
Advances in Modeling Language Engineering

Katrin Hölldobler, Alexander Roth, Bernhard Rumpe, Andreas Wortmann

Software Engineering, RWTH Aachen University, www.se-rwth.de

Abstract. The increasing complexity of modern systems development
demands for specific modeling languages capturing the various aspects
to be tackled. However, engineering of comfortable modeling languages
as well as their tooling is a challenging endeavor. Far too often, new lan-
guages are built from scratch. We shed light into the advances of model-
ing language engineering that facilitates reuse, modularity, composition-
ality and derivation of new languages based on language components.
We discuss ways to design, combine, and derive modeling languages in
all their relevant aspects. For each of these activities, we illustrate their
application for the model-driven development of a data exploration tool.
The tool itself uses a set of meta-information, namely the structural
model to derive all necessary software components that help to gather,
store, visualize and navigate the data.

The limits of my language
mean the limits of my world

– Ludwig Wittgenstein

1 Motivation

The use of models to understand and shape the world is a very foundational
technique that has already been used in ancient Greece and Egypt. Scientists
model to understand the world and engineers model to design (parts of) the
world. Although modeling has been employed for ages in virtually all disciplines
it is fairly new that the form of models is made explicit in so-called modeling
languages. Computer science has invented this approach to provide formality and
a precise understanding of what is a well-formed model to the communication
between humans and machines.

Programming languages in general, SQL [7], XML [2], and the Unified Model-
ing Language (UML) [22,42,43] in particular have been created to enable highly
precise communication. Despite these efforts, it is clear that researchers and prac-
titioners of many domains are dissatisfied by solving domain-specific problems
with general purpose languages or unified languages that try to cover every-
thing. The general aspiration of such languages create a conceptual gap between
the problem domains and the solution domains that raises unintended complex-
ities [18]. As a result, Domain-Specific Languages (DSLs) and Domain-Specific
Modeling Languages (DSMLs) [48] were created to match domain specific needs.

[HRRW17] K. Hölldobler, A. Roth, B. Rumpe, A. Wortmann:
Advances in Modeling Language Engineering.
In: International Conference on Model and Data Engineering. Springer, 2017.
www.se-rwth.de/publications/

www.se-rwth.de

Due to the ongoing digitization of virtually every domain in our life, work, and
society, the need for more specific languages raises. It is apparent, that we need
to be able to accommodate new and changing domains with appropriate domain-
specific languages – ideally on-the-fly. This raises three questions:

1. How to design new DSLs that fit specific purposes?
2. How to engineer a DSL from predefined components?
3. How to derive DSLs from other DSLs?

In this paper, we give an overview of the current state of the art on the design
of DSLs, discuss the mechanisms enabling their composition, and describe how to
derive new DSLs from predefined ones, such that we prevent restarting design of
the language from scratch each time, but instead successfully engineer language
from reusable components. These mechanisms to derive and compose languages
are the core of what we today calls software language engineering(SLE) [32]:
the discipline of engineering software languages, which are not only applied to
computer science, but to any form of domain that deals with data, their repre-
sentation in form of data structures, smart systems that need control, as well as
with smart services that assist us in our daily life.

The rest of this paper is organized as follows: First, Sec. 2 presents cur-
rent language definition techniques and sketches language creation by example.
Afterwards, Sec. 3 introduces language composition techniques and illustrates
their application, before Sec. 4 highlights language derivation techniques. Sec. 5
presents the case study of modeling a data explorer application leveraging soft-
ware language engineering techniques. Ultimately, Sec. 6 concludes this paper.

2 Language Engineering

Model-driven engineering [18] lifts abstract models to primary development arti-
facts to facilitate software analysis, communication, documentation, and trans-
formation. Automated analysis and transformation of models require that these
adhere to contracts that analyses and transformations can rely upon (and be de-
veloped against). Such automation is feasible, where models conform to modeling
languages. For many popular modeling languages, such as UML [22], AADL [16],
or Matlab/Simulink [1], research and industry have produced useful analyses
and transformations. These rely on making the constituents and concerns of
languages machine processable. To this effect, the discipline of SLE investigates
disciplined and systematic approaches to the design, implementation, testing,
deployment, use, evolution, and recovery of modeling languages.

Similar to research in natural languages, SLE commonly defines languages as
the set of sentences they can produce [3]. Operationalizing languages, however,
requires more precise characterizations. To this effect, languages usually are de-
fined in terms of their syntax (possible sentences) and semantics (meaning) [26],
which can be concretized to requiring a concrete syntax (words), an abstract
syntax (structure), static semantics (well-formedness), and dynamic semantics
(behavior) for language definition [3]. The technical realizations of modeling

languages often follow the latter distinction. As “software languages are soft-
ware too” [15], their technical realizations are as diverse as other representatives
of other software categories. This complicates comprehensibility, maintenance,
evolution, testing, deployment, and reuse.

To shed light onto this diversity, this section presents different mechanisms
to define modeling languages and highlights selected language development en-
vironments employing these mechanisms. Afterwards, we illustrate development
of a language to represent a variant of UML class diagrams that will serve as
running example for the subsequent sections.

2.1 Engineering Modeling Languages

Research has produced various means to develop solutions for representing the
different concerns of modeling languages. Lately, two different language imple-
mentation techniques have been distinguished:

1. Internal modeling languages are realized as fluent APIs [17] in host program-
ming languages whose method names resemble keywords of the language.
Omitting syntactic sugar (such as dots and parentheses) as supported by
modern programming languages (cf. Groovy, Scala) enables to create chains
of method calls that resemble models. This method is suitable to language
prototyping and yields the benefit of enabling to reuse the host language’s
tooling (such as parsers, editors, compilers, etc.). The expressiveness of the
modeling language depends on the host programming language.

2. External modeling languages feature a stand-alone syntax that requires tool-
ing to process its models into machine-processable representations. While
this creates additional effort over internal languages, external languages can
leverage a greater language definition flexibility. However, language-related
tooling must be provided by the language engineer.

The majority of modeling language research focuses on external languages,
which yield greater flexibility in language design. Consequently, research has
produced more solutions to the definition of external languages, which is why
we focus on their realization techniques in the following.

Engineering language syntaxes historically is related to the development and
processing of (context-free) grammars [33], which are sets of derivation rules that
at least enable describing the languages’ abstract syntaxes. Many approaches to
grammar-driven language engineering also support specifying a language’s con-
crete syntax in the same grammar as well [21]; hence, enabling efficient language
development and maintenance. Metamodels are another popular means to de-
velop the abstract syntax of languages [48]. Here, classes and their relations
structure the syntax of a language. While these do not support the integration
of concrete syntax (and, hence, always require providing editors), they enable
reifying references between model elements that are name-based in grammars,
as first level references.

Concrete syntaxes are either textual [34,49], graphical [10], or projectional [48].
Textual and graphical languages both require parsing, whereas projectional syn-
taxes (e.g., forms enabling editing the abstract syntax directly [47]) usually are
bound to specific editors. In contrast, textual syntaxes enable to reuse estab-
lished software engineering tooling, such as editors or version control systems.

Whether the well-formedness of models is subject of their syntax or their
static semantics is subject to debate. Nonetheless, various techniques have been
established to enforce the well-formedness of models with respect to properties
that cannot be captured by grammars or metamodels (e.g., preventing to class
members of the same name). Popular approaches to well-formedness checking
are programming language rules and Object Constraint Language (OCL) [40]
constraints. Both require a model’s internal representation and raise errors if
these are not well-formed according to the individual rule. As OCL is a mod-
eling language itself, this requires interpreting it or translating the constraints
to programming language artifacts actually executing the models under devel-
opment.

Executing models is a popular way to realize their dynamic semantics. This
can have the form of interpretation [30] or transformation [6]. With the for-
mer, a software (the interpreter) processes the models and executes according
to their description. This interpreter can be part of the models or a separate
software. Transformations process models and translates these into other for-
malisms with established semantics, such as a programming language. Model-
to-text (M2T) transformations [36] read models of a specific language and trans-
late these to plain text (such as programming language code), whereas model-
to-model (M2M) transformations [36] translate models from an input modeling
language to an output modeling language. The former lends itself for ad-hoc
transformation development using template engines or string concatenation (as
the output language is not required), but lacks the structure and verifiability of
M2M transformations.

Language workbenches [13] are software development environments support-
ing language engineering. Based on an, usually fixed, integration of language
definition constituents, they facilitate creating languages and corresponding tool-
ing. For instance, GEMOC Studio [5] employs ECore [44] metamodels for ab-
stract syntax, OCL for static semantics, and Kermeta [30] for weaving interpre-
tation capabilities into its languages. Concrete syntax can, e.g., have the form
of Xtext [14] grammars or Sirius [46] editors. The meta programming system
(MPS) features projectional language engineering on top of a metamodel and
combines this with well-formedness checking and execution through M2M trans-
formations. The Neverlang language workbench [45] supports grammar-based
language definition and focuses on combining these with language processing
tools. It executes models via interpretation.

The next section illustrates engineering of a textual modeling language for
class diagrams (CDs) with the MontiCore language workbench.

grammar CD4Analysis extends Type {
CDDefinition = „classdiagram“ Name "{"

(cDClasses:CDClass | CDInterface | CDEnum | CDAssociation)*
"}"

CDClass astimplements ASTCDType = Modifier? "class" Name
("extends" superclass:ReferenceType)?
("implements" interfaces:(ReferenceType || ",") +)?
("{" (CDAttribute)* "}" | ";");

}

01
02
03
04
…
13
14
15
16
17

MCG

Fig. 1. An excerpt of a MontiCore grammar for the CD4A language.

package banking;

classdiagram BankingSystem {

abstract class Account {

long number;

int balance;

int overdraft;

}

interface Employee;

class Consultant implements Employee {

String name;

}

association [1] Account <-> [[name]] Consultant;

}

01

02

03

04

05

06

07

…

17

18

19

20

…

55

56

CD4A

Fig. 2. An example of a CD4A model describing a lightweight banking system.

2.2 Language Engineering With MontiCore

MontiCore [34] is a language workbench for efficient development of composi-
tional modeling languages. The concrete and abstract syntax of languages are
defined as extended context-free grammars and it supports a Java-based well-
formedness checking framework as well as model execution through M2M and
M2T transformations. From the grammars, MontiCore generates parsers and ab-
stract syntax classes. The parser enables processing textual, conforming models,
into instances of the languages’ abstract syntax classes. Java context conditions
process these instances to check their well-formedness before M2M transforma-
tions [27] or template-based code generators [41]. MontiCore supports language
inheritance, language embedding, and language aggregation [25] to reuse and
combine languages with little effort.

Consider the excerpt of the MontiCore grammar depicted in Fig. 1, which
describes the class diagram for analysis (CD4A) modeling language: After the
keyword grammar and its name, the grammar extends existing types to reuse
previously defined grammars (l. 1). Afterwards, a body of productions follows
that characterize a variant of class diagrams. Each production is defined by
a left-hand-side (e.g., CDDefinition in l. 2) and a right-hand-side, which
contains terminals (e.g., "classdiagram" in l. 2) and non-terminals (e.g.,
CDInterface in l. 3). Different operators (e.g., * in l. 3, ? in l. 13, and + in
l. 15) define the quantity or presence of a part on the right-hand-side. MontiCore
also supports additional grammar constructs to extend the generated AST (e.g.,
astimplements in l. 13).

With this grammar, the CD4A model shown as an excerpt in Fig. 2 can
be created. It describes a simplified banking system consisting of a package
declaration (l. 1); an abstract Account class to describe different types of ac-
counts (ll. 3-7); an interface to model employees (l. 17) and its implementation
(ll. 18-20); and multiple associations (e.g., l. 55). From this grammar, Monti-
Core produces a parser and an abstract syntax class for each production. The
latter captures the production’s right hand side by providing members capable
of storing its content. In addition, an infrastructure to check context conditions,
which are predicates defined with respect to the abstract syntax to determine
the language’s consistency. For example, to restrict the modifiers of classes to
abstract only (l. 13 in Fig. 1).

3 Composing Modeling Languages

Model-driven development is successful when initiated bottom-up [50], i.e., de-
velopers employ modeling languages considered suitable for their challenges in-
stead of using predefined, monolithic general-purpose modeling techniques. For
their efficient development, evolution, validation, and maintenance, such lan-
guages should be retained as independent as possible. Ultimately, however, com-
bining such languages mandates their efficient composition [3]. Considering, for
instance, software of the smart and modular factories imagined with Industry 4.0,
these demand integrating business processes, domain models, behavior models
and failure models of the automation systems, assembly plan models, manip-
ulator kinematics, etc.. Integrating these modeling languages into a combined
software requires operations for their composition.

Software engineering itself is another prime example of a domain leveraging
language composition to facilitate development, evolution, and maintenance. To
this effect, research and industry have produced languages for 1. modeling struc-
ture and behavior of the software under development, such as UML [22]; 2. de-
scribing database interaction, such as SQL [7] or HQL [29]; 3. describing software
build processes, such as Maven’s Project Object Models [37]; 4. describing con-
figuration of product lines [4], such as feature diagrams [6]; 5. describing model
changes in a structured fashion, such as delta modeling languages [24] 6. ex-
tending models with additional, external information (tagging languages [20];
7. coordinating the use of different modeling languages, such as the BCOol lan-
guage [35]; 8. transforming of models of other languages, such as ATL [31]Âăor
the FreeMarker [39] template language; and 9. describing the syntax and seman-
tics of modeling languages, such as ECore [44], Kermeta [30], or MontiCore [34].

Consequently, structured reuse of language parts is crucial to enable efficient
SLE. And while research on language integration has produced reuse concepts
and related these to language definition concerns [3], the diversity of language
realization techniques has spawned very different reuse mechanisms [11]. Gener-
ally, we distinguish language integration, which produces a new language, from
existing languages, from language coordination, in which the sentences of two
languages (i.e., their models) are related to enable achieving a common goal.

For integrating languages, concepts such as merging of metamodels [9], inher-
iting and embedding of grammars [25], and importing of metamodel and gram-
mar elements [12] have been conceived. These mechanisms enable a white-box
integration to extend and refine existing abstract syntaxes to domain require-
ments, but rarely consider including integration of other language concerns. For
instance, efficient creation of models of language produced through of merging,
inheritance, or importing of parts of other languages requires creating or extend-
ing proper editors. Even when editors for the base languages exist, this requires
handcrafting editing capabilities for the extensions. The same challenges arise
for reusing language semantics. As these usually are realized through interpreta-
tion or transformation, the corresponding tools of extended languages must be
extended also. Yet, there are only few approaches that support compositional
semantics realizations, such as code generator composition mechanisms [41].

Coordination of modeling languages is less invasive but mandates means to
reason over models of coordinated languages – either for their joint analysis or
their joint execution. The former, for instance requires checking the validity of
feature models or model transformations with respect to the referenced models.
To prevent tying the referencing languages to abstract syntax internals of the
referenced languages, abstraction mechanisms, such as the symbol tables of Mon-
tiCore [25] have been developed. Joint execution of model of different languages
requires exposing and combining their execution mechanisms. Where languages
originate from the same language workbench, this integration has been addressed
(e.g., by exposing the executable interfaces of model elements [8]). Truly hetero-
geneous, generalizable coordination has yet to be achieved.

In the next section, we sketch how applying language integration mechanisms
to the CD language enables preparing it for code generation.

3.1 Extending and Refining a MontiCore Language

To enable describing software-related properties of domain models more pre-
cisely, we extend the CD4A language with additional language constructs such
as constructors, methods, and visibility. To reuse the CD4A language, we re-
fine it by removing modeling of method bodies from the modeling language. For
the former, we employ MontiCore’s language inheritance, for the latter, we in-
troduce new well-formedness rules. An excerpt of the newly created CD4Code
language is shown in Fig. 3. It extends the CD4A language (l. 1) and reuses the
start production (l. 2). In addition, the CDClass production is extended with
a CDClassBody production, which adds methods and constructors (l. 35).

4 Deriving Languages

Software engineering leverages modeling languages to mechanize working with
models of other languages, such as transformation languages [31,28], delta mod-
eling languages [24], or tagging languages [20]. Such languages have in common
that these are either overly generic or are specifically tied to a host language

grammar CD4Code extends CD4Analysis {
start CDDefinition;

CDClass astimplements ASTCDType = Modifier? "class" Name
("extends" superclass:ReferenceType)?
("implements" interfaces:(ReferenceType || ",") +)?
(CDClassBody | ";");

CDClassBody = "{" (CDAttribute | CDMethod | CDConstructor)* "}";
CDConstructor = ...;
CDMethod = ...;

}

01
02
03
04
05
06
07
…
35
36
37
38

MCG

Fig. 3. An excerpt of the CD4Code extension of CD4A.

(i.e., the languages whose models are transformed or tagged). The former re-
quires developers to learn completely new languages that are independent of
a (possibly well-known) host language, while the latter raises the challenge of
engineering and maintaining specific languages as well as their specific tooling
(editors, analyses, transformations), which is hardly viable.

To address the latter, methods to develop new languages by deriving their
syntaxes from related host languages have been developed. These methods rely
on processing the host languages’ (abstract) syntaxes and creating new (ab-
stract) syntaxes from these. Where the host languages are defined through gram-
mars, such derivation can produce derived concrete syntaxes. For metamodel-
based language definition, this would require deriving editor (parts) instead.
Automating creating well-formedness rules and behavior implementations of de-
rived languages is more challenging as both may differ from the host languages
completely. Where, for example, Statecharts describe state-based behavior, a
transformation language derived from Statecharts describes how to translate
Statechart models into something else. The behaviors of both languages are un-
related. The same holds for their well-formedness rules.

The next section applies language derivation to the CD4A language to create
a domain-specific transformation language from it.

4.1 Deriving a Domain-Specific Transformation Language

In [28] derivation rules to derive a domain-specific transformation language
(DSTL) form a given modeling language were presented. A DSTL is composed
of a common base grammar that provides modeling language independent parts
of the DSTL as well as a derived grammar for the modeling language dependent
parts. The derived grammar is created according to the derivation rules pre-
sented. The derivation rules create the non-terminals for the different operators
of the DSTL and the start symbol. The start symbol combines the non-terminals
provided by the base and the derived grammar to form a transformation rule.
This derivation process was applied to create the DSTL CDTrans that is suit-
able to describe transformations for class diagrams modeled using the modeling
languages described in Sec. 2.2. Fig. 4 demonstrates the derivation rules for the
non-terminal Attribute of the CD4A grammar. The non-terminal of CD4A is
depicted at the top, the derived non-terminals at the bottom.

01
02
03

MCG

interface Attribute; // rule 1

Attribute_Rep implements Attribute = // rule 2
"[[" lhs:CDAttribute? ":-" rhs:CDAttribute? "]]";

Attribute_Neg implements Attribute = // rule 3
"not" "[[" Attribute "]]";

Attribute_Pat implements Attribute = // rule 4
/* transfered syntax of the attribute plus schema variables */ ;

TFRule = // rule 5
(Class | Attribute | CD | /*interface nonterminals*/)* Where?;

Attribute =
Modifier? Type Name ("=" Value)?";";

MCG
01
02
03
04
05
06
07
08
09
10
11
12
13
14

Fig. 4. Application of the derivation rules described in [28].

class $_ {

[[public :- private]] $type $attrname;

[[:- public $type $get();]]

[[:- public void $type $attrname);]]

}

where {

$get = "is" + capitalize($attrname);

$set = "set" + capitalize($attrname);

}

MTR
01

02

03

04

05

06

07

08

09

10

11

Fig. 5. Amodel transformation rule to encapsulates attributes by changing its visibility
to private and adding public access methods.

In [28] there are basically five derivation rules described. The first of which
derives interface non-terminals for the non-terminals and keywords of the mod-
eling language (Attribute, l. 2). The second rule derives non-terminals for
the replacement of each model element (cf. Attribute_Rep, l. 4), while the
third rule derives non-terminals to forbid model elements1 (Attribute_Neg,
l. 7). The forth rule derives the non-terminals to transfer the concrete syntax
of the model elements to the DSTL (Attribute_Pat, l. 10) and allows to use
schema variables (consisting of a name that starts with a $-sign), e.g., for names
of modeling elements such as the attribute name. Finally, the start symbol that
combines the interface non-terminals to an alternative and adds the option to
specify an application constraint is created in the fifth derivation rule (TFRule,
l. 13). For further explanation please refer to [28].

A transformation rule modeled using CDTrans is shown in Fig. 5. This trans-
formation matches an arbitrary class (indicated by the schema variable $_) that
has a public attribute (l. 2). The public visibility of the attribute is changed
to private (l. 2) and public access methods are added (ll. 4-5). Please not that
transformation rules modeled via CDTrans use an integrated notation of the
left-hand side (LHS) and right-hand side (RHS) of a transformation rule. Thus,
modification within the pattern are expressed directly at the pattern element af-

1 This corresponds to negative application conditions [23].

Fig. 6. Part of the data explorer generated from the CD4A model in Fig. 2.

fected by the modification (cf. Fig. 5, ll. 2, 4-5). The left part of the replacement
operator ([[:-]]) (i.e., left of the :- is part of the pattern), while the part
right of it replaces the left part or is added if the left part is left blank. Finally
the where clause is used to calculate the values of the variables $get and $set
used for the names of the added access methods. capitalize(...) is a built
in function to capitalize a string value, e.g., names.

5 Engineering a Data Explorer

To demonstrate the applicability of the presented concepts and methods, we
present a use case for model-driven development of data-centric applications
from structural models, i.e., CD4A models (cf. Sec. 2.2). This demonstrates (a)
the use of CD4A for generating executable data-centric applications, and (b) the
use of domain-specific transformations for code generation. In general, a data-
centric applications manages structured and consistent information by providing
SCRUD (search, create, read, update, and delete) functionality [38] through a
graphical user interface. The strength of data-centric applications is that the
generated source code is aware of the managed data. For example, from the
CD4A model in Fig. 2, the data-centric application shown in Fig. 6 is generated.

As only one kind of input models is used as input, adaptation and customiza-
tion concerns are addressed by the code generator and in the generated code. An
overview of different adaptation approaches for generated code is given in [19].
Where adapting the generated code is not feasible, code generator customization
can be achieved by integrating transformation- and template-based code genera-
tion using the CD4Code language (cf. Sec. 3.1) as an intermediate representation
of the object-oriented structure of the target code.

Template

Engine

Java
produces output

Parser

Model

templatesCD4A AST

CD4Code ASTCD4A to CD4Code
transformation

template
attachment

Fig. 7. An overview of the code generation activities that uses domain-specific trans-
formations on the CD4Code AST and additional templates.

An overview of the code generation approach is shown in Fig. 7. After parsing
the CD4A model, the resulting AST is transformed into a CD4Code AST, which
is gradually transformed (cf. Sec. 4.1) until the CD4Code AST describes the
object-oriented structure of a data-centric application. Since CD4Code does not
contain target language specific source code, templates are attached to CD4A
method and constructors to realize their bodies. In addition, default templates
are added to describe the mapping of CD4Code language concepts to Java source
code. Finally, the transformed CD4Code AST and the templates are passed to
a template engine to generated Java source code.

Adaptability and customizability of the code generation approach is achieved
by employing transformations on the CD4Code AST and attaching templates to
individual CD4Code AST nodes in the intermediate representation. This code
generation approach shows the effective use of transformations to reduce com-
plexity of template-based code generation by outsourcing computations on the
AST to pattern matching, which is used in transformation-based approaches. It,
furthermore, shows that transformations in code generation may enable reuse if
the same intermediate representation is used.

6 Conclusion

Ludwig Wittgenstein once said that the limits of his language are the limits
of his world. While programming languages are pretty expressive in describing
structure and operations and data, and general-purpose modeling languages like
the UML are good in specifying structure, architecture, behavior of software
systems, these languages suffer from not being very domain oriented.

Today many domains are being digitalized and a lot more non-software peo-
ple have to deal with encoding their information, knowledge, methods and pro-
cedures. Thus good languages for domain people to describe their information
are needed. This includes models of various unforeseen forms and thus needs a
strong field of language engineering.

Language engineering includes a systematic way of development of language
components, integrating and composing them into larger languages, modifying
and extending language components as desired, to easily accommodate the evo-
lution of digitalized domains.

In this paper, we have discussed these techniques on three levels: a data
exploration tool for a concrete data structure (level 1) is generated using a
data exploration generator (level 2), which in turn is developed using a typical
Language Workbench, called MontiCore (level 3). Only on the level of language
workbenches, language engineering techniques become feasible.

Even though the principles are to some extent understood, it still takes some
time to make industrial capital out of these techniques.

References

1. Abell, J.: MATLAB and SIMULINK. Modeling Dynamic Systems. CreateSpace
Independent Publishing Platform (2016)

2. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (xml). World Wide Web Journal 2(4), 27–66 (1997)

3. Clark, T., den Brand, M., Combemale, B., Rumpe, B.: Conceptual Model of
the Globalization for Domain-Specific Languages. In: Globalizing Domain-Specific
Languages, pp. 7–20. Springer (2015)

4. Clements, P., Northrop, L.: Software product lines. Addison-Wesley, (2002)
5. Combemale, B., Deantoni, J., Barais, O., Blouin, A., Bousse, E., Brun, C.,

Degueule, T., Vojtisek, D.: A solution to the ttc’15 model execution case using
the gemoc studio. In: 8th Transformation Tool Contest. CEUR (2015)

6. Czarnecki, K.: Generative Programming-Principles and Techniques of Software En-
gineering Based on Automated Configuration and Fragment-Based Component
Models. Ph.D. thesis, Technical University of Ilmenau (1998)

7. Date, C.J., Darwen, H.: A Guide to the SQL Standard, vol. 3. Addison-Wesley
New York (1987)

8. Deantoni, J.: Modeling the behavioral semantics of heterogeneous languages and
their coordination. In: Architecture-Centric Virtual Integration (ACVI), 2016. pp.
12–18. IEEE (2016)

9. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.M.: Melange: A
meta-language for modular and reusable development of dsls. In: Proceedings of the
2015 ACM SIGPLAN International Conference on Software Language Engineering.
pp. 25–36. ACM (2015)

10. Ellner, S., Taha, W.: The semantics of graphical languages. In: PEPM ’07: Proceed-
ings of the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation. pp. 122–133. ACM Press, New York, NY, USA (2007)

11. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language Composition Untangled. In:
Proceedings of the Twelfth Workshop on Language Descriptions, Tools, and Ap-
plications. LDTA ’12, ACM, New York, NY, USA (2012)

12. Erdweg, S., Kats, L.C.L., Rendel, T., Kästner, C., Ostermann, K., Visser, E.:
Library-based Model-driven Software Development with SugarJ. In: Proceedings
of the ACM international conference companion on Object oriented programming
systems languages and applications companion. pp. 17–18. ACM (2011)

13. Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook, W.,
Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat, G., Molina, P., Palatnik, M.,
Pohjonen, R., Schindler, E., Schindler, K., Solmi, R., Vergu, V., Visser, E., van der
Vlist, K., Wachsmuth, G., van der Woning, J.: The State of the Art in Language
Workbenches. In: Software Language Engineering, Lecture Notes in Computer Sci-
ence, vol. 8225. Springer International Publishing (2013)

14. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications companion. pp.
307–309. SPLASH ’10, ACM, New York, NY, USA (2010)

15. Favre, J.M., Gasevic, D., Lämmel, R., Pek, E.: Empirical language analysis in
software linguistics. In: SLE. pp. 316–326. Springer (2010)

16. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley (2012)

17. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
18. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-

search Roadmap. Future of Software Engineering (FOSE ’07) (2), 37–54 (2007)
19. Greifenberg, T., Hölldobler, K., Kolassa, C., Look, M., Mir Seyed Nazari, P.,

Müller, K., Navarro Perez, A., Plotnikov, D., Reiß, D., Roth, A., Rumpe, B.,
Schindler, M., Wortmann, A.: Integration of Handwritten and Generated Object-
Oriented Code. In: Model-Driven Engineering and Software Development. Com-
munications in Computer and Information Science, vol. 580, pp. 112–132. Springer
(2015)

20. Greifenberg, T., Look, M., Roidl, S., Rumpe, B.: Engineering Tagging Languages
for DSLs. In: Conference on Model Driven Engineering Languages and Systems
(MODELS’15). pp. 34–43. ACM/IEEE (2015)

21. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: MontiCore: A
Framework for the Development of Textual Domain Specific Languages. In: 30th
International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, Companion Volume. pp. 925–926 (2008)

22. Group, O.M.: OMG Unified Modeling Language (OMG UML), Infrastructure Ver-
sion 2.3 (10-05-03) (2010)

23. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3), 287–313 (1996)

24. Haber, A., Hölldobler, K., Kolassa, C., Look, M., Müller, K., Rumpe, B., Schaefer,
I., Schulze, C.: Systematic Synthesis of Delta Modeling Languages. Journal on
Software Tools for Technology Transfer (STTT) 17(5), 601–626 (October 2015)

25. Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez, A., Rumpe, B., Völkel,
S., Wortmann, A.: Composition of Heterogeneous Modeling Languages. In: Model-
Driven Engineering and Software Development. Communications in Computer and
Information Science, vol. 580, pp. 45–66. Springer (2015)

26. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of ”Semantics”?
IEEE Computer 37(10), 64–72 (October 2004)

27. Hermerschmidt, L., Hölldobler, K., Rumpe, B., Wortmann, A.: Generating
Domain-Specific Transformation Languages for Component & Connector Archi-
tecture Descriptions. In: Workshop on Model-Driven Engineering for Component-
Based Software Systems (ModComp’15). CEUR Workshop Proceedings, vol. 1463
(2015)

28. Hölldobler, K., Rumpe, B., Weisemöller, I.: Systematically Deriving Domain-
Specific Transformation Languages. In: Conference on Model Driven Engineering
Languages and Systems (MODELS’15). pp. 136–145. ACM/IEEE (2015)

29. Iverson, W.: Hibernate: A J2EE (TM) Developer’s Guide. Addison-Wesley Profes-
sional (2004)

30. Jézéquel, J.M., Barais, O., Fleurey, F.: Model Driven Language Engineering with
Kermeta. GTTSE 9, 201–221 (2009)

31. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: a QVT-like
transformation language. In: Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications (2006)

32. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley (2008)

33. Knuth, D.E.: Semantics of context-free languages. Theory of Computing Systems
2(2), 127–145 (1968)

34. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a Framework for Compositional
Development of Domain Specific Languages. International Journal on Software
Tools for Technology Transfer (STTT) 12(5), 353–372 (September 2010)

35. Larsen, M.E.V., Deantoni, J., Combemale, B., Mallet, F.: A behavioral coordina-
tion operator language (BCOoL). In: Model Driven Engineering Languages and
Systems (MODELS), 2015 ACM/IEEE 18th International Conference on (2015)

36. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electronic Notes
in Theoretical Computer Science 152, 125–142 (2006)

37. Miller, F.P., Vandome, A.F., McBrewster, J.: Apache maven (2010)
38. Mir Seyed Nazari, P., Roth, A., Rumpe, B.: Mixed Generative and Handcoded

Development of Adaptable Data-centric Business Applications. In: Domain-Specific
Modeling Workshop (DSM’15). pp. 43–44. ACM (2015)

39. Radjenovic, J., Milosavljevic, B., Surla, D.: Modelling and implementation of cat-
alogue cards using freemarker. Program 43(1), 62–76 (2009)

40. Richters, M., Gogolla, M.: On formalizing the UML object constraint language
OCL. ER 98, 449–464 (1998)

41. Ringert, J.O., Roth, A., Rumpe, B., Wortmann, A.: Language and Code Generator
Composition for Model-Driven Engineering of Robotics Component & Connector
Systems. Journal of Software Engineering for Robotics (JOSER) 6(1), 33–57 (2015)

42. Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer Inter-
national (July 2016)

43. Rumpe, B.: Agile Modeling with UML: Code Generation, Testing, Refactoring.
Springer International (May 2017)

44. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling
framework. Pearson Education (2008)

45. Vacchi, E., Cazzola, W.: Neverlang: A framework for feature-oriented language
development. Computer Languages, Systems & Structures 43, 1–40 (2015)

46. Viyović, V., Maksimović, M., Perisić, B.: Sirius: A rapid development of dsm graph-
ical editor. In: Intelligent Engineering Systems (INES), 2014 18th International
Conference on. pp. 233–238. IEEE (2014)

47. Voelter, M., Solomatov, K.: Language modularization and composition with pro-
jectional language workbenches illustrated with MPS. Software Language Engi-
neering, SLE 16, 3 (2010)

48. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,
Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages. dslbook.org (2013)

49. Wachsmuth, G.H., Konat, G.D.P., Visser, E.: Language Design with the Spoofax
Language Workbench. IEEE Software 31(5), 35–43 (2014)

50. Whittle, J., Hutchinson, J., Rouncefield, M.: The State of Practice in Model-Driven
Engineering. Software, IEEE 31(3), 79–85 (2014)

	Advances in Modeling Language Engineering

