CDDiff: Semantic Differencing for
Class Diagrams

Shahar Maoz*, Jan Oliver Ringert**, and Bernhard Rumpe

Software Engineering
RWTH Aachen University, Germany
http://www.se-rwth.de/

Abstract. Class diagrams (CDs), which specify classes and the rela-
tionships between them, are widely used for modeling the structure of
object-oriented systems. As models, programs, and systems evolve over
time, during the development lifecycle and beyond it, effective change
management is a major challenge in software development, which has
attracted much research efforts in recent years.

In this paper we present cddiff, a semantic diff operator for CDs. Unlike
most existing approaches to model comparison, which compare the con-
crete or the abstract syntax of two given diagrams and output a list of
syntactical changes or edit operations, cddiff considers the semantics of
the diagrams at hand and outputs a set of diff witnesses, each of which
is an object model that is possible in the first CD and is not possible in
the second. We motivate the use of cddiff, formally define it, and show
how it is computed. The computation is based on a reduction to Alloy.
The work is implemented in a prototype Eclipse plug-in. Examples show
the unique contribution of our approach to the state-of-the-art in version
comparison and evolution analysis.

1 Introduction

Class diagrams (CDs) are widely used for modeling the structure of object-
oriented systems. The syntax of CDs includes classes and the various relation-
ships between them (association, generalization, etc.). The semantics of CDs is
given in terms of object models, consisting of sets of objects and the relation-
ships between these objects. Specifically, we are interested in a variant of the
standard UML2 CDs, which is rich and expressive, supporting generalizations
(inheritance), interface implementation, abstract and singleton classes, class at-
tributes, uni- and bi-directional associations with multiplicities, enumerations,
aggregation, and composition.

As models, programs, and systems evolve over time, during the development
lifecycle and beyond it, effective change management and controlled evolution are
major challenges in software development, and thus have attracted much research

* S. Maoz acknowledges support from a postdoctoral Minerva Fellowship, funded by
the German Federal Ministry for Education and Research.
** J.0. Ringert is supported by the DFG GK/1298 AlgoSyn.

[MRR11b] S. Maoz, J. O. Ringert, B. Rumpe

CDDiff: Semantic Differencing for Class Diagrams

In: Proc. 25th Euro. Conf. on Object Oriented Programming (ECOOP‘11),
LNCS 6813, pp. 230-254, Springer, 2011.

www.se-rwth.de/publications

Epssa

efforts in recent years (see, e.g., [1,5, 10, 14,17, 22, 26, 34]). Fundamental building
blocks for tracking the evolution of software artifacts are diff operators one can
use to compare two versions of a program or a model. Most existing approaches
to differencing concentrate on matching between model elements using different
heuristics related to their names and structure and on finding and presenting
differences at a concrete or abstract syntactic level. While showing some success,
most of these approaches are also limited. Models that are syntactically very
similar may induce very different semantics (in the sense of ‘meaning’ [12]), and
vice versa, models that semantically describe the same system may have rather
different syntactic representations. Thus, a list of syntactic differences, although
accurate, correct, and complete, may not be able to reveal the real implications
these differences may have on the correctness and potential use of the models
involved. In other words, such a list, although easy to follow, understand, and
manipulate (e.g., for merging), may not be able to expose and represent the
semantic differences between two versions of a model, in terms of the bugs that
were fixed or the features (and new bugs...) that were added.

In this paper we present cddiff, a semantic diff operator for CDs. Unlike
existing differencing approaches, cddiff is a semantic diff operator. Rather than
comparing the concrete or the abstract syntax of two given diagrams, and out-
putting a list of syntactical changes or edit operations, cddiff considers the se-
mantics of the diagrams at hand and outputs a set of diff witnesses, each of
which is an object model that is possible in the first CD and is not possible in
the second. These object models provide concrete proofs for the meaning of the
change that has been done between the two compared versions and for its effect
on the use of the models at hand.

We specify CDs using the class diagrams of UML/P [29], a conceptually
refined and simplified variant of UML designed for low-level design and imple-
mentation. Our semantics of CDs is based on [11] and is given in terms of sets
of objects and relationships between these objects. An overview of the formal
definition of the syntax and semantics of our CDs is given in Sect. 3.

Given two CDs, cdy and cda, cddiff (cdy,cds) is roughly defined as the set
of object models possible in the first CD and not possible in the second. As
this set may be infinite, we are specifically interested in its bounded version,
cddiff ,(cdy, eds), which only includes object models where the number of object
instances is not greater than k. The formal definition of cddiff is given in Sect. 4.

To compute cddiff we use Alloy [13]. Alloy is a textual modeling language
based on relational first-order logic. A short overview of Alloy is given in Sect. 3.2.
To employ Alloy for our needs, we have defined a transformation that takes
two CDs and generates a single Alloy module. The module includes predicates
specifying each of the CDs, cd1 and cd2, and a diff predicate reading Cd1NotCd2,
specifying the existence of a satisfying assignment for the predicate cd1 (for us,
representing an instance of cdy), which is not a satisfying assignment for the
predicate cd2 (representing an instance of c¢ds). Analyzing this predicate with a
user-specified scope k produces elements of cddiff ;,(cdy, cdz), if any, as required.

Our transformation is very different from ones suggested in other works that
use Alloy to analyze CDs (see, e.g., [4,21]). First, we take two CDs as input,
and output one Alloy module. Second, to support a comparison in the presence
of generalizations and associations, we must use a non-shallow embedding, that
is we have to encode all the relationships between the signatures in generated
predicates ourselves. In particular, we cannot use Alloy’s extends keyword to
model inheritance and cannot use Alloy’s fields to model class attributes, because
for the shared signatures, a class’s inheritance relation and set of attributes may
be different between the two CDs. Thus, these need to be modeled as predicates,
different ones for each CD, outside the signatures themselves. The transformation
is described in Sect. 4.2.

In addition to finding concrete diff witnesses (if any exist), which demonstrate
the meaning of the changes that were made between one version and another,
cddiff can be used to compare two CDs and decide whether one CD semantics
includes the other CD semantics (the latter is a refinement of the former), are
they semantically equivalent, or are they semantically incomparable (each allows
instantiations that the other does not allow). When applied to the version history
of a certain CD, which can be retrieved from a version repository, such an analysis
provides a semantic insight into the evolution of this CD, which is not available
in existing syntactic approaches.

We have implemented cddiff and integrated it into a prototype Eclipse plug-
in. The plug-in allows the engineer to compare two selected CDs and to browse
the diff witnesses found, if any. Indeed, all examples shown in this paper have
been computed by our plug-in. We describe the plug-in’s implementation, main
features, and performance results in Sect. 5.

Following the evaluation in Sect. 5, we define and implement two important
extensions of the basic cddiff technique. The first extension deals with filtering
the diff witnesses found, so that ‘uninteresting witnesses’ are filtered out, and
a more succinct yet informative set of witnesses is provided to the engineer.
The second extension deals with the use of abstraction in the comparison. The
extensions are described in Sect. 6.

Model and program differencing, in the context of software evolution, has
attracted much research efforts in recent years (see [1,5,10,14,17,22, 26, 34]).
In contrast to our work, however, most studies in this area present syntactic
differencing, at either the concrete or the abstract syntax level. We discuss related
work in Sect. 8.

It is important not to confuse differencing with merging. Merging is a very
important problem, dealing with reconciling the differences between two models
that have evolved independently from a single source model, by different devel-
opers, and now need to be merged back into a single model (see, e.g., [3, 10,
17,23, 25]). Differencing, however, is the problem of identifying the differences
between two versions, for example, an old version and a new one, so as to better
understand the course of a model evolution during some step of its development.
Thus, diff witnesses are not conflicts that need to be reconciled. Rather, they

<<enumeration>> Employee . . Task
PositionKind
kind: PositionKind startDate: Date
fullTime
i * | manages managedBy
partTime 9 » Manager
0..1
<<enumeration>> Employee L o Task
PositionKind :
kind: PositionKind startDate: Date
fullTime
i *| manages
partTime g managedBy Manager
external 0..1 |

Fig. 1. cdl.v1 and its revised version cdl.v2

are proofs of features that were added or bugs that have been fixed from one
version to another along the history of the design and development process.

The next section presents motivating examples demonstrating the unique
features of our work. Sect. 3 provides preliminary definitions of the CD language
syntax and semantics as used in our work. Sect. 4 introduces cddiff and the
technique to compute it. Sect. 5 presents the prototype implementation and
related applications. Sect. 6 describes the filtering and abstraction extensions.
Sect. 7 presents a discussion of advanced topics and future work directions,
Sect. 8 considers related work, and Sect. 9 concludes.

2 Examples

We start off with motivating examples for semantic differencing of CDs. The
examples are presented semi-formally. Formal definitions appear in Sect. 4.

2.1 Example I

Consider cdl.wl of Fig. 1, describing a first version of a model for (part of) a
company structure with employees, managers, and tasks. A design review with
a domain expert has revealed three bugs in this model: first, employees should
not be assigned more than two tasks; second, managers are also employees, and
they can handle tasks too; and third, there is another kind of position, namely
an external position.

om, om,

:Employee tl:Task manages ’—

kind = fullTime startDate = d1 :Manager

t2:Task kind = external

‘managedBy

startDate = d2

t3:Task

Manager startDate = d3

Fig. 2. Example object models representing semantic differences between the old class
diagram cdl.v1 and its revised version cdl.v2.

Following this design review, the engineers created a new version cdl.v2,
shown in the same figure. The two versions share the same set of named elements
but they are not identical. Syntactically, the engineers added an inheritance
relation between Manager and Employee, set the multiplicity on the association
between Employee and Task to 0..2, and added the external position kind. What
are the semantic consequences of these differences?

Using the operator cddiff we can answer this question. cddiff (cdl.v1, cd1l.v2)
outputs omy, shown in Fig. 2, as a diff witness that is in the semantics of cd1.v1
and not in the semantics of ed1.v2; thus, it demonstrates (though does not prove)
that the bug of having more than two tasks per employee was fixed. In addition,
cddiff (cdl.w2, cdl.wl) outputs oms, shown in Fig. 2 too. omgy is a diff witness
that is in the semantics of the new version cd1.v2 and not in the semantics of the
old version cdl.v1. Thus, the engineers should perhaps check with the domain
expert whether the model should indeed allow managers to manage themselves
and hold an external kind of position.

2.2 Example II

The two class diagrams cd3.v1 and cd3.v2, shown in Fig. 3, provide alternative
descriptions for the relation between Department and Employee in the company.
Again the two diagrams share the same set of named elements but the diagrams
are not identical. First, Department is a singleton only in cd3.v1. Second, only in
cd3.v1 the relation between Department and Employee is a Whole/Part compo-
sition relation. What are the semantic consequences of the differences between
the two versions of cd37

Fig. 3 includes two objects models. In omg there are two departments with
no employees. In omy there is a single employee and no departments. It is easy
to see that both object models are in the semantics of ¢d3.v2 but not in the
semantics of cd3.v1. We formally write it as {omg, om4} C cddiff (cd3.v2, cd3.v1).
In addition, we can see that cd3.v2 is a refinement of cd3.v1, since all object
models in the semantics of cd3.v1 are also in the semantics of cd3.v2 (that is,
cddiff (ed3.v1, cd3.c2) =). Again, the two diff witnesses (in one direction) can

om, -
orksIn has di1:Department
3— Employee

Department *

<<singleton>>

d2:Department

Employee
* :Employee

worksIn has

Department

Fig. 3. cd3.v1 and its revised version cd3.v2, with example object models representing
the semantic differences between them. Both object models are in the semantics of
cd3.v2 and not in the semantics of cd3.v1.

be computed and the refinement relation (in the other direction) can be proved
(in a bounded scope) by our operator.

2.3 Example II1

Finally, ¢d5.v1 of Fig. 4 is another class diagram from this model of company
structure. In the process of model quality improvement, an engineer has sug-
gested to refactor it by introducing an abstract class Person, replacing the asso-
ciation between Employee and Address by an association between Person and
Address, and redefining Employee to be a subclass of Person. The resulting
suggested CD is cdb.v2.

Using cddiff we are able to prove (in a bounded scope) that despite the syn-
tactic differences, the semantics of the new version is equivalent to the semantics
of the old one, formally written cddiff (cd5.v1, cd5.02) = cddiff (cd5.v2, cdb.vl) =
(). The refactoring is correct and the new suggested version can be committed.

<<abstract>> cd5.v2
Person
1
1|livesIn
livesIn
Employee)) Address Employee Address

Fig. 4. cd5.v1 and its revised version cd5.v2. The two versions have equal semantics.

3 Preliminaries

We give a short overview of the CD language used in our work and of Alloy, the
tool we use for the computation of cddiff.

3.1 Class diagrams language

As a concrete CD language we use the class diagrams of UML/P [29], a concep-
tually refined and simplified variant of UML designed for low-level design and
implementation. Our semantics of CDs is based on [11] and is given in terms
of sets of objects and relationships between these objects. More formally, the
semantics is defined using three parts: a precise definition of the syntactic do-
main, i.e., the syntax of the modeling language CD and its context conditions
(we use MontiCore [16,24] for this); a semantic domain - for us, a subset of
the System Model (see [7,8]) OM, consisting of all finite object models; and a
mapping sem : CD — P(OM), which relates each syntactically well-formed CD
to a set of constructs in the semantic domain OM. For a thorough and formal
account of the semantics see [8].

Note that we use a complete interpretation for CDs (see [29] ch. 3.4). This
roughly means that ‘whatever is not in the CD, should indeed not be present in
the object model’. In particular, we assume that the list of attributes of each class
is complete, e.g., an employee object with an id and a salary is not considered
as part of the semantics of an Employee class with an id only.

The CD language constructs we support include generalization (inheritance),
interface implementation, abstract and singleton classes, class attributes, uni-
and bi-directional associations with multiplicities, enumerations, aggregation,
and composition.

3.2 A brief overview of Alloy

Alloy [2,13] is a textual modeling language based on relational first-order logic.
An Alloy module consists of a number of signature declarations, fields, facts and
predicates. The basic entities in Alloy are atoms. Each signature denotes a set of
atoms. Each field belongs to a signature and represents a relation between two or
more signatures. Such relations are interpreted as sets of tuples of atoms. Facts
are statements that define constraints on the elements of the module. Predicates
are parametrized constraints, which can be included in other predicates or facts.

Alloy Analyzer is a fully automated constraint solver for Alloy modules. The
analysis is achieved by an automated translation of the module into a Boolean
expression, which is analyzed by SAT solvers embedded within the Analyzer.
The analysis is based on an exhaustive search for instances of the module. The
search space is bounded by a user-specified scope, a positive integer that limits
the number of atoms for each signature in an instance of the system that the
solver analyzes.

The Analyzer can check for the validity of user-specified assertions. If an
instance that violates the assertion is found within the scope, the assertion is
not valid. If no instance is found, the assertion might be invalid in a larger scope.
Used in the opposite way, one can look for instances of user-specified predicates.
If the predicate is satisfiable within the given scope, the Analyzer will find an
instance that proves it. If not, the predicate may be satisfiable in a larger scope.
We discuss the advantages and limitations of using Alloy for our problem in
Sect. 7. A thorough account of Alloy can be found in [13].

4 CDDiff

4.1 Definitions

We define a diff operator cddiff : CD x CD — P(OM), which maps two CDs,
cd; and cds, to the (possibly infinite) set of all object models that are in the
semantics of cd; and are not in the semantics of cdy. Formally:

Definition 1. cddiff(cdy,cds) = {om € OM | om € sem(cdi)Nom ¢ sem(cdz)}.

Note that cddiff is not symmetric. In addition, by definition, Vedy, cds €
CD, cddiff (cdy,cd;) = 0 (the empty set, not the empty object model) and
cddiff (cdy, cdg) N cddiff (cd2, cdy) = 0, as expected. The members of the set
cddiff are called diff witnesses.

The set-theoretic definition of cddiff, as given above, is however not construc-
tive, and may yield an infinite set. As a pragmatic solution, we approximate it
by defining (a family of) bounded diff operators that we are able to compute.
Thus, we use a bound k, which limits the total number of objects in the diff
witnesses we are looking for. Formally:

Definition 2. Vk > 0, cddiff,(cd1, cds) = {om | om € cddiff(cdy, cd2) A |om| <
k}, where |om| is the total number of objects in om.

4.2 Computing cddiff,: overview

To compute cddiff;, we use Alloy. To employ Alloy for our needs, we have de-
fined a transformation that takes two CDs and generates a single Alloy module.
The module includes predicates specifying each of the CDs, cdl and cd2, and
a diff predicate reading Cd1NotCd2, specifying the existence of a satisfying as-
signment for the predicate cd1l (for us, representing an instance of cd;), which
is not a satisfying assignment for the predicate cd2 (representing an instance of
cds). Analyzing this predicate with a user-specified scope k produces elements
of cddiff,(cdq, cds), if any, as required.

Our transformation is very different from ones suggested in other works that
use Alloy to analyze CDs (see, e.g., [4,21]). First, we take two CDs as input, and
output a single Alloy module. Second, to support a comparison in the presence
of generalizations and associations, we must use a non-shallow embedding, that
is we have to encode all the relationships between the signatures in generated
predicates ourselves. In particular, we cannot use Alloy’s extends keyword to
model inheritance and cannot use Alloy’s fields to model class attributes, because
for the shared signatures, a class’s inheritance relation and set of attributes may
be different between the two CDs. Thus, these need to be modeled as predicates,
different ones for each CD, outside the signatures themselves.

It is important to note that a naive approach that would transform each of
the two CDs separately into a corresponding Alloy module and then compare the
instances found by the analyzer for each CD, would have been incomplete and
hopelessly inefficient. Such an approach requires the complete computation of

the two sets of instances before the comparison could be done. As Alloy generates
instances one-by-one, with no guarantee about their order, this could not work
in practice. Thus, our approach, of taking the two input CDs and constructing
a single Alloy module whose all instances, if any, are diff witnesses, is indeed
required. In other words, instead of computing the differences, if any, ourselves,
we create an Alloy module whose instances are the differences we are looking
for, and let the SAT solver do the hard work for us.

Below we show only selected excerpts from the generated Alloy module cor-
responding to the two CDs from the example in Fig. 1 (a complete definition
of the translation, which shows how each CD construct is handled, is given in
supporting materials available from [31]).

4.3 Computing cddiff,: the generated Alloy module

We start off with a generic part, which is common to all our generated modules.

// Names of fields/associations in classes of the model
abstract sig FName {}

// Parent of all classes relating fields and values
abstract sig 0bj { get: FName -> {0bj + Val + EnumVal}}

// Values of fields
abstract sig Val {}

© W N O G oA W N e

10| fact values {
11 // No walues can exzist on their own
12 all v: Val | some f: FName | v in Obj.get[f] }

14| //Names of enum values in enums of the model
15| abstract sig EnumVal {3}

17| fact enums {
18 //no enum wvalues can exist on their own
19 all v: EnumVal | some f: FName | v in Obj.get[f] }

Listing 1.1. FName, Obj, Val, and EnumVal signatures

List. 1.1 shows the abstract signature FName used to represent association
role names and attribute names for all classes in the module. The abstract 0bj
signature is the parent of all classes in the module, and its get Alloy field relates
it and an FName to instances of Obj, Val, and EnumVal. List. 1.1 also shows
the abstract signature Val, which we use to represent all predefined types (i.e.,
primitive types and other types that are not defined as classes in the CDs). Values
of enumeration types are represented using signature EnumVal. Enumeration
values as well as primitive values should only appear in an instance if referenced
by any object (see predicates in lines 10-12 and lines 17-19).

pred ObjAttrib[objs:set 0bj,
fName:one FName, fType:set {0bj + Val + EnumVall}] {
objs.get [fName] in £fType
all o: objs| one o.get[fName] }

pred ObjNoFName [objs:set Obj, fName:set FName] {
no objs.get[fName] }

S - R N N

Listing 1.2. Predicates for objects and their fields

List. 1.2 shows some of the generated predicates responsible for specifying
the relation between objects and fields: ObjAttrib limits objs.get [fName] to
the correct field’s type and ensures that there is exactly one atom related to the
field name (by the get relation); ObjNoFName is used to ensure classes do not
have field names other than the ones stated in the CD.

pred ObjUAttrib[objs:set 0bj,
fName:one FName, fType:set 0bj, up: Int]l {
objs.get[fName] in £fType
all o: objs| (#o0.get[fName] =< up) 1}

pred Composition[left:set O0bj,
1FName:one FName, right:set 0bj]l {
all 11, 12: left |
(# {11.get[1FName] & 12.get[1FNamel} > 0) => 11=12
all r: right | # {1: left | r in 1l.get[1FNamel} = 1 }

© 0 N O v oA W N =

.
o

Listing 1.3. Predicates for multiplicities and Whole/Part compositions

List. 1.3 shows some of the generated predicates responsible to specify mul-
tiplicities and Whole/Part compositions. The first predicate provides an upper
bound for the number of objects in the set represented by the get relation for a
specified role name. The second predicate is used to constrain a composition re-
lation between classes. Its first statement (lines 8-9) ensures that no two wholes
(on the ‘left’) own the same part (on the ‘right’). The second statement (line 10)
ensures that a part (on the ‘right’) belongs to exactly one whole (on the ‘left’).

// Predicate for diff
pred CdiNotCd2 { cdl not cd2}

// Command for diff
run CdiNotCd2 for 5

Listing 1.4. The diff predicate and the related run command

List. 1.4 shows the simple predicate Cd1NotCd2 representing the diff. An
Alloy instance that satisfies the generated predicate cdl and does not satisfy
the generated predicate cd2 is in the set cddiff . (cdy,cds). The value for the
scope k of the run command (line 5) is part of the input of our transformation.

All the above are generic, that is, they are common to all generated modules,
independent of the input CDs at hand. We now move to the parts that are specific
to the two input CDs.

All class names and field names from the two CDs are shown in List. 1.5
as Alloy signatures and are stripped from their inheritance relations, attributes,
associations etc. Note the type_Date signature in line 6, which extends Val (see
List. 1.1). Concrete enumeration values from both class diagrams are declared
in lines 9-10.

// Concrete names of fields in cdl and cd2
one sig startDate, mngBy, worksOn, mng,
doneBy, kind extends FName {}

// Concrete wvalue types in model cdl and cd2
lone sig type_Date extends Val {}

// Concrete enum walues
lone sig enum_PosKnd_extermnal, enum_PosKnd_fullTime,
enum_PosKnd_partTime extends EnumVal {}

© 0w N O G A W N e

[
o

-
-

// Actual classes in the model
sig Tsk, Emp, Mgr extends 0bj {}

=
S

-
w

Listing 1.5. The common signatures

Next, we define a set of functions and a predicate for each CD individually.
We show here only the ones for ¢d1.v2, a CD that we presented in Fig. 1 (in the
generated Alloy code that we show below, this CD appears as cd2).

First, subtype functions, shown in List. 1.6 (top), which specify subtype
relations between the relevant signatures specific for this CD. Note how function
EmpSubsCD2 denotes that in cdl.v2 employees are either of type Emp or their
subtype Mgr. The possible values of enumeration PosKnd in cdl.v2 are defined
by function PosKndEnumCD2.

Second and finally, the predicate cd2, specifying the properties of the CD
cdl.v2, is shown in List. 1.6. Note the use of the generic predicates defined
earlier, in particular, the use of the parametrized predicate ObjNoFName (defined
in List. 1.2); e.g., line 15 specifies that a Tsk has no other field names but doneBy
and startDate. Also, note the use of the parametrized predicate ObjLUAttrib
(defined using the predicate shown in List. 1.3); e.g., line 27 specifies that all
instances of Emp (including subtypes, see the function EmpSubsCD2 defined in
List.1.6), work on at most 2 tasks.

1| // Types wrapping subtypes

2| fun MgrSubsCD2: set 0bj { Mgr}

3| fun TskSubsCD2: set 0bj { Tsk}

4| fun EmpSubsCD2: set 0bj { Mgr + Emp}

6| // Enums
7| fun PosKndEnumCD2: set EnumVal { enum_PosKnd_external +
8 enum_PosKnd_fullTime + enum_PosKnd_partTime T

w|// Values and relations in cd2
11| pred cd2 {

13 // Definition of class Tsk
14 ObjAttrib[Tsk, startDate, type_Date]
15 ObjNoFName [Tsk, FName - doneBy - startDate]

17 // Definition of class Emp

18 ObjAttrib [Emp, kind, PosKndEnumCD2]

19 ObjNoFName [Emp, FName - kind - mngBy - worksOn]
20
21 // Definition of class Mgr

22 ObjAttrib[Mgr, kind, PosKndEnumCD2]

23 ObjNoFName [Mgr, FName - kind - mngBy - worksOn]
24
25 // Assoctations

26 BidiAssoc [EmpSubsCD2, worksOn, TskSubsCD2, doneBy]
27 ObjLUAttrib [EmpSubsCD2, worksOn, TskSubsCD2, 0, 2]
28 ObjLUAttrib [TskSubsCD2, doneBy, EmpSubsCD2, 1, 1]
29
30 ObjLUAttrib [EmpSubsCD2, mngBy, MgrSubsCD2, 0, 1]
31 ObjL [MgrSubsCD2, mngBy, EmpSubsCD2, 0] }

Listing 1.6. Subtyping functions and the predicate for cdl.v2

As an optional optimization, the transformation identifies and ignores syn-
tactically equal attributes of same-name classes and common enumeration values
between the two CDs. By definition, such attributes and enumerations will not
be a necessary part of any diff witness and thus they can be ignored. Note that
this is done on the flattened model, that is, while considering also inherited at-
tributes. In addition to faster performance, this has the very important effect of
reducing the size of the problem for Alloy, and hence, let us increase the maxi-
mum number of instances — Alloy’s scope — in finding a witness, while keeping
the size of the SAT problem small, and thus better cope with the bounded anal-
ysis limitation. In particular, in the presence of large CDs, it allows us to find

differences that we were unable to find otherwise.

5 Implementation and Evaluation

We have implemented cddiff and integrated it into a prototype Eclipse plug-in.
The input for the implementation are UML/P CDs, textually specified using
MontiCore grammar and generated Eclipse editor [16,24]. The plug-in trans-
forms the input CDs into an Alloy module and uses Alloy’s APIs to analyze
it and to produce diff witnesses. Witnesses are presented to the engineer using
MontiCore object diagrams. The complete analysis cycle, from parsing the two
selected CDs, to building the input for Alloy, to running Alloy, and to translating
the Alloy instances that were found, if any, back to MontiCore object diagrams,
is fully automated.

5.1 Browsing diff witnesses

The plug-in allows the engineer to compare two selected CDs, and to browse
the diff witnesses found, if any. Fig. 5 shows an example screen capture, where
the engineer has selected to compare cdl.vl (left) and cdl.v2 (right), which we
presented in Sect. 2, and is currently browsing one of the two diff witnesses that
were found. This witness is an object diagram with a full-time employee handling
three tasks.

Clicking Compute computes the diff witnesses and shows a message telling the
engineer if any were found. The diff witness is textually displayed as an object
diagram in the central lower pane. The Next and Previous buttons browse for
the next and previous diff witnesses. The Switch Left/Right button switches
the order of comparison. The Settings button opens a dialog that allows the
engineer to set values for several parameters, such as the scope that Alloy should
use in the computation and the activation of various filters and abstractions (see
Sect. 6).

5.2 High-level evolution analysis

Another application enabled by the plug-in is high-level evolution analysis. The
plug-in supports a compare command: given two CDs, c¢d; and cds, and a scope
k, the command checks whether one CD is a refinement of the other, are the
two CDs semantically equivalent, or are they semantically incomparable (each
allows object models the other does not allow). Formally, compare(cd, cda, k)
returns one of four answers:

<k if cddiff ,(cdy, cde) = 0 and cddiff j,(cda, edy) # 0
> if cddiff ,(cdy, cde) # 0 and cddiff j,(cda, edy) = 0
=, if cddiff (cd1,cdz) = 0 and cddiff 1. (cda, cdy) = 0
<>p if eddiff ;,(cdy, eds) # O and cddiff ,(cda, cdy) # 0

The subscript k£ denotes the scope used in the computation.
Given a reference to a series of historical versions of a CD, as can be retrieved
from the CD’s entry in a revision repository (such as SVN, CVS etc.), the plug-in

= CDDiff Compare &2

package examples cd; -
Iclassdiagram EMTv1 {

Emp {

class
Posknd kind:

class Mgr;
class Tsk {
Date startDate:;
enum PosKnd {full Time, part Time; }

association Management [*] Emp {mng) > {mngBy) Mar [0..1];

package examples cd:

|»

association Tasking [1] Emp (doneBy) — (worksOn) Tek [0.7]; __|

fiagram EMTv2 {

Emp {

class
PosKnd kind;

class Mar extends Emp;

class Tsk {
Date start Date;

enum PosKnd {full Time, part Time, extemal; }

association Management [*] Emp (mng) -> {mngBy) Mar [0..1];

association Tasking [1] Emp (doneBy) — (worksOn) Tek [0..2]; __|

o of

-

Kl

'/ Diff Witness #3 for EMTv1.cd vs. EMTv2.cd
'/ Generated with scope =5

ipackage temp:
lobjectdiagram od {
emp:Emp {
) Posknd kind = full Time
tsk0:Tsk O

tsk1:Tsk &
tsk2:Tsk

link emp [worksOn] - tsk0
link emp [worksOn] - tsk 1
link emp [worksOn] - tek2

] o

Compu‘tel Previous W‘rtnessl Meat Wrtnessl Set F‘arametersl Switch Left/Right |

Fig. 5. A screen capture from Eclipse, showing a view from the prototype plug-in for
cddiff . Two class diagrams that were selected by the user, corresponding to cdl.v1 and
cdl.v2 of Fig. 1, are shown at the upper part of the screen. A generated diff witness,
consisting of an object model that includes a full-time employee with three tasks, is
displayed at the lower part of the screen.

can use the compare command to compute a high-level analysis of the evolution
of the CD: which new versions have introduced new possible implementations
relative to their predecessors, which new versions have eliminated possible im-
plementations relative to their predecessors, and which new versions included
only syntactical changes that have not changed the semantics of the CD.

For example, applying this evolution analysis to the examples presented in
Sect. 2 with, e.g., a scope of 5, reveals: compare(cdl.vl,cdl.v2,5) = <>3,
compare(cd3.vl, cd3.v2,5) = <5, and compare(cdb.vl, cd5.v2,5) = =s5. Thus,
it shows (within the selected scope), that cdl.vl and e¢dl.v2 are incomparable
(each allows object models that are not allowed by the other), that cd3.v1 is
a refinement of cd3.v2 (the latter allows all the object models that are allowed
by the former, and some more), and that ed5.v1 and cd5.02 have equivalent
semantics (one is a correct refactoring of the other).

5.3 Performance

We report the performance of the plug-in in generating diff witnesses. Experi-
ments were done using Alloy version 4.1.10 with SAT4J [30], on a laptop com-
puter, Intel Dual Core CPU, 2.8 GHz, with 4 GB RAM, running Windows Vista.

Table 1 shows results from computing diff witnesses for the three examples
presented in Sect. 2 using different scopes. Each example is reported twice, com-
puting the differences in both directions. The column titled Vars / primary
vars / clauses reports on the SAT formula created by Alloy. The column ti-
tled Alloy time reports the time it took Alloy to find the first diff witness
(building the formula + finding the instance). The column titled # Witnesses
reports on the total number of witnesses found by the plug-in (we compute only
the first 20 witnesses). The rightmost column reports the total time it took for
the plug-in to compute all (up to 20) witnesses. All timing data is reported in
milliseconds.

Table 2 shows the results from computing diff witnesses for several versions
of CDs from a library example (The CDs of the library example are available for
download as supporting materials in [31]). The CDs in this example include 11
classes, 4 enumerations (with average of 4 values each), 7 associations (with most
multiplicities * or 1..x), an average of 4 attributes per class (some classes have
6 attributes), and an inheritance hierarchy of depth 3. The columns in Table 2
are the same as the ones in Table 1.

On the one hand, the performance results show that for relatively small
models, computing diff witnesses using our approach runs very fast or at least in
reasonable times. On the other hand, the results show that for large models, or
ones that require a high scope, performance may not scale well, as doubling the
scope typically causes a performance slowdown of a factor of 4 or more. Given
these results, in the future, we plan to develop heuristics to improve the scala-
bility of eddiff, using, e.g., abstraction / refinement techniques, decomposition
for early detection of independent sub models, etc. See the short discussions in
the next section.

Finally, as can be seen from the table, in all cases where witnesses exist, the
plug-in has found 20 witnesses (and could have perhaps found more if we would
have continued to look for more witnesses). This points to a limitation in cddiff,
where despite the symmetry breaking heuristics employed by Alloy, many of
the witnesses found are rather similar and thus not interesting. To address this
limitation, we have defined and implemented a filtering mechanism. We discuss
this in Sect. 6.1.

6 Extensions: Filtering and Abstraction

6.1 Filtering diff witnesses

One limitation of cddiff and its computation through Alloy as presented in
previous sections, is related to the usefulness of the set of witnesses that we
find. In some cases, the automatically generated set contains many very similar

Name Scope| Vars/p. vars/clauses| Alloy time (ms)| # Wit.| Plug-in time (ms)
Ex. 1 5 4079 / 234 / 9106 54 + 11 20 281
Ex. 1 rev. 5 4079 / 234 / 9092 44 + 7 20 212
Ex. 1 10| 13664 / 704 / 33386 265 + 29 20 634
Ex. 1 rev. 10| 13664 / 704 / 33357 253 + 20 20 603
Ex. 1 20| 49834 / 2394 / 126446 1740 + 156 20 3472
Ex. 1 rev. 20| 49834 / 2394 / 126387 1786 + 112 20 2970
Ex. 2 5 883 /72 / 2014 82 0 11
Ex. 2 rev. 5 883 / 72 / 2014 8+ 1 20 76
Ex. 2 10 3613 / 242 / 9244 40 4 2 0 44
Ex. 2 rev. 10 3613 / 242 / 9244 40 + 5 20 164
Ex. 2 20| 14713 / 882 / 39484 337 + 10 0 348
Ex. 2 rev. 20| 14713 / 882 / 39484 347 + 18 20 814
Ex. 3 5 1165 / 77 / 2665 10 4+ 3 0 14
Ex. 3 rev. 5 1165 / 77 / 2665 10 + 3 0 14
Ex. 3 10 4455 / 252 / 11020 56 + 28 0 84
Ex. 3 rev. 10 4455 / 252 / 11020 49 + 20 0 70
Ex. 3 20| 17575 / 902 / 45010 390 + 388 0 780
Ex. 3 rev. 20| 17575 / 902 / 45010 397 + 404 0 802

Table 1. Results from computing diff witnesses for the three examples presented in
Sect. 2, using different scopes. Each example is reported twice, computing the differ-
ences in both directions. The column titled Vars / p. vars / clauses reports on the
SAT formula created by Alloy. The column titled Alloy time reports the time it took
Alloy to find the first diff witness (building the formula + finding the instance). The
column titled # Wit. reports on the total number of witnesses found by the plug-in
(we compute up to 20 witnesses). The rightmost column reports the total time it took
for the plug-in to compute all (up to 20) witnesses. All timing data is reported in
milliseconds.

and thus possibly uninteresting witnesses. This is true despite the symmetry
reduction heuristics employed by Alloy. For example, assuming a difference in
multiplicities of * and 0..m between employees and tasks, all object models with
one or more employees, where at least one employee has more than m tasks
are diff witnesses. Indeed, all such witnesses (up to the specified scope) may be
returned by our computation. Thus, we look for ways to improve the usefulness
of the computation by filtering out ‘uninteresting witnesses’ and keeping a more
succinct yet informative set of witnesses.

To address this problem, we have defined and implemented a filtering mech-
anism. At every stage of the computation, given the set of witnesses that was
already found, the mechanism supports the filtering of witnesses that (1) only in-
clude objects of classes instantiated in previously found witnesses (NNC), (2) only
include types of associations appearing in previously found witnesses (NNA), and
(3) only include combinations of classes and associations appearing in previously
found witnesses (NNCA). For example, recalling Fig. 2, after om; is found, when
using the first filter NNC, all additional object model diff witnesses consisting

Name Scope Vars/p. vars/clauses| Alloy time (ms)|# Wit.| Plug-in time (ms)
V1 vs. V2 5 10735 / 429 / 28947 173 + 27 20 536
—rev. — 5 10735 / 429 / 28932 166 + 17 20 592
V1 vs. V2 10| 42590 / 1544 / 120542 1370 + 68 20 2476
—rev. — 10| 42590 / 1544 / 120512 1250 + 56 20 2338
V2 vs. V3 5 10947 / 429 / 29522 172 4 31 0 206
—rev. — 5 10947 / 429 / 29523 171 4 30 0 206
V2 vs. V3 10| 43442 / 1544 / 123257 1344 + 109 20 2761
—rev. — 10| 43442 / 1544 / 123258 1422 + 97 20 2432
V3 vs. V4 5| 46347 / 1562 / 124413 1102 + 125 20 2135
—rev. — 5| 46347 / 1562 / 124368 1093 + 219 20 2622
V3 vs. V4 10| 120807 / 3997 / 331983 5583 + 812 20 9821
—rev. — 10| 120807 / 3997 / 331903 5617 + 384 20 11103
V4 vs. Vb 5| 33380 / 1144 / 91631 678 + 173 20 1791
—rev. — 5/ 33380 / 1144 / 91617 674 + 66 20 1660
V4 vs. V5 10| 93995 / 3199 / 263066 4016 + 780 20 8241
—rev. — 10| 93995 / 3199 / 263042 4047 + 291 20 7051

Table 2. Results from computing diff witnesses for the library example, using different
scopes. Each example is reported twice, computing the differences in both directions.
Columns are the same as the ones in Table 1.

of only employees, tasks, and managers, would be filtered out from the results
(thus, in this case, after om; is found, no more diff witnesses will be reported).

Table 3 shows the results of applying our filtering mechanisms to the diff
witnesses computation of cddiff. We report on applying the filters to the exam-
ples shown in Sect. 2 and to the library example (the same examples considered
in Sect. 5.3). Note that the cases where there are no diff witnesses are omitted
from the table because they are irrelevant for the filtering issue.

In all cases we first ran cddiff without the filters and saw that it produces at
least 20 diff witnesses. Then we ran it again, each time with a different filter. The
table shows the effectiveness of the filters in significantly reducing the number
of witnesses. Moreover, the remaining witnesses are guaranteed to be rather
different from one another and thus interesting for the engineer. Note, however,
that the effectiveness of these filters depends, to a certain extent, on the order
in which Alloy finds the instances, which, unfortunately, is undefined. Thus, for
example, we may end up with a different set of witnesses each time we run
cddiff with the same two CDs as input. Also, a larger scope does not guarantee
that we are left with more witnesses after filtering (see, e.g., in the last section
of Table 3, increasing the scope from 5 to 10 for Lib. V4 vs. V5 rev. reduced the
number of witnesses that passed the filters from 3/2/4 to 3/1/4).

The filters described above and are reported on in the experiments can be
considered incremental or online filters, because they are applied to the results
online, as they are found during the computation. Alternatively, we may suggest
static filters, which take the complete set of all the computed diff witnesses (up

Name Scope| # Wit.| # After filtering by NNC / NNA / NNCA
Ex. 1 5 20 2/3/3
Ex. 1 rev. 5 20 3/2/4
Ex. 1 10 20 2/2/3
Ex. 1 rev. 10 20 3/3/6
Ex. 2 rev. 5 20 2/1/3
Ex. 2 rev. 10 20 1/1/2
Lib. V1 vs. V2 5 20 5/4/5
Lib. V1 vs. V2 rev. 5 20 4/2/4
Lib. V1 vs. V2 10 20 2/2/3
Lib. V1 vs. V2 rev. 10 20 4/2/4
Lib. V2 vs. V3 10 20 1/3/6
Lib. V2 vs. V3 rev. 10 20 5/3/6
Lib. V3 vs. V4 5 20 3/2/1
Lib. V3 vs. V4 rev. 5 20 4/1/4
Lib. V3 vs. V4 10 20 4/3/4
Lib. V3 vs. V4 rev. 10 20 4/2/6
Lib. V4 vs. V5 5 20 3/2/4
Lib. V4 vs. V5 rev. 5 20 3/2/4
Lib. V4 vs. V5 10 20 3/2/4
Lib. V4 vs. V5 rev. 10 20 3/1/4

Table 3. Results from applying filters to the examples shown in Sect. 2 and to the
library example (the same examples considered in Sect. 5.3). Note that the cases where
there are no diff witnesses are omitted from the table, because these are not relevant
to the filters.

to the given scope), apply a classification based on some criteria, and then out-
put a representative witness from each equivalence class. For example, a possible
criteria for classification may be the set of classes represented in the diff witness
object model. Two diff witnesses would be considered equivalent if they contain
object instances from exactly the same set of classes. This would ensure variabil-
ity in the set of representatives that is included in the final output. Note that
the witnesses provided by the incremental filter NNC, which we described above,
can all be viewed as representatives of different equivalence classes. However,
the alternative static filter variant is better, as its output may be more complete
and include representatives of additional equivalence classes.

The use of the different filters in our plug-in is optional. Further evaluation
of the effectiveness of these filters and the development of additional ones are
left for future work.

6.2 Abstraction

Abstraction, a fundamental concept in model-driven engineering, has an impor-
tant role in the context of CD comparisons. Specifically, two models may be
equivalent at one level of abstraction but different in a less abstract level. Thus,

the level of abstraction of interest should be defined by the engineer applying the
comparison, who may be aware that the models at hand differ at a certain de-
tailed level, but would be interested in comparing them at a higher level, where
they are supposedly equivalent.

To this end, we have defined and implemented an attribute abstraction. With
this abstraction in effect, cddiff ignores differences that are caused only by local
changes to the attribute lists of the classes in the diagrams. That is, all class
attributes of primitive or library types are abstracted away, so that two CDs
whose sole difference is at the attributes level are considered equivalent. For
example, in Fig. 4, if an attribute ID is added to the class Employee (in only one
of the CDs) or to the abstract class Person, the two CDs are still considered
semantically equivalent under the attribute abstraction.

The attribute abstraction becomes useful when the engineer is aware of
attribute-level differences resulting from local changes, but is interested in check-
ing for more global semantic differences, if any. Another application of this ab-
straction relates to performance and scope. Given two large CDs, with many
classes or many attributes per class, one can start by a comparison with the
abstraction in effect. If a difference is found, indeed this proves that the CDs’ se-
mantics are different. If a difference is not found, however, one has no choice but
to make the comparison again with a higher scope or without the abstraction.

As a concrete example, we have compared the performance and completeness
of cddiff with and without the attribute abstraction when running on CDs from
the library example. Recall that in this example, each CD has 11 classes and the
average number of attributes per class is 4. The results are shown in Table 4.
On the one hand, the results show that the abstraction can reduce the size
of the problem for Alloy and accelerate the computation of the diff witnesses.
On the other hand, as expected, the analysis with abstraction is incomplete: in
some cases it does not find all the diff witnesses that can be found without the
abstraction. For example, the results for V3 vs. V4 with scope 5 show that 20
witnesses were found without abstraction, but none were found with abstraction.
Interestingly, in the case of V4 vs. V5, the abstraction caused Alloy to construct
an empty formula: the only differences between V4 and V5 are in some attributes
and thus, without them, Alloy’s formula construction and minimization was able
to directly reduce the differencing predicate to false. In contrast, in the case of V2
vs. V3, the size of the formula constructed by Alloy, with or without abstraction,
was the same. This happened because the differences between V2 and V3 are all
not in the attributes, and so the optimization we use, of removing same-name
attributes from same-name classes (see the end of Sect. 4.3), has the same effect
as the attribute abstraction.

Defining and implementing additional abstractions to be supported by cddiff,
e.g., an abstraction based on the composition hierarchy between classes or the
containment hierarchy of packages and classes, is left for future work.

Name Scope| Vars/p. vars/clauses| Alloy time (ms)| # Wit.| Plug-in time (ms)
V2 vs. V3 5 10947/429/29522 168 + 30 0 202
~ w./abs. — 5| 10947/429/29522 165 + 39 0 207
V2 vs. V3 10| 43442/1544/123257 1302 4 114 20 2652
—w./abs. -| 10| 43442/1544/123257 1371 + 108 20 2577
V3 vs. V4 5| 46347/1562/124413 1123 + 97 20 2159
~ w./abs. — 5| 12052/486/34336 269 + 45 0 320
V3 vs. V4 10| 120807/3997/331983 5547 + 731 20 9508
— w./abs. — 10| 51302/1756/143631 1747 + 153 20 3161
V4 vs. Vb 5| 33380/1144/91631 673 + 173 20 1681
— w./abs. — 5 0/0/0 184 + 0 0 187
V4 vs. Vb 10| 93995/3199/263066 4091 + 802 20 8154
~w./abs.-| 10 0/0/0 1540 + 0 0 1542

Table 4. Results from computing diff witnesses for the library example, with and
without the attribute abstraction. Columns are the same as the ones in Table 1.

7 Discussion and Future Directions

We discuss some limitations of our work and list related future work directions.

7.1 Bounded analysis and the small scope hypothesis

The use of Alloy, and consequently, encoding the problem of computing the
diff witnesses as an instance of SAT, carries a significant price: all analysis is
bounded to the user-specified scope. If a witness is found, we know the CDs’
semantics are different; if no witness is found, we do not know whether the CDs
have equal semantics or there still is a witness of a larger size. Recall that by
size we mean the maximal number of objects in the object model. As a simple
example, assuming a difference in multiplicities, between * and 0..m, a witness
of size < m does not exist. In this sense, the analysis is sound but incomplete.
It is important to note, though, that for a given scope k, the analysis is sound
and complete: if a witness of size < k exists, it is found.

Nevertheless, our experience with CD, as well as an informal survey we have
conducted by checking hundreds of CDs that appear in several textbooks and in
different projects, e.g., the meta-model of the UML (available in [27]), showed us
that while the number of classes and associations in large CDs can be high (we
have seen examples of CDs with more than 100 classes), the multiplicities used
on associations are typically 0..1, 1, 1..x, and *. Multiplicities that use specific
numbers greater than 1 (e.g., a polygon class that has 3..x sides, a panel that
has 1..10 buttons), are rather rare.

Thus, as the scope limitation is relevant mostly to the multiplicities, we
adapt the small scope hypothesis of [13] to our problem domain, and suggest
that in many cases, although the CDs involved may be large and include many
classes and associations, witnesses for their differences could be rather small.

Moreover, the optimization suggested at the end of Sect. 4.3 helps us in coping
with reducing the size of the problem for Alloy.

Still, given large CDs, or diagrams with no object models of small size, a
symbolic technique or an abstraction/refinement approach may be recommended
and required in order to allow our analysis to scale (see also subsection 6.2).
Alternatively, it may be possible to identify cases where one can formally prove
that a certain scope is ‘good enough’, that is, it may be possible to find sufficient
conditions on the two CDs that will guarantee that a bounded analysis in this
case is as complete as an unbounded one. We leave these directions for future
research work.

7.2 Integration with operation-based and syntactic differencing

Our approach to semantic differencing is state-based rather than operation-based
(on the distinction between the two see [23]). That is, the input for c¢ddiff consists
only of the two versions of the CD, and includes no information about the edit
operations, if any, that have led from the first to the second version. Some works,
however, concentrate on operation-based differencing, or take the two versions
and aim to reconstruct a (shortest) series of edits (additions, deletions, updates)
that leads from one version to the other (see the related work discussion in
Sect. 8). Moreover, our approach to differencing is semantic, while most related
comparison approaches are syntactic.

Thus, it may be useful to combine syntactic and operation-based differencing
with state-based semantic differencing of class diagrams. For example, one may
extend the applicability of semantic differencing in comparing diagrams whose
elements have been renamed or moved in the course of evolution, by applying
a syntactic matching (see, e.g., [9]) before computing a semantic differencing.
This would result in a mapping plus a set of diff witnesses. As another example,
one may find ways to use information extracted from syntactic differencing as
a means to localize and thus improve the performance of semantic differencing
computations.

We leave these ideas for future work.

8 Related Work

We discuss related work in the area of CD formal semantics and analyses and in
the area of model and program comparisons.

8.1 CD formal semantics and analysis

Class diagrams are part of the UML standard and are widely used for the mod-
eling of the structure of object-oriented systems, in particular in model-driven
design and development setups. As such, many researchers have discussed the
semantics of class diagrams and considered related analysis questions.

A number of works consider various analysis problems related to class dia-
grams (see, e.g., [6,20,33]). These include the finite satisfiability problem, the
consistency between UML models, the problem of class equivalence, the identi-
fication of implicit consequences etc. Some of these works use Description Logic
(DL) as their underlying formalism, some use linear programming methods, while
others include no implementation but present theoretical results about the de-
cidability and complexity of the problems at hand. In contrast, we consider the
specific problem of semantic comparison and the generation of diff witnesses. We
provide a solution, in a bounded scope, using a reduction to an Alloy module
and its analysis with a SAT solver.

Some previous works consider the use of Alloy for the analysis of class dia-
grams (see, e.g., [4,32]). These work focus on the formal definition of the trans-
formation of a single CD to an Alloy module at the level of a meta-model and
on the implementation of this transformation using a transformation language.
Possible applications of the use of Alloy to analyze a given CD are not dis-
cussed in depth in these works. In contrast, as explained earlier, the input for
our transformation consists of two CDs, and it produces a single Alloy module
whose all instances, if any, represent the required diff witnesses. Defining and
implementing our transformation using QVT or other transformation language
such as ATL [15] is possible, but is outside the focus of our work.

Finally, in another paper in this conference [19] we presented modal object
diagrams (MOD), as an extension of classical object diagrams, and a related
verification process, which verifies a CD against an MOD specification. MOD
verification is implemented using a transformation to Alloy, whose input is a CD
and an MOD. It is different than the one we use here for cddiff .

8.2 Model and program comparisons

Model and program differencing, in the context of software evolution, has at-
tracted much research efforts in recent years (see [1,10,17,22,26,34]). In con-
trast to our work, almost all studies in this area, however, present syntactic
differencing, at either the concrete or the abstract syntax level.

Alanen and Porres [1] describe the difference between two models as a se-
quence of elementary transformations, such as element creation and deletion
and link insertion and removal; when applied to the first model, the sequence
of transformations yields the second. Kuster et al. [17] investigate differencing
and merging in the context of process models, focusing on identifying dependen-
cies and conflicts between change operations. Engel et al.[10] present the use of
a model merging language to reconcile model differences. Comparison is done
by identifying new/old MOF IDs and checking related attributes and references
recursively. Results include a set of additions and deletions, highlighted in a Dif-
f/Merge browser. Mehra et al. [22] describe a visual differentiation tool where
changes are presented using editing events such as add/remove shape/connector
etc. Xing and Stroulia [34] present an algorithm for object-oriented design dif-
ferencing whose output is a tree of structural changes, reporting differences in
terms of additions, deletions, and moves of model elements, assisted by a set of

similarity metrics. Ohst et al. [26] compare UML documents by traversing their
abstract-syntax trees, detecting additions, deletions, and shifts of sub-trees.

As the above shows, some works go beyond the concrete textual or visual
representation and have defined the comparison at the abstract-syntax level,
detecting additions, removals, and shifts operations on model elements. However,
to the best of our knowledge, no previous work considers model comparisons at
the level of the semantic domain, as is done in our work.

Some works, e.g. [9, 34], use similarity-based matching before actual differenc-
ing. As our work focuses on semantics, it assumes a matching is given. Matching
algorithms may be used to suggest a matching before the application of semantic
differencing. The result of such an integration would be a mapping plus a set of
differentiating traces.

We are aware of only a few studies of semantic differencing between pro-
grams. Jackson and Ladd [14] presented a tool that summarizes the semantic
diff between two procedures in terms of observable input-output behaviors. Api-
wattanapong et al. [5] presented a behavioral differencing algorithm for object-
oriented programs based on an extended control-flow graph representation, and
a tool called JDiff, which implements it in the context of Java. Finally, Per-
son et al. [28] suggested to compute a behavioral characterization of a program
change using a technique called differential symbolic execution. We focus on
model comparison and not on program comparison. Also, while our work is
somewhat similar to these works in terms of motivation, it is very different in
terms of technology.

9 Conclusion

We presented cddiff , a semantic differencing operator for class diagrams. Unlike
existing approaches to model’s comparison, cddiff performs a semantic compar-
ison and outputs a set of diff witnesses, each of which is an object model that
is possible in the first CD and is not possible in the second. We have formally
defined cddiff, described the technique to compute it, and demonstrated its ap-
plication in comparing CDs within the Eclipse IDE. When applied to the version
history of a given CD, cddiff provides a semantic insight into its evolution, which
is not available in existing syntactic approaches.

We have implemented cddiff and applied it to several examples. We have
extended the basic cddiff technique with a filtering mechanism that filters out
‘uninteresting witnesses’ and reports a more succinct yet informative set of wit-
nesses to the engineer. We have also extended the basic cddiff technique with
an attribute abstraction mechanism. This abstraction becomes useful when the
engineer is aware of attribute-level differences resulting from local changes, but
is interested in checking for more global semantic differences, if any. It is also
useful in addressing the scope limitation and in improving cddiff performance.

We discussed a number of challenges and directions for future work in Sect. 7,
including the development of heuristics to improve the performance of cddiff and
allow it to scale. An interesting future work is to extend cddiff with support for

abstraction beyond the attribute abstraction we have already defined and im-
plemented. Another direction for future work is the integration of cddiff with
existing approaches to matching and syntactic differencing, in particular as a
means to improve its performance and the usefulness of its results to the en-
gineers. The usefulness of cddiff to engineers, in particular in comparison with
existing syntactic approaches, should be empirically evaluated.

Finally, in a recent paper [18] we have described our more general vision on
semantic model differencing. Thus, cddiff is part of a larger project [31], aiming
to apply the idea of semantic differencing and the computation of diff witnesses
to other modeling languages, including, e.g., activity diagrams, statecharts, and
feature diagrams. We hope to report on our work in these directions in future
papers.

Acknowledgments We are grateful to Martin Schindler for defining the Mon-
tiCore language support for CDs. We thank Smadar Szekely and Guy Weiss
for their expert advice on Eclipse plug-in development. We thank Eric Bodden,
David Lo, and the anonymous reviewers for comments on a draft of this paper.

References

1. M. Alanen and I. Porres. Difference and Union of Models. In Proc. 6th Int. Conf.
on the UML, volume 2863 of LNCS, pages 2—-17. Springer, 2003.

2. Alloy Analyzer website. http://alloy.mit.edu/. Accessed 4/2011.

3. K. Altmanninger. Models in Conflict - Towards a Semantically Enhanced Version
Control System for Models. In H. Giese, editor, MoDELS Workshops, volume 5002
of LNCS, pages 293—-304. Springer, 2007.

4. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On challenges of model trans-
formation from UML to Alloy. Software and Systems Modeling, 9(1):69-86, 2010.

5. T. Apiwattanapong, A. Orso, and M. J. Harrold. JDiff: A differencing technique
and tool for object-oriented programs. Autom. Softw. Eng., 14(1):3-36, 2007.

6. D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning on UML class diagrams.
Artif. Intell., 168(1-2):70-118, 2005.

7. M. Broy, M. V. Cengarle, H. Grénniger, and B. Rumpe. Definition of the System
Model. In K. Lano, editor, UML 2 Semantics and Applications, pages 61-93. Wiley,
20009.

8. M. V. Cengarle, H. Gronniger, and B. Rumpe. System Model Semantics of Class
Diagrams. Informatik-Bericht 2008-05, Technische Universitat Braunschweig, 2008.

9. EMF Compare. http://www.eclipse.org/modeling/emft/?project=compare. Ac-
cessed 4/2011.

10. K.-D. Engel, R. F. Paige, and D. S. Kolovos. Using a Model Merging Language
for Reconciling Model Versions. In ECMDA-FA, volume 4066 of LNCS, pages
143-157. Springer, 2006.

11. A. Evans, R. B. France, K. Lano, and B. Rumpe. The UML as a Formal Modeling
Notation. In Proc. UML, volume 1618 of LNCS, pages 336-348. Springer, 1998.

12. D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of “Seman-
tics”? IEEE Computer, 37(10):64-72, 2004.

13. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.
27.
28.
29.
30.

31.
32.

33.

34.

D. Jackson and D. A. Ladd. Semantic Diff: A Tool for Summarizing the Effects of
Modifications. In ICSM, pages 243-252. IEEE Computer Society, 1994.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation
tool. Sci. Comput. Program., 72(1-2):31-39, 2008.

H. Krahn, B. Rumpe, and S. Vilkel. MontiCore: a framework for compositional
development of domain specific languages. International Journal on Software Tools
for Technology Transfer (STTT), 12(5):353-372, 2010.

J. M. Kiister, C. Gerth, and G. Engels. Dependent and Conflicting Change Oper-
ations of Process Models. In R. F. Paige, A. Hartman, and A. Rensink, editors,
ECMDA-FA, volume 5562 of LNCS, pages 158-173. Springer, 2009.

S. Maoz, J. O. Ringert, and B. Rumpe. A manifesto for semantic model differenc-
ing. In J. Dingel and A. Solberg, editors, MODELS 2010 Workshops, volume 6627
of LNCS. Springer, 2011.

S. Maoz, J. O. Ringert, and B. Rumpe. Modal object diagrams. In Proc. 25th
Euro. Conf. on Object Oriented Programming (ECOOP’11), 2011. To appear.

A. Maraee and M. Balaban. Efficient reasoning about finite satisfiability of UML
class diagrams with constrained generalization sets. In D. H. Akehurst, R. Vo-
gel, and R. F. Paige, editors, FCMDA-FA, volume 4530 of LNCS, pages 17-31.
Springer, 2007.

T. Massoni, R. Gheyi, and P. Borba. A UML Class Diagram Analyzer. In CS-
DUML, pages 143-153, 2004.

A. Mehra, J. Grundy, and J. Hosking. A generic approach to supporting diagram
differencing and merging for collaborative design. In ASE, pages 204-213. ACM,
2005.

T. Mens. A state-of-the-art survey on software merging. IEEE Trans. Software
Eng., 28(5):449-462, 2002.

MontiCore project. http://www.monticore.org/.

S. Nejati, M. Sabetzadeh, M. Chechik, S. M. Easterbrook, and P. Zave. Matching
and merging of statecharts specifications. In ICSE, pages 54-64. IEEE Computer
Society, 2007.

D. Ohst, M. Welle, and U. Kelter. Differences between versions of UML diagrams.
In Proc. ESEC / SIGSOFT FSE, pages 227-236. ACM, 2003.

OMG. Unified Modeling Language (UML) Superstructure v2.1.2.
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF. Accessed 4/2011.

S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu. Differential Symbolic
Execution. In SIGSOFT FSE, pages 226-237. ACM, 2008.

B. Rumpe. Modellierung mit UML. Springer, 2004.

SAT4J project. http://www.satdj.org/. Accessed 4/2011.

Semantic diff project. http://www.se-rwth.de/materials/semdiff/.

S. M. A. Shah, K. Anastasakis, and B. Bordbar. From UML to Alloy and back
again. In S. Ghosh, editor, MoDELS Workshops, volume 6002 of LNCS, pages
158-171. Springer, 2009.

R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using description
logic to maintain consistency between UML models. In P. Stevens, J. Whittle, and
G. Booch, editors, UML, volume 2863 of LNCS, pages 326—340. Springer, 2003.
Z. Xing and E. Stroulia. Differencing logical UML models. Autom. Softw. Eng.,
14(2):215-259, 2007.

