q, p !~ r
optional (not) equals opValue ?== x, opValue ?!= y
optional (not) similar opValue ?~~ r, opValue ?!~ s

6 logical and cond1 && cond2
5 logical or cond1 || cond2
4 implies a > b && b > c implies a > c
3 if and only if atomic <=> subs == {}
2 type if typeif ct instanceof Component then ct.subs else {}
1 for all forall p in ports: ports.direction == IN

exists exists Component c: c.atomic
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C.3. Material to Chain Instances

The four longest chain instances of the C&C instance structure presented in Figure 4.19 are:

• chainInstsignal$1 → filter$1.distance = {cmp-i SensorProcess-
ing, port-i SensorProcessing.signal$1, SensorProcess-
ing.signal$1 -> SensorProcessing.filter$1.signal, cmp-
i SensorProcessing.filter$1, port-i SensorProcess-
ing.filter$1.signal, eff-i SensorProcessing.filter$1.signal
-> SensorProcessing.filter$1.distance, port-i SensorProcess-
ing.filter$1.distance}

• chainInstsignal$2 → filter$2.distance = {cmp-i SensorProcess-
ing, port-i SensorProcessing.signal$2, SensorProcess-
ing.signal$2 -> SensorProcessing.filter$2.signal, cmp-
i SensorProcessing.filter$2, port-i SensorProcess-
ing.filter$2.signal, eff-i SensorProcessing.filter$2.signal
-> SensorProcessing.filter$2.distance, port-i SensorProcess-
ing.filter$2.distance}

• chainInstposCar → filter$1.distance = {cmp-i SensorProcessing,
port-i SensorProcessing.posCar, SensorProcessing.posCar
-> SensorProcessing.filter$1.posCar, cmp-i SensorProcess-
ing.filter$1, port-i SensorProcessing.filter$1.posCar,
eff-i SensorProcessing.filter$1.posCar -> SensorProcess-
ing.filter$1.distance}

• chainInstposCar → filter$2.distance = {cmp-i SensorProcessing,
port-i SensorProcessing.posCar, SensorProcessing.posCar
-> SensorProcessing.filter$2.posCar, cmp-i SensorProcess-
ing.filter$2, port-i SensorProcessing.filter$2.posCar,
eff-i SensorProcessing.filter$2.posCar -> SensorProcess-
ing.filter$2.distance}
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Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an executable,
yet abstract and multi-view modeling language for modeling, designing and programming still allows to
use an agile development process.” Modeling will be used in development projects much more, if the
benefits become evident early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKRS06], for
example, we concentrate on the integration of models and ordinary programming code. In [Rum12] and
[Rum16], the UML/P, a variant of the UML especially designed for programming, refactoring and evolu-
tion, is defined. The language workbench MontiCore [GKR+06, GKR+08] is used to realize the UML/P
[Sch12]. Links to further research, e.g., include a general discussion of how to manage and evolve models
[LRSS10], a precise definition for model composition as well as model languages [HKR+09] and refac-
toring in various modeling and programming languages [PR03]. In [FHR08] we describe a set of general
requirements for model quality. Finally [KRV06] discusses the additional roles and activities necessary
in a DSL-based software development project. In [CEG+14] we discuss how to improve reliability of
adaprivity through models at runtime, which will allow developers to delay design decisions to runtime
adaptation.

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound derivate
of the UML designed for product and test code generation. [Sch12] describes a flexible generator for
the UML/P based on the MontiCore language workbench [KRV10, GKR+06, GKR+08]. In [KRV06],
we discuss additional roles necessary in a model-based software development project. In [GKRS06] we
discuss mechanisms to keep generated and handwritten code separated. In [Wei12] demonstrate how to
systematically derive a transformation language in concrete syntax. To understand the implications of
executability for UML, we discuss needs and advantages of executable modeling with UML in agile
projects in [Rum04], how to apply UML for testing in [Rum03] and the advantages and perils of using
modeling languages for programming in [Rum02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in [KER99] many
of our contributions build on the UML/P variant, which is described in the two books [Rum16] and
[Rum12] implemented in [Sch12]. Semantic variation points of the UML are discussed in [GR11]. We
discuss formal semantics for UML [BHP+98] and describe UML semantics using the “System Model”
[BCGR09a], [BCGR09b], [BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied
to define class diagram semantics [CGR08]. A precisely defined semantics for variations is applied, when
checking variants of class diagrams [MRR11c] and objects diagrams [MRR11d] or the consistency of
both kinds of diagrams [MRR11e]. We also apply these concepts to activity diagrams [MRR11b] which
allows us to check for semantic differences of activity diagrams [MRR11a]. The basic semantics for ADs
and their semantic variation points is given in [GRR10]. We also discuss how to ensure and identify
model quality [FHR08], how models, views and the system under development correlate to each other
[BGH+98] and how to use modeling in agile development projects [Rum04], [Rum02]. The question how
to adapt and extend the UML is discussed in [PFR02] describing product line annotations for UML and
more general discussions and insights on how to use meta-modeling for defining and adapting the UML
are included in [EFLR99], [FELR98] and [SRVK10].



Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need
appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10, GKR+08] allows
the specification of an integrated abstract and concrete syntax format [KRV07b] for easy development.
New languages and tools can be defined in modular forms [KRV08, GKR+07, Völ11] and can, thus, easily
be reused. [Wei12] presents a tool that allows to create transformation rules tailored to an underlying DSL.
Variability in DSL definitions has been examined in [GR11]. A successful application has been carried
out in the Air Traffic Management domain [ZPK+11]. Based on the concepts described above, meta
modeling, model analyses and model evolution have been discussed in [LRSS10] and [SRVK10]. DSL
quality [FHR08], instructions for defining views [GHK+07], guidelines to define DSLs [KKP+09] and
Eclipse-based tooling for DSLs [KRV07a] complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language com-
ponents, we adopt an engineering viewpoint on these techniques. General ideas on how to engineer a
language can be found in the GeMoC initiative [CBCR15, CCF+15]. As said, the MontiCore langua-
ge workbench provides techniques for an integrated definition of languages [KRV07b, Kra10, KRV10].
In [SRVK10] we discuss the possibilities and the challenges using metamodels for language definition.
Modular composition, however, is a core concept to reuse language components like in MontiCore for
the frontend [Völ11, KRV08] and the backend [RRRW15]]. Language derivation is to our believe a pro-
mising technique to develop new languages for a specific purpose that rely on existing basic languages.
How to automatically derive such a transformation language using concrete syntax of the base language
is described in [HRW15, Wei12] and successfully applied to various DSLs. We also applied the language
derivation technique to tagging languages that decorate a base language [GLRR15] and delta languages
[HHK+15a, HHK+13], where a delta language is derived from a base language to be able to construc-
tively describe differences between model variants usable to build feature sets.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of
telephone or video data, method invocation, or data structures passed between software services. We
use streams, statemachines and components [BR07] as well as expressive forms of composition and re-
finement [PR99] for semantics. Furthermore, we built a concrete tooling infrastructure called MontiArc
[HRR12] for architecture design and extensions for states [RRW13b]. MontiArc was extended to describe
variability [HRR+11] using deltas [HRRS11, HKR+11] and evolution on deltas [HRRS12]. [GHK+07]
and [GHK+08] close the gap between the requirements and the logical architecture and [GKPR08] ex-
tends it to model variants. [MRR14] provides a precise technique to verify consistency of architectural
views [Rin14, MRR13] against a complete architecture in order to increase reusability. Co-evolution of
architecture is discussed in [MMR10] and a modeling technique to describe dynamic architectures is
shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling. The me-
chanisms for distributed systems are shown in [BR07] and algebraically underpinned in [HKR+07]. Se-
mantic and methodical aspects of model composition [KRV08] led to the language workbench MontiCore
[KRV10] that can even be used to develop modeling tools in a compositional form. A set of DSL design



guidelines incorporates reuse through this form of composition [KKP+09]. [Völ11] examines the com-
position of context conditions respectively the underlying infrastructure of the symbol table. Modular
editor generation is discussed in [KRV07a]. [RRRW15] applies compositionality to Robotics control.
[CBCR15] (published in [CCF+15]) summarizes our approach to composition and remaining challenges
in form of a conceptual model of the “globalized” use of DSLs. As a new form of decomposition of mo-
del information we have developed the concept of tagging languages in [GLRR15]. It allows to describe
additional information for model elements in separated documents, facilitates reuse, and allows to type
tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and detailedness
is discussed in [HR04]. We defined a semantic domain called “System Model” by using mathematical
theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version especially suited for the UML
is given in [BCGR09b] and in [BCGR09a] its rationale is discussed. [BCR07a, BCR07b] contain detailed
versions that are applied to class diagrams in [CGR08]. To better understand the effect of an evolved
design, detection of semantic differencing as opposed to pure syntactical differences is needed [MRR10].
[MRR11a, MRR11b] encode a part of the semantics to handle semantic differences of activity diagrams
and [MRR11e] compares class and object diagrams with regard to their semantics. In [BR07], a simpli-
fied mathematical model for distributed systems based on black-box behaviors of components is defined.
Meta-modeling semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages
for the description of an exemplary object interaction, today called sequence diagram. [BGH+98] discus-
ses the relationships between a system, a view and a complete model in the context of the UML. [GR11]
and [CGR09] discuss general requirements for a framework to describe semantic and syntactic variations
of a modeling language. We apply these on class and object diagrams in [MRR11e] as well as activi-
ty diagrams in [GRR10]. [Rum12] defines the semantics in a variety of code and test case generation,
refactoring and evolution techniques. [LRSS10] discusses evolution and related issues in greater detail.

Evolution & Transformation of Models

Models are the central artifact in model driven development, but as code they are not initially correct
and need to be changed, evolved and maintained over time. Model transformation is therefore essential
to effectively deal with models. Many concrete model transformation problems are discussed: evoluti-
on [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactoring [Rum12, PR03], trans-
lating models from one language into another [MRR11c, Rum12] and systematic model transformati-
on language development [Wei12]. [Rum04] describes how comprehensible sets of such transformati-
ons support software development and maintenance [LRSS10], technologies for evolving models wi-
thin a language and across languages, and mapping architecture descriptions to their implementation
[MMR10]. Automaton refinement is discussed in [PR94, KPR97], refining pipe-and-filter architectures is
explained in [PR99]. Refactorings of models are important for model driven engineering as discussed in
[PR01, PR03, Rum12]. Translation between languages, e.g., from class diagrams into Alloy [MRR11c]
allows for comparing class diagrams on a semantic level.

Variability & Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one manufacturer deve-
lops several products with many similarities but also many variations. Variants are managed in a Software
Product Line (SPL) that captures product commonalities as well as differences. Feature diagrams describe



variability in a top down fashion, e.g., in the automotive domain [GHK+08] using 150% models. Redu-
cing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom up technique
starting with a small, but complete base variant. Features are additive, but also can modify the core. A
set of commonly applicable deltas configures a system variant. We discuss the application of this tech-
nique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only
describe spacial variability but also temporal variability which allows for using them for software product
line evolution [HRRS12]. [HHK+13] and [HRW15] describe an approach to systematically derive delta
languages. We also apply variability to modeling languages in order to describe syntactic and semantic
variation points, e.g., in UML for frameworks [PFR02]. Furthermore, we specified a systematic way to
define variants of modeling languages [CGR09] and applied this as a semantic language refinement on
Statecharts in [GR11].

Cyber-Physical Systems (CPS)
Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical en-
tities. Contributions for individual aspects range from requirements [GRJA12], complete product lines
[HRRW12], the improvement of engineering for distributed automotive systems [HRR12] and autono-
mous driving [BR12a] to processes and tools to improve the development as well as the product itself
[BBR07]. In the aviation domain, a modeling language for uncertainty and safety events was developed,
which is of interest for the European airspace [ZPK+11]. A component and connector architecture de-
scription language suitable for the specific challenges in robotics is discussed in [RRW13b, RRW14].
Monitoring for smart and energy efficient buildings is developed as Energy Navigator toolset [KPR12,
FPPR12, KLPR12].

State Based Modeling (Automata)
Today, many computer science theories are based on statemachines in various forms including Petri nets
or temporal logics. Software engineering is particularly interested in using statemachines for modeling
systems. Our contributions to state based modeling can currently be split into three parts: (1) under-
standing how to model object-oriented and distributed software using statemachines resp. Statecharts
[GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96]
and composition [GR95] of statemachines, and (3) applying statemachines for modeling systems. In
[Rum96] constructive transformation rules for refining automata behavior are given and proven correct.
This theory is applied to features in [KPR97]. Statemachines are embedded in the composition and beha-
vioral specification concepts of Focus [BR07]. We apply these techniques, e.g., in MontiArcAutomaton
[RRW13a, RRW14] as well as in building management systems [FLP+11].

Robotics
Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-
ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics
applications requires composition and interaction of diverse distributed software modules. This usually
leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensible, which
hampers broad propagation of robotics applications. The MontiArcAutomaton language [RRW13a] ex-
tends ADL MontiArc and integrates various implemented behavior modeling languages using Monti-
Core [RRW13b, RRW14, RRRW15] that perfectly fit Robotic architectural modelling. The LightRocks
[THR+13] framework allows robotics experts and laymen to model robotic assembly tasks.



Automotive, Autonomic Driving & Intelligent Driver Assistance
Introducing and connecting sophisticated driver assistance, infotainment and communication systems
as well as advanced active and passive safety-systems result in complex embedded systems. As these
feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct va-
riants needs to be managed, developed and tested. A consistent requirements management that connects
requirements with features in all phases of the development for the automotive domain is described
in [GRJA12]. The conceptual gap between requirements and the logical architecture of a car is clo-
sed in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for Simulink [HKM+13].
[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and
paste variants. [RSW+15] describes an approach to use model checking techniques to identify behavi-
oral differences of Simulink models. Quality assurance, especially of safety-related functions, is a highly
important task. In the Carolo project [BR12a, BR12b], we developed a rigorous test infrastructure for
intelligent, sensor-based functions through fully-automatic simulation [BBR07]. This technique allows a
dramatic speedup in development and evolution of autonomous car functionality, and thus enables us to
develop software in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in
development and evolution on a more general level by considering any kind of critical system that relies
on architectural descriptions. As tooling infrastructure, the SSElab storage, versioning and management
services [HKR12] are essential for many projects.

Energy Management
In the past years, it became more and more evident that saving energy and reducing CO2 emissions is
an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes
equally important to efficiently use the generated energy. Within several research projects, we developed
methodologies and solutions for integrating heterogeneous systems at different scales. During the design
phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12, KPR12] is used for tech-
nical specification of building services already. We adapted the well-known concept of statemachines to
be able to describe different states of a facility and to validate it against the monitored values [FLP+11].
We show how our data model, the constraint rules and the evaluation approach to compare sensor data
can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems
The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based
application and service architectures with high complexity, criticality and new application domains. It pro-
mises to enable new business models, to lower the barrier for web-based innovations and to increase the
efficiency and cost-effectiveness of web development [KRR14]. Application classes like Cyber-Physical
Systems and their privacy [HHK+14, HHK+15b], Big Data, App and Service Ecosystems bring atten-
tion to aspects like responsiveness, privacy and open platforms. Regardless of the application domain,
developers of such systems are in need for robust methods and efficient, easy-to-use languages and tools
[KRS12]. We tackle these challenges by perusing a model-based, generative approach [NPR13]. The core
of this approach are different modeling languages that describe different aspects of a cloud-based system
in a concise and technology-agnostic way. Software architecture and infrastructure models describe the
system and its physical distribution on a large scale. We apply cloud technology for the services we
develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for our tool
demonstrators and our own development platforms. New services, e.g., collecting data from temperature,
cars etc. can now easily be developed.
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