
Modeling Deep Reinforcement Learning based
Architectures for Cyber-Physical Systems

Nicola Gatto, Evgeny Kusmenko, Bernhard Rumpe
Chair of Software Engineering, RWTH Aachen University, Aachen, Germany, kusmenko@se-rwth.de

Abstract—Reinforcement learning is a sub-field of machine
learning where an agent aims to learn a behavior or a policy
maximizing a reward function by trial and error. The approach
is particularly interesting for the design of autonomous cyber-
physical systems such as self-driving cars.

In this work we present a generative, domain-specific modeling
framework for the design, training and integration of reinforce-
ment learning systems. It consists of a neural network modeling
language which is used to design the models to be trained,
e.g. actor and critic networks, and a training language used
to describe the training procedure and set the corresponding
hyperparameters. The underlying component model allows the
modeler to embed the trained networks in larger component
& connector architectures. We illustrate our framework by the
example of a self-driving racing car.

Index Terms—cyber-physical systems, machine learning, rein-
forcement learning, domain-specific languages

I. INTRODUCTION

The design of intelligent cyber-physical system (CPS) is

a complex process which requires appropriate tools, lan-

guages, and frameworks. The component & connector (C&C)

paradigm, well known from tools such as Simulink [1] and

LabView [2], is a model-driven development approach widely

used in engineering research and practice; it enables the

developers to decompose a system in tractable functional

blocks, the so called components. Components can talk to each

other over directed connectors connecting their typed output

and input ports. There are two main ways to describe the

behavior of a component: first, a component can be modeled

as an interconnection of multiple subcomponents. Second, it

can be implemented using a behavior description or a general

purpose language. For instance, Simulink components can be

implemented as MATLAB code.

With the advance of machine learning technology, we have

been seeing more and more problems being tackled using

decision trees, support vector machines, deep neural networks,

and other data-driven learning techniques. In CPSs, perception

tasks are often implemented as convolutional neural networks

(CNNs), since this kind of networks is known to perform

well in image processing applications. On the other hand,

reinforcement learning (RL) is an approach which has been

researched for training decision making and control networks.

By trial and error, an agent learns actions maximizing a

numerical reward in a given environment. Implementing and

This work was supported by the Grant SPP1835 from DFG, the German
Research Foundation.

1 import torcs.agent.network.TorcsActor;
2 component Master {
3 ports in Qˆ{29} state,
4 out Q(-1:1)ˆ{3} action;
5

6 instance TorcsActor actor;
7

8 connect state -> actor.state;
9 connect actor.action -> action;}

Listing 1. The main EMADL component of a racing car control system.

training reinforcement learning systems is therefore inherently

different from standard supervised learning tasks where a fixed

dataset with labeled examples is used for training. In this paper

we present a model-driven and component-oriented approach

for the design and generation of reinforcement learning models

and their integration into larger systems. Therefore, we extend

the deep learning domain-specific language (DSL) family

MontiAnna [3], originally developed for supervised learning

tasks, by concepts specific to the RL domain. We employ the

C&C paradigm to encapsulate and couple the different parts of

an RL-based system and provide a simple, yet fully functional

application example modeling an agent controlling a car in the

racing simulator TORCS.

II. BACKGROUND

A. EmbeddedMontiArc for Deep Learning

In this section, we give a brief overview of EmbeddedMon-

tiArcDeepLearning (EMADL), a textual modeling language

family based on the C&C paradigm and designed for a

type-safe and verifiable development of embedded and CPSs.

The core language of EMADL is the architecture description

language (ADL) EmbeddedMontiArc (EMA) [4], [5] enabling

the developer to model an architecture as a system of hierar-

chically organized interacting components.

In EMA, a component is defined using the component

keyword followed by the component’s name, e.g. in line 2 of

listing 1; a component interface is defined as a set of strictly

typed input and output ports (lines 3-4 in listing 1). The type

system supports the mathematical primitive types B, Z, Q, and

C denoting Booleans, integers, rational, and complex numbers,

respectively. A type can be extended to a vector or a matrix by

defining its dimensionality. For instance, the input port state
in line 3 of listing 1 is a 29-dimensional vector of rational

numbers. Furthermore, a type can be refined with a range as

[GKR19] N. Gatto, E. Kusmenko, B. Rumpe: 
Modeling Deep Reinforcement Learning Based Architectures for Cyber-Physical Systems. 
In: Proceedings of MODELS 2019. Workshop MDE Intelligence, pp. 196--202, IEEE, Munich, Sep. 2019. 
www.se-rwth.de/publications/ 



is done in line 4, restricting the port to output values between

-1 and 1 in this case. Optionally, we can specify the physical

unit the port is representing.

Sub-components are instantiated using the instance key-

word followed by the component type and the instance name,

e.g. in line 6 of listing 1. Components interact only over

explicit connectors connecting two compatible ports using the

connect keyword as in lines 8-9 of listing 1.

To describe the behavior of a component, which cannot

be decomposed into smaller components, EMADL offers two

behavior modeling languages, MontiMath and MontiAnna.

MontiMath is used to describe a behavior with the help

of mathematical expressions [4]. The syntax is based on

MATLAB, but has the same strict mathematical type system

as EMADL considering ranges, units, and fixed matrix dimen-

sions. A MontiMath implementation of a component is given

in listing 5.

MontiAnna is a modeling language family for the design

of deep neural networks and is hence of particular interest for

this work. A MontiAnna model consists of a neural network

architecture, modeled as a graph of neuron layers, and a

training description capturing the hyperparameters [3]. Listing

2 shows an EMADL component whose implementation is

defined using the MontiAnna network architecture language

in lines 7-14. A designer can choose from a variety of neural

network layer types, e.g. fully connected and convolutional

layers, to assemble a network architecture.

MontiAnna provides the sequential data flow operator ”->”

to express that the output of the left operand is input into

the right operand. Furthermore, the parallelization operator

”|” can be used to split the data flow, enabling the design

of complex neural network architectures. Input and output

ports of an EMADL component encapsulating a MontiAnna

implementation can be used as layers of the MontiAnna

network. For instance, the input and output ports state and

action defined in lines 3-4 of listing 2 are mapped to the

input and output layers of the network used in lines 7 and

14, respectively. Further syntactic elements for the architec-

ture definition, e.g. layer stacking using structural operators,

facilitate a concise modeling of large network architectures.

While the MontiAnna architecture model describes the

structure of the neural network, a separate training model is

used to specify how to train it. The latter enables the developer

to define a set of typed hyperparameters including the number

of training episodes, batch size, loss function, etc.

B. Reinforcement Learning

RL describes a set of methods in the field of machine

learning. As introduced in [6], there are two main elements in

RL, the environment and the agent. The main characteristic

is that the agent performs actions in order to maximize

a numerical reward. In contrast to other machine learning

methods, in RL the agent does not learn from an existing data

set and there is no correct action for a given situation. Instead,

it has to explore the action space to find action sequences

maximizing the reward. We consider the interaction to be

discrete. At each time step, the agent receives the state of

the environment. Based on this state, it selects an action. The

environment answers with a reward and samples the next state.

Many RL methods try to learn the policy π, the action-value

function Q, or both. A policy determines how an agent acts.

It is basically a mapping of states to actions. The Q function

estimates the quality of a state-action pair.

Deep RL describes the combination of deep learning tech-

niques and RL. A lot of successful applications resulted from

this combination. One current example is Alpha Zero [7] in

which a trained agent was able to defeat world champions in

complex board games like Go.

Two popular deep RL algorithms are the Deep Q-Network

(DQN) [8] and the Deep Deterministic Policy Gradient

(DDPG) [9]. DQN can be applied to RL tasks with a discrete

action space. In the algorithm, a neural network is used to

approximate the Q-function. The algorithm had great success

in the training of an agent that learned to play Atari games. For

the training, DQN utilizes experience replay [10]. After each

step in the environment, the transition (state, action, reward,

next-state) is stored in a buffer. Every fixed number of steps, a

minibatch is drawn from the buffer to train the Q-network. The

policy of the agent is derived from the trained Q-function. For

each possible action, the Q-value is estimated with the help of

the neural network. In every step, the agent selects the action

with the highest Q-value.

DDPG combines DQN, Deterministic Policy Gradient

(DPG) [11], and actor-critic methods to tackle continuous

action spaces. DDPG learns both a concrete policy π and an

action-value function Q. The policy is called the actor and

the Q-function is called the critic. For both functions, neural

networks are used for the approximation. The critic is trained

similar to DQN. The actor is trained with the help of the critic.

It is optimized by maximizing the expected return. Hence, the

policy maximizes the Q-function.

III. REQUIREMENTS

MontiAnna was originally developed for the design of

CNNs and recurrent neural networks (RNNs) with supervised

learning in mind. In this work we investigate the suitability

of the framework for the design of RL-systems given the

following requirements.

(R1) There is no single RL algorithm, but rather a broad

spectrum of different methods, which should be chosen care-

fully based on the problem to tackle. Hence, an RL framework

should enable the user to specify the learning algorithm and

its respective hyperparameters.

(R2) In deep RL, a neural network is used as a function

approximator. The user should be able to model different

architectures that fit the RL task. Thereby, the modeler should

be able to assign roles to the networks, e.g. the actor and the

critic role, when using algorithms like DDPG.

(R3) RL problems always involve interaction with an envi-

ronment. The environment is usually not explicitly designed

for the interaction with an RL agent. A modeling language

197



must ensure that interaction is possible for different environ-

ments. From the view of the modeler, the interface and the

behavior of that environment should be time-invariant.

IV. RELATED WORK

There are various general-purpose deep learning frameworks

like TensorFlow (TF) [12] or Theano [13] that are applicable

for the realization of deep RL tasks. They support the user

by providing powerful utility modules from low to high-

level functionality. The advantage of these frameworks is

that the user gets a lot of control. From the neural network

architecture to the training, each element of the algorithm can

be adapted and tuned individually. TF, for instance, provides

the higher-level layers module for modeling neural network

architectures, but the user can also control operations on

weights and gradients to adjust the network to his/her needs.

Every specialized neural network architecture and every

special operation for the training and inference is realizable.

It is possible to integrate any kind of environments, as the

solution for the integration must be written and tailored to

the problem domain manually. The disadvantage of this kind

of frameworks is that they are rather difficult to use. First,

a user requires a deep knowledge about the different library

functions to be able to compose them. Second, one needs a

profound understanding of the algorithms in order to be able

to implement them.

More specialized frameworks tailored to the RL domain

tackle the disadvantage of general-purpose frameworks. In

contrast to frameworks like TF, the user is not required to

implement the RL learning functionality from scratch. Such

frameworks usually provide predefined agents implementing

the necessary algorithms out-of-the-box. For instance, OpenAI

Baselines [14] provides a number of state-of-the-art imple-

mentations of RL algorithms which a developer can utilize

for his/her own RL problems. OpenAI Gym contains a series

of environments helping to get up to speed with RL and well-

suited for experimentation and model comparison. A disad-

vantage of OpenAI is that it only provides the implementation

of the algorithms. The user needs to provide glue code in order

to integrate these implementations in a larger system.

DeepMind TensorFlow Reinforcement Learning (TRFL)

[15] builds upon TF and provides building blocks for the

realization of RL algorithms. For instance, it provides loss

functions and common update rules specialized to the needs

of RL. In contrast to OpenAI Baselines, the library does not

deliver ready-to-use implementations of RL algorithms, but

can be seen as a tool that provides algorithmic components

to build RL agents. Hence, it provides the same flexibility

and control like the general-purpose frameworks, but is more

convenient to use. Nevertheless, the user still needs knowledge

about the implementation of an algorithm.

Tensorforce [16], like TRFL, builds upon TF. However,

it is more of a high-level framework including agent and

model libraries with pre-defined interfaces. The target of

the framework is to provide modular and configurable RL

components which the user can integrate directly for his/her

own tasks. There are various agents for different RL algorithms

like DDPG or DQN to choose from. The user needs to specify

the state space, action space, the network architecture, and an

optimizer. Furthermore, the user can configure the training

with a lot of parameters, e.g. for the replay memory and

the exploration phase. The network is specified as a Python

array of layer definitions or as a JSON file. For training,

the library provides a runner object, which is called with the

specified agent and the environment. Tensorforce supports a

lot of ready-to-use environments, for example from OpenAI

Gym, OpenAI Universe, Deepmind Lab, etc. The user can

also integrate proprietary environments by implementing a

Python interface. This interface requires typical RL methods

like reset, execution of an action, and information about the

state and action space. In contrast to TRFL and the general-

purpose frameworks, Tensorforce is very easy to use. The

user can integrate RL components without the need for a

profound knowledge about the actual implementation of the

RL algorithms.

Google Dopamine [17], like Tensorforce, provides ready-to-

use agents. The training of an agent is defined in a gin con-

figuration file1. In this file, the user specifies the environment

to use as well as the learning parameters. Furthermore, the

user can modify an agent by subclassing one of the available

agents. Dopamine provides support for the Arcade Learning

Environments as well as discrete OpenAI Gym environments.

A component-based approach is given by the Reinforcement

Learning Toolbox by Mathworks [18]. To model architectures

with RL agents, the toolbox provides predefined agent blocks

for Simulink. A block is similar to a component in EMADL.

The agent block provides the input ports observation, reward,

and isdone as well as the output ports action and cumulative
reward. The block can be connected to other Simulink blocks.

The toolbox provides predefined MATLAB/Simulink envi-

ronments and allows the definition of user-defined ones. A

user-defined environment can be created by specifying the

observation, action, and reward functionality according to a

typical RL interface. Furthermore, it is possible to integrate

third-party environments, e.g. by using an external language

interface or a functional mockup unit (FMU). To train an

agent, the toolbox provides a functional interface. The training

can be configured using a configuration object.

V. MODELING REINFORCEMENT LEARNING

While the discussed frameworks are powerful tools for the

implementation and usage of RL solvers, they are bound

to a host general purpose language (GPL), mostly Python.

Furthermore, the realizations based on these frameworks often

require adaptations in order to use them as components in

larger architectures. In this section, we present our approach

to model and train RL components using DQN and DDPG

by extending the EMADL and MontiAnna DSL family. With

our work, we provide a model-based and generative design

approach for RL components, which is independent of the

1https://github.com/google/gin-config

198



underlying technology or programming language. Independent

of a concrete implementation, the user declares how (s)he

wants his/her RL component to be trained using a training

DSL. The trained model can then be embedded as a standard

component into any C&C architecture.

While many of the presented frameworks require a profound

understanding of the used algorithms, our language extension

is meant to be used for training and inference of an RL

component as a black box. The hyperparameters are set in

a declarative way.

In the following subsections we will present RL modeling

concepts for DQN and DDPG with the help of a running

example. In this example, we will model an RL agent con-

trolling a car in the racing simulator TORCS [19]. The state

space is given as S ⊆ Q29, holding information about the

velocity of the car, the angle of the track axis, and data from

20 range finder sensors returning the distance to the edges of

the track. An action consists of three continuous values in the

range [−1, 1] representing the steering, the acceleration, and

the braking of the car.

A. Function Approximators

1 package torcs.agent.network;
2 component TorcsActor {
3 ports in Qˆ{29} state,
4 out Q(-1:1)ˆ{3} action;
5

6 implementation MontiAnna {
7 state ->
8 FullyConnected(units=300) ->
9 Relu() ->

10 FullyConnected(units=600) ->
11 Relu() ->
12 FullyConnected(units=3) ->
13 Tanh() ->
14 action; } }

Listing 2. EMADL component of the actor. The implementation is
described using the MontiAnna architecture language.

1 package torcs.agent.network;
2 component TorcsCritic {
3 ports in Qˆ{29} state,
4 in Q(-1:1)ˆ{3} action,
5 out Qˆ{1} qvalue;
6 implementation MontiAnna {
7 (
8 state ->
9 FullyConnected(units=300) ->

10 Relu() ->
11 FullyConnected(units=600)
12 |
13 action ->
14 FullyConnected(units=600)
15 )->
16 Add() ->
17 FullyConnected(units=600) ->
18 Relu() ->
19 FullyConnected(units=1) ->
20 qvalue; } }

Listing 3. EMADL component of the critic. The implementation is
described using the MontiAnna architecture language.

Both RL algorithms use neural networks as their func-

tion approximators. DQN approximates the Q-function, while

DDPG approximates the Q-function (critic) and the policy

(actor). Usually, the networks get the current states of the

environment as inputs. The Q-network of DQN estimates

how good each possible action is, while DDPG outputs the

action to be performed directly. For the TORCS example

we are going to apply DDPG, since the action space is

continuous. Consequently, we need to model an actor and a

critic network, which we can accomplish using MontiAnna’s

network description language in listings 2 and 3.

The actor implementation in listing 2 is a feedforward

network taking the state vector sent by the TORCS envi-

ronment as its input in line 7. The output in line 14 is a

vector representing the three actions steering, acceleration, and

braking. The network is built of three fully connected layers

instantiated in lines 8, 10, and 12 and consisting of 300, 600,

and 3 neurons, respectively. The activation function is set to

ReLU for the first two layers in lines 9 and 11 and to TanH

for the output layer in line 13.

The implementation in listing 3 models the critic network

and approximates the Q-function. Hence, it takes as input the

state and action vectors in lines 3 and 4. MontiAnna allows

us to model parallel paths using the ”|” operator as is done in

line 12. We use this operator to model different paths for the

state and action inputs. The path for the state input is shown in

lines 8-11 while the action path can be seen in lines 13 and 14.

The two paths are merged by applying the ”Add” operation

in line 16 which causes the vectors resulting from both paths

to be summed up element-wise. As the critic outputs a single

Q-value, the last layer, defined in line 19, is a linear fully

connected layer with a single unit.

The critic is only used for the training of the actor compo-

nent and is not needed at execution time. Therefore, the critic

component is not embedded into another C&C architecture,

but is rather used as a stand-alone component by the training

program. The actor component, on the other hand, is run

during execution time to decide which action to take next.

Hence, the designer can embed the actor directly into a

complex C&C architecture, e.g. a robot control system, as a

standard EMADL component by instantiating and connecting

it to other components as is done in listing 1. In case DQN is

used as the learning algorithm, the function approximator is

modeled in a similar way to the actor in DDPG.

B. Training Parameters

We extended the training language of MontiAnna to support

RL-specific parameters. Listing 4 shows a training model for

the TORCS actor. In lines 3-4 the designer states that the

TorcsActor component is trained using RL and sets the training

algorithm to DDPG. Alternatively, the user can select between

DQN and Twin Delayed DDPG (TD3) [20].

For the training, we require a critic network. But how does

the compiler know where to find the critic component for a

given actor training? We can link a critic to an actor component

199



by providing the fully qualified EMADL component name of

the critic network in line 5 of the training model in listing 4.

Furthermore, the designer is able to configure typical RL-

hyperparameters including the number of episodes to train

(line 13), the discount factor (line 14), or the target update

rate (line 19). An optional target score parameter is defined

in line 37 and serves as a stopping criterion: the training is

stopped if the average reward over the last 100 episodes is

equal or greater than the target score. The snapshot interval

parameter in line 20 causes the weight parameters of the agent

to be stored every 150 episodes. By default, the weights are

only stored after the training of the agent.

The replay memory is defined in terms of an operation

mode: buffer is the standard replay memory mode intro-

duced in [8], [10], where state-action-reward pairs are stored

in a buffer. For each training step, we sample a minibatch.

Additionally, we provide the online-mode, which is effec-

tively no replay memory, as well as the combined mode,

representing the replay memory introduced in [21], where

the last performed state-action-reward pair is added to the

minibatch.

The exploration strategy is defined as an operation mode,

as well, cf. lines 25-34 in our training model. We support the

ε-greedy strategy for discrete action spaces and the Ornstein-

Uhlenbeck (OU) process as well as Gaussian noise for contin-

uous ones. For all operation modes, the designer can choose

an epsilon ε (see line 26) to set the randomness or noise level

for the action selection. The parameters following in lines 27-

30 allow us to model a reduction of the epsilon parameter

over the course of the training. Line 27 sets the reduction

method to linear, i.e. ε is reduced by the value set in line

29 after each episode until the minimal value defined in line

30 is reached. In line 28 we declare that the reduction strategy

has to be applied only after the 10th episode. Depending on

the chosen strategy, strategy-specific parameters can be set,

as well, e.g. the parameters theta, mu, and sigma for OU

defined in lines 31-33. These parameters allow us to control the

generated noise. The parameter mu, for example, determines

the mean value to which the generated noise of the OU process

will drift. We can control the noise for each action dimension

individually, which is why each of the lines 31-33 holds three

values. This allows us to model individual mean and standard

deviation values for steering, braking and accelerating.

C. Reward Function

The reward function is an important element in the design

of RL tasks. If it is provided by the environment, we obtain

it from the environment interface and, thus, do not have to

model it explicitly. If, however, the reward function is not

provided by the environment, the designer needs to model one.

As the reward is usually a mathematical function, the designer

can provide its definition as an EMADL component with a

MontiMath implementation.

Listing 5 shows the reward component for our TORCS

RL example. In our framework, the reward component has

two inputs. The first input receives the current state of the

1 training TorcsActor {
2 context : gpu
3 learning_method : reinforcement
4 rl_algorithm: ddpg-algorithm
5 critic: torcs.agent.network.torcsCritic
6 environment : ros_interface {
7 state_topic : "/torcs/state"
8 terminal_state_topic : "/torcs/terminal"
9 action_topic : "/torcs/step"

10 reset_topic : "/torcs/reset"
11 }
12 reward_function: torcs.agent.network.

reward
13 num_episodes : 3000
14 discount_factor : 0.99
15 num_max_steps : 900000
16 training_interval : 1
17 start_training_at: 0
18 evaluation_samples: 50
19 soft_target_update_rate: 0.001
20 snapshot_interval : 150
21 replay_memory : buffer{
22 memory_size : 120000
23 sample_size : 32
24 }
25 strategy : ornstein_uhlenbeck{
26 epsilon : 1.0
27 epsilon_decay_method: linear
28 epsilon_decay_start: 10
29 epsilon_decay : 0.0001
30 min_epsilon : 0.0001
31 theta: (0.6, 1.0, 1.0)
32 mu: (0.0, 0.0, -1.2)
33 sigma: (0.3, 0.2, 0.05)
34 }
35 actor_optimizer: adam { learning_rate:

0.0001 }
36 critic_optimizer: adam { learning_rate:

0.001 }
37 target_score: 100000}

Listing 4. Configuration of the actor training modeled using
the training language of MontiAnna.

1 package torcs.agent.network;
2 component Reward {
3 ports in Qˆ{29} state,
4 in B isTerminal,
5 out Q reward;
6 implementation Math {
7 Q speedX = state(22);
8 Q angle = state(1);
9 Q trackPos = state(21);

10 reward = speedX * cos(angle);
11 if abs(trackPos) > 1.0
12 reward = -20;
13 end } }

Listing 5. Component defining the reward of the TORCS
environment with the help of MontiMath.

environment with its type depending on the application, while

the second one is a Boolean flag indicating whether the last

received state is a terminal state. Furthermore, we assume that

the output, i.e. the actual reward, is always a rational number.

In lines 7-13, the actual MontiMath implementation of the

reward function is shown. In lines 7-9, we extract the velocity,

200



the angle between the car and the track axis, as well as

the normalized distance to the track edges from the state

vector we received from the environment. The actual reward

calculation takes place in line 10. The formula consists of the

two components speed and alignment of the vehicle with the

street: higher speeds are rewarded, but the agent is penalized

if the angle between car and street increases. Furthermore, we

penalize the agent if it drives outside of the track with an

absolute negative reward of −20 in lines 11-13.

Like the critic network, the reward component needs to

be linked to training in the training model. This is done in

line 12 of listing 4 by specifying the fully qualified name

of the reward component to be used. In each step of the

training, the state vector is passed to this reward component in

order to retrieve a numerical reward. Of course, we can also

integrate the reward component into our architecture model by

connecting the corresponding ports.

D. Environment

During the training time of the RL system, the trainer

needs to interact with the environment in order to train the

agent. Likewise, during the execution time of the model,

the predictor or rather the whole C&C model interacts with

the environment. We employ the Robot Operating System

(ROS) [22], a publish/subscribe middleware mostly used in the

robotics domain for the communication of distributed modules,

to realize the communication between the agent, the critic,

and the environment. Therefore, we require the environment to

provide the following publish/subscribe interface, based on the

general interface of OpenAI Gym environments: state is the

current state of the environment. Usually, it is represented by

a feature vector or a matrix of rational numbers. The concrete

shape depends on the application. terminal is a Boolean

flag indicating whether the last received state is a terminal

state. reward is an optional topic, which can be used by the

environment to publish a reward for each action performed. If

it is not present, the designer must define a reward function

as a MontiMath-based EMADL component.

The agent publishes the action to be performed via the

step topic. If the action space is discrete, the data type is

an integer, otherwise it is either a scalar or vector of rational

numbers. A step always causes the environment to send its

next state, the terminal information and, optionally, a reward.

The environment listens to a further topic called reset. If the

message is set to “true“, the environment restarts itself. A reset

should always be followed by a message holding the initial

state, a terminal flag that is false and, optionally, a reward.

Any application providing the interface described above

can be used as training environment for our framework by

providing a ROS adapter. The environment can be any software

application, e.g. a simulator, or a physical machine with

sensors and actuators.

For training, the designer specifies a mapping of the in-

terface to the names of the corresponding ROS topics in the

training model. In the TORCS example, the environment is an

adapter that enables us to communicate with TORCS via ROS.

Lines 6-11 of listing 4 show how we connect the interface

of the environment with the trainer. Eventually, the designer

can connect the ports of the final, trained C&C model to any

environment via ROS using the middleware tagging approach

as described in [23].

E. Code Generation

EMADL provides a generator mapping models to exe-

cutable C++ code. Depending on the selected deep learning

backend, the generation of MontiAnna models is delegated to

a backend generator. Thereby, predictor and trainer artifacts

are generated. Creation and training of the neural network are

carried out by the trainer. It instantiates the neural network

with the help of the chosen deep learning backend, e.g. MxNet

or TF, and trains it according to the training model. After

training, the architecture of the neural network and its weight

parameters are exported to a file format, which can be loaded

by the predictor. The predictor is a C++ component which

is embedded into the executable EMADL code. Its task is to

load the neural network together with its parameters to make

predictions for incoming inputs at runtime.

We extended the EMADL code generator to be able to gen-

erate and train a fully functional RL system from an EMADL

model including a MontiAnna neural network description

and a corresponding RL training model. If the newly added

parameter learning_method is set to reinforcement
in the training model as is done in line 3 of listing 4, the

generation strategy is changed. First, we check RL-specific

context conditions on the composed architecture and training

models in order to verify that the requirements of the chosen

RL algorithm are satisfied. For instance, in the case of DDPG

we ensure that the state and action dimensions of the critic

correspond to those of the actor. Then, a fully functional

solution including the training and final deliverable code is

created.

Figure 1 shows the overall architecture of the generated

artifacts. Training and execution time are depicted on the lhs

and the rhs, respectively. The trainer is generated as Python

code using the deep learning library MXNet Gluon. The figure

shows the different components the trainer utilizes in order to

train the network. The RLTrainer module provides an entry

point for the training and creates the required neural networks

based on the defined architectures. Furthermore, it possesses a

Python dictionary with all the parameters and values defined

in the training model.

Both the created neural networks and the training param-

eters are passed to the Agent component which imple-

ments the actual RL algorithm for the training. During the

training, the agent interacts with the environment in order

to exchange states and actions. In case a reward model is

declared, executable C++ code for this model is generated,

as well. Then, all states are passed to the executable reward

model in order to obtain the reward value. Furthermore, the

training system provides information such as the actor loss

and the average reward. After training, weight parameters

of the neural network are exported to a file such that the

201



Trainer Backend

Environment

ROS
Environment

RewardModel

Reward Wrapper

Agent
PyCritic

Network

Py

Py

Py
C++

<<trains>>

Py

TORCS Environment

re
se

t

st
ep

st
at

e

te
rm

.

<<use>>

TORCS Environment

Py

RLTrainer

<<initializes>>

Actor
Network

Py
<<trains>>

<<creates>> <<creates>> <<provides>><<provides>>

Master

TorcsActor C++

C++

action state

parameters and architecture

<<loads>> <<loads>>

st
ep

st
at

e

Fig. 1. Generated Architecture: The left side shows the architecture during the training. The right side is the architecture during execution time of the model.

predictor of the executable model is able to load it. A report

containing statistical information about the training process is

saved for analysis, as well. At this stage, the training of the

RL component is finished and the user can execute the model.

VI. CONCLUSION

In this paper, we introduced a model-driven framework

enabling us to design deep reinforcement learning systems

using the MontiAnna language family and to embed the

resulting networks as components in larger C&C architectures.

Therefore, we extended the MontiAnna training language by

reinforcement learning concepts and designed a component-

based training system, where EMADL components represent

different roles of the reinforcement learning process such as

actor, critic, and reward. Domain-specific context conditions

defined for this component model ensure the consistency of

the overall system. A complete modeling example of a self-

driving racing car was used to illustrate the concepts.

REFERENCES

[1] Mathworks Inc. Simulink User’s Guide. Technical Report R2019a,
MATLAB & SIMULINK, 2019.

[2] National Instruments. BridgeView and LabView: G Programming
Reference Manual. Technical Report 321296B-01, National Instruments,
1998.

[3] Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard
Rumpe, and Thomas Timmermanns. Modeling and Training of Neural
Processing Systems. In Conference on Model Driven Engineering
Languages and Systems (MODELS’19). IEEE/ACM, September 2019.

[4] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael
von Wenckstern. Modeling Architectures of Cyber-Physical Systems.
In European Conference on Modelling Foundations and Applications
(ECMFA’17), LNCS 10376, pages 34–50. Springer, July 2017.

[5] Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael
von Wenckstern. Highly-Optimizing and Multi-Target Compiler for
Embedded System Models: C++ Compiler Toolchain for the Component
and Connector Language EmbeddedMontiArc. In Conference on Model
Driven Engineering Languages and Systems (MODELS’18), pages 447
– 457. ACM/IEEE, October 2018.

[6] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[7] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-
play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[9] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[10] Long-Ji Lin. Reinforcement learning for robots using neural networks.
Technical report, Carnegie-Mellon Univ Pittsburgh PA School of Com-
puter Science, 1993.

[11] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,
and Martin Riedmiller. Deterministic policy gradient algorithms. In
Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32, ICML’14, pages I–387–
I–395. JMLR.org, 2014.

[12] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. Software available from tensorflow.org, 1(2), 2015.

[13] Theano Development Team. Theano: A python framework for fast
computation of mathematical expressions. CoRR, abs/1605.02688, 2016.

[14] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai
Wu, and Peter Zhokhov. OpenAI Baselines. https://github.com/openai/
baselines, 2017.

[15] DeepMind Technologies Limited. Tensorflow reinforcement learning:
TRFL. https://github.com/deepmind/trfl, 2018.

[16] Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. Ten-
sorforce: a TensorFlow library for applied reinforcement learning.
https://github.com/tensorforce/tensorforce, 2017.

[17] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Ku-
mar, and Marc G Bellemare. Dopamine: A research framework for deep
reinforcement learning. arXiv preprint arXiv:1812.06110, 2018.

[18] Inc. The MathWorks. Reinforcement learning toolbox. https://www.
mathworks.com/products/reinforcement-learning.html.

[19] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimi-
trakakis, Rémi Coulom, and Andrew Sumner. Torcs, the open racing car
simulator. Software available at http://torcs.sourceforge.net, 4(6), 2000.

[20] Scott Fujimoto, Herke van Hoof, and Dave Meger. Addressing function
approximation error in actor-critic methods. CoRR, abs/1802.09477,
2018.

[21] Shangtong Zhang and Richard S. Sutton. A deeper look at experience
replay. CoRR, abs/1712.01275, 2017.

[22] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[23] Alexander Hellwig, Stefan Kriebel, Evgeny Kusmenko, and Bernhard
Rumpe. Component-based Integration of Interconnected Vehicle Archi-
tectures. In 30th Intelligent Vehicles Symposium (IV’19). Workshop on
Cooperative Interactive Vehicles, pages 146–151. IEEE, June 2019.

202




