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Abstract—Digital twins are increasingly being used for many
purposes in various domains, including manufacturing, health-
care, transportation, and urban planning. To enable all of this,
digital twins must be complex software systems that digitally rep-
resent and manipulate physical systems. Hence, they are equipped
with extensive data, information, and models to reason about
the represented system and are used by domain experts from
various disciplines. For their proper use, it is vital to comprehend
the wealth of data, information, and models intrinsic to them.
Therefore, we present a model-driven software architecture of
digital twins that combines this wealth with techniques for the
self-explainability of software systems to support domain experts
in configuring, deploying, operating, and maintaining them.

Index Terms—Cyber-Physical System, Digital Twin, Explain-
ability, Model-Driven Engineering

MOTIVATION

Digital twins [1] are increasingly being used for many pur-
poses in various domains, including manufacturing, healthcare,
transportation, and urban planning [2]. In automotive, digital
twins of cars are used for improving data analytics [3]. In
manufacturing, digital twins simulate and optimize production
processes, e.g., to automatically improve the results of indus-
trial batch processes, such as injection molding [4]. Healthcare
uses digital twins to create personalized patient models and
design effective therapies. Transportation uses digital twins to
monitor vehicle performance and predict maintenance needs.

To enable all of this, digital twins must be complex software
systems that digitally represent and manipulate Cyber-Physical
Systems (CPS) and provide further services in addition to the
CPS. Digital twins are used, e.g., to better understand the
represented system (physical twin, PT) and to optimize its
behavior. Therefore, digital twins use both digital data and
models about the PT. The data can be collected by communi-
cating with the PT, by observing it, and by using data sources
that have information about the PT. The models used by digital
twins can be models from the engineering time of the PT:
for instance AutomationML models, SysML models, Simulink
models, etc., as well as dedicated models for the operation of
digital twins, such as AI models. As a consequence, digital
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twins are equipped with extensive data, information, and mod-
els to reason about the represented system. This information
and functionalities are beyond functionalities provided by the
cyber-part of CPS.

Digital twins are used by domain experts from various disci-
plines, who employ them with different purposes, perspectives,
and requirements. Hence, it is vital for the proper use of
digital twins to comprehend the wealth of data, information,
and models intrinsic to them.

In this article, we examine the integration of self-
explainability techniques with digital twins. For this, we enrich
digital twins by an explanation structure that is derived from
different kinds of models of a CPS. We discuss this approach
with examples from the automotive domain and a combination
of system description, process and reasoning models. The
explanation model can be used within different digital twin
services to provide explanations about the twins decisions.
To reach this, we combine already existing model-driven
engineering methods for digital twins with existing techniques
for self-explainability of software systems to support domain
experts in configuring, deploying, operating, and maintaining
digital twins.

The benefits of a self-explainable digital twin are manifold:
Increased trust and acceptability of autonomous and self-
learning systems, a better understandability and transparency
of complex system decisions, as well as an increase in safety
and practicability of human-machine cooperation, e.g., in take-
over situations in semi-autonomous driving [5].

MODEL-DRIVEN ENGINEERING OF DIGITAL TWINS

For the creation of digital twins, we employ model-driven
methods: different kinds of models, e.g., the domain model,
a component-connector architecture model, and models de-
scribing graphical user interfaces, are the input for code
generators that create a digital twin (see Fig. 1 for the process
and generation results) [4]. A domain model describes the
main domain concepts and their relationships and helps to
generate data structures and communication functionalities.
An architecture model describes the main components of
the digital twin, connectors between components, and their
behavior using embedded state charts. We can use GUI models
in the generation process to create user interfaces for humans
interacting with a digital twin. OCL models allow us to define
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restrictions on the data structure and to generate validators for
user input. Such generation approaches work very well for
repetitive parts of the code. In contrast, very specialized parts
of the code, e.g., for specific services, still have to be added as
hand-written parts but work together with the generated parts.

The main system architecture of a digital twin includes
different services and a cockpit for visualization and user
interaction [4]. For self-adaptive digital twins, services such
as a data processor, evaluator, reasoner, and executor are
important. The data processor prepares relevant parts of the
data of the original system and transforms them into digital
shadows, i.e., contextualized data traces for a specific purpose.
The evaluator takes this information and evaluates the current
situation. If a need for self-adaption is detected, the reasoner
identifies what should be changed to reach the desired situation
and creates a plan. The executor takes the plan and transforms
it into commands for the cyber-physical system or presents the
plan to end users or operators. These then can decide if the
plan should be executed or interact with the cyber-physical
system themselves.

Digital twins mainly are operated not by software engineers
but by domain experts familiar with the twinned system and its
purpose. This is especially important in domains of long-living
systems, such as automotive, avionics, or manufacturing; these
systems degrade over time and evolve through maintenance.
Hence, the longer the system lives, the more its behavior
diverges from the idealized assumptions made during its
design. For instance, the older a car gets, the more fuel it
consumes for the same distance. Hence, potentially foiling
tightly calculated trips.

Consequently, system behavior needs to be updated,
tweaked, and refined by the domain experts knowing the
system best. One particular means to integrate specific domain
expert knowledge is case-based reasoning [6]. The cases
represent domain knowledge about a specific twinned cyber-
physical system. Therefore, they comprise three parts in the
form

IF pattern THEN actions EXPECT result,

where
1) the pattern is a Boolean expression over the digital

shadow data that describes a problematic situation, e.g.,
low fuel relative to planned trip distance;

2) the actions are parametrizable commands being send to
the system, e.g., restrict maximum speed and optimize
driving style for fuel efficiency;

3) the expectation is a Boolean expression over the expected
system behavior after applying the actions, e.g., predic-
tion of extended range,

Given a problematic situation, the reasoner first tries to identify
a predefined case that matches this situation to apply it. If no
such case is found, the reasoner identifies the most similar
case, adjusts that, and applies it. If an adjusted case solves
the problematic situation, it is added to the knowledge base
of cases, i.e., the system has learned a new case. Hence,
our model-driven digital twin architecture uses case-based

reasoning AI planning to react to problematic situations [7]
and adjust the system accordingly.

When designing the physical twin, we can describe its
wanted behavior and interaction with human operators with
process models, e.g., using the Business Process Model and
Notation (BPMN). These business process models can be used
by digital twins to support solving problems [8]. We can
use observed data, e.g., from sensors, actuators, and related
systems, as input for process discovery algorithms and identify
how processes look like in reality. These identified processes
can be compared to planned processes in the evaluator using
process conformance algorithms. If lacking conformance, the
digital twin can use case-based reasoning to identify needed
changes in the process and either automatically execute them
or suggest them to human operators.

Both, cases and business process models can be easily
created by the domain experts operating the digital twins, how-
ever, they still fail to explain the behavior of the underlying
system during operations in detail.

EXPLAINING SOFTWARE DECISIONS

Today, more and more tasks are performed by autonomous
systems: from robot vacuum cleaners, via driving assistance
systems to smart homes and smart factories. With this in-
creased level of autonomy also comes more complex software.
This is as an autonomous system’s decision is the result of
a complex decision making process including rules, desires,
goals and environmental influences.

Now, what can we do, if our autonomous systems get so
complex that their end-users and, potentially, even their engi-
neers and experts fail to understand the system’s decisions?
We can make these systems self-explainable. The term self-
explainability comprises any functionality that can explain
reasons and causes for actions that the system decided (not)
to take.

Example. Each day, the autonomous car takes the same
route via a highway, because it is the shortest and fastest
route for its passenger. Today, it took the longer route via
the countryside. The reason for this was a heavy accident
on the highway, which required rerouting.

MAB-EX Framework

To enable the design of self-explainable systems, we de-
veloped the MAB-EX framework (Monitor, Analyze, Build,
Explain) in previous work [9]. The key idea of MAB-EX is
to adopt the core principles of the MAPE Loop [10] for self-
adaptive systems to build self-explaining systems.

With MAB-EX, the behavior of a system is Monitored and
Analyzed and it is decided whether a recipient requires an
explanation. This decision can depend on different factors:
on the situation and system context, on the user’s experience
with similar situations, or on the characteristics of the situation
(e.g., rarity of a situation). In the Build phase, the observed
behavior is used to identify the current system state in a
pre-built explanation model and to identify the events that



Fig. 1. Generation process and main architectural components of a digital twin

led to this state. Possible implementations for an explanation
model are decision trees [11]. This is as their structure already
includes decision incentives for mapping possible actions to
different reasons, which we also need for explanation models.
For more details on the structure of explanation models, we
refer to [9]. The identified events form a trace, which we
refer to as an explanation path. This path describes an internal
representation of an explanation. It is further processed into a
suitable presentation format that is given to the explainee in the
EX-phase of the loop. By using the MAB-EX framework, it is
possible to add an explanation module to an existing system.
With that, it is not necessary to include explanation capabilities
directly into the system development process and also older
systems can be made self-explainable.

Deriving Explanation Models

Providing a suitable, correct and preferably minimal expla-
nation model is crucial to provide explanations fast during
run-time. This explanation model should also be tailored
towards specific explainee types. This is as, e.g., end-users
need differently detailed explanations than engineers, lawyers,
or interacting autonomous systems.

In previous work [12], we discuss a procedure for deriving
an explanation model from an existing system model. By
system model, we mean a formal description of a computer
system: e.g., an automaton or a diagram-style model with
locations and transitions, or some program code.

Informally, the idea for extracting an explanation model
from a system model is to connect actions of the system with
their yet abstract reasons.

Example. For instance, an action could be that an
autonomous car brakes and an abstract reason for this
action to be found in the system model could be that a
data variable h exceeded a value 70.

This abstract reason is still not enough that end users
would understand it. This requires to add further explanatory
information to concepts taken from the system model. Thus,
after extracting the explanation model, we further clean-up and
tailor the model towards the different explainee types. Such
explainee types can, e.g., be end-users, engineers, lawyers, or
other technical systems.

Example. Depending on the explainee type that receives
the explanation, the information h > 70 needs to be
further refined, e.g., to “the autonomous car stopped
moving, because it’s battery was overheating”.

The explanation model extraction and refinement procedure
from [12] comprises three phases:

1) Extraction of the explanation model directly from the
system model, as well as preparing the model for the
following steps;

2) Tailoring of the model towards different explainees; and
3) Run-time updates of the explanation model after it was



DIGITAL TWINS IN A NUTSHELL

There are many different understandings of what a

digital twin is. According to the most popular definition

[1], digital twins are software systems that receive

data from the physical twin and send commands to

that system. To this end, digital twins use models

and data from and about that system.

They are already used in many different

disciplines, including agriculture, automotive,

avionics, construction, healthcare, logistics, mining,

production, and more to optimize, monitor, validate,

and predict the behavior of the physical twin [2].

Most often, digital twins represent the physical system

as operated, i.e., during its operations and based on

observed data, they produce plans to optimize the

physical twin’s behavior during operations [4]. To

ensure having the right combination of information at

hand for such optimizations, digital twins employ

digital shadows [5], which are instances of data

structures tailored for digital twin decision making.

For such planning, the digital twin needs domain

knowledge, which, in our model-driven digital twin

architecture is encoded in process models and

case-based reasoning models that can be defined

by domain experts.
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deployed.
In the first phase, unnecessary data (i.e., that is not needed for
the explanation context), is removed. The explanation context
could be that the robot’s movement should be explained, not
it’s communication habits. In the second phase, unnecessary
details are removed, with respect to different explainee-types.
Equally, the model is enriched with additional information.

Example. For an engineer, the information that an in-
ternal data variable had an overflow is of interest, while
for an end-user, such an internal variable might not be
of interest, as it is not visible from the outside.

Our explanation model is complete, w.r.t. the existing sys-
tem model and known data. Of course, in real-world applica-
tions, there will always exist situations requiring explanations,
which are new and impossible to consider during the building
phase of the explanation model (e.g. a completely new type of
an intersection that has been engineered to solve a new type
of traffic problems in the future). For this, we refer to the third
phase of the explanation model creation procedure, where run-
time updates of the explanation model are discussed. Such
a run-time update of the explanation model could, e.g., be
triggered by an update of the system itself.

EXPLAINABLE DIGITAL TWINS

To make digital twins explainable, we use the MAB-EX
framework. For the Monitoring and Analysis phases, the
approach is straight-forward: The system can be monitored and
analyzed through its digital twin, and the digital twin itself can
be monitored and analyzed by an environmental entity. With
this, we get both: an explainable system, where an outside
entity explains the system, as well as a self-explainable system,
through the digital twin explaining the system.

Also, the EXplain phase does not change, as it only
comprises the translation of an internal explanation path as
it was extracted from the explanation model. Thus, this phase
is system independent: for the system type “digital twin”, this
is not different than for other systems. However, we perceive
a challenge in the Build phase, where we need to extract an
explanation model from a system model: what is our system
model in the case of digital twins?

For digital twins, we suggest that the explanation model
must be built not from one single system model, but from
(1) formal system description models, e.g., an automaton or
a diagram, (2) process models, e.g., BPMN or UML Activity
Diagrams, and (3) reasoning models, e.g., case-based reason-
ing or planning rules. This entails translating these models into
explanation models, merging the resulting models, removing
redundancies and adding information, as we describe in the
following.

We illustrate the combination of explanation models for
digital twins in Fig. 2: First, we use the explanation model
derivation procedure from the previous section independently
on each of the three digital twin model types to obtain the
corresponding explanation models. These resulting explana-

tion models might contain equivalent sub-trees that describe
behavior leading to the same explanation trace.

Example. Both the system description and a process
model describe that, when the car’s battery overheats,
it must stop immediately.

To avoid redundancy in the explanation models, we need
to identify all those equivalent sub-trees throughout the three
explanation models. For doing so, bisimulation relations within
sub-trees of the explanation models must be detected and the
equivalent sub-trees must be removed through graph transfor-
mation techniques. We then combine the cleaned explanation
models. This is done through tree-merging methods which are,
e.g., described for decision trees in [13].

Again consider our picture in Fig. 2. There, we can see
that Y is a condition (i.e., a pattern over data obserable by
the digital twin) for X in both explanation models for a
process model and for a reasoning model. This means that
in the merged explanation model, the two sub-trees containing
Y → X are merged into one sub-tree. Ultimately, this merging
results in a single explanation model containing relations
between nodes of different input models or merged nodes.

All of this preparation happens before the digital twin
starts operating. Once running, its Reasoner uses the single
explanation model to explain why it chooses certain actions to
be performed. To this end, it receives digital shadows from the
Evaluator and derives the current node in the explanation
model. By selecting an action based on the current situation
represented in the digital shadow, it navigates from that node
to a child node containing this action. Through this, it tracks
an explanation path and how it lead to the current decision.
The explanation path relevant to the current explanation is
provided to the Executor, which persist these explanations
in the digital twin’s DataStorage and provides these to the
digital twin cockpit, where it is presented to an explainee.

CHALLENGES

Model-driven digital twins and the twinned systems are
usually created based on many different kinds of models for
their cyber-physical parts, such as system structure models,
kinematics models, CAD models, software architecture mod-
els, data models, deployment models, commissioning models,
traceability models, and more. Our approach towards mak-
ing digital twins self-explainable relies on discrete models,
through which the digital twin or the cyber-physical part take
dedicated steps at run-time. Deriving explanations from other
kinds of models, such as continuous mathematical models,
logical constraint models, or AI models is subject to ongoing
research.

By using the approach from [12], we suggest to tailoring
explanations towards different explainees. To automate this, a
definition of explainee classes is necessary. These can, e.g.,
be obtained from Personas [14], as they are known from
software design processes. Such Personas can be used to
define different user groups of digital twins and connect them
with different configurations for the explanation model. For
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Fig. 2. Combined explanation model derivation procedure for a collection of system models.

instance, considering different explainee types entails that the
internal explanation paths from the explanation model must be
translated with different degrees of detail. More experienced
users might request more details in explanations whereas less
experienced users might only need high level explanations.
Another issue to be considered is when an explanation should
be provided; in a time-critical emergency situation, only a brief
explanation might be useful.

Example. The autonomous vehicle enters an unknown
system state and explains to the human driver that they
have to take-over the situation immediately.

On the other hand, for an explanation after an event, there
might be time enough to even start an explanation dialogue,
where the explainee might react to an explanation to, e.g.,
demand more details [15].

Providing explanations to human users requires us to trans-
late the explanation models into natural language. To do
so, information from various information sources is helpful.
Digital twins have the advantage that they already include a set
of models, data, and meta-data describing different aspects of
the physical twin. Especially the models and meta-data provide
a good information source to enrich explanations with natural
language concepts.

The explanation models are also interesting in combination
with the assistive functionalities of digital twins: Explanation

models can be used in addition to step-by-step support for
human users based on process model information and, thus,
increase the acceptance of and trust in support services.

Moreover, creating explanations at run-time of the digital
twin introduces additional computational complexity, which
might be challenging if running the twin on the edge or less
computationally powerful devices. This challenge becomes
amplified if the system models change often at run-time of the
twin, as this demands adapting the explanation model often as
well. For this, it is beneficial to have the pre-built explanation
model, as its’ key idea is that only parts of it will have to be
adaptated during run-time.
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