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Abstract—Robotics has adopted modeling with architecture
description languages (ADLs). This introduces a gap when
reusing solutions encoded in middleware modules. Existing ADL
modeling in robotics focuses on domain challenges instead of tool
modularity, hence customizing an ADL tool to generate solutions
conforming to a specific middleware (e.g., ROS) is challenging.
This could produce a multitude of incompatible ’vendor-locked’
tool chains and hamper reuse in robotics software engineering.
We propose a modular architecture modeling method that rests
on the separation of model processing, model transformation,
and code generation. This facilitates translating architecture
models into modules compatible to the middleware of choice.
We present this method using the extensible tool chain of Monti-
ArcAutomaton, which enables translating software architecture
models gradually into middleware modules using exchangeable
model-to-model and model-to-text transformations. Employing
architecture modeling with modular tool chains enables com-
bining the benefits of ADLs with the solutions encoded in
popular middlewares and ultimately facilitates robotics software
engineering.

I. INTRODUCTION

Robotics is one of the most challenging domains for

software engineering. Successful deployment of even simple

robotics applications requires expertise from multiple do-

mains and combination of heterogeneous software solutions.

Robotics has successfully adopted [1] model-driven develop-

ment (MDD) [2], which facilitates the integration of domain

experts by lifting abstract and better comprehensible models to

primary development artifacts. There is, however, a big corpus

of robotics solutions encoded in general programming lan-

guage (GPL) artifacts that are tailored to specific middlewares

(such as Orocos [3], CLARAty [4], or ROS [5]). These are

hardly accessible by MDD solutions. On the other hand, the

reuse promised by component-based software engineering has

been identified crucial to reusable robotics architectures [6].

Similar to avionics [7] and automotive [8], robotics-specific

architecture description languages (ADLs) [9], [10] lift the

notion of components to component models (cf., BRICS [11],

C-Forge [12], DiaSpec [13], SmartSoft [14], or V3CMM [15]).

Interfacing component models with the expertise encoded in

the middleware-specific implementations is a prerequisite for

efficient architecture modeling in robotics. However, many

ADLs focusing on robotics are tied to hardly extensible MDD

tool chains (including parsers, editors, code generators, etc.).

Thus transforming the architectures’ component models into

artifacts compatible to a specific middleware unforeseen by

the tool chain is challenging.

Based on experiences in modeling software architectures

for automotive [16], cloud systems [17], and robotics [18],

we present an extensible architecture modeling method that

employs exchangeable model-to-model (M2M) and model-to-

text (M2T) transformations to enable translating architecture

models into implementations for arbitrary target middlewares.

To this effect, it separates the concerns of architecture model-

ers from the concerns of model transformation developers and

code generator engineers as depicted in Fig. 1.

Fig. 1. Quintessential components, artifacts, and roles for pervasive, modular
architecture modeling for different target middlewares illustrated on example
of the translation to ROS [5].

The architecture designer knows the employed ADL and

creates a logical software architecture as required for the appli-

cation under development. The model processing infrastructure

parses the model and creates its internal representation. If the

architecture model contains elements not easily translatable

into target middleware modules (e.g., hierarchies or complex

data types), the transformation developer provides appropri-

ate model transformations. The M2M transformation engine

parses the transformation models and applies these to the

architecture. Ultimately, a middleware-specific code generator,

provided by a code generator engineer with expertise in

M2T transformations and target middleware, processes the

transformed models and produces middleware-specific GPL

artifacts.

This separation enables translating architectures into various
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intermediate representations better amenable to analysis or

code generation. It also enables reusing architectures with

different code generators, middlewares, and GPLs. While the

MontiArcAutomaton infrastructure has been detailed in [18],

[19], this paper focuses on its modular development method

and its constituents: (1) modular, domain-specific model-to-

model transformations; (2) template-based code generation;

and (3) a case study for the translation of hierarchical Monti-

ArcAutomaton architectures to ROS [5]

In the following, Sect. II motivates the benefits of modular

architecture modeling by example, before Sect. III presents

preliminaries. Afterwards, Sect. IV describes the modular

M2M transformations and Sect. V describes M2T translation

to ROS. Sect. VI discusses observations and related work.

Sect. VII concludes.

II. EXAMPLE

Consider a company producing the software architecture for

a cleaning robot with two arms as depicted in Fig. 2 (top).

The architecture CleaningRobot comprises components

providing functionality of various sensors, actuators, as well

as pure software components. The actual functionality of two

arms is not realized in the architecture but can be easily

implemented by reusing existing middleware modules. The

components are either hierarchically composed (e.g., Lo-
calization) or atomic (e.g., Controller) and the ADL

distinguishes component types (e.g., Navigation) and their

instances (e.g., nav). Components exchange messages via

unidirectional connectors connected to their stable interfaces

of typed, directed ports only. Ultimately, the architecture

should be translated to (1) artifacts compatible to the Python

client implementation of the robot operation system ROS [5]

for execution; and (2) to Java for simulation [20]. For the

latter, the company already has a black-box code generator.

However, to ease comprehension and modeling, the ADL

supports hierarchical components, whereas neither the Java

simulator, nor ROS support hierarchies. As no modeling

tool chain supports these transformations off-the-shelf, the

company must develop appropriate transformations. To avoid

implementing the elimination of hierarchies as pre-processing

for the Java code generator and as part of the ROS code gen-

erator, this should be performed prior to code generation. For

this, they desire to include appropriate M2M transformations.

Moreover, this separation also enables to reuse existing ADL

tooling (such as well-formedness checking or visualization)

with the transformed architectures as well. After defining the

corresponding M2M transformation, translation to Java and

ROS requires less complex M2T transformations. They can

easily realize on top of the FreeMarker1 template engine and

MontiArcAutomaton’s code generation framework [18]. The

resulting ROS nodes can easily interface with existing ROS

nodes to reuse the encoded expertise.

Fig. 2 depicts the results of both transformation activities:

First the M2M transformation (1) eliminates the hierarchical

1http://freemarker.org/

Fig. 2. C&C architecture of a cleaning robot with two arms (top), after
applying the M2M transformations for hierarchy elimination (middle), and
after applying the M2T transformations producing ROS nodes and topics
(bottom).

components CleaningRobot and Localization and

reconfigures the connectors accordingly. The result again is

a valid architecture model that can be processed by ex-

isting tooling without modifications. Afterwards, the M2T

transformation (2) translates the remaining components into

ROS nodes and the connectors into individual topics. After

translating the architecture to ROS nodes, adding existing ROS

nodes to interface with the prepared topics is straightforward.

This separation enables architecture developers to use the

ADL of choice and connect the generated implementations

to any target middleware. It also liberates the code generator

developers from dealing with transformation challenges that

(a) are either common to multiple translations or (b) are better

expressible as M2M transformations.

III. PRELIMINARIES

The presented infrastructure for modular model-driven de-

velopment of robotics architectures relies on the MontiArc-

Automaton C&C ADL, its code generation infrastructure,

and the MATrans transformation language generated from

MontiArcAutomaton.

A. MontiArcAutomaton

MontiArcAutomaton [18] is a modeling infrastructure for

software architectures with exchangeable component behavior



DSLs. It comprises the textual MontiArcAutomaton C&C

ADL [19], which enables modeling architectures as hierarchies

of components, and has been applied in industrial projects [21]

and academic robotics contexts [20]. Components are con-

nected via unidirectional connectors between the components’

stable interfaces of typed ports. The types of ports are defined

in UML/P [22] class diagrams (CDs). MontiArcAutomaton

models distinguish between component types and instances,

supports component configuration, generic type parameters,

and inner components. The model of component Localiza-
tion of Fig. 2 is depicted in Lst. 1.

MAA
1 component Localization {
2 port out Pose p;
3 component PoseFusion; // The names of subcomponent
4 component LIDAR; // instances are derived
5 component GPS; // automatically
6 connect lidar.p -> poseFusion.lp;
7 connect gps.p -> poseFusion.gp;
8 // Connector poseFusion.p -> p is derived also
9 }

Listing 1. Textual model of the Localization component.

The component Localization has an outgoing port p
of data type Pose (l. 2), three subcomponents (ll. 3-5), and

two explicit connectors (ll. 6-7). Subcomponent declarations

consist of a component type name and a subcomponent

name. The latter can be omitted to reduce the developers’

cognitive load. Similarly, ports of the same name are connected

automatically, thus corresponding connectors can be omitted

as well.

B. Model-to-Model Transformations with MontiArcAutomaton

In model-driven development, M2M transformations are

used to evolve, refactor, and normalize models. They can be

more concise and better comprehensible than M2T transfor-

mations. We use the MATrans domain-specific transformation

language (DSTL) for MontiArcAutomaton [23] to transform

architecture models into representations better processable by

subsequent M2T transformation. MATrans enables describing

MontiArcAutomaton transformations in a problem-oriented

fashion, using established vocabulary [24], and without the ac-

cidental complexity [25] of general transformation languages.

Lst. 2 sketches the most important modeling elements and

properties of MATrans: Names beginning with “$” are schema

variables (e.g., l. 1), “$ ” is an anonymous schema variable

(l. 3), and the replacement operator “:-” (ll. 6-7) replaces the

pattern on its left by the pattern on its right and is delimited by

double square brackets. Omitting the pattern on its left or on its

right entails unconditional adding or removing, respectively.

MATrans also supports specification of negative application

conditions in form of negative elements, i.e., elements that

are forbidden in the model. Negative elements start with

“not”, followed by a model element enclosed in double

square brackets (l. 4). While this example shows components

at the top level of the pattern, this is no prerequisite: all

MontiArcAutomaton model elements can be pattern top level

elements, which eases specification of transformations.

MATR
1 component $source { port out $type $name; }
2 component $target { port in $type $name; }
3 component $_ {
4 component $source $subS;
5 component $target $subT;
6 not [[ connect $subS.$name -> $subT.$name; ]]
7 [[ :- connect $subS.$name -> $subT.$name; ]]
8 }

Listing 2. Excerpt of a transformation that automatically connects ports
of the same name in MontiArcAutomaton components.

Lst. 2 matches three distinct components (ll. 1-3), two

of which have compatible ports (ll. 1-2), and a composed

component containing subcomponents of the former (ll. 4-

5). The composed component must not contain a connector

between the compatible ports of these subcomponents (l. 6)

as this transformation introduces it (l. 7).

C. The Robot Operating System (ROS)

ROS [5] is an infrastructure and framework for the efficient

development of robotics applications. It comprises develop-

ment tools and a messaging framework. Running ROS appli-

cations are flat graphs of GPL nodes and topics. Nodes are

processes that perform computations and exchange the results

via topics, which resemble typed message buses. The data

types of topics are defined by rosmsg2 models, which resemble

a very restricted variant of class diagrams. Nodes publish and

subscribe to topics in an event-driven fashion and may use

libraries, frameworks, and APIs to compute behavior. Nodes

have no types and can be reused as instances only. Topics are

not defined explicitly, but by the publishers sending messages

or the subscribers registering to these, i.e., whether a topic

exists is subject to the GPL code inside a node. Thus, without

in-depth knowledge of nodes and their publishers, developing

nodes that expect to receive messages from a specific topic is

impossible. This hinders black-box reuse of nodes.

With ROS being a framework, the classes representing

nodes must be implemented conforming to one of the ROS

client library implementations in C++, Python, Lisp, or Java.

Hence, software development with ROS nodes is subject to the

“accidental complexities” [25] and “notational noise” [26] that

arise from solving domain challenges with GPLs. Part of these

accidental complexities arises from uncontrolled communica-

tion between nodes, which dynamically instantiate publishers

and subscribers to interact with other nodes. However, what a

node can receive and process is not declared in its interface,

but part of its implementation only. Hence, node develop-

ers cannot rely on interfaces to compose nodes, but must

investigate the source code of their implementations. Using

an ADL with components of stable interfaces [6] to describe

ROS graphs can facilitate this, but requires handling various

idiosyncrasies of ROS including handling run-time connector

reconfiguration as well as lacking generic data types in rosmsg

and hierarchical nodes.

2http://wiki.ros.org/rosmsg



IV. C&C MODEL TRANSFORMATIONS

Model-to-model transformations [27] can facilitate architec-

ture modeling by adjusting architectures to specific require-

ments imposed by (1) subsequent processing steps; (2) reduc-

ing the cognitive load imposed on the modelers; and (3) in-

strumenting architectures for further analyses. In the following,

we present M2M transformations identified useful for model-

ing MontiArcAutomaton architectures for robotics and used

for the code generation process from MontiArcAutomaton

to ROS. New transformations for MontiArcAutomaton can

be created and added easily as described in [23], [24]. As

the adjustment is defined as a sequence of transformation

rules (applied once or several times) the normalization is

modular and can easily be extended or changed by removing

transformation rules or adding new ones.

A. Eliminating Hierarchies

ROS describes software architectures as flat graphs of nodes

and topics, whereas MontiArcAutomaton and many other

C&C ADLs [28] support describing architectures as hier-

archies of components. While sophisticated code generators

can translate hierarchical architectures into flat ROS artifacts,

analysis of errors resulting from such transformation in the

resulting GPL artifacts is subject to accidental complexi-

ties [25] and notional noise [26] again. Proper pre-processing

can support analysis by flattening the architecture prior to code

generation, hence facilitating analysis on architecture model

level instead.

Flattening architectures requires eliminating composed

components. In MontiArcAutomaton, such components con-

tain at least subcomponents and connectors, hence we focus

on these elements. We use a transformation to successively

disconnect composed components and reconnect their ports

accordingly (i.e.,’lift’ their connections). A subsequent trans-

formation eliminates all unconnected components.

MATR
1 component $_ {
2 not [[ port $_ $_ ]]
3 component $interType $inter;
4 connect [[$inter.$iPort :- $atom.$aPort]] -> $_;
5 [[ :- component $atomType $atom; ]]
6 }
7

8 component $interType {
9 port out $portType $iPort;

10 component $atomType $atom;
11 connect $atom.$aPort-> $iPort;
12 }
13

14 component $atomType { port out $portType $aPort; }
15

16 assign { $atom = uniqueName($atomType); }

Listing 3. A transformation to disconnect intermediate components prior
to their elimination by a subsequent transformation.

The transformation first replaces connectors from subcom-

ponents through intermediate components to their specific

targets with a single connector from the subcomponent to its

targets directly. Second, it eliminates the resulting empty hulls.

The transformation depicted in Lst. 3 takes care of the former.

It considers three component types: the top-most component

of the system architecture (ll. 1-7), the type of the intermediate

subcomponent instance $inter to eliminate (l. 3), and the

type of its atomic subcomponent $atom. Each connector

from $atom to the interface of $inter to something on

the environment of $inter is hence replaced by a connector

from $atom to its target directly.

The transformation matches component types without ports

(l. 2), the types of their intermediate subcomponents (l. 3),

and related connectors (l. 4). The type of the intermediate

subcomponent (ll. 9-13) yields an outgoing port (l. 10),

contains a subcomponent of the atomic type (l. 11), and

connects that subcomponent’s port to its own outgoing port

(l. 12). Afterwards, only the top-most architecture and atomic

subcomponents exist. Please note that the complexity of this

transformation is not due the transformation language, but the

task at hand. Performing this transformation manually for a

multitude of subcomponents is tedious and error prone. Re-

implementing that for every code generator is costly as well.

B. Wrapping Port Data Types

Static C&C architectures, such as MontiArcAutomaton, fix

the configuration of connectors at design time. While reducing

flexibility, this establishes reliable communication in the sense

that component cannot send and receive messages other than

intended, which ultimately reduces development complexity.

To cope with this, the messages send between components

are enveloped and the sender information is attached to the

message. The generated ROS nodes accept messages from

subscribed topics only, if the messages sender matches what

was modeled in the architecture. The corresponding transfor-

mation depicted in Lst. 4 takes care of this by replacing the

type of each incoming port (l. 1) that is not yet wrapped by the

wrapper type defined in the assign block (l. 3). A similar

transformation is applied to outgoing ports.

MATR
1 port in [[ $type :- $wrapper<$type> ]] $_;
2

3 assign { $wrapper = "Envelope"; }
4 where { $type != $wrapper }

Listing 4. Wrapping port types.

This wrapping employs the data type Envelope, which

yields a generic type parameter for the type of the message’s

payload, and instantiates it with the wrapped port’s original

data types. While helpful to add message meta-information

easily, many middlewares, including ROS, do not support such

generic type parameters.

C. Eliminating Generic Types

The type system of MontiArcAutomaton supports generic

type parameters for component types and data types. This

allows for greater flexibility than ROS. While ROS-specific

refinements could be part of the code generation, encapsulating

these into a single M2M transformation (a) yields better

comprehensible artifacts and (b) enables its reuse with multiple

code generators. For instance, generic data types for ports and

component configuration parameters in MontiArcAutomaton

(similar to generics in Java or templates in C++) improve



flexibility, however, subsequent translation into rosmsg types

requires their replacement with specific types. Transformations

can prepare architectures properly and provide developers a

better overview on the resulting architecture than inspecting

the produced ROS artifacts. The corresponding transforma-

tion replaces subcomponents whose component types rely on

generic type parameters. As with generics in Java, subcom-

ponents are parametrized with the actual types to be used

at instantiation, hence in the actual software architecture,

all generic type parameters have been assigned specific type

arguments. To eliminate component types using generic type

parameters from the architecture, the component types of such

instances are be replaced by references to synthetic inner

component types, where the generic types have been removed

and replaced by the types assigned during instantiation.

Consequently, the transformation depicted in Lst. 5 matches

component types with generic type parameters indicated by

angle brackets (l. 1) that are used in composed components

(ll. 3-7) and replaces their types. It replaces their component

types, which are parametrized by generic arguments (l. 4), with

new inner component types (ll. 5-6). To this effect, it calculates

a new component type name (l. 10) and a new component

body (ll. 5-6), where occurrences of generic type arguments

are replaced by the types the component was instantiated with

(cf., l. 4).

MATR
1 component $name<$_> ComponentBody $BODY
2

3 component $_ {
4 component [[ $name<$kind> :- $cName ]] $_;
5 [[ :- component $cName ComponentBody $PLAIN_BODY ]]
6 not [[ component $cName ComponentBody $PLAIN_BODY ]]
7 }
8

9 assign {
10 $cName = $name + "Of" + $kind;
11 $PLAIN_BODY = replaceGenerics($BODY, $kind);
12 }

Listing 5. Replacing the types of subcomponents yielding generics by
new component types with the generics eliminated.

D. Automatically Connecting Ports

MontiArcAutomaton provides means to automatically con-

nect ports under specific conditions (such as implicitly con-

nected event ports in AADL [7]) and with specific connectors.

Connectors are simple (i.e., they do not have constraints or

semantics aside from message passing) and connecting ports

of adjacent subcomponent can be completed automatically if

the ports have the same type. The behavior of autoconnect
port is illustrated in Fig. 2. Here, CleaningServiceR-
obot contains two subcomponents Controller and Nav-
igation with matching ports that are not connected initially.

This transformation connects these ports by an explicit connec-

tor (cf., bottom part of Fig. 2). Lst. 2 shows the transformation

for the autoconnect port statement.

In addition, MontiArcAutomaton provides two shortcuts

for connectors of subcomponents. Instead of defining each

connector between two subcomponents’ ports individually, it is

possible to define a connector between those subcomponents.

In this case, all pairs of matching connectors are connected

automatically. Thus, a further transformation normalizes this

shortcut by replacing these connectors by connectors between

their ports. We also support automated integration of inspec-

tion infrastructure via M2M transformations. The correspond-

ing transformations add subcomponents as monitors for every

composed component and redirects connectors such that they

are monitored by this transformation as described in [23].

E. Completing Names

MontiArcAutomaton supports syntactic sugar and shortcuts

regarding names. These can be reduced to other base concepts

prior to code generation to reduce the complexity of the gener-

ator. Omitting superfluous names reduces notational noise [26]

and supports developers in focusing on important challenges.

This pattern applies to many typical modeling elements of

ADLs such as subcomponents, interface elements, configura-

tion parameters, or constraints. With MontiArcAutomaton, an

architecture modeler may omit the names of (1) subcomponent

instances in case there is just one subcomponent instance for

a type; (2) ports if there is just one port of the corresponding

type. For instance, component PoseFusion; (cf., l. 3

of Lst. 1) will be assigned the derived name poseFusion,

which can even be used in the model without being made

explicit, e.g., for connectors (cf., l. 6). Thus, the first two

transformations add explicit default names, i.e., the uncapi-

talized name of the subcomponent’s or port’s type, for each

subcomponent instance or port, if not present. Lst. 6 depicts a

realization of the transformation to add subcomponent instance

names using MATrans. Lst. 7 depicts the transformation for

incoming ports. Both use the auxiliary method uncapital-
ize() to derive names in their where blocks.

MATR
1 $SC [[ component $type [[ :- $name ]]; ]]
2 assign { $name = uncapitalize($type); }
3 where { $SC.getInstances().isEmpty() }

Listing 6. Deriving default names for subcomponent instances.

MATR
1 port $PL [[ in $type [[ :- $name ] ];
2 assign { $name = uncapitalize($type); }
3 where { $PL.getName().isEmpty() }

Listing 7. Deriving default names for incoming ports.

MATR
1 component $_ {
2 component $typeName { /* ... */ }
3 not [[ component $typeName $_; ]]
4 [[ :- component $typeName $instanceName; ]]
5 }
6 assign { instanceName = uncapitalize($typeName); }

Listing 8. Instantiation of inner components.

With MATrans, inner MontiArcAutomaton components

(similar to anonymous classes in Java) can be easily instanti-

ated automatically: if no instance of the corresponding type ex-

ists, such an instance is added to the comprising parent compo-

nent. Lst. 8 depicts this transformation. MontiArcAutomaton

furthermore allows naming inner components explicitly which

is a shortcut for defining an inner component and declaring

an instance of it. A further transformation normalizes this by

adding an explicit instance of the named inner component



with the specified name and removes the name from the inner

component.

V. TRANSFORMING C&C ARCHITECTURES TO ROS

Model-to-Text transformations foster model-driven develop-

ment by aligning platform-agnostic software architectures with

executable software systems. In many complex domains, such

as robotics, distributed system architectures must be 1) tailored

to include expertise encoded in middlewares, 2) implemented

in supported GPLs, and 3) adjusted to specific runtime envi-

ronments. Bridging the gap between logical design concepts

and middleware-specific implementation concepts is a tremen-

dous challenge for M2T transformations. In the following, we

investigate challenges for M2T transformations, elaborate on

expenditure reduction for code generator development, and

provide as proof-of-concept a M2T transformation from C&C

architectures to ROS.

A. Challenges for M2T Transformations

Architecture models conform to particular ADLs. Each

ADL is designed for a specific purpose supporting specific

features. Nonetheless, there is some consensus in common

ADL modeling elements that originates from their common

background of component-based software engineering [29].

This includes providing modeling elements for components,

connectors, and configurations. Preserving the semantics and

properties of the modeling elements in M2T transformations

is a tremendous challenge. Especially, when the ADL design

concepts differ significantly from the concepts of the targeted

middleware. The required M2T transformations are often tied

to complex operations and extraordinary effort. Code gener-

ators implement such M2T transformations and represent a

systematic approach for automated M2T transformations. But

code generators are tailored for a specific middleware and

are usually not reusable for different target platforms. With

multiple target platforms, each transformation step has to be

developed for each code generator (which could even employ

different implementation technologies).

For instance, the MontiArcAutomaton ADL supports hi-

erarchical components, whereas the Java implementation as

well as ROS support flat graphs only. Implementing generators

for both target platforms requires defining structure flattening

transformation steps for each code generator separately. To re-

duce implementation effort, it is beneficial to lift the flattening

operation to the model level beforehand. However, such pre-

processing M2M transformations must ensure that the output

model conforms to the underlying ADL again.

B. Transforming C&C Architectures to ROS

The prime concerns of transforming C&C architectures to

ROS are translating the atomic and composed component types

as well as the data types used for ports and creating the config-

uration files required by ROS projects. This section describes

how we addressed these concerns with a code generator using

the FreeMarker template engine3 and the MontiArcAutomaton

3http://freemarker.org/

Fig. 3. ROS graph of the cleaning robot architecture depicted in Fig. 3.

code generation framework [18]. The intended result of trans-

forming the architecture depicted in Fig. 2 is presented in

Fig. 3. Components and connectors are translated to nodes and

topics. For instance, the subcomponent wasteDetector
of type WasteDetector is translated to a Python class

artifact that defines ROS node and a single publisher to the

topic w_w, which is derived from the connector between

wasteDetector and container.

MontiArcAutomaton architectures operate in the context

of UML/P [22] CDs, hence these must be translated as

well. MontiArcAutomaton supports the full expressiveness of

UML/P, e.g., interfaces, abstract classes, and generic type

parameters. ROS nodes operate in the context of rosmsg

models, which do not support these. Consequently, CD port

types using these features are prohibited for translation to

ROS and our code generator takes care of rejecting such

models. Aside from these challenges, the classes are translated

as expected: primitive attributes becomes rosmsg properties,

attributes of complex types become nested properties, 1-to-n

relations become arrays of variable length.

Transforming MontiArcAutomaton models to ROS nodes

is more challenging. Its various concepts, such as component

types, instances, parameters, ports, and connectors, must be

translated to concepts available to ROS Python. For instance,

MontiArcAutomaton realizes the paradigm of CBSE that

components are black-boxes unaware of their environment

aside from messages passed to their inputs. Consequently,

its component instances are unaware of their communication

partners. Instead, the containing components define connectors

between their subcomponents.

In ROS, nodes exist in flat graphs, i.e., there is no con-

taining component, and they are aware of their environment

in terms of topics that can be subscribed and published to.

Hence, the transformation of MontiArcAutomaton components

into ROS nodes must integrate this information into their

implementations. However, as MontiArcAutomaton compo-

nents may be used in different contexts – and hence with

different communication partners – encoding the subscribed

and published topics into the Python nodes is not feasible.

Instead, each MontiArcAutomaton component type becomes



TABLE I
ARTIFACTS OF TWO SIMILAR GENERATORS: TRANSLATION TO ROS
PYTHON USES M2M TRANSFORMATIONS, THE OTHER DOES NOT.

Generator # Templates Avg. LOC # Classes Avg. LOC

ROS Python 18 39.6 14 106.8

Plain Java 40 40.7 24 90.6

a python class with generic publish and subscribe mechanisms,

which initializes a single node, defines a single publisher for

each outgoing port, a single subscriber for each incoming

port, and defines parameters for each component configuration

parameter. Node name, topic, and parameters can be defined

at constructing instances of this class and hence allow to

reuse it similar to MontiArcAutomaton components in dif-

ferent communication contexts. These classes also implement

rejecting enveloped messages received from senders other

than configured in the architecture model. With this in place,

connectors are translated into topics, such that each topic

realizes the connection of exactly one source port to one target

port of the architecture model.

The information on node names, connected topics, and

available parameters is generated into roslaunch4 configuration

files. These files orchestrate initialization of ROS graphs and

hence are suitable to enact the role of the architecture’s top-

level component. These are also generated from the Monti-

ArcAutomaton architecture and take care of instantiating the

generated python classes according to the architecture model,

i.e., they name, connect and parametrize the node instances as

governed by their related component instances.

Combining the benefits of integrating existing solutions en-

coded in middleware artifacts with the benefits of architecture

modeling therefore becomes straightforward: Architectures

can feature components with unconnected ports. Via trans-

lation to topics, the publishers and subscribers resulting from

transformation can easily interact with middleware artifacts for

which no component models exist (for instance, via configu-

ration in roslaunch files). Thus the encoded expertise can be

reused without giving the employed ADLs benefits (such as

up stable interfaces or hierarchical component topologies).

The resulting code generator enables translating MontiArc-

Automaton architecture models to ROS Python nodes. We

implemented a similar code generator to translate MontiArc-

Automaton components into plain Java artifacts [20]. The

Java generator encodes all transformation steps in Java and

FreeMarker and consequently the ROS Python generator is

significantly less complex. As illustrated in Table I, the Java

generator comprises more than twice as many FreeMarker

templates and Java classes. However, the templates of both

code generators are, in average, of the same lengths and the

ROS Python generator’s Java classes are only 15% bigger.

All of this is enabled by six M2M transformations for-

mulated in a language that closely resemble the MontiArc-

Automaton ADL. We thus believe that decoupling code gener-

ation from ADL development and usage via appropriate model

4http://wiki.ros.org/roslaunch/XML

transformations can greatly facilitate development of robotics

modeling tool chains and, ultimately, robotics software.

VI. DISCUSSION AND RELATED WORK

Applying the presented method requires expertise in various

challenging fields, including software language engineering,

model transformation, and code generator development. It

is, however, not primarily aimed at architecture modelers,

but at tool chain providers developing architecture modeling

solutions with code generation capabilities, such as Smart-

Soft [14] or DiaSpec [13]. In such contexts, expertise in

language engineering and model transformation already exists.

However, with the proposed separation of concerns, the chal-

lenge of providing a middleware-specific code generator can

be separated into (1) creating less complex, yet middleware-

specific M2T transformations and (2) providing proper, ADL-

specific M2M transformations suitable for code generation.

This enables reusing expertise encoded in existing middleware

modules easily. Our approach differs from the OMG’s model-

driven architecture [30] in focusing on tool chain modularity:

it does not prescribe that the transformed architecture models

are more platform-specific.

Related architecture modeling infrastructures in robotics

focus on domain challenges over infrastructure modular-

ity and reuse of middleware-compatible artifacts, such as

ROS [5] nodes or Orocos [3] components. For instance, the

DiaSpec [13] infrastructure comprises an ADL with differ-

ent component kinds, but does neither support exchangeable

model transformations nor exchangeable code generators. The

SmartSoft [14] infrastructure also comprises an ADL, inte-

grated model transformations, means for behavior modeling,

contingency planning and – based on Xtext – generally enables

integration of further code generation capabilities. However, it

also does not support exchanging its M2M transformations and

integration of further code generation is not investigated yet.

The authors of [31] propose modeling self-adaptive software

with components and translating it to Fractal [32] component

implementations that neither supports extensible M2M, nor

exchanging the code generators. RobotML [33] is a UML

profile for modeling structure, behavior, and communication of

robot software architectures implemented with as a UML pro-

file for the Papyrus5 modeling environment. It uses Acceleo6

for code generation and, thus, should in principle support

exchangeable code generators as well. It, however, does not

support extensible M2M transformations.

VII. CONCLUSION

We have presented a method for separating the concerns of

architecture modelers from the technical concerns of code gen-

erator developers via domain-specific M2M transformations.

The method relies on gradually transforming the architecture

under development into representations better processable by

code generators. This reduces the effort of creating code

generators to interface with specific middleware artifacts and

5https://eclipse.org/papyrus/
6http://www.eclipse.org/acceleo/



ultimately can facilitate model-driven development of robotics

architectures by enabling to reuse expertise encoded in middle-

ware artifacts, such as ROS nodes. We applied this concept to

the translation of MontiArcAutomaton components into ROS

Python nodes. To this effect, we presented the reusable M2M

translations we employed and showed how they facilitate gen-

erator development by comparison to a generator producing

Java implementations without using M2M transformations.

The resulting ROS Python generator is significantly less com-

plex than the Java generator, which indicates that separating

concerns by employing M2M transformations is beneficial in

creating middleware-specific code generators. We believe, this

separation can produce better extensible MDD tool chains in

robotics and, hence, ultimately facilitate MDD in robotics.
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