
Chapter 4

Composition of Languages, Models and
Analyses
Carolyn Talcott, Sofia Ananieva, Kyungmin Bae, Benoit Combemale, Robert
Heinrich, Mark Hills, Narges Khakpour, Ralf Reussner, Bernhard Rumpe,
Patrizia Scandurra, Hans Vangheluwe

Abstract. This chapter targets a better understanding of the compositionality of analyses,
including different forms of compositionality and specific conditions of composition. Analysis
involves models, contexts, and properties. These are all expressed in languages with their own
semantics. For a successful composition of analyses it is therefore important to compose models
as well as the underlying languages. We aim to develop a better understanding of what is needed
to answer questions such as “When I want to compose two or more analyses, what do I need to
take into account?” We describe the elements impacting analysis compositionality, the relation of
these elements to analysis, and how composition of analysis relates to compositionality of these
elements.

This core chapter addresses Challenge 1 introduced in Chapter 3 of this book [Hei+21] (the
theoretical foundations — how to compose the underlying languages, models and analyses).

4.1 Introduction and Problem Statement

To tackle the complexity of systems design and development, it is necessary to use a multitude of
models describing certain aspects, or viewpoints, of the system as a whole or of its subsystems.
These models may be expressed using formalisms that provide multiple sublanguages, or special
purpose formalisms, or both. Understanding the prerequisites for model composition helps to
solve challenges in system design. If the models are specified in different languages describing a
variety of views, language composition is required. Even if the models are only augmented with
variants of extra properties, compositionality of these kinds of properties must be addressed.

Thus language, semantics, and model composition are an important basis to address the
question of how to compose analyses. One main question discussed in this chapter is when and
how language, semantics or model composition is in accordance with, or orthogonal to, analysis
composition.

For analysis of behavioural and/or quantitative aspects of a model of a system or system
component, it is important to also provide (a model of) the execution context — information
about patterns of use, and about elements that affect the behaviour but are not part of the
modelled system. Thus, we need to understand the ways context can be composed with other
contexts and with models of the system under study, and how this relates to the properties being
analysed (see also Section 2.1.6 of this book [Hei+21]).

41

[TAB+21] C. Talcott, S. Ananieva, K. Bae, B. Combemale, R. Heinrich, M. Hills, N. Khakpour, R. Reussner, B. Rumpe, P. Scandurra, H. Vangheluwe: 
Composition of Languages, Models, and Analyses. 
In: Composing Model-Based Analysis Tools, pp. 45-70. Springer, 2021. 
https://www.se-rwth.de/publications



42 CHAPTER 4. COMPOSITION OF LANGUAGES, MODELS AND ANALYSES

This chapter addresses a better understanding of what is needed to answer questions such
as “When I want to compose models or analyses, what do I need to take into account?”; “What
are the key relations among models of systems, contexts, and properties and their underlying
formalisms?” and “What do these relations tell us about composing analyses?”.

The chapter begins with a discussion of core concepts and their interrelations. Section 4.2
and Section 4.3 recall the key aspects concerning the concepts of model and analysis discussed in
detail in Chapter 2 of this book [Hei+21]. Section 4.4 takes a broad view of composition and the
relations of composition to the elements of analysis, and identifies several forms of composition.
Section 4.5 builds on the discussion of core concepts and presents a mathematical framework
characterising the relations between models, analyses and results: how analyses compose, and
how composition of the models analysed relates to the analysis results. Section 4.6 presents a
diverse sample of formalisms, composition issues, and current practice, to illustrate the ideas
presented in the earlier sections. Section 4.7 concludes with a summary of the concepts and
challenges and suggests promising research directions.

4.2 Brief Overview of Models and their Composition

Chapter 2 of this book [Hei+21] already contains a detailed definition of the basic concepts
that are needed to understand this chapter. We therefore just repeat some core concepts here.
We refer to the definition by Stachowiak [Sta73] to describe what a model is. General purpose
languages, such as the unified modeling language (UML) [BRJ98], become complex and require
analysis techniques to better handle the complexity both of the language and systems described.
Unfortunately, also analysis techniques become complex and therefore require to be decomposed.

By definition, a model has a purpose with respect to the original [Sta73], and can play one
or several roles with respect to this purpose. An engineering model typically starts by being
descriptive, and then, at design time, is viewed as prescriptive.

According to [Com+16], a modelling language defines a set of models that can be used for
modelling purposes. Various forms of syntax are possible. The semantics can, for example, be
defined in the denotational form [HR04]. As discussed in Chapter 2 of this book [Hei+21], a
sound semantic definition is very helpful to understand what shall be analysed and what the
desired outcomes of analysis techniques are.

In model-based analysis, interesting properties can vary. Thus, we use property models in
an explicit language with their own precise semantics. In the very same spirit, we use context
models to describe entities of the context, outside of the system to be built.

Composition of models in various forms is a key to cope with complexity, but not easily
achievable. Furthermore, advanced and potentially integrated forms of composite semantics,
need composition of models of different aspects, their modelling languages and finally also their
associated analysis techniques.

We use metamodelling technology [Gro06] in constructive as well as analytical tools to manage
models in an accessible form. [Com+16] defines: “A metamodel is a model describing the abstract
syntax of a language”. Composing models described in heterogeneous languages requires a com-
position of the metamodels in a useful way. Assuming that metamodels are class diagrams, we
therefore have several alternatives for integration: merging algorithms, mappings between meta-
models, and consistency relations between the metamodels. Constructive algorithmic translations
as well as relations between models can be defined explicitly using a transformation model.

4.3 Brief Overview of Analysis

Analysis is the process of answering questions about a system under study. The system may be
too complex to reason directly about it, or it may not yet exist. Thus, analysis techniques work



4.4. WHAT IS COMPOSITION? 43

with models: models of (some aspect of) the system of interest, of its context, and of the question
being asked, i.e., a property.

As proposed in Section 2.2 of this book [Hei+21], the idea of analysis can be captured formally
by the relation

M,C `T Q A

where M, C, Q, and A are (respectively) models of the system, context, question, and answer
domains, and T is an analysis technique.

Analysis can be characterised along multiple dimensions. One dimension is the level of au-
tomation. At one end of the spectrum, determining whether a property holds may be a fully
automatic process, while at the other it may involve informal social processes. Many techniques
involve user guided automation. Another dimension is whether the analysis is static or dynamic.
A static analysis works over the syntax of the input models, and usually happens at design time.
A dynamic analysis occurs during system or model execution, and may be online (monitoring)
or offline (analysis of traces from logged information). Simulation sits on the borderline.

The answer domain of an analysis can be simply a two-element set reflecting success or
failure. This is referred to as Qualitative analysis and includes checking satisfaction of a given
property. Alternatively, in a Quantitative analysis, the answer domain is richer: real numbers, a
probability distribution, or even tables and other structured data are used. Performance analysis
is an example of quantitative analysis.

Similarly to a model having a purpose, an analysis also has a purpose. We distinguish three
main kinds of purpose: analysis of model/system structure; analysis of functional aspects of
behaviour; and analysis of quality aspects of behaviour. The analysis of structure works with
syntactic descriptions, while the analysis of behaviour requires a semantic domain (and possibly
other information). The purpose of a specific analysis may be a mixture of these basic kinds of
purpose. Table 2.1 and Table 2.2 of Chapter 2 of this book [Hei+21] summarise the different
purposes and the elements (e.g., model, context) required for analysis.

Analysis techniques can be characterised by how helpful they are. When the answer produced
by an analysis is different from what is expected/desired (e.g., type inference fails, safety or
security property fails, or a performance measure is out of desired bounds), does the analysis
technique provide a reason for failure? Does it help to locate the cause? Does it help to correct
the problem? See Chapter 7 of this book [Hei+21] for more discussion of tools’ outputs and their
use.

Finally, an important consideration is the quality of an analysis. This includes different
notions of soundness: Does the analysis always give an answer? Is the answer an over- or under-
approximation? Does it produce false positives or false negatives? These represent trade-offs
of complexity and accuracy. Another quality issue is whether the analysis is repeatable (by the
same analyst) or reproducible (by an independent analyst).

4.4 What is Composition?

Figure 4.1 shows a holistic vision of composition of analyses across different syntactic and seman-
tic domains and corresponding properties of interest. In particular, disparate models of different
aspects are the main subjects to be composed/decomposed on the syntax and semantic level and
also at the metamodel level. These models include: system models, context models, property
models, and models of analysis results. Composition of analyses relates to compositionality on the
syntax and semantic level of the underlying formalisms to represent (sub)system models and con-
texts (Fi) and property models (PF i). The act of such compositions (the operation COMP) forms
a composite model formalism (COMP(F1, F2)) and a property formalism (COMPF (PF1, PF2)).
The composition of model formalisms and property formalisms enables global analysis [Cla+14].
Given a system model composed with an intended environment of use, one can formulate analysis
questions that apply to a certain set of the individual submodels. These analysis questions can



44 CHAPTER 4. COMPOSITION OF LANGUAGES, MODELS AND ANALYSES

Dagstuhl Seminar 19481 ― November 24-29, 2019 Composing Model-Based Analysis Tools

Relationship between models

?

?

?

PF1 PF2

COMPF (F1, F2)

COMPF (PF1, PF2)

?

?

?

COMP (F1, F2) F2F1

Figure 4.1: Multiple dimensions of composition. The three central columns represent two mod-
elling formalisms, F1 and F2 and their composition. Think of the top row as a metamodel, the
middle row as a system or component (syntactic) model, and the bottom row as a semantic
model. The outer columns represent properties, at each level. The question marks (‘?’) stand for
satisfaction relations. The arrows connecting nodes (dots or question marks) represent relations
such as refinement, abstraction, satisfaction, instanceof, meaningof, etc.

be managed at the level of the submodels and contexts involved, by defining and applying ap-
propriate composition/decomposition relational operators (e.g., merge, union, focus, restriction,
etc.). These operators are grounded on the semantic domains of the composed formalisms and
their supported analysis techniques.

In Section 4.4.1 we give examples of targets of composition, and in Section 4.4.2 we characterise
different forms of composition.

4.4.1 Targets of Composition

Based on the concepts described in the previous sections, for the purpose of composing modelling
languages and formalisms to enable global analysis, it is necessary to think about the elements
that are the targets of composition. These include:

1. Components (of the system under study): architectural, functional, behavioural

2. Models of aspects of the system or its components

3. Application domain — communications, image processing, manufacturing, chemical process
control, . . .

4. User-facing language composed of several elements from sublanguages

5. Analysis formalisms and techniques (possibly made of several subanalyses formalisms and
techniques) such as constraint solving, unification, model checking, or simulation

6. Syntactic domains and semantic domains of all specification languages / formalisms involved

7. Tools composed of several subtools dealing with sublanguages (or subanalyses)



4.4. WHAT IS COMPOSITION? 45

4.4.2 Forms of Composition

Considering that the modelling languages and formalisms can be integrated on the syntax and
semantics level, and that analysis techniques or the results of the analysis algorithms can be
combined, we conceive three general composition approaches:

1. Model composition (white-box composition) is the analysis input-model composition realised
by language integration (i.e., the definition of a new language from a set of individual lan-
guages, for example, by metamodel unification or weaving) [Cla+14; GRS09]. The internals
of the composed individual models are exposed at an arbitrary level of detail and open for
modifications and for analysis. Note that language composition is not always necessary for
model composition. If there is a joint language for both models, or a transformation to a
joint language, there is no need for language composition. For example, see “composition
by transformation into a joint formalism” in Chapter 11 of this book [Hei+21].

2. Result composition (black-box composition) is the composition of the analysis results. The
internals of the models remain encapsulated, only explicitly defined interoperability inter-
faces are used to access the target analysis and render back the results. Usually, a user-facing
model is translated or mapped (e.g., by a model transformation realising semantic transla-
tion [HR04]) into a concrete model of the target analysis formalism, and then the results of
the analysis are lifted back to the level of the user-facing model. Various types of black-box
composition are possible, ranging from single analysis orchestration over combined analysis
orchestration to sequential analysis orchestration of black-box analysis tools by exchanging
results. (cf. Chapter 5 of this book [Hei+21]).

3. Analysis composition (grey-box composition) is the composition of the analysis techniques
by orchestrating the steps of two or more analysis algorithms. Internal knowledge of models
may be partially exposed through interfaces to guide the coordination, but the composition
remains modularised. For example, see “composition by co-simulation” in Chapter 11 of
this book [Hei+21].

In the white-box approach, the integration of two or more languages may require additional
information in the form of a correspondence between the syntax and/or semantics of the con-
stituent languages. It accommodates highly customised composition semantics, but it is not
easily extensible, and it is easily applicable only if we have a high overlap between languages.
The UML is a well known exemplar of a compound language resulting by the integration of
several modelling formalisms properly revisited.

There has also been significant work in the language semantics community on creating modu-
lar language definitions that can be combined to form new languages. This includes work related
to algebraic specification [Bra+01], rewriting logic semantics [MB04; BM05], modular structural
operational semantics (MSOS) [Mos99; Mos02], implicitly-modular structural operational seman-
tics (I-MSOS) [MN08], monads in denotational semantics [Mog89; Mog91; Esp95], abstract state
machines [KP97], and the K framework [HŞR07; RS10]. This work has tended to focus on meth-
ods for defining reusable language feature modules (e.g., the ability to elide unused parts of the
configuration in MSOS, the use of context completion in K), which can then be reused in the
construction of a new or extended language. These would also qualify as white-box approaches
since they work directly over the formal definitions of the languages.

Black-box composition keeps the composition highly modular, allowing arbitrary analysis
tasks to be carried out and the results lifted back to the user-facing domain level as long as
they conform to the interfaces. A typical example of this approach is the common practice of
translating a user-facing model (including some temporal logic properties) into a model checker
input, and then translating back the counterexample into concepts of the user-facing model
language. However, because black-box composition cannot rely on internal structure of models,



46 CHAPTER 4. COMPOSITION OF LANGUAGES, MODELS AND ANALYSES

it can only support a fixed composition semantics that is dictated by the corresponding semantic
mapping(s) and that might be too restrictive.

The grey-box approach represents a whole spectrum of grey shades in between the white-box
and black-box approaches realised via model-based analysis coordination [Cla+14]. Coordination
can be achieved implicitly (implicit coordination), via sharing concepts with the same semantics;
the corresponding models do not exchange information explicitly, but reason about artefacts re-
lated to shared semantic concepts. Coordination can also be achieved via sharing of concepts
with different semantics; in this case, the corresponding models have to exchange information ex-
plicitly via interfaces (explicit coordination). The information exchanged can be data or control
based, and requires an orchestration model (and therefore an orchestration formalism). A typical
example of coordinated analysis is co-simulation where the coupled and possibly interacting simu-
lations of two or more models up to a fixed point can create more detailed results. Hence, grey-box
composition takes the best of the first two approaches and works well for highly heterogeneous
languages, but requires sophisticated technicality of language orchestration engines.

In order to combine together multiple analysis tools and, therefore, combine multiple results,
these forms of composition can be concretely realised by adopting specific orchestration strategies
of the analysis tools involved (see Chapter 5 of this book [Hei+21] for more details). Chapter 11 of
this book [Hei+21] illustrates how to implement the different forms of composition by discussing
examples of concrete composition operators.

4.5 A Mathematical Characterisation of Models, Analyses and
Composition

Many of the concepts we have described in the previous subsections are rather well known,
and have all been dealt with in the practical realisation of modelling processes and engineering
tools. However, to our knowledge, a general and unifying view on how to deal with composition
of analysis, and how composition of analysis relates to compositionality of models and their
semantics, contexts, and analysis algorithms, does not exist yet.

In order to provide a precise understanding of how to put all these elements in relation, this
section provides a reference conceptual framework for the classes of composition we have identified
so far. For that purpose, we use mathematical constructs that allow us to precisely define the
effects, but of course need to be embellished in very individual forms in the various domains of
software systems, analysis techniques, etc. Here we only give very short examples.

4.5.1 Model

Section 2.1.2 of this book [Hei+21] describes the concept of models where modelling formalisms
provide a syntax, here called Syn, and a semantic domain, here called Sem, that provides meaning
for syntactic elements. We formalise meaning as a semantic mapping [HR04]:

M : Syn→ Sem.

In a mathematical setting, the semantic domain describes an infinite set of possible realisations.
For simplicity, one might think of all possible “implementations”. As the semantic domain is
infinite, usually that semantic mapping is just a mathematical construction and has no algorith-
mic executability. Semantics in that sense serves as background for a precise definition of the
desired properties that can then be proven either precisely or approximately through appropriate
algorithmic analysis techniques.

Modelling languages are usually designed to describe or constrain the set of possible implemen-
tations. Therefore, by definition, a modelling language differs in its purpose from a programming
language, where usually a deterministic execution is desired. The mathematical semantics of the



4.5. MATHEMATICAL CHARACTERISATION 47

model should therefore reflect that it is a constraint on the set of implementations. To capture
this, the semantics definition is refined to a set based approach:

M : Syn→ P(Sem)

One model therefore describes a set of possible implementations. For example, a nondeter-
ministic automaton describes a set of accepted words, a class diagram describes a set of valid
object structures, and usually a behavioural description, such as an activity diagram or a Petri
net describes a set of traces. If the mapping M is appropriately defined, then mathematically a
number of constructs can be easily defined. For example, a model m ∈ Syn is consistent, exactly
if M(m) 6= ∅. Or a model m2 is a refinement of another model m1, if M(m2) ⊂M(m1).

As a consequence, it is also relatively easy to define the semantics of two (and thus arbitrary
many) models m1,m2, that describe different aspects of a system simply by using the set of
implementations that obey both models (i.e., intersection): M(m1 + m2) = M(m1) ∩M(m2).
This property allows us to, in the following discussion, only look at the single model, instead of
the usually existing set of individual artefacts developed during the project.

This general principle of semantic definitions can be applied to each kind of syntactic artefact
that is used during the development process, even if the artefacts are described in different
languages. This in particular includes property definitions and context models as well as models
of the system itself. For simplicity, we assume that for each language Syni at hand, we have an
appropriate mapping Mi:

Mi : Syni → P(Sem)

This also serves as a nice mathematical integration of different modelling languages on a semantic
level. Please note that if, e.g. in an industrial setting, various different models of different mod-
elling languages are used, an integrated semantic domain is not easy to construct. In [Bro+09a;
Bro+09b], such an effort was made for object-oriented systems as a basis for UML models.

4.5.2 Analysis

Mathematically, an analysis technique A has the very same signature as a semantic mapping M .
It analyses a model from the modelling language Syn and produces a result R of an appropriate
result domain Res:

A : Syn→ Res

As we discussed already, the purpose of an analysis, however, differs from the semantic mapping
M : usually the result domain Res is a rather simple domain, covering a huge abstraction of what
the original model described. Typical semantic domains for Res are:

• Boolean, which means that the analysis checks whether a property is true or false,

• Real Numbers R, which means that the analysis measures some kind of fitness,

• A visual representation of boolean or real numbers, which means that the analysis is mainly
dedicated for exhibiting certain information to the user.

Of course, more forms of analysis techniques are possible, especially if one analysis technique
produces only a subresult used in another analysis technique.

Because Res usually consists of finite, computable objects, we are interested in algorithmically
executable analysis techniques A as well. In complex situations, this interest in algorithmic
execution often prevents to directly use the semantics domain Sem. In that sense, we might see
analysis techniques to be algorithmic executable abstractions of the semantics, and it then makes
sense to have several analysis techniques for different purposes available.



48 CHAPTER 4. COMPOSITION OF LANGUAGES, MODELS AND ANALYSES

We furthermore might be interested in extending an analysis algorithm by an explicit defini-
tion of the desired properties (in language Syn2):

A : Syn× Syn2 → Res

Chapter 9 of this book [Hei+21] provides examples of this form of analysis.
The correctness of an analysis technique can be reasoned about. For example: a model

m ∈ Syn fulfils a binary property definition p ∈ PL of a property language PL exactly ifM(m) ⊆
MPL(p). An analysis technique A is sufficient if, for all models m ∈ Syn and for all properties
p ∈ PL, it holds that A(m, p) ⇒ (M(m) ⊆ MPL(p)). Please note that this definition only
demands an implication, because it may be that the property holds, but the analysis technique
may fail to verify this. Based on these considerations we may even compare the quality of analysis
techniques according to their results. Assuming that both A1 and A2 are correct as defined above:
A2 is better than A1, if it is more accurate, i.e. ∀m, p : A1(m, p)⇒ A2(m, p).

4.5.3 Composition

Composition has many different facets. Therefore, we need to be clear on what is to be composed:
Components in the system, models about the system, languages that describe different viewpoints
on the system, and finally analyses that calculate parts of the results about models.

In this chapter, we concentrate on the composition of analyses and therefore at first ignore
that typically the system itself is also composed. In the following, we simply assume that all
models and property definitions describe the same component. This simplification avoids the
necessity to compose semantic domains as well as semantic mappings. As a remark: Otherwise
we would need a composition technique on the semantics of the domain as well, which is of course
possible but complicates the following considerations unnecessarily. We simply assume that all
semantic mappings directly go to the same semantic domain Sem.

We also keep the above described simplification, that we look only at one model, because we
assume that we know how to semantically compose models. The discussion below includes all
forms of models, i.e., models describing the system, models describing the context of the system
and potentially also models describing interaction between both.

In the following, we give examples and mathematically define the notion of composition of
analyses according to the three forms of composition informally introduced in Section 4.4.

Simple result composition

Given two analysis techniques Ai, i ∈ {1, 2} producing individual results in their own domains
Resi based on the same model m, we can define a result composition if an appropriate operator
� is available:

A : Syn→ Res1 �Res2

by
A(m) = A1(m)�A2(m).

As each analysis is conducted in isolation in a black-box manner and only the results are composed
this adheres to the form black-box composition.

Model decomposition and result composition

We decompose a model m = m1 �m2 and then can define

A(m1 �m2) = A1(m1)�A2(m2).

This black-box composition together with the decomposition of models is very powerful, but
potentially difficult to achieve in practice. It may be that in practice, a mixture may apply:



4.5. MATHEMATICAL CHARACTERISATION 49

instead of decomposing a model into disjoint elements, it may be helpful to use algorithmically
executable abstraction functions αi : Syn → Syn, e.g. slicers, forget functions etc., and apply
the following composition:

A(m) = A1(α1(m))�A2(α2(m)).

This however works best if all available information is used, which means that no information
should be lost under the two abstractions, i.e., M(m) = M(α1(m)) ∪M(α2(m)).

Please note that it may of course be possible for each Ai to be parameterised with its own
property definition language, then obviously different properties can be considered.

Sequential composition

Parameterisation can also be used to embed the results of one analysis technique into the computa-
tion of another analysis technique. We can speak of sequential composition of analysis techniques
when the following applies:

A(m) = A2(m,A1(m)),

where the second analysis A2 consumes the results of the first and produces the overall result.
From a functional point of view, we might also argue that the analyses themselves are composed
by A = λm.A2(m,A1(m)). Sequential composition, however, still adheres to the form black-box
composition, if only results are exchanged between black-box analyses. If there is internal knowl-
edge exposed by orchestrating the steps of the analyses this is considered grey-box composition.
It might even be that several analysis techniques depend mutually on their results.

Mutually improving analysis composition

This shows a technically very interesting dependency, that in practice happens quite often. An
example is analysis coupling until a fixpoint is reached (cf. Section 5.7 of this book [Hei+21]).
The formal definitions would have the form:

Ai : Syn×Res3−i → Resi (i ∈ {1, 2})

A : Syn→ Res

A(m) = (r, s) where (r, s) = (A1(m, s), A2(m, r)).

This is an equational definition for the results r and s that needs a careful consideration to un-
derstand what the possible solutions are. Typically the mutual dependencies need to be handled
in an iterative, potentially approximating manner.

This works particularly well when, for example, an analysis technique A1 can already deliver
initial results with an “empty” input r0 and further iterations improve the result in a desired
direction. Formally, we derive an approximation using a series of results rn, sn, where for each
iteration step n ∈ N the next step is computed by sn = A2(m, rn) and rn+1 = A1(m, sn) until
the iteration can stop.

Again, mutually improving analysis composition adheres to the form black-box composition,
if only results are exchanged between black-box analyses. If there is internal knowledge exposed
by orchestrating the steps of the analyses this is considered grey-box composition.

Simulation composition

Simulation with time progress can be seen as a very special case of the above definition, where
the analysis techniques are not iteratively rerun, but the results rn, sn are iteratively constructed
in a stepwise manner.

In this grey-box composition, we probably have a timed structure on the result domain, either
in a stepwise manner Res = (N → X) or in a continuous manner Res = (R+ → X), where



50 CHAPTER 4. COMPOSITION OF LANGUAGES, MODELS AND ANALYSES

both use a set X of messages or events or values. Furthermore, the analysis techniques must be
compositional in the sense that they do not use input of a specific time point t to produce output
of a time point t2 that is earlier or equal to t, i.e., t2 > t must hold. Mathematical theories for
this kind of timing behaviour are for example given in Ptolemy [Eke+03], Focus [BS01; RR11] or
Abadi/Lamport’s TLA [AL90].

4.5.4 Composition of Contexts

As one of the components of an analysis, a context can appear as parameter to the analysis
tool, or a context model C can be composed with the system model M , for example, to turn
an open system model into a closed system model C[M ] for behavioural analysis. In the case of
a composed system model M = M1 ⊗M2, we can consider contexts C1, C2 for the component
modelsM1, M2, or a composite context C = C1⊗cC2, and form the analysis model in two ways:

(C1 ⊗c C2)[M1 ⊗M2]

or
C1[M1]⊗ C2[M2].

A challenge for future research is to identify conditions under which to choose one form over the
other.

C1[M1]

m1

M1

C2[M2]

m2

M2

M = C1[M1]     C2[M2]

C[M]

Figure 4.2: Context composition

A context may only provide part of the information needed to describe operating conditions.
Thus, composition with a context can be iterated, incrementally adding contextual information.
This is illustrated in Figure 4.2. Here, component models m1 and m2, with respective interfaces
M1 and M2, are enclosed in contexts C1 and C2, respectively, forming models represented by
C1[M1] and C2[M2] (context-model composition). Then, model M = C1[M1]⊗C2[M2] is formed
by composing the resulting models (model-model composition). M may still have undetermined
contextual elements. These can be provided by further composition with context C to obtain

C[(C1[M1]⊗ C2[M2])].

4.5.5 Compositionality of Property Satisfaction

A challenging question about all of these compositions is understanding conditions under which
properties are preserved. A related challenge is designing an analysis technique in such a way, that
no potential forms of use of a model, i.e., no forms of composition with other models, invalidate
the analysis result.

We can formalise that as follows: Given an analysis result r = A(m), composition with any
other model m2 should retain (or even improve) the result, e.g. in a simplified form, it holds
r = A(m�m2).

This, however, is often not the case in practice. For example, for performance models, adding
additional components usually reduces the performance of the already deployed components. To



4.6. EXAMPLES 51

some extent this has to do with difficulties of decomposing certain kinds of analysis techniques
without pre-defining certain additional knowledge, for example, dedicated slots of computing time
attached to each of the submodels.

It is also possible to consider an alternative direction, by using analysis techniques that do
not only produce results, but also clarify the necessary conditions for the context of a modelled
component in order to operate according to the desired properties. In this case, the analysis
technique is potentially also parameterised by a property definition used as a parameter and
produces as a result another property definition for the context, which then can be fed as a
necessary property for the models of the context. Thus, for an existing property definition
language PL we have analysis techniques of the form:

A : Syn× PL→ PL

successively or iteratively applied to the various models as described above producing improved
property definitions over time.

The nice thing with analysis techniques delivering property conditions about a modelled
component is that, for example, reusable library components can be documented with this kind
of usage conditions and newly defined components can be checked for compliance.

All these general considerations may work for certain kinds of properties, but certainly not
for all. For example, security properties are usually not easily compositional.

4.6 Examples of Formalisms, Composition Issues, and Current
Practice

To give a concrete idea of the concepts and relations discussed in the previous sections we give
an overview of several formalisms and associated modelling and analysis tools. The formalisms
range from general purpose modelling systems (rewriting logic, abstract state machines), for-
malisms designed for modelling specific aspects (hybrid automata, Palladio), and formalisms for
coordination and composition (BCOoL). Rewriting logic is a general purpose formalism that
supports language and model composition, and all three forms of composition introduced in
Section 4.4, especially for concurrent/distributed systems. Abstract state machines is a general
purpose formalism for functional behaviours, supporting black-box (result) composition. Palladio
is an approach and toolset for software architecture modelling and analysis of quality properties,
supporting model, result, and analysis composition. Hybrid automata is a formalism composed
from discrete and continuous models of behaviour that can be considered as model composition.
Grey-box (analysis) composition of hybrid systems is supported by multiple tools. GEMOC Stu-
dio is a framework for developing and composing domain-specific modelling languages (DSMLs).
Analysis composition in GEMOC Studio is provided by coordination mechanisms specified in
BCOoL.

4.6.1 Rewriting Logic and its Realisation in the Maude Language and System

Rewriting logic [Mes92; Mes12] is a logic for reasoning about change over time using rewrite
rules. Maude [Cla+07; Dur+19] is a rewriting logic language and toolset providing an efficient
implementation that supports executable specification and analysis of concurrent and distributed
systems.1 Similar to programming languages, Maude is a general purpose modelling language
with models that can be used for simulation or answering the simple question “Does the model
run?”. Being based on a formal logic, many other analyses are available as well.

Rewrite theories (Maude modules) can be used for specifying many aspects. For system mod-
els the structure/architecture is represented by terms of an equational theory and the dynamic-
s/behaviour is specified by local rewrite rules that specify how a system in a given state evolves.

1Maude is available at http://maude.cs.uiuc.edu/.

http://maude.cs.uiuc.edu/


52 CHAPTER 4. COMPOSITION OF LANGUAGES, MODELS AND ANALYSES

Context models can be represented using terms with “holes”, by adding constraints to execution
states, or by adding an explicit context component such as an environment or intruder model.
Properties are specified using equationally defined boolean functions. Properties of state/system
structure can be specified for static analysis, or for use as state properties in linear temporal logic
(LTL) formulas for the model checker. Execution traces can be captured using reflection or by
instrumenting execution states (and augmenting the rewrite rules to collect information). This
allows properties of traces to be equationally defined, and checked by evaluation.

The metatheory of rewriting logic gives a foundation for analysis algorithms implemented in
Maude. Static/structural analysis tools include the Church-Rosser checker, the coherence checker
[DM12], and the termination tool [DLM08]. Maude directly supports several forms of dynam-
ic/behaviour analysis. Prototyping/testing is supported by executing rules (modulo strategies)
using the rewrite engine. The search command provides reachability analysis (can a state satis-
fying a given property be reached, and if so how). The built-in function modelCheck allows the
user to check a system specification for satisfaction of LTL formulas where state properties are
arbitrary equationally defined boolean functions. The Maude LTLR model checker [BM15] is an
explicit state model checker supporting analysis of linear temporal logic of rewriting (LTLR) prop-
erties that involve both events (rule applications) and state predicates, including mixed properties
such as fairness. The Real-Time Maude language and tool [ÖM07] supports specification and
analysis of real-time and hybrid systems. Available analysis techniques include timed rewriting
for simulation purposes, search, time-bounded and unbounded LTL model checking, and timed
computation tree logic (TCTL) model checking.

Rewriting logic supports the formalisation of many forms of composition of models and of
analyses, including the forms discussed in Section 4.4 and Section 4.5. The following are some
examples.

1. Composition of theories by inclusion, parameterised module instantiation, or terms in a
module algebra. Here is an example from the Soft Agent modelling framework [Tal+16].
The parameterised module {SOLVE-SCP{Z :: VALUATION} defines a soft constraint
solver solveSCP using a valuation function specified in modules realising the parame-
ter theory VALUATION. The module VAL-Y-PATROL-ENERGY imports two VALUATION
modules VAL-ENERGY and VAL-Y-PATROL and forms a lexicographic composition of their
valuation functions. A module SCENARIO imports a module defining a model of patrolling
bots and the module SOLVE-SCP{val2ypatrolenergy} with the valuation parameter
Z instantiated to VAL-Y-PATROL-ENERGY. val2ypatrolenergy is a view mapping el-
ements of the theory VALUATION to their instantiation in VAL-Y-PATROL-ENERGY. In
the SCENARIO module configurations to be tested and analysed are defined.

2. Composition of models (syntax level) by term formation. In [NT20], the operation [app
; intruder] is used to compose an application model, app, with an intruder model,
intruder, to enable search for possible attacks. We can use this composition to illustrate
the general analysis judgement,

M,C `T Q A

of Section 2.2. Here M is the application model app and C is context model intruder.
The technique T is search parameterised by the form of answer desired. The query Q is a
predicate characterising attack states. The answer A can be either a boolean (yes, an attack
state is reachable), a witness attack state, or an execution trace leading to an attack state.
If the search space is finite, the answer could also be the number of (unique) attack states,
the set of attack states, or a set of execution traces containing a trace for each reachable
attack state.

3. Algebraic and logical composition of properties. Assume P1(m) and P2(m) are properties
of models ranged over by m. Then, P (m) = P1(m) @P2(m) defines the composition of the
results of evaluating the properties using operation @.



4.6. EXAMPLES 53

4. Composition of rule rewriting with external simulators. An example is a (co)-simulation
of a cyber-physical agent behaviour where the cyber (planning) behaviour is simulated
in Maude and the physical behaviour (drone or autonomous vehicle) is simulated using a
special purpose flight or vehicle simulator [Mas+17]. Simulators are coordinated by meta-
level rules and a message passing protocol. In this composition rewriting and simulation
steps are interleaved with rewriting results passed to the simulator and simulation results
passed back to the Maude. This interleaving with exchange of information can be viewed as
an instance of the Mutually improving results composition discussed in Section 4.5.3. Recall
the equation to solve is

A(m) = (r, s) where (r, s) = (A1(m, s), A2(m, r)).

In our example,m is the system model, s a command, r the system state, A1 is the simulator
which updates the state according to the new command, A2 is the cyber/Maude simulate
that decides the next command given the current state. So with r0 the initial state, we have
s0 = A2(m, r0), r1 = A1(m, s0), and so on. With a log in the state, this can incrementally
generate a trace, or performance measures such as average or minimum distance between
vehicles, (average) energy used per task, etc.

5. Symbolic search (narrowing) composes rewriting and unification (equation solving). Here
unification is used to match rule premises with state patterns that represent potentially
infinitely many specific states. The Mauda NPA protocol analysis tool [EMM06] uses this
composition to determine if a given attack pattern can be realised in a system running one
or more instances of given cryptographic security protocols.

6. Rewriting modulo constraints composes rewriting with satisfiability modulo theories (SMT)
constraint solving. In this case, states are pairs consisting of a pattern and a constraint that
finitely represent all pattern instances that satisfy the constraint. Constraints are accumu-
lated as rewrite rules are applied. An SMT solver is invoked to check that a constrained
state is consistent. An example use is to model timing properties of distance bounding and
other protocols as constraints rather than concrete numbers [NTU19].

In the above, 1-2 are examples of white-box composition, 3 exemplifies black-box composition,
and 4-6 are examples of grey-box composition.

4.6.2 Abstract State Machines and the ASMETA Analysis Toolset

Abstract state machines (ASMs) [BS03; BR18] are an extension of finite state machines (FSMs)
where unstructured control states are replaced by states comprising arbitrary complex data (i.e.,
domains of objects with functions defined on them), and transitions are expressed by named
parameterised transition rules (or simply rules) describing how the data (state function values
saved into locations) change from one state to the next. ASM models can be read as “pseudocode
over abstract data” with a well-defined semantics: at each computation step, all transition rules
are executed in parallel, leading to simultaneous (consistent) updates of a number of locations.
This basic notion of ASM has been extended to synchronous/asynchronous multi-agent ASMs
for the design and analysis of distributed systems.

ASMs are primarily tailored to the formalisation and analysis of functional system behaviour
via an iterative design process based on model refinement. Tools supporting the process are part
of the ASMETA (ASM mETAmodeling) toolset2 and provide different V&V activities (such as
model simulation, scenario-based simulation, property verification by model checking and runtime
verification to name a few). Most of these tools provide analysis support for ASMs by semantic
mapping [GRS09; HR04], i.e., via model transformations that realise semantic mappings from

2ASMeta is available at http://asmeta.sourceforge.net/ and https://asmeta.github.io/.

http://asmeta.sourceforge.net/
https://asmeta.github.io/


54 CHAPTER 4. COMPOSITION OF LANGUAGES, MODELS AND ANALYSES

ẋ = −0.1x

ṫ = 1

x ≥ 18

Off

ẋ = 3− 0.1x

ṫ = 1

x ≤ 22

On

ẋ = 5− 0.1x

ṫ = 1

x ≤ 22, t < 2

Turbo
t = 0

18 < x < 20
x < 19

x > 21

x < 20

t := 0

t := 0

Figure 4.3: A hybrid automaton H

ASM models (edited using the textual language AsmetaL [GRS08]) to the input formalism of the
target analysis tool, and then lift back the results of the analysis to the ASM level. Thus, the
type of composition commonly realised in the ASMETA analysis toolset is black-box. More details
on the specific composition strategies adopted in the ASMETA toolset are given in Chapter 5 of
this book [Hei+21].

4.6.3 Palladio

Palladio is a tool-supported approach to modelling and analysing software architectures for var-
ious quality properties [Reu+16]. Details on Palladio’s modelling language Palladio Component
Model and toolset Palladio-Bench are given in Chapter 11 of this book [Hei+21]. In the con-
text of Palladio, different forms of composition as introduced in Section 4.4 are applied. For
example, IntBIIS [Hei+17] is an approach for extending Palladio architectural models by busi-
ness process models to simulate the mutual performance impact of software systems and business
processes. IntBIIS therefore conforms to model composition. The Power Consumption Analyzer
(PCA) [Sti18] uses the results of Palladio’s software architecture simulation (mainly utilisation
of resources) to forecast power consumption of software systems at the architecture level. PCA
therefore conforms to results composition. OMPCM [HMR13] integrates the OMNeT++-based
network simulation framework INET with the architecture-level software performance prediction
of Palladio. OMPCM therefore conforms to analysis composition.

4.6.4 Hybrid Automata

Hybrid automata [Hen00; LSV03] are finite state machines extended with continuous variables.
Hybrid automata are widely used to specify cyber-physical systems that exhibit both discrete and
continuous behaviour. Such systems include automotive, avionics, robotics, and medical systems.
In a hybrid automaton, the discrete part of the system is specified using a finite state machine
with discrete states (called modes) and transitions (called jumps), and the continuous part of
the system is modelled using continuous real functions or ordinary differential equations (ODEs)
over continuous state variables. The values of continuous variables can also be changed (or reset)
when jumps happen. The parallel composition of hybrid automata is defined by synchronising
jumps with common “actions” in a way similar to the case of finite state machines.

Figure 4.3 shows a hybrid automaton modelling a simple thermostat system, adapted from
[Hen00]. Two (continuous) variables x and t represent the temperature and the timer, respectively,
and three (discrete) modes off, on, and turbo represent the status of the heater. Initially, the
mode is off, the timer t is 0, and the temperature x is any value between 18 and 20. The values
of x and t change according to the ODEs for each mode, while satisfying the invariant conditions
of the mode. For example, in the turbo mode, x and t change according to ẋ = 8 − 0.1x and
ṫ = 1 as long as the invariant conditions x ≤ 22 and t ≤ 2 hold. A jump between two modes can
be taken if the guard condition is satisfied: e.g., a jump from on to turbo can happen whenever
x < 20 holds, and in this case the value of t is reset to 0.

The behaviour of a hybrid automaton is given by continuous trajectories of modes and vari-
ables over time. Formally, each state of a hybrid automaton is a pair (q,~v) of a mode q ∈ Q and a
real-valued vector ~v ∈ Rn, where Q denotes a finite set of modes and ~v = (v1, . . . , vn) denotes the



4.6. EXAMPLES 55

0 u1 u2 d

Off On Turbo
x0

x1

x2

x3

t3

Figure 4.4: A trajectory

x ≥ 18

Off0

x ≥ 18

Offt

x ≤ 22

On0

x ≤ 22

Ont

x ≤ 22

t < 2

Turbo0

x ≤ 22

t < 2

Turbot

t = 0

18 < x < 20

x < 19

x > 21

x < 20

t := 0

t := 0

Discrete
Model HD

Continuous
Model HC

Off 7→ 〈ẋ = −0.1x, ṫ = 1〉, where x ≥ 18

On 7→ 〈ẋ = 3− 0.1x, ṫ = 1〉, where x ≤ 22

Turbo 7→ 〈ẋ = 5− 0.1x, ṫ = 1〉, where x ≤ 22 and t < 2

Figure 4.5: A composition H = HD ⊗HC

values of the continuous variables x1, . . . , xn. A finite trajectory of length d ≥ 0 is then a func-
tion τ : [0, d] → Q × Rn that describes the continuous changes of the states in the time interval
[0, d]. Excluding Zeno behaviour (with infinitely many jumps in a finite amount of time), a finite
trajectory only involves a finite number of discrete jumps in the interval [0, d]. For example, a
trajectory τ for the thermostat system is shown in Figure 4.4. Initially, τ(0) = (off, (x0, 0)). It
involves a jump from off to on at time u1, and a jump from on to turbo at time u2.

A hybrid automaton can be considered as the model composition of a finite state machine
and a continuous dynamical system. Consider the thermostat hybrid automaton H above. As
shown in Figure 4.5, the discrete part is the nondeterministic state machine HD that abstracts
from the continuous dynamics. Each mode m in the hybrid automaton H is separated into
two states m0 and mt in HD, where m0 and mt correspond to the beginning and the end,
respectively, of a trajectory fragment with mode m. Any trajectory of H corresponds to a path
in the state machine HD. For example, the trajectory in Figure 4.4 corresponds to the path:
(off0, x0, 0), (offt, x1, u1), (on0, x1, u1), (ont, x2, u2), (turbo0, x2, 0), (turbot, x3, t3). The continuous
part is the continuous dynamical system HC that abstracts from the transition structure. As
expected, each trajectory fragment with mode m for H is a valid signal of HC .

The safety verification problem is to check whether there exists an “error” trajectory that
violates safety requirements. As usual, there are different ways to specify the safety requirements
of hybrid automata, such as invariant properties of reachable states [Hen00], temporal logic
properties of continuous trajectories [MN04], etc. The safety verification problem is in general
undecidable for hybrid automata [Hen00]. Nevertheless, there exist several tools that can approx-
imately verify the absence of error trajectories up to given bounds for different classes of safety
properties, including SpaceEx [Fre+11], HyComp [Cim+15], Flow* [CÁS13], dReach [Kon+15],
StlMC [BL19], etc. Each of those tools provides its own modelling language to specify hybrid
automata. It is worth noting that these modelling languages usually have different syntaxes but
have the same semantics, namely, hybrid automata.

Safety verification algorithms for hybrid automata sometimes exploit this composition relation
to combine different analysis techniques for discrete and continuous dynamical systems. Consider
a hybrid automaton H = HD ⊗HC . An error trajectory exists in the hybrid automata H, if a
corresponding path exists both in the discrete part HD and in the continuous part HC . Based



56 CHAPTER 4. COMPOSITION OF LANGUAGES, MODELS AND ANALYSES

on this observation, we can first find an erroneous sequence in HD, e.g., using an SMT-based
model checking algorithm for finite state machines, and then try to build a concrete continuous
trajectory, e.g., using linear/non-linear real arithmetic solvers or ODE solvers. For example,
SMT-based techniques for hybrid automata [Cim+15; Kon+15; BL19] can be characterised as
this analysis composition approach, where the orchestration mechanism is the DPLL(T ) SMT
framework.

4.6.5 The GEMOC Studio and BCOoL

The GEMOC Studio3 provides generic components through Eclipse technologies for the devel-
opment, integration, and use of heterogeneous executable modelling languages [Bou+16]. This
includes

• metaprogramming approaches and associated execution engines to design and execute the
behavioural semantics of executable modelling languages,

• efficient and domain-specific execution trace management services, model animation ser-
vices,

• advanced debugging facilities such as forward and backward debugging and a comprehensive
timeline, and

• coordination facilities to support concurrent and coordinated execution of heterogeneous
models.

In particular, the GEMOC studio comes with Behavioral Coordination Operator Language
(BCOoL) [Lar+15], a metalanguage to explicitly specify coordination patterns between hetero-
geneous languages. It actually reifies coordination patterns between specific domains by using
coordination operators between the DSMLs used in these domains. These patterns are captured
at the language level, and then used to derive a coordination specification automatically for
models conforming to the targeted DSMLs. The coordination at the language level relies on a so-
called language behavioural interface (making the composition grey-box ). This interface exposes
an abstraction of the language behavioural semantics in terms of events. Finally, an heteroge-
neous execution engine, integrated to the GEMOC studio, can be configured by the coordination
specification between the models in order to coordinate the execution of each of the dedicated
execution engines.

BCOoL provides support for co-simulation. Using BCOoL, the know-how of an integrator is
made explicit, stored and shared in libraries and amenable to analysis.

4.7 Conclusion and Outlook

In this chapter, we explored how to explicitly address the compositionality of analysis and spe-
cific forms of composition. Analysis involves models, contexts, and properties. These are all
expressed in languages with their own semantics. We first gave a detailed overview of these im-
portant concepts as they are fundamental and need to be managed when composing analyses and
the underlying formalisms. We have distinguished three main forms of composition: (i) model
composition (white-box composition), (ii) result composition (black-box composition), and (iii)
analysis composition (grey-box composition). According to such classes, we then introduced a
preliminary conceptual framework that defines abstract operations for analyses composition to be
implemented explicitly and managed in modelling environments. We have proceeded towards this
goal both with a conceptual reasoning and practical examples of their application with real-world
analysis formalisms and their supported tools.

3GEMOC Studio is available at http://gemoc.org/studio.

http://gemoc.org/studio


BIBLIOGRAPHY 57

An open research challenge is characterisation of the compositionality of the analysis satisfac-
tion relations and property definitions along the three forms of composition we have proposed in
this chapter. Additional challenges are: to identify conditions under which to choose one form of
composition over the other; and to support the specification of composition by executing relations
in operative workflows that may build upon the concepts proposed in this chapter.

Bibliography

[AL90] Martin Abadi and Leslie Lamport. “Composing Specifications”. In: ACM Transac-
tions on Programming Languages and Systems 15.1 (1990), pp. 73–132.

[BL19] Kyungmin Bae and Jia Lee. “Bounded model checking of signal temporal logic prop-
erties using syntactic separation”. In: vol. 3. 2019, 51:1–51:30. doi: 10.1145/
3290364.

[BM05] Christiano Braga and José Meseguer. “Modular Rewriting Semantics in Practice”.
In: International Workshop on Rewriting Logic and Its Applications, WRLA, Pro-
ceedings. Vol. 117. 2005, pp. 393–416. doi: 10.1016/j.entcs.2004.06.019.

[BM15] Kyungmin Bae and José Meseguer. “Model checking linear temporal logic of rewrit-
ing formulas under localized fairness”. In: Science of Computer Programming 99
(2015), pp. 193–234.

[Bou+16] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien DeAn-
toni, and Benoît Combemale. “Execution framework of the GEMOC studio (tool
demo)”. In: International Conference on Software Language Engineering, SLE, Pro-
ceedings. 2016, pp. 84–89.

[BR18] Egon Börger and Alexander Raschke. Modeling Companion for Software Practition-
ers. Springer, 2018. doi: https://doi.org/10.1007/978-3-662-56641-1.

[Bra+01] Mark van den Brand, Arie van Deursen, Jan Heering, H. A. de Jong, Merijn de Jonge,
Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier, Jeroen Scheerder, Jur-
gen J. Vinju, Eelco Visser, and Joost Visser. “The ASF+SDF Meta-environment: A
Component-Based Language Development Environment”. In: Proceedings of CC’01.
Vol. 2027. 2001, pp. 365–370.

[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

[Bro+09a] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
“Considerations and Rationale for a UML System Model”. In: UML 2 Semantics
and Applications. Nov. 2009, pp. 43–61.

[Bro+09b] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
“Definition of the UML System Model”. In: UML 2 Semantics and Applications.
2009, pp. 63–93.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Interactive Sys-
tems. Focus on Streams, Interfaces and Refinement. Springer, 2001.

[BS03] Egon Börger and Robert Stärk. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, 2003.

[CÁS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. “Flow*: An Analyzer for
Non-linear Hybrid Systems”. In: Computer Aided Verification - 25th International
Conference, CAV, Proceedings. Vol. 8044. 2013, pp. 258–263. doi: 10.1007/978-
3-642-39799-8_18.

https://doi.org/10.1145/3290364
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1145/3290364
https://doi.org/https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1016/j.entcs.2004.06.019


58 CHAPTER 4. COMPOSITION OF LANGUAGES, MODELS AND ANALYSES

[Cim+15] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. “HyComp:
An SMT-Based Model Checker for Hybrid Systems”. In: Tools and Algorithms for
the Construction and Analysis of Systems - 21st International Conference, TACAS,
Proceedings. Vol. 9035. 2015, pp. 52–67. doi: 10.1007/978-3-662-46681-0_4.

[Cla+07] Manuel Clavel, Francisco Durán, Steven Eker, José Meseguer, Patrick Lincoln, Nar-
ciso Martí-Oliet, and Carolyn Talcott. All About Maude – A High-Performance Log-
ical Framework. Vol. 4350. Springer, 2007.

[Cla+14] Tony Clark, Mark van den Brand, Benoît Combemale, and Bernhard Rumpe. “Con-
ceptual Model of the Globalization for Domain-Specific Languages”. In: Globaliz-
ing Domain-Specific Languages - International Dagstuhl Seminar, Revised Papers.
Vol. 9400. 2014, pp. 7–20. doi: 10.1007/978-3-319-26172-0_2.

[Com+16] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H.
Steel, and Didier Vojtisek. Engineering Modeling Languages. Chapman and Hal-
l/CRC, 2016, p. 398. url: http://mdebook.irisa.fr/.

[DLM08] Francisco Durán, Salvador Lucas, and José Meseguer. “MTT: The Maude Termina-
tion Tool (System Description)”. In: Automated Reasoning, 4th International Joint
Conference. Vol. 5195. 2008, pp. 313–319.

[DM12] Francisco Durán and José Meseguer. “On the Church-Rosser and coherence proper-
ties of conditional order-sorted rewrite theories”. In: Journal of Logic and Algebraic
Programming 81.7–8 (2012), pp. 816–850.

[Dur+19] Francisco Durán, Steven Eker, Santiago Escobar, Narciso Martí-Oliet, José Meseguer,
Rubén Rubio, and Carolyn L. Talcott. “Programming and Symbolic Computation
in Maude”. In: Journal of Logical and Algebraic Methods in Programming (2019).

[Eke+03] Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, S.
Neuendorffer, Sonia Sachs, and Yuhong Xiong. “Taming heterogeneity - the Ptolemy
approach”. In: Proceedings of the IEEE 91.1 (2003), pp. 127–144. doi: 10.1109/
JPROC.2002.805829.

[EMM06] Santiago Escobar, Cathy Meadows, and José Meseguer. “A Rewriting-Based Infer-
ence System for the NRL Protocol Analyzer and its Meta-Logical Properties”. In:
Theoretical Computer Science 367.1–2 (2006), pp. 162–202.

[Esp95] David A. Espinosa. “Semantic Lego”. PhD thesis. 1995.

[Fre+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,
Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.
“SpaceEx: Scalable Verification of Hybrid Systems”. In: Computer Aided Verification
- 23rd International Conference, CAV, Proceedings. Vol. 6806. 2011, pp. 379–395.
doi: 10.1007/978-3-642-22110-1_30.

[Gro06] Object Management Group.MOF Specification Version 2.0 (2006-01-01). http://www.omg.org/docs/ptc/06-
05-04.pdf. Jan. 2006.

[GRS08] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. “A Metamodel-based
Language and a Simulation Engine for Abstract State Machines”. In: J. UCS 14.12
(2008), pp. 1949–1983. doi: 10.3217/jucs-014-12-1949.

[GRS09] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. “A semantic frame-
work for metamodel-based languages”. In: Autom. Softw. Eng. 16.3-4 (2009), pp. 415–
454. doi: 10.1007/s10515-009-0053-0.

[Hei+17] Robert Heinrich, Philipp Merkle, Jörg Henss, and Barbara Paech. “Integrating busi-
ness process simulation and information system simulation for performance predic-
tion”. In: Software & Systems Modeling 16.1 (2017), pp. 257–277. doi: 10.1007/
s10270-015-0457-1.

https://doi.org/10.1109/JPROC.2002.805829
https://doi.org/10.1007/s10270-015-0457-1
https://doi.org/10.3217/jucs-014-12-1949
https://doi.org/10.1007/s10270-015-0457-1
https://doi.org/10.1007/978-3-319-26172-0_2
https://doi.org/10.1109/JPROC.2002.805829
https://doi.org/10.1007/s10515-009-0053-0
http://mdebook.irisa.fr/
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-642-22110-1_30


BIBLIOGRAPHY 59

[Hei+21] Robert Heinrich, Francisco Durán, Carolyn L. Talcott, and Steffen Zschaler (eds.)
Composing Model-Based Analysis Tools. Springer, 2021.

[Hen00] Thomas A. Henzinger. “The theory of hybrid automata”. In: Verification of digital
and hybrid systems. 2000, pp. 265–292.

[HMR13] Jörg Henss, Philipp Merkle, and Ralf H. Reussner. “The OMPCM Simulator for
Model-Based Software Performance Prediction: Poster Abstract”. In: 6th Interna-
tional ICST Conference on Simulation Tools and Techniques, Proceedings. 2013,
pp. 354–357.

[HR04] David Harel and Bernhard Rumpe. “Meaningful modeling: what’s the semantics of
"semantics"?” In: Computer 37.10 (2004), pp. 64–72.

[HŞR07] Mark Hills, Traian Florin Şerbănuţă, and Grigore Roşu. “A Rewrite Framework for
Language Definitions and for Generation of Efficient Interpreters”. In: 6th Inter-
national Workshop on Rewriting Logic and its Applications, WRLA, Proceedings.
Vol. 176. 2007, pp. 215–231. doi: 10.1016/j.entcs.2007.06.017.

[Kon+15] Soonho Kong, Sicun Gao, Wei Chen, and EdmundM. Clarke. “dReach: δ-Reachability
Analysis for Hybrid Systems”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 21st International Conference, TACAS, Proceedings. Vol. 9035.
2015, pp. 200–205. doi: 10.1007/978-3-662-46681-0_15.

[KP97] Philipp W. Kutter and Alfonso Pierantonio. “Montages Specifications of Realistic
Programming Languages”. In: J. UCS 3.5 (1997), pp. 416–442.

[Lar+15] Matias Ezequiel Vara Larsen, Julien DeAntoni, Benoît Combemale, and Frédéric
Mallet. “A Behavioral Coordination Operator Language (BCOoL)”. In: 18th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
MoDELS, Proceedings. 2015, pp. 186–195. doi: 10.1109/MODELS.2015.7338249.

[LSV03] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. “Hybrid I/O automata”.
In: Inf. Comput. 185.1 (2003), pp. 105–157. doi: 10.1016/S0890-5401(03)
00067-1.

[Mas+17] Ian A. Mason, Vivek Nigam, Carolyn Talcott, and Alisson Brito. “A Framework
for Analyzing Adaptive Autonomous Aerial Vehicles”. In: 1st Workshop on Formal
Co-Simulation of Cyber-Physical Systems. 2017.

[MB04] José Meseguer and Christiano Braga. “Modular Rewriting Semantics of Program-
ming Languages”. In: 10th International Conference on Algebraic Methodology and
Software Technology, AMAST, Proceedings. Vol. 3116. 2004, pp. 364–378.

[Mes12] José Meseguer. “Twenty years of rewriting logic”. In: J. Algebraic and Logic Pro-
gramming 81 (2012), pp. 721–781.

[Mes92] José Meseguer. “Conditional Rewriting Logic as a Unified Model of Concurrency”.
In: Theoretical Computer Science 96.1 (1992), pp. 73–155.

[MN04] Oded Maler and Dejan Nickovic. “Monitoring Temporal Properties of Continu-
ous Signals”. In: Formal Techniques, Modelling and Analysis of Timed and Fault-
Tolerant Systems, Joint International Conferences on Formal Modelling and Analy-
sis of Timed Systems, FORMATS, and Formal Techniques in Real-Time and Fault-
Tolerant Systems, FTRTFT, Proceedings. Vol. 3253. 2004, pp. 152–166. doi: 10.
1007/978-3-540-30206-3_12.

[MN08] Peter D. Mosses and Mark J. New. “Implicit Propagation in Structural Operational
Semantics”. In: Proceedings of SOS’08. Vol. 229.4. 2008, pp. 49–66.

[Mog89] Eugenio Moggi. An Abstract View of Programming Languages. Tech. rep. ECS-
LFCS-90-113. Edinburgh University, Department of Computer Science, June 1989.

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1016/S0890-5401(03)00067-1
https://doi.org/10.1016/j.entcs.2007.06.017
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1016/S0890-5401(03)00067-1
https://doi.org/10.1109/MODELS.2015.7338249
https://doi.org/10.1007/978-3-540-30206-3_12


60 CHAPTER 4. COMPOSITION OF LANGUAGES, MODELS AND ANALYSES

[Mog91] Eugenio Moggi. “Notions of Computation and Monads”. In: Information and Com-
putation 93.1 (1991), pp. 55–92.

[Mos02] Peter D. Mosses. “Pragmatics of Modular SOS”. In: Proceedings of AMAST’02.
Vol. 2422. 2002, pp. 21–40.

[Mos99] Peter D. Mosses. “Foundations of Modular SOS”. In: Proceedings of MFCS’99. Vol. 1672.
1999, pp. 70–80.

[NT20] Vivek Nigam and Carolyn Talcott. “Automated Construction of Security Integrity
Wrappers for Industry 4.0 Applications”. In: The 13th International Workshop on
Rewriting Logic and its Applications. 2020.

[NTU19] Vivek Nigam, Carolyn Talcott, and Abraão Aires Urquiza. “Symbolic Timed Trace
Equivalence”. In: CathyFest2019. 2019.

[ÖM07] Peter Csaba Ölveczky and José Meseguer. “Semantics and Pragmatics of Real-Time
Maude”. In: Higher-Order and Symbolic Computation 20.1-2 (2007), pp. 161–196.

[Reu+16] Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek,
Heiko Koziolek, Max Kramer, and Klaus Krogmann. Modeling and Simulating Soft-
ware Architectures – The Palladio Approach. MIT Press, 2016.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. “A Little Synopsis on Streams, Stream
Processing Functions, and State-Based Stream Processing”. In: International Journal
of Software and Informatics (2011).

[RS10] Grigore Rosu and Traian-Florin Serbanuta. “An overview of the K semantic frame-
work”. In: J. Log. Algebraic Methods Program. 79.6 (2010), pp. 397–434. doi: 10.
1016/j.jlap.2010.03.012.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, 1973.

[Sti18] Christian Stier. “Adaptation-Aware Architecture Modeling and Analysis of Energy
Efficiency for Software Systems”. PhD thesis. Karlsruher Institut fur Technologie
(KIT), 2018. doi: 10.5445/IR/1000083402.

[Tal+16] Carolyn Talcott, Vivek Nigam, Farhad Arbab, and Tobia Kappe. “Formal Specifi-
cation and Analysis of Robust Adaptive Distributed Cyber-Physical Systems”. In:
SFM 2016: Formal Methods for the Quantitative Evaluation of Collective Adaptive
Systems. Vol. 9700. 2016, pp. 1–35.

https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.5445/IR/1000083402

	I Challenges and Concepts
	Composition of Languages, Models and Analyses
	Introduction and Problem Statement
	Brief Overview of Models and their Composition
	Brief Overview of Analysis
	What is Composition?
	Targets of Composition
	Forms of Composition

	Mathematical Characterisation
	Model
	Analysis
	Composition
	Composition of Contexts
	Compositionality of Property Satisfaction

	Examples
	Rewriting Logic and its Realisation in the Maude Language and System
	Abstract State Machines and the ASMETA Analysis Toolset
	Palladio
	Hybrid Automata
	The GEMOC Studio and BCOoL

	Conclusion and Outlook





