
ProcDSL + ProcEd - a Web-based Editing Solution
for Domain Specific Process-Engineering

Christian Berger Tim Gülke

RWTH Aachen University
Software Engineering Group

Ahornstraße 55
52074 Aachen, Germany

www.se-rwth.de

Bernhard Rumpe

ABSTRACT
In a high-tech country products are becoming rapidly more
complex. To manage the development process as well as to
encounter unforeseen challenges, the understanding and thus
the explicit modeling of organizational workflows is more im-
portant than ever. However, available tools to support this
work, in most cases force a new notation upon the company
or cannot be adapted to a given publication layout in a rea-
sonable amount of time. Additionally, collaboration among
colleagues as well as different business units is complicated
and less supported. Since it is of vital importance for a
company to be able to change its processes fast and adapt
itself to new market situations, the need for tools support-
ing this evolution is equally crucial. In this paper we present
a domain specific language (DSL) developed for modeling a
company’s workflows. Furthermore, the DSL is embedded in
a web-based editor providing transparent access using mod-
ern web 2.0 technologies. Results of the DSL’s as well as
the editor’s application to document, model, and improve
selected workflows of a German automotive manufacturer
are presented.

1. INTRODUCTION AND MOTIVATION
In today’s world of business-processes, modeling becomes a
vital factor in an organization’s change and process man-
agement and even daily routines. This in particular holds
for the development of complex machines, such as airplanes,
cars or trains. Each of these domains has their own specific
problems, e.g. induced through supplier integration, need for
quality certification, development for individual customers
or the mass market, etc.

It is therefore not surprising that there is no unique solu-
tion for the management of these processes. Therefore, it
is only natural to find company-specific layouts of process-
descriptions and publications in almost every firm. Unfor-

tunately, tools meant to support organizations in planning
and developing their processes, often force their own layout,
notation and logic upon their users. Although this might be
considered easier and even ’better’ than what the company
is used to, we found it is one main reason to see printed Mi-
crosoft PowerPoint slides and similar documents to arise all
over office walls. Big organizations need a certain amount
of time to agree on a specific appearance of their process-
documents and even longer to publicize this throughout the
company. And even worse, the meaning of icons or the posi-
tion of images tends to change during a company’s evolution.
Programs like [6] or [2] are not able to be easily adapted to
appear like what people know and have worked with already.
This fact clearly shows the need for a modular tool which
can be adapted with considerably less effort than any others
available.

Furthermore, many currently available tools are single user
applications with only limited possibility for company-wide
collaboration. Using MontiCore [5], a framework for devel-
oping domain specific languages, we developed a web-based
editor for modeling organizational workflows that uses a
DSL’s instances as input and output. This DSL was de-
veloped together with company-experts to ensure correct-
ness and completeness. The editor’s interface then was con-
structed separately, so there was a clean cut between the
logic and its representation. This enables us to change ei-
ther the logic behind a process-plan or the frontends’ ap-
pearance without touching the other. Process modeling is
then being performed by the end user through a web-browser
to gain the amount of flexibility necessary in today’s quickly
changing world. AJAX technology enables us to construct
an interface almost as powerful as a traditional application’s
one.

This paper is structured as follows. First, a brief overview
of MontiCore is presented. Following, the design consider-
ations and the implementation of a DSL to model organi-
zational workflows are discussed. This DSL is embedded in
a web-based process editor which is presented afterwards.
Finally, the DSL as well as the editor’s application is shown
on an example from the automotive domain.

[BGR09] C. Berger, T. Gülke and B. Rumpe 
ProcDSL + ProcEd - a Web-based Editing Solution for Domain Specific Process-Engineering 
In: Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling (DSM‘ 09) 
Helsinki School of Economics. TR no B-108. Orlando, Florida, USA, October 2009 
www.se-rwth.de/publications 



2. MONTICORE – A FRAMEWORK FOR
DEVELOPING DOMAIN SPECIFIC LAN-
GUAGES

MontiCore is a framework for developing textual domain
specific languages from the Department of Software Engi-
neering at RWTH Aachen University. It supports grammar-
based language design as well as meta-modeling concepts
by providing one language for abstract and concrete syntax
definition. Using a given definition it generates automati-
cally a lexer, a parser, and classes for an abstract syntax
graph (ASG) describing the language’s structure. At run-
time, these classes represent a successfully parsed and pro-
cessed instance of a given language [5, 7, 8, 9].

Generated artifacts and MontiCore itself are coded in Java.
Due to its sophisticated language processing concepts and
its support for Java which is also used by the technology
we intended to use for realizing the web-based editor, we
have chosen MontiCore for defining the language and for
processing instances at runtime.

3. PROCDSL – A DSL FOR PROCESS DE-
SCRIPTIONS

We propose a domain specific language to represent the com-
pany’s organizational workflow processing. The reason we
used a DSL to formalize the logic behind a process-plan
was the complex structure of those plans, hidden behind a
rather simple appearance. Basically, a milestone’s appear-
ance in a specific plan was determined by the organizational
view, consisting of a layer and unit combination, the plan
represented. One unit might be only participating to the
milestone’s result while another one is responsible for it.
Both types of access are represented through different icons
in their unit’s process-plan.

Without the use of MontiCore and a DSL, we would only
have been able to construct an application that suits the
current needs and requirements as we understood them.
In case of a sudden change of the appearance or logic of
those process-plans, the application would have to be re-
constructed in a time-consuming way. Through our sepa-
ration it is now possible to change either the model or the
graphical representation without touching the other. The
DSL, which we modeled together with chosen experts, en-
abled us to already start the development of the editor-
frontend while still being in the process of figuring out the
logic’s details behind the plans. This will also save resources
later if for example different views will be needed for the
same data. We predict that in near future, a plan’s lay-
out will change again or a new organizational layer might
be implemented - in that case the model or the editor can
be changed quickly without the need to rewrite a whole
database scheme and an applications access to it.

The main advantage over pure visual process modeling tools
is its formal specification. Additionally, a textually defined
DSL can be simply embedded in different contexts and there-
fore easily reused. In the following, we present briefly the
DSL we designed for modeling organizational workflows con-
sidering the following design criteria.

• Intuitional Representation. Instead of using XML for
defining workflows we chose a much more simple repre-
sentation to avoid XML’s verbosity and redundancy in
its data description. Thus, a better readability for the
user can be achieved if DSL’s instances are processed
without a graphical editor.

• Small Data Format. Since the language is intended
to be used in a web-based context, large entities of
organizational workflow descriptions would cause lots
of bandwidth consumption. Thus, a small data format
to be exchanged with a server is desirable.

• Reusability. The language itself is primarily intended
to be used with a graphical web-based editor to sup-
port process engineers. However, having a formally de-
fined and application-independent process description,
language’s instances can be easily exchanged among
the same application. Moreover, other tools can be
used for checking semantic constraints on the one hand
or to transform an instance into another data format
on the other hand.

• Versioning. Regardless if an available solution like
Subversion is used or a domain-specific (e.g. graphical)
one is programmed it is obvious that textual formats
are easier to put under version control as well to track
and compare changes.

To ensure usefulness, domain experts from the company
were heavily involved in the development of the DSL. Us-
ing a simple UML-representation of the DLS’s structure, we
were able to communicate in a productive way.

In Fig. 1, an excerpt of our grammar is shown. Technically,
MontiCore accepts productions with EBNF-like right hand
sides. Nonterminals (like Milestone or String) can be pre-
ceded by attribute names (like in name:String). Attribute
names can also be attached to terminals like "Scope" or
"resp" denoting, whether the keyword was detected.

Lines 1-5 contain the grammar’s start symbol. The work-
flow description starts with a header containing some meta-
information about the current instance followed by a list of
milestones. Every milestone has a name, a description, and
several other properties of which some are included in 1,
lines 9-13. Line 11 positions the milestone relatively to a
timeline. As already mentioned, the need to separate the
logic behind a process-plan and it its actual graphical rep-
resentation was crucial. Therefore, during development of
the DSL, we made sure not to mix graphical information
like icon positions, colors, and the like with logic-related
things. As a result, an instance of the given DSL does not
only represent a milestone-plan like the one shown in Fig.4
which was used as a blueprint for the DSL, it also enables
developers to get different graphical representations out of
it (e.g. simple lists of milestones, a specific view on inputs
and outputs of a milestone or the involvement of a layer in
process activities).

Besides an informal description, a milestone has a concrete
result which can be any appropriate artifact depending on
a specific workflow. Different scopes and layers can access



MontiCore-Grammar

1 ProcessFile =
2 "process"
3 ProcessHeader
4 :Milestone*
5 Process
6 :Scope*
7 "end";
8 ...
9 Milestone = "milestone" Name

10 ...
11 "position" TimelinePosition:Number
12 "result" Result:Result*
13 "description" Description:String;
14 ...
15 Scope = "scope" Name
16 "description" Description:String
17 r:Responsibility*;
18

19 Responsibility = "responsibility"
20 (responsible:["resp"]
21 | contributing:["cont"]
22 | noticing:["noti"])
23 "asmilestone" asMilestone:STRING;
24 ...
25 associations {
26 Responsibility.milestone * -> 1 Milestone;
27 }
28

29 concept sreference {
30 ResponsibilityMilestone:
31 Responsibility.asMilestone = Milestone.name;
32 }

Figure 1: Excerpt of our grammar to describe orga-
nizational workflows.

a milestone in different ways, like being responsible or just
contributing to the result. In this case, a scope is a spe-
cific organizational unit within a layer, like manufacturing
within the layer departments. Combined, these selections
define different views on the whole set of milestone-data. A
scope’s responsibilities are described in lines 19-23. Every
scope is either directly responsible for fulfilling a sub-process
associated with this milestone, contributing for a concrete
milestone or only noticing the state of a sub-process.

Using the concept of automatically set associations provided
by MontiCore in line 25-32, the responsibilities’ milestones
are navigably associated with an ASG node describing a
milestone. The following lines starting at line 27 describe
the way a milestone is mapped by its (unique) name to the
corresponding responsibility-object’s association.

For validating given values of concrete DSL’s instances ob-
ject which traverses the ASG, generated by MontiCore can
be defined. For example, a time-validating visitor can be
used to check the semantic constraints whether the start
time of a given milestone is prior to its end time regarding
to the underlying timeline specification, which can be either
a regular calendar or a simple sequence of weeks.

Using the grammar outlined in this section, we designed and
implemented a graphical web-based editor which is described
in the following.

4. GRAPHICAL EDITOR FOR PROCDSL
USING WEB 2.0 TECHNOLOGIES

We wanted the graphical editor to be as easily usable as pos-
sible combined with the flexibility a web-application gives us
regarding deployment and maintenance. AJAX enables de-
velopers to design web-applications that make use of asyn-
chronous callbacks rather than of synchronized ones. There-
fore, the traditional request-response-paradigm is no longer
the limiting factor in a web-application’s interface. Using
AJAX different parts of the website can be loaded dynami-
cally providing a great range of possibilities to the developer
to design the application. For more information about the
AJAX technology see [12].

Since the overall layout was already fixed due to the fact that
we were working with a company which had already specified
its appearance for process descriptions, it was clear that the
editor should not be a generic canvas, but an aid to work
in that given layout. However, it should use the formalism
provided with the DSL to keep users from inventing new
icons and limit them to correct instances.

We selected the Google Web Toolkit[4] as our main frame-
work which enabled us to write Java-code instead of
JavaScript for the web-interface. Through this, a highly in-
teractive web-based application combined with proper test-
ing and a decent coding-style was possible with much less
effort than a traditional one would have required. The imple-
mentation of Drag&Drop-capabilities as displayed in Fig.2
for canvas-objects as well as dialog-windows is another factor
that makes the interface a lot more comfortable for users.
Through asynchronous callbacks, drafts can be saved and
restored automatically.

As one can see in Fig.3, the main window is divided in three
different areas. The largest is used by the actual milestone-
plan, while the other two keep a toolbox to drag objects
out from onto the plan and an object-inspector. The latter
allows users to look into a chosen item’s details. To select
an object on the plan, it can simply be clicked on.

Figure 2: Web-based dragging and dropping of items
and collections of items.



As input and output, an instance of the above defined gram-
mar is used. After upload, the ASG is constructed from
the file through the MontiCore-generated tools, although
these objects are kept separate from the ones behind the
displayed items. This separation enables us to replace both
sides, grammar-generated objects and data-objects, with-
out changing much at the corresponding one in case an
engineering- or design-related update is necessary. No in-
stance of an ASG-object is kept in a visualizable one and
vice versa to achieve a very clean separation between the
two worlds. Since the editor does not get any display-related
information from the grammar, it has to decide itself on the
positioning and use of visual elements such as icons, colors,
etc.

To keep everything synchronized and to reduce computa-
tional effort and bandwidth, a central class containing a
hashmap keeps all objects and links them to an icon-file
that the user will finally see. This pattern makes searching
and working in general with the data easier as if ASG-objects
would keep their visualized counterparts themselves instead.
A Command-pattern makes sure user-input is handled cor-
rectly and distributed to the right object and also adds an
undo-/redo-functionality to the editor.

The web-application itself is secured through an SSL-connec-
tion and a required login provides a user-environment that
lets a user keep a list of files he is working on. This part of
the application could be extended, for example with func-
tions like shared comments.

Figure 3: Screenshot of ProcEd, a web-based editor
for instances of ProcDSLs.

5. APPLICATION AT AN AUTOMOTIVE
MANUFACTURER

The already fixed layout of graphical representations of the
corporate processes made questions about the application’s
appearance simple. The requirements gathered for this yiel-
ded to a login-screen, traditional file-menus, etc. Example
process files in Microsoft Power Point like the one shown
in Fig.4 specified the canvas’ layout. The real difficulties
therefore lay in the business-objects model and the different
influences the classes have on each other.

We used a graphical representation of our model to be able
to discuss it with selected domain-experts who had no edu-
cation in computer science. UML was a good choice due to
easily understandable class diagrams. However, we needed
several iterations to get to a complete model-specification.

The clearly separated parts in the software though made it
easy for us to keep up an agile workflow. While we could
implement more and more of the interface, the model itself
could be improved independently only requiring to gener-
ate a new lexer and parser using MontiCore to process the
modified version, and correct a function call or the like in
the separated part. Compared to a traditional approach
which would have forced us to complete the model first and
then build the application depending on it; using the afore-
mentioned approach we used during development we simply
could not only integrate but also embrace changes desired
by the customer [1].

Figure 4: Elements for process description at a Ger-
man automotive manufacturer.

6. RELATED WORK
The usage of DSLs in web-applications has received increased
interest in the last years. But as outlined in [10] or [11],
these activities did only focus on modeling an application’s
architecture and related workflows.

Our approach is different, because we did not use the DSL
to define workflows, but to get a data exchange format that
also serves as business layer in the resulting application. A
change in the DSL would not result in a whole new appli-
cation layout, only in differently working interfaces, leav-
ing the former with the customer agreed on GUI intact.
This is crucial, since the organizational layout for process



documents is already company-wide communicated and ap-
proved. To understand the meaning behind different layers
and associations though can be a tough job which needs flex-
ible tools that will only change parts of the code that need
to be changed with minimum effort.

The choice of Google’s GWT as the framework used for re-
alizing the web-editor was based on the excellent Eclipse in-
tegration and the number of features it includes. However,
the most important factor, compared for example to [3], was
the fact that GWT enables the developer to work in plain
Java without having to care about data exchange or even
JavaScript on the user’s end. This is clearly an advantage
because it decreases development time and simplifies testing
and source code documentation. Moreover, as already dis-
cussed earlier, MontiCore generates the classes representing
the grammar’s ASG in Java which could be easily integrated
with GWT.

Reasons a new DSL was used instead of implementing one
of the business modeling languages available were the very
company-specific process-layout on the one hand and the
missing or incomplete formal specification of those languages
on the other hand. As for example [13] notice, the Business
Process Modeling Language (BPMN) lacks several concepts,
like sub-processes with more than one instance, is partially
ambiguous in its definition and has an incomplete mapping
to the formal representation WS-Business Process Execu-
tion Language (BEPL). Moreover, BPMN did not let us
represent the company-specifics we needed to be able to
model, like a milestone’s different meanings defined by the
way different layers access it. This was a crucial fact since
we needed to be able to display different views from different
layers of the company onto the same sets of milestones and
the connections between them. If one milestone changes, it
has to be updated in every representation. This can only be
achieved with a data-model representing exactly the com-
pany’s structure.

7. CONCLUSION
In this paper, a formal, textual-based domain specific lan-
guage for defining workflows was presented. Using this lan-
guage, both documentation and modeling of organizational
processes of a company is supported and also given instances
of the DSL representing several workflows can be inspected.

For supporting a process engineer in modeling, documenting,
and integrating different workflows, a graphical web-based
editor using modern web 2.0 technologies was provided. Us-
ing this editor, workflows can be transparently presented
and updated nearly everywhere in a company using a web-
browser with state-of-the-art technologies already built-in.

The main contributions of this work – the formal descrip-
tion of organizational workflows on the one hand, and trans-
parent access to the DSL’s instances nearly everywhere on
the other hand – provide valuable support for a process
engineer’s daily work. Furthermore, formal and machine-
processable analysis of the DSL’s instances can be realized
both to check currently implemented workflows and to sim-
ulate changes in a company’s processes to perform what-if-
analysis.

With the MontiCore framework and toolkit, it was easy and
efficient to define and implement the DSL-part of the edi-
tor, including a lexer, a parser, ASG classes, and standard
context conditions. This and other examples from differ-
ent domains have shown that the MontiCore infrastructure
provides efficient techniques to develop DSL-based tools.

8. REFERENCES
[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,

W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas. Manifesto for the Agile Software
Development, 2001.

[2] BOC ADONIS http://www.boc-group.com/.

[3] Echo3 http://echo.nextapp.com/site/echo3.

[4] Google Web Toolkit
http://code.google.com/intl/de/webtoolkit/.

[5] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel. MontiCore: A Framework for the
Development of Textual Domain Specific Languages.
In 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008, Companion Volume, pages 925–926, 2008.

[6] IDS Scheer ARIS Business Designer http://www.ids-

scheer.de/de/ARIS_ARIS_Platform/7796.html.

[7] H. Krahn, B. Rumpe, and S. Völkel. Efficient Editor
Generation for Compositional DSLs in Eclipse. In
Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling 2007, 2007.

[8] H. Krahn, B. Rumpe, and S. Völkel. Integrated
Definition of Abstract and Concrete Syntax for
Textual Languages. In Proceedings of Models 2007,
2007.

[9] H. Krahn, B. Rumpe, and S. Völkel. Monticore:
Modular development of textual domain specific
languages. In Proceedings of Tools Europe, 2008.

[10] M. Nussbaumer, P. Freudenstein, and M. Gaedke. The
impact of DSLs for assembling web applications.
Engineering Letters, 13(3):387–396, 2006.

[11] M. Nussbaumer, P. Freudenstein, and M. Gaedke.
Towards DSL-based web engineering. In WWW ’06:
Proceedings of the 15th international conference on
World Wide Web, pages 893–894, New York, NY,
USA, 2006. ACM.

[12] L. D. Paulson. Building Rich Web Applications with
Ajax. Computer, 38(10):14–17, 2005.

[13] P. Wohed, W. M. van der Aalst, M. Dumas, A. H. ter
Hofstede, and N. Russell. Business Process
Management, chapter On the Suitability of BPMN for
Business Process Modelling, pages 161–176. Springer
Berlin, 2006.




