
Semantic Differencing for Message-Driven
Component & Connector Architectures

Arvid Butting, Oliver Kautz, Bernhard Rumpe, Andreas Wortmann
Software Engineering, RWTH Aachen University, Aachen, Germany, www.se-rwth.de

Abstract—Stepwise refinement is a development methodology
in which software components progressively evolve under strict
adherence of proven properties. This requires means to check
whether a new version of a component – with potentially different
interface and behavior implementation – refines the behavior
of its predecessor. Where architecture description languages
(ADLs) support refinement checking, the complexity of their
semantic domain requires (partially) manual proving to establish
refinement between component versions. We identified a subset of
the FOCUS semantics for describing distributed systems as stream
processing functions that is powerful enough to model complex
and realistic systems, yet sufficiently powerful to support fully
automated refinement checking. Leveraging this, we present a
refinement checking method for ADLs yielding semantics that can
be expressed as stream processing functions. This method relies
on transforming architectures into composed port automata and
translating these to Büchi automata prior to proving refinement
using RABIT for language inclusion checking. This method
enables to compare the behaviors of component versions with
minimal effort, yields witnesses for non-refining component pairs,
and, thus, ultimately facilitates stepwise component refinement.

I. INTRODUCTION

Stepwise refinement [3], [4] is a development methodology

for continuous architecture modeling based on controlled

evolution and progressive improvement of components: each

successor component version must adhere to properties already

proven for its predecessors. To this effect, checking whether

successor component versions refine their predecessors in

terms of observable input/output behavior is crucial.

Architecture description languages (ADLs) [20] leverage the

potential of model-driven engineering [32] for the description

of software architectures. Research has produced over 120
ADLs [19] for different domains, such as automotive [9],

avionics [11], consumer electronics [31], or robotics [28].

Similar to UML [21], the specific semantics of many ADL

details are encoded in their infrastructures and tools only.

Where fully detailed denotational or operational semantics are

available, such as FOCUS [5], these are usually too complex for

fully automated refinement checking and typically require to

(partially) manually prove refinement between two component

versions. This impedes stepwise refinement so severely that

it becomes a “highly idealistic” [3] idea. However, enabling

stepwise refinement for software architecture models would

greatly facilitate development in domains where component

adherence to certain properties is crucial.

We identified a subset of the FOCUS [5] semantics for time-

synchronous, distributed, interactive systems that is powerful

enough to model complex and realistic systems and yet enables

fully automated refinement checking between components.

Based on this, we present an approach to transform software

component models into a variant of port automata [12],

compose these syntactically, and translate these into Büchi

automata, where their refinement can be checked via lan-

guage inclusion. This approach is realized with the Monti-

ArcAutomaton component & connector ADL [23], [25] and

the RABIT [1], [2] tool for fully automated language inclusion

checking between Büchi automata. It enables modeling soft-

ware architectures with powerful ADLs and checking refine-

ment on a push-button basis. To this effect, the contributions

of this paper are:

• Formulation of the semantics domain of time-

synchronous [5] stream processing functions (TSSPFs)

inspired by the notion of stream processing function [24].

• Presentation of a time-synchronous variant of port au-

tomata (TSPA) [12] with operational semantics based on

execution traces and denotational semantics based on sets

of TSSPFs.

• A semantically compositional syntactic composition op-

erator for TSPAs: The semantics of the syntactic compo-

sition of two TSPAs is equal to the composition of the

semantics of the individual TSPAs.

• A transformation from finite TSPAs to Büchi automata.

• A proof showing the operational semantics of a finite

TSPA and the language accepted by the Büchi automaton

resulting from such a transformation coincide.

• The result that refinement checking and disproof genera-

tion in form of semantic difference witnesses for software

architectures where components can be mapped to finite

TSPAs can be reduced to language inclusion checking

and counterexample generation for Büchi automata.

• An implementation based on MontiArcAutomaton [23],

[25] and RABIT [1], [2].

In the following, Sec. II sketches the idea of stepwise

refinement, before Sec. III presents the FOCUS subset used

as semantics domain for components. Afterwards, Sec. IV

presents semantic differencing based on this subset and Sec. V

presents the implementation of our approach with MontiArc-

Automaton and RABIT and evaluates its applicability. Sec. VI

discusses observations and Sec. VII highlights related work.

Sec. VIII concludes.

II. EXAMPLE

Consider the model-driven development of an elevator con-

trol system (ECS) as presented in [29]. The ECS depicted

[BKRW17] A. Butting, O. Kautz, B. Rumpe, A. Wortmann:
Semantic Differencing for Message-Driven Component & Connector Architectures.
In: International Conference on Software Architecture (ICSA'17), pages 145-154. IEEE, 2017.
www.se-rwth.de/publications/

in Fig. 1 comprises two hierarchically composed components

representing the three floors the elevator serves (component

Floors) and the elevator cabin (component Elevator)

itself. Whenever a button on a floor (indicated, for example,

by a message on the incoming port btn1) is pressed, the

ECS should activate the light (by sending a message via

outgoing port li1) on the corresponding floor and instruct

the elevator cabin to visit that floor. The control logic of the

elevator is modeled via a statechart variant embedded into

the Elevator’s subcomponent Control. This component

receives messages upon arriving at a specific floor (e.g., via

incoming port at1) and sends messages to Door and Motor
to operate its door and to move between the floors. The latter

two embed models of compact action languages to describe

their respective behavior.

���

�����	
�����	
�
�� �����

�����

�
�� �����
�����

����

����

�����
��
�

���
���
�
��

��
��
�

���� �

�
�

�
�

���	�

����

����

��

�
�� �����
�����

�����

��������

�
�

�
�

�
�

�
�

���

���

���

����

����

����

���

���

���

���

���

���

����

���� �������

��
�����

!����"
�������

!����"
��
�����

#$
�%&'
�(%$

��������	
	��
	���	�
��
��������	
	�����
������

�����
	�����������
������
���������

�

�����
������������
��
�����	
	��������
����

��������	
	�����
�����	
	�����
����
��
�

!����"
�����

��
��
��

����

��
	�

��

����

����

%$�'
�)%��

*)
���

*)
���

�+�
�������������
������
��������
�����������

�����	
	��
���
��
��
��
����
����� �
��!
������
�

Fig. 1. The elevator control system ECS comprises subcomponents to manage
serving elevation requests on up to three floors.

For this version of ECS, the company has proven that

certain properties hold (e.g., that it cannot produce blocking

situations). Now the company aims to replace the Elevator
component with an improved version that reacts only to

elevator requests on a floor if there is no such request yet.

To this effect, the company employs stepwise refinement to

avoid proving the properties of Elevator again for its

successor version NewElevator. Therefore, the behavior

descriptions of all subcomponents are translated into port

automata. For composed components, the behavior descrip-

tions of their subcomponents are translated also and merged

iteratively. This ultimately eliminates all hierarchy levels but

the last. The result of this transformation is depicted in Fig. 2,

where the behavior descriptions of all three subcomponents

have been transformed accordingly and merged into a single

port automaton. The same is performed for the improved

NewElevator component before both are transformed into

nondeterministic Büchi automata as presented in Sec. V.

Using this transformation reduces semantic component re-

finement to language inclusion on Büchi automata and can

be solved automatically using RABIT. Hence, with this in-

frastructure in place, the company now can fully automated

ensure whether the NewElevator, and its potential suc-

cessors, actually refine their predecessors or require further

adjusting. Where refinement is refuted, difference witnessing

�**�,

�**�,

',*

������
��������������� ���"#��

��������

�+�

�-

'�-

�����
��- $*

.

'�������
��- $*

.

Fig. 2. The composed components Elevator and NewElevator each are
transformed into flat components with a single port automaton prior to being
transformed into Büchi automata and checked for language inclusion.

input/output pairs are produced. This automation of stepwise

refinement can increase the pace of each refinement step and,

hence, overall development efficiency.

III. A SEMANTICS DOMAIN FOR COMPONENTS

This section introduces the semantics domain for compo-

nents based on the FOCUS framework [3], [5], [12], [24],

[27] and recaps the most important results from [12], which

underlie the approach presented in this paper.

We interpret software architectures as networks of au-

tonomously acting components communicating in a time-

synchronous manner via directed, typed channels connecting

the components’ interfaces. A time-synchronous architecture

can be interpreted as a system where component computations

are performed concurrently and controlled by a global clock

that splits runtime into discrete and equidistant time units. In

every time unit, each component receives finitely many input

messages via its interfaces and outputs finitely many messages

to its environment. The computations of each component in

every time unit must terminate.

In the remainder, we denote by [X → Y] the set of all

functions from a set X to a set Y . For a function f ∈ [X → Y]
and a set Z ⊆ X , the restriction of f to Z is the function

f |Z ∈ [Z → Y] that satisfies f |Z(x) = f(x) for all x ∈ Z.

Given two functions f ∈ [X → A] and g ∈ [Y → B], the

overriding union of f with g is the function f + g ∈ [(X ∪
Y)→ (A∪B)] that satisfies (f + g)(x) = g(x) if x ∈ Y and

(f + g)(x) = f(x) if x ∈ X \ Y for all x ∈ X ∪ Y .

A. Streams, Messages, Types, and Communication Histories

The history of messages a component receives or sends via

an interface is formally described as a stream that contains

messages in order of their transmission. Let M be an arbitrary

alphabet. A stream over the set M is a finite or infinite

sequence of elements from M . Following [5], we denote by

• M∗ the set of all finite streams over M ,

• M∞ the set of all infinite streams over M ,

• 〈〉 the empty stream, which is an element of M∗,
• ŝt the concatenation of two streams s and t such that

((M∗∪M∞), ,̂ 〈〉) is a monoid. If s ∈M∞ then ŝt = s.

• � the prefix relation over streams, which is a partial order

defined by: ∀s, t ∈ (M∗∪M∞) : s � t⇔ ∃u : ŝu = t,

• s.t the t-th element of a stream s ∈M∞,

• s↓t the prefix of a stream s ∈M∞ of length t ∈ N.

In the remainder, let M denote an arbitrary but fixed set

of data elements, such as messages, and let Type be a set of

data types such that each t ∈ Type satisfies t ⊆ M . Types

facilitate restricting the set of messages a component may emit

or receive via an interface. We assume a discrete model of

time where component computation is divided into discrete

time units of equal and finite duration. In each time unit each

component receives at most one message via each incoming

interface, may perform finitely many state changes and emits

at most one message via each outgoing interface. We use the

special symbol ε ∈ M to denote the absence of a message

during a time unit and require ε ∈ t for each t ∈ Type.

A channel is an identifier for a communication link between

interface elements of components. In the following we denote

by C a set of typed channel names. The function type ∈ [C →
Type] maps each channel in the set C to its type. Let B ⊆ C
be an arbitrary set of channel names. A communication history
is an element of the set BΩ defined as follows:

BΩ def
= {h ∈ [B →M∞] | ∀b ∈ B : h(b) ∈ type(b)∞}.

A communication history h ∈ BΩ is used to model the

history of messages emitted via the channels in the set B.

Let h ∈ BΩ be a communication history, H ⊆ BΩ a set of

communication histories, and t ∈ N a natural number. We lift

the operator ↓ to communication histories and sets of commu-

nication histories in a point-wise manner, i.e., b↓t∈ [B →M∗]
denotes the function that satisfies b↓t(i) = b(i)↓t for all i ∈ B

and H↓t def
=

⋃
h∈H h↓t denotes the set resulting from applying

the operator to each element in H .

B. Time-Synchronous Stream Processing Functions

We model the semantics of distributed interactive sys-

tems as sets of time-synchronous stream processing functions

(TSSPFs). The notion of TSSPFs is inspired by the notion

of timed SPFs [5], [12], [24], [27]. The major and crucial

difference between the two notions is that TSSPFs process

exactly one message per channel per time unit, whereas SPFs

process a stream of messages per channel per time unit. The

key idea is to treat components as black-boxes having an

observable behavior characterized by the interactions on chan-

nels between systems and subsystems while hiding internal

implementation details. A component is mapped to a set of

functions describing the component’s possible behaviors. Such

a function maps communication histories over the set of input

channels of a component to communication histories over the

set of the component’s output channels. Thus, each function in

the semantics of a component with input channels I ⊆ C and

output channels O ⊆ C is of the form f ∈ [IΩ → OΩ].
However such functions are not always realizable in the

sense that they can be implemented [5], [22]. Intuitively, the

characterizing properties for realizability are that a component

cannot change messages received or sent in the past and cannot

react to messages received in the future [5], [22], [24], [27].

Thus, the output of a behavior describing function until time

t must be completely determined by its input until time t:

Definition 1 (Time-Synchronous Stream Processing Function).
Let I,O ⊆ C be two disjoint sets of input and output channels.
A function f ∈ [IΩ → OΩ] is called (weakly causal) time-
synchronous stream processing function iff
∀i, i′ ∈ IΩ : ∀t ∈ N : i↓t= i′↓t⇒ f(i)↓t= f(i′)↓t.
We denote by [IΩ

wc−−→ OΩ] the set of all TSSPFs mapping

input histories in IΩ to output histories in OΩ. The semantics

of components are modeled as closed sets of TSSPFs.

Definition 2 (Component Describing). Let I,O ⊆ C be two
disjoint sets of channels. A set of TSSPFs F ⊆ [IΩ

wc−−→ OΩ]
is called component (semantics) describing iff it satisfies ∀g ∈
[IΩ

wc−−→ OΩ] : ((∀i ∈ IΩ : ∃f ∈ F : g(i) = f(i))⇒ g ∈ F).

The definition above makes the semantics domain of com-

ponents fully abstract [12], [13] in the sense of [15] and allows

to handle unbounded nondeterminism [12]. Full abstraction is

achieved by the closeness property, which requires that each

TSSPF resulting from a combination of TSSPFs included in

the set F is also included in F . The closeness property is also

important to make component semantics as little distinguishing

as possible. This is illustrated by the fact that two different

arbitrary sets of TSSPFs may encode the same component

behaviors. The reason for this is that one may find a TSSPF

g /∈ F that is not included in a set of TSSPFs F , which can

be interpreted as a combination of different TSSPFs contained

in F . It thus does not induce a new behavior not already

covered by a TSSPF in F but, for instance, induces a semantic

difference between a component with semantics described by

F and a component with semantics described by F ∪ {g}.
As a result the semantics of two components that have the

exact same observable behaviors may be considered unequal.

Consequently, full abstraction is not achieved. Thereby, the

closeness property is necessary.

1) Composition of TSSPFs: Composition is an important

concept to achieve modularity. Composing the semantics of

the individual components of a system leads to the semantics

of the whole system. Composing arbitrary sets of TSSPFs

can lead to realizability problems in delay-free feedback loops

where the output of a component in time unit t depends on

its input in time unit t and vice versa. Thus, composition

is only defined for TSSPFs where causality between inputs

and outputs on channels connected via a feedback loop is

ensured. This is the case if one of the TSSPFs participating in

a composition is strongly causal with respect to its channels

connected by the composition. Intuitively, a set of TSSPFs F
is strongly causal with respect to (J, P), if the output of at

least one TSSPF f ∈ F on the channels in P until time unit

t+1 is not influenced by the function’s inputs received on the

channels in J after time unit t.

Definition 3 (Strongly Causal Modulo). Let f ∈ [IΩ
wc−−→ OΩ]

be a TSSPF and let J ⊆ I and P ⊆ O be two subsets of input
and output channels names. The TSSPF f is called strongly
causal with respect to (J, P) iff
∀i, i′ ∈ IΩ : ∀t ∈ N : (i|J)↓t= (i′|J)↓t ∧i|I\J = i′|I\J ⇒

f(i)|P ↓t+1= f(i′)|P ↓t+1.

A set of TSSPFs F is called strongly causal with respect to

(J, P) iff there exists a function f ∈ F that is strongly causal

with respect to (J, P). The causality complication is avoided,

if causality between the inputs and outputs on the connected

channels of a composition’s participant is guaranteed:

Definition 4 (Composable). Two sets of TSSPFs F1 ⊆
[IΩ1

wc−−→ OΩ
1] and F2 ⊆ [IΩ2

wc−−→ OΩ
2] are called composable

iff F1 is strongly causal with respect to (I1 ∩O2, I2 ∩O1) or
F2 is strongly causal with respect to (I2 ∩O1, I1 ∩O2).

Components communicate with each other via unidirected,

typed channels established by connectors connecting compo-

nent interfaces. Multiple components may read from the same

channel, whereas only one component is permitted to write

messages on a channel. This ensures that no merging of mes-

sages emitted from different components via the same channel

is necessary. Thus the output channels of the functions of two

sets of TSSPFs need to be disjoint to enable composition. The

composition of two sets of TSSPFs yields a set of TSSPFs:

Definition 5 (Composition). Let F1 ⊆ [IΩ1
wc−−→ OΩ

1] and F2 ⊆
[IΩ2

wc−−→ OΩ
2] be two component describing and composable

sets of TSSPFs with disjoint output channel sets O1∩O2 = ∅.
Let I = (I1\O2)∪(I2\O1) and O = O1∪O2. The composition
F1 ⊗ F2 ⊆ [IΩ

wc−−→ OΩ] of F1 and F2 is defined by
F1⊗F2

def
= {f | ∀i ∈ IΩ : ∃f1 ∈ F1 : ∃f2 ∈ F2 : f(i) = o+ p

where o = f1((i+ p)|I1), p = f2((i+ o)|I2)}
The composition operator is defined similar as in [12],

[13], [27] with the difference that we consider the time-

synchronous system model instead of the more general timed

system model [5]. The composition is well defined and thus

results in a component semantics describing set of TSSPFs.

Theorem 1. If F1 and F2 are two component describing and
composable sets of TSSPFs with disjoint output channel sets,
then F1 ⊗ F2 is also component describing.

Proof. Analogous to proof of Thm. 9 in [12] by replacing the

set the function f is chosen from with [IΩ
wc−−→ OΩ].

C. Time-Synchronous Port Automata

A TSPA specifies the behavior (of parts) of an interactive

system and represents a component semantics describing set of

TSSPFs that is given by its semantics. TSPAs as introduced in

this paper are strongly inspired by port automata as introduced

in [12], I/O∗ automata as introduced in [27], [24], and MAAts

automata as defined in [22]. Port and I/O∗ automata consume

and produce time slices of arbitrary but finitely many input

messages in every transition step. In contrast, TSPAs and

MAAts automata consume and output at most one message

per input channel in each time slice. Given the set of states

and the channel types of an automaton are finite, MAAts

automata and the automata presented here are guaranteed to

have finitely many transitions. This is not the case for I/O∗ and

port automata since both have to define a transition for each

state and each possible input communication history. Even if

the type of a channel is finite, the number of communication

histories (streams) of the channel’s type is infinite. I/O∗

and MAAts automata enforce causality between input and

output histories by requiring initial outputs on all channels. In

contrast, TSPAs do not require initial outputs. While the syntax

of MAAts automata treat variables explicitly, variables have to

be represented implicitly in the state space of TSPAs. TSPAs

can be treated as a special case of port automata as presented

in [12]. Thereby the proofs of many theorems presented in

the following are analog to proofs, which have already been

carried out in [12]. In case we are stating an analogous theorem

we refer to the appropriate corresponding proof in [12].

A TSPA consists of a set of states, an interface given by

input and output channels, and transitions defining the TSPA’s

behavior. The interface is encoded by a port signature.

Definition 6 (Port Signature). Let I,O ⊆ C be two disjoint
sets of channel names (ports). A port signature is a tuple Σ =
(I,O). We denote by C(Σ)

def
= I ∪O the set of all ports in Σ.

A port signature Σ is called finite iff C(Σ) and type(c) for
all c ∈ C(Σ) are finite.

Let B ⊆ C. A port assignment is an element of the set B→

defined as B→ def
= {a ∈ [B →M] | ∀b ∈ B : a(b) ∈ type(b)}.

TSPAs must not block their environments and must be able

to react to any possible well-typed input in any time unit.

Therefore, a TSPA must define a reaction to every possible

input for each of its states. The reactions of a TSPA are defined

by its transitions. In each time unit, a TSPA performs exactly

one state change by executing one transition enabled by its

input and outputs exactly one message on each output channel.

Definition 7 (Time-Synchronous Port Automaton). A time-
synchronous port automaton is a tuple A = (Σ, S, ι, δ) where:
• Σ = (I,O) is a port signature,
• S is a set of states,
• ι ∈ S is the initial state,
• δ ⊆ S × C(Σ)→ × S is the transition relation, which is

required to be reactive, i.e., ∀s ∈ S : ∀i ∈ I→ : ∃t ∈ S :
∃θ ∈ C(Σ)→ : (s, θ, t) ∈ δ ∧ θ|I = i.

A is called finite iff Σ and S are finite.

For convenience we sometimes write s
θ−→δ t instead of

(s, θ, t) ∈ δ and simply s
θ−→ t if δ is clear from the context.

1) Execution and Behavior Semantics of TSPAs: This sec-

tion formalizes the intuitive descriptions of a TSPA’s behavior.

Definition 8 (Execution). Let A = (Σ, S, ι, δ) be a TSPA. An
execution σ of A is an infinite, alternating sequence of states
and port assignments starting with the initial state ι:
σ = s0, θ0, s1, θ1, ... s.t. s0 = ι and ∀i ∈ N : si

θi−→ si+1.
The set of all executions of A is denoted by execs(A).

Executions comprise the state changes and interactions

performed by a TPSA. Abstracting from state changes allows

to treat TSPAs as black boxes with hidden internal details.

Definition 9 (Behavior). Let A = (Σ, S, ι, δ) be a TSPA with
port signature Σ = (I,O). The behavior of an execution
σ = s0, θ0, s1, θ1, ... of A is defined as the sequence beh(σ)

def
=

θ0, θ1, ... containing only port assignments. We denote by
behs(A)

def
=

⋃
σ∈execs(A) beh(σ) the set of all behaviors of

all executions of A. The named communication history hα

induced by a behavior α ∈ behs(A) with α = e0, e1, ...
is defined as the function hα ∈ (I ∪ O)Ω that satisfies
hα(x).t = et(x) for all x ∈ I ∪O and t ∈ N.

Given a TSPA A = (Σ, S, ι, δ) with Σ = (I,O) and an

input history i ∈ IΩ, we denote the set of communication

histories induced by a behavior of A with input i by

A[i]
def
= {o ∈ OΩ | ∃α ∈ behs(A) : o = hα|O ∧ hα|I = i}.

2) Composition of TSPAs: As for TSSPFs, causality ex-

presses the dependency between the inputs and outputs of

a TSPA. A TSPA’s output in time t must be completely

determined by its input until time t. Thus it cannot change

messages sent in the past and cannot predict messages it

receives in the future (cf. pulse drivenness in [12]):

Definition 10 (Weakly Causal TSPA). A TSPA A = (Σ, S, ι, δ)
with Σ = (I,O) is called weakly causal iff
∀i, i′ ∈ IΩ : ∀t ∈ N : i↓t= i′↓t⇒ A[i]↓t= A[i′]↓t.
Weak causality states that for every two inputs i, i′ having

a common prefix of length t and for every behavior α ∈ A[i]
there is a behavior β ∈ A[i′] having a common prefix of length

t with α. Similar as for TSSPFs, weak causality can lead to

composition complications, which are avoidable analogously.

Definition 11 (Strongly Causal Modulo). Let A = (Σ, S, ι, δ)
be a TSPA with port signature Σ = (I,O) and let J ⊆ I and
P ⊆ O be two sets of input and output ports of A. The TSPA
A is called strongly causal with respect to (J, P) iff
∀i, i′ ∈ IΩ : ∀t ∈ N : (i|J)↓t= (i′|J)↓t ∧i|I\J = i′|I\J ⇒

(A[i]|P)↓t+1= (A[i′]|P)↓t+1.

Intuitively, a TSPA is strongly causal with respect to (J, P),
if its outputs on the channels in P until time t + 1 are not

influenced by its inputs on the channels in J after time t.

TSPAs communicate with each other via their input and

output ports. Multiple automata may read from the same

channel, whereas only one automata is permitted to write

messages on a channel. This ensures no merging of messages

on channels emitted by different automata is necessary.

Definition 12 (Compatible Port Signatures). Two port signa-
tures Σ1 = (I1, O1) and Σ2 = (I2, O2) are called compatible
iff O1 ∩O2 = ∅.

By composing two TSPAs, the output ports of one automa-

ton are connected to the input ports with the same name of

the other automaton. The connected input channels are hidden

implicitly. The set of output channels of the new automaton is

the union of the sets of the output channels of the two original

TSPAs. The input channels of the new automaton are the input

channels of the two automata that do not share a common

name with the output channels of the other automaton.

Definition 13 (Composition of Signatures). The composition
of two compatible port signatures Σ1 = (I1, O1) and Σ2 =

(I2, O2) is defined as Σ1⊗Σ2
def
= (I,O) where I = (I1\O2)∪

(I2 \O1) and O = (O1 ∪O2).

The following defines the composition operator for TSPAs.

Definition 14 (Composition of TSPA). Let A1 =
(Σ1, S1, ι1, δ1) and A2 = (Σ2, S2, ι2, δ2) be two TSPAs with
compatible port signatures Σ1 = (I1, O1) and Σ2 = (I2, O2).
The composition of A1 and A2 is defined as A1 ⊗ A2

def
=

(Σ1 ⊗ Σ2, S1 × S2, (ι1, ι2), δ) where the transition relation
δ is defined by the following rule:

s1
θ|C(Σ1)−−−−−→δ1 t1 ∧ s2

θ|C(Σ2)−−−−−→δ2 t2

(s1, s2)
θ−→δ (t1, t2)

TPSAs can block each other if they simultaneously require

an input emitted by another TSPA to produce the next output.

Composing such TSPAs results in a structure with an empty

transition relation, which is no TSPA since the requirement for

reactiveness in Def. 7 implies that the transition relation of a

TSPA is not empty. However, there is a sufficient condition

ensuring the resulting transition relation is reactive.

Definition 15 (Composability of TSPAs). Two TSPAs A1 =
(Σ1, S1, ι1, δ1) and A2 = (Σ2, S2, ι2, δ2) with port signatures
Σ1 = (I1, O1) and Σ2 = (I2, O2) are called composable iff
A1 is strongly causal with respect to (I1∩O2, I2∩O1) or A2

is strongly causal with respect to (I2 ∩O1, I1 ∩O2).

The following theorem states that composing two compos-

able TSPAs always results in a well-formed TSPA.

Theorem 2. If A1 and A2 are composable TSPAs with
compatible port signatures, then A1 ⊗A2 is a TSPA.

Proof. Analogous to proof of Thm. 3 in [12] by replacing the

set the function i is chosen from with I→.

3) TSSPF semantics of TSPAs: This section defines the se-

mantics of TSPAs by sets of TSSPFs and reveals an important

relation between the composition operators: The semantics of

the syntactic composition of two TSPAs A and B is equal to

the composition of the semantics of the individual automata.

Definition 16 (TSSPF Semantics of a TSPA). The TSSPF
semantics �A� of a TSPA A = (Σ, S, ι, δ) with port signature
Σ = (I,O) is defined as follows:

�A�
def
= {f ∈ [IΩ

wc−−→ OΩ] | ∀i ∈ IΩ : ∃α ∈ behs(A) :

i = hα|I ∧ f(i) = hα|O}
For each behavior, the semantics contain a function that

maps inputs to outputs as encoded by the history induced by

the behavior, i.e., no behavior is lost in the semantic mapping.

Theorem 3. Let A be a TSPA. For each α ∈ behs(A) there
is a function f ∈ �A� such that f(hα|I) = hα|O.

Proof. Analogous to proof of Thm. 11 in [12] by replacing

the definition of maximality with ∀i ∈ IΩ : i ∈ S|I .

The semantics of TSPAs are well formed, i.e., TSPAs can

be used to specify component behavior because the semantics

of every TSPA is component semantics describing.

Theorem 4. The semantics �A� of a TSPA A is component
semantics describing.

Proof. Analogous to proof of Thm. 12 in [12] by replacing

the set the function f is chosen from with [IΩ
wc−−→ OΩ].

The semantics of the composition of two TSPAs is equal to

the composition of their individual semantics:

Theorem 5. For two composable TSPAs A and B with com-
patible signatures the following holds: �A⊗B� = �A�⊗ �B�.

Proof. Analogous to proof of Thm. 13 in [12] by replacing

the applications of �·� for PAs and ⊗ for SPFs by applications

of the corresponding definitions for TSPAs and TSSPFs.

An important implication of the theorem is that we can

first syntactically compose the individual automata of an

architecture and then perform analysis on the semantics of

the automaton encoding the behavior of the whole system.

This gives another basis for analysis that does not necessarily

require to compose the semantics of the individual components

of a system as, for example, done in [26].

IV. SEMANTIC DIFFERENCING OF COMPONENT

BEHAVIOR: FROM TSPAS TO BAS

After introducing the notations for Büchi Automata (BAs)

used in this paper, this section presents a theorem stating

that there is a nondeterministic BA for each finite TSPA that

accepts exactly the behaviors of the TSPA. Afterwards, it

is shown that refinement checking and semantic difference

witness generation for TSPAs can be reduced to language

inclusion checking and counterexample generation for BAs.

A. Büchi Automata

Büchi automata [2] are a variant of finite automata that

are acceptors for infinite words and thus induce languages

consisting of infinite words. They are well known and much

used in the model checking domain. Infinite words over an

alphabet Π are infinite sequences of symbols in Π. The set of

all infinite words over an alphabet Π is denoted by Πω .

Definition 17 (Büchi Automaton). A BA is a tuple (Π,
Q, I, F, δ) where Π is a finite alphabet, Q is a finite set of
states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of
accepting states, and δ ⊆ Q×Π×Q is the transition relation.

Let B = (Π, Q, I, F, δ) be a BA. A run of B on a word

w = σ1, σ2... ∈ Πω starting in a state q0 ∈ Q is an infinite

sequence q0, q1, ... such that qj−1
σj−→δ qj for all j > 0. A

run q0, q1, ... is accepting if q0 ∈ I and qi ∈ F for infinitely

many i > 0. The accepted language of B is defined as

L(B) def
= {w ∈ Πω | there exists an accepting run for w in B}.

Checking language inclusion between two Büchi automata

is PSPACE-complete [18], though decidable. Although the

computational complexity is large, several approaches for

checking language inclusion and counterexample (diff witness)

generation have been implemented and produce promising

results in practice [2]. In the next section, we present a trans-

lation from finite TSPAs to BAs and thereby reduce semantic

differencing and refinement checking for finite TSPAs to the

language inclusion problem for Büchi automata.

B. From TSPAs to BAs

We consider semantic differencing and refinement checking

for architectures where the individual components have a finite

state space, communicate over finitely many communication

channels, and where the types of messages emitted via compo-

nent interfaces are finite. There exists a nondeterministic BA

for each finite TSPA that accepts exactly the TSPA’s behaviors.

Theorem 6. For any finite TSPA A there exists a BA B such
that behs(A) = L(B).
Proof. Let A = (Σ, S, ι, δ) with Σ = (I,O) be a finite TSPA.

Let B = (Π, S, {ι}, S,Δ) where

• Π = [(I ∪O)→ ⋃
c∈I∪O type(c)] and

• Δ = {(s, l, t) | ∃θ ∈ C(Σ)→ : (s, θ, t) ∈ δ ∧ θ = l}.
The TSPA A is finite. Thus, S, I , O, and

⋃
c∈I∪O type(c)

are finite. As therefore Π and Δ are finite, B is a well-defined

BA. It remains to show that behs(A) = L(B).
⊆: Let s0, θ1, s1, θ2, s2, ... ∈ execs(A) be an execution of

A. By definition of execution sj−1
θj−→ sj for all j > 0 and

s0 = ι. By definition of B we have that (sj−1, θj , sj) ∈ Δ
for all j > 0. Thus, s0, s1, s2, ... is a run of B on the word

θ1, θ2, Since all states s ∈ S are accepting, the run is ac-

cepting. Thus, beh(s0, θ1, s1, θ2, s2, ...) = θ1, θ2, ... ∈ L(B).
⊇: Assume that σ = σ1, σ2, σ3, ... ∈ L(B) and let

q0, q1, q2, ... be an accepting run of B on σ. By definition of

run we have qj−1
σj−→ qj for all j > 0. Thus, by definition of

Δ we have that there are θj ∈ C(Σ)→ with (qi−1, θj , qj) ∈ δ
and θj = σj for each j > 0. Thus τ = q0, θ1, q1, θ2, ... is an

execution of A. Therefore, by definition of behavior we have

that beh(τ) = σ1, σ2, ... ∈ behs(A) is a behavior of A.

C. Semantic Differencing for Component Behavior

The semantics of components are defined as sets of TSSPFs.

We denote the semantics of a component c by �c�. Each

function f ∈ �c� \ �c′� in the semantics of one component

c that is no member of the semantics of another component c′

is a representative for the difference between the components’

semantics. However, such a representative defines an output for

each possible component input, even if the semantic difference

is only given by a single input/output pair. Thus, such a

TSSPF does not effectively reveal the differences between

the component semantics. In contrary, the exact input/output

pairs for which there is a function in the semantics of one

component that maps the input to the output and for which

there is no function in the semantics of the other component

mapping the input to the output clearly reveals a difference. If

two components have different interfaces, i.e., they read and

write from and to different channels, each input/output pair of

the first component indicates a difference to the semantics of

the other component. However, if the components have chan-

nels of the same types one can easily avoid this problem by

channel renaming and hiding [3]. Thus, we define the semantic

difference for components having the same interfaces, only.

Definition 18 (Diff Witness). Let F1, F2 ⊆ [IΩ
wc−−→ OΩ] be

two sets of TSSPFs. A diff witness distinguishing F1 from F2

is a communication history w ∈ (I ∪O)Ω satisfying
∃f1 ∈ F1 : f1(w|I) = w|O ∧ ∀f2 ∈ F2 : f2(w|I) �= w|O.

We denote by Δ(F1, F2) the set of all diff witnesses distin-
guishing F1 from F2.

A set of diff witnesses may be finite but is typically

infinite. The following theorem reveals the relation between

the differences of the behaviors and of the semantics of TSPAs.

Theorem 7. Let A1 = (Σ, S1, ι1, δ1) and A2 = (Σ, S2, ι2, δ2)
with Σ = (I,O) be two TSPAs and let w ∈ (I ∪ O)Ω be a
communication history. The following holds:
w ∈ Δ(�A1�, �A2�)⇔

∃α ∈ behs(A1) : w = hα ∧ α /∈ behs(A2).

Proof. Let A1, A2, and w be given as above.

⇒: Assume w ∈ Δ(�A1�, �A2�) is a diff witness. By

definition of Δ, we have that there is a function f1 ∈ �A1�
such that f1(w|I) = w|O and f(w|I) �= w|O for all f ∈ �A2�.

In the following let f1 be such a function that satisfies the

above. By definition of �·� we have that ∀i ∈ IΩ : ∃α ∈
behs(A1) : i = hα|I ∧ f1(i) = hα|O. When substituting w|I
for i, we get ∃α ∈ behs(A1) : w|I = hα|I ∧ f1(w|I) = hα|O.

Since f1(w|I) = w|O we can substitute w|O for f1(w|I) and

obtain ∃α ∈ behs(A1) : w|I = hα|I ∧ w|O = hα|O, which is

equivalent to ∃α ∈ behs(A1) : w = hα.

In the following, let such an α with w = hα be given.

It remains to show α /∈ behs(A2). Towards a contradiction

we assume α ∈ behs(A2). By Thm. 3 we get there is a

function g ∈ �A2� such that g(hα|I) = hα|O. By definition

of α we have w = hα and thus g(w|I) = w|O. But since

w ∈ Δ(�A1�, �A2�), it holds that ∀f ∈ �A2� : f(w|I) �= w|O.

Substituting g for f yields a contradiction.

⇐: Assume there is an α ∈ behs(A1) such that w = hα

and α /∈ behs(A2). Using Thm. 3 we get there is a function

f ∈ �A1� such that f(hα|I) = hα|O. By definition of w
we have that w = hα and thus obtain by substitution that

f(w|I) = w|O. Thus there is a function f ∈ �A1� such that

f(w|I) = w|O. It remains to show that g(w|I) �= w|O for all

g ∈ �A2�. Towards a contradiction we assume that there is a

function g ∈ �A2� such that g(w|I) = w|O. By definition of

�·� we get that ∀i ∈ IΩ : ∃β ∈ behs(A2) : i = hβ |I ∧ g(i) =
hβ |O. Substituting w|I for i we obtain ∃β ∈ behs(A2) : w|I =
hβ |I ∧ g(w|I) = hβ |O. Since by assumption w|I = hα|I and

g(w|I) = w|O by definition of g, this is equivalent to ∃β ∈
behs(A2) : hα|I = hβ |I ∧ w|O = hβ |O. By assumption we

have w = hα and thus obtain via substitution ∃β ∈ behs(A2) :
hα|I = hβ |I ∧ hα|O = hβ |O, which is equivalent to ∃β ∈
behs(A2) : hα = hβ . Using the definitions of hα and hβ , this

is equivalent to ∃β ∈ behs(A2) : α = β, which is equivalent

to α ∈ behs(A2) and contradicts the assumption.

In the previous section, we presented a translation from

finite TSPAs to BAs. Each word accepted by a BA resulting

from such a translation corresponds to a behavior of the input

TSPA. Existing algorithms for checking language inclusion

and counterexample generation for BAs can thus be used

for refinement checking and diff witness generation of ar-

chitectures as defined above: Given two TSPAs A1 and A2

we use the translation defined in proof of Thm. 6 to obtain

two Büchi automata B1 and B2 such that L(B1) = behs(A1)
and L(B2) = behs(A2). Using Thm. 7 and Thm. 6 we can

transform a word accepted by B1 that is not accepted by B2 to

a corresponding diff witness that semantically distinguishes the

automata A1 and A2. By definition, if L(B1) = L(B2) then the

two TSPAs A1 and A2 are equivalent and if L(B1) ⊆ L(B2)
then the automaton A1 refines the automaton A2.

V. IMPLEMENTATION AND EVALUATION

This section recapitulates the MontiArcAutomaton

ADL [23], [25], presents the application of refinement

checking to its models and evaluates our approach.

A. The MontiArcAutomaton ADL

The MontiArcAutomaton ADL [23], [25] comprises the

modeling elements common to many popular component &

connector ADLs [20], i.e., hierarchical components with in-

terfaces of typed, directed ports and unidirectional connectors

(typed FIFO channels) exchanging messages between these

ports. The components are black-boxes and either atomic

or composed: atomic components yield behavior descriptions

in form of embedded automata (following the I/Oω [27]

paradigm) or in form of Java implementations. The behavior of

composed components solely emerges from the interaction of

their subcomponents. Components are scheduled by a global

clock and perform cycles of 1.) read all messages on incoming

ports; 2.) compute behavior (which might entail invoking

subcomponents); 3.) produce a single message to each out-

going port. Each computation consumes a time slice, i.e., the

output for messages received at the global clock’s i-th tick is

produced at its i+1-th tick earliest. The MontiArcAutomaton

ADL also distinguishes between component types and their

instances, supports component type inheritance, generic type

parameters for components (e.g., to be used with generic port

types), and constructor-like configuration of these instances.

The MontiArcAutomaton ADL is a textual modeling lan-

guage implemented with the MontiCore [17] language work-

bench. The textual representation of the composed component

type Elevator is illustrated in Listing 1. It begins with

the keyword “component”, followed by the component type’s

name and a body delimited by curly brackets (l. 1). The body

contains an interface of typed ports (ll. 2-5), declares three

subcomponents (ll. 7-9), and multiple connectors (ll. 11-13).

The subcomponent declarations reference component types

imported from artifacts (such as Control).

MontiArcAutomaton

1 component Elevator {
2 port in Bool req1, in Bool at1,
3 // ... further ports ...
4 out Bool open, out Bool close,
5 out Clear clear;
6

7 component Control ctrl; // named
8 component Motor m; // subcomponent
9 component Door d; // instances

10

11 connect req1 -> control.req1;
12 // ... further connectors ...
13 connect control.clear -> clear;
14 }

Listing 1. Textual representation of the component Elevator.

B. Semantic Differencing of MAA Components

The implementation comprises a translation from Monti-

ArcAutomaton architectures to semantically equivalent TSPAs.

TSPAs are only handled internally as representatives for sets of

TSSPFs modeling component semantics and are not explicitly

modeled by component developers. Each atomic component

directly translates to a TSPA. The TSPA of a composed com-

ponent is computed by composing the TSPAs of its subcompo-

nents according to the architectural configuration defined by

the composed component’s connectors. The implementation

further consists of a translation from TSPAs to BAs and

generators that produce models in the “BA format”, which is

the input format of the tool RABIT [2]. In case a BA does not

refine another BA, RABIT provides a counterexample serving

as a concrete disproof for refinement. The counterexamples

can be translated back to diff witnesses. Using the tool chain

described above enables automated refinement checking and

diff witness generation for MontiArcAutomaton architectures.

C. Evaluation

We evaluated the approach to semantic differencing with six

MontiArcAutomaton architectures previously used for eval-

uation in [26]. We specifically chose these architectures for

evaluation since the approach presented in [26] failed for some

specifications, which we considered to be challenging, and to

enable comparability. The architectures were slightly modified

for this evaluation to resolve technical MontiArcAutomaton

version compatibility issues. We reused the completion strate-

gies [26] for completing the automata implementations of the

architectures’ atomic components.

The first architecture is given by an implementation of an

elevator control system (ECS) (cf. Sec. II). It comprises 3

composed and 5 atomic components. The second example

consists of four variants of a mobile robot. We only report

on the evaluation of the most challenging variant. This vari-

ant comprises 4 components in total whereof 3 components

are atomic. The last architecture implements a pump station

consisting of 3 composed and 10 atomic components.

In [26], for each of the architectures three specification

checks are executed: it is checked whether the semantics

TABLE I
TIME FOR REFINEMENT CHECKING AND DIFF WITNESS CALCULATION.

Δ(�·�, �·�) Δ(�·�, Chaos) Δ(Chaos, �·�)
Floors 62ms 526ms 909ms

Elevator 75ms 2510ms 6064ms

ECS 463ms 7166ms 16537ms

SensorReading 94ms 764ms 1558ms

Controller 15ms 17ms 43ms

Pumpstation 119ms 334ms 486ms

MobileRobot 52ms 75ms 106ms

of a component is equal to itself, whether a component

refines a component with the same interfaces that implements

arbitrary behavior, i.e., all possible behaviors, and whether

the semantics of a component are equal to the semantics of

a component implementing arbitrary behavior. We performed

the same checks on a computer with 3.0 GHz Intel Core i7

CPU, 16 GB Ram, Windows 10, and RABIT 2.4 using our

translation from MontiArcAutomaton architectures to BAs and

the language inclusion checking tool RABIT [2] (cf Sec. V-B).

Table I summarizes the computation times of RABIT given

the BAs resulting from the transformation as input. For

component ECS, for instance, checking whether it refines

itself took 463ms, checking refinement with arbitrary behavior

took 7166ms, and calculating a diff witness distinguishing the

component from arbitrary behavior took 16537ms. Table II

depicts the sizes of the automata resulting from the transla-

tions. For component ECS, for instance, the TSPA and the BA

resulting from the transformation have 746 states and 98496

transitions. RABIT reported the tool has reduced the BA to

8 states and 1728 transitions after internal preprocessing. For

every component we modeled arbitrary behavior (Chaos) with

a TSPA consisting of one state and a transition for every

possible component input/output combination. The TSPA and

the BA modeling arbitrary behavior for component ECS, for

instance, comprise 472392 transitions (cf. Table II). In contrast

to the translation from MontiArcAutomaton architectures to

the model checker Mona [26], our implementation succeeded

for all example architectures. The longest computation time

of our evaluation (16537ms, cf. Table I) resulted from seman-

tic differencing arbitrary behavior with the ECS component.

We conclude that our translation provides promising results.

Nevertheless the evaluation was only performed on a few

specific architectures. Thus the results are not generalizable

to all possible architectures: the time needed by our tool may

vary strongly from system to system.

VI. DISCUSSION

If the semantics domain of an ADL is overly general, un-

decidability of the underlying mathematical problems renders

automated formal verification impossible. Then, architecture

properties have to be proven manually, which is too expensive

to be carried out in continuous architecture modeling and thus

hinders employing agile development in architecture modeling

projects: little changes to requirements or implementations can

TABLE II
THE NUMBERS OF STATES AND TRANSITIONS OF THE TSPAS

TRANSLATED FROM THE ARCHITECTURES AND OF THE GENERATED BAS.

TSPA/BA BA AP Chaos

#states #trans. #states #trans. #trans.

Floors 32 1024 32 1024 23328

Elevator 34 10206 1 729 236196

ECS 746 98496 8 1728 472392

SensorReading 2 1296 2 1296 69984

Controller 1 9 1 9 108

Pumpstation 6 3888 4 2592 17496

MobileRobot 150 2700 12 216 1152

entail changing many manually performed proofs. In contrast,

where automated formal verification is possible, sound and

complete proofs can be generated automatically, supporting

agile implementation evolution.

FOCUS is a comprehensive framework that supports speci-

fying the observable input/output behavior of interactive sys-

tems. Its complexity requires carrying out proofs for system

behavior verification manually. FOCUS provides various con-

structs for describing the semantics of distributed systems [24].

Examples are relations, set-based functions, sets of functions,

assumption/guarantee predicates, or state-based representa-

tions. As identified in [24], the most fine-grained domain for

describing the semantics of distributed systems using FOCUS

are sets of SPFs. Independent of the style, specifications can

describe timed or untimed behavior. Untimed behavior only

considers the causality regarding the order of inputs and

outputs. Timed specifications additionally concern causality

regarding the passage of time. Many requirements are not

only concerned with the order of messages but also state

requirements with respect to passage of time. Thus, we employ

a variant of the timed subset of FOCUS and thereby use sets

of TSSPFs as semantics domain [24], [27].

Our approach is limited to systems where the data types’

domains are finite and is restricted to the time-synchronous

model of computation. However, our system model fits well

into the kinds of systems developed for embedded systems

such as automotive or robotics applications. Thus, our results

enable fully automated tool support for many systems in such

domains. Emphasizing that our approach cannot be generalized

to the timed model of FOCUS as, for example, used in [12],

is important: Timed SPFs (cf. [12], [24], [27]), for instance,

are too general to be applicable to our approach. A timed SPF

processes infinite sequences of finite sequences (of arbitrary

lengths) of messages. Each of the finite sequences represents

a finite stream of messages received or sent by a component

in a single time unit. In contrast, TSSPFs only process single

messages per time unit. The set of finite streams of messages

over a non-empty finite data type is already infinite. Thus,

for each time unit, a timed SPF needs to define a possible

behavior for infinitely many tuples of input streams, whereas

a TSSPF needs to define a reaction for all possible tuples of

input messages, which are finitely many if the messages’ data

types are finite. From a practical viewpoint it is rarely required

to specify the reaction in a time unit in response to the receipt

of an arbitrary number of messages. Usually it either requires

to handle single messages (TSSPFs) or sequences of messages

where the length of the sequence is bound by an arbitrary but

fixed natural number. The latter can be reduced to the former

by introducing lists of fixed length as message types.

The underlying theoretical problem for semantic differ-

encing used in our approach is language inclusion checking

between Büchi automata. Its complexity can be considered

as another limitation of our approach. However, our main

focus is not verifying a system’s properties (e.g., refinement

or semantic differencing) within seconds, which is most often

already rendered impossible due to the complex nature of

the safety critical system under development. We believe that

nonetheless the possibility to apply formal fully automated

verification (e.g., over night) greatly facilitates continuous

architecture modeling.

VII. RELATED WORK

Studies on the verification techniques of ADLs have been

conducted, e.g., in [30] and [33]. The study in [33] surveys

verification techniques supported by ADLs with formal se-

mantics, the translation of architectures to inputs for model

checkers, and tool support as well as usability, scalability, and

expressiveness. As supported by our approach, the study states

that architecture verification for practical applications requires

tool-support and automation. The study in [30] compares

different verification tools and applies them to various ADLs.

All architectures are transformed into intermediate labeled

transition systems before the verification tools are applied,

hampering the direct comparison with our approach.

The following surveys concrete approaches for for-

mally analyzing hierarchical architecture descriptions. Auto-

FOCUS 3 [14] is a tool for the development of reactive

embedded systems that also bases its semantics on FO-

CUS [5]. Although AutoFOCUS 3 supports model checking

architectures against LTL and CTL formulas that specify

properties concerning component behavior [6], we are not

aware of a fully automated refinement checking method

for AutoFOCUS 3. The π-ADL supports statistical model

checking for verifying dynamic software architectures against

DynBLTL properties [7]. To this effect, a statistical model

of finite system executions is built and the probability of

satisfying a property within a confidential bound is calculated.

This approach is particularly tailored to dynamic architectures

and is only concerned with finite traces. In contrast, our

approach deals with infinite traces, static architectures, and

full certainty. Refinement of architectures specified with timed

I/O is described in [16]. Similar to behaviors of TSPAs, the

semantics of a timed automaton is given by a set of traces.

Refinement between timed I/O automata is defined similar

as in our approach by trace inclusion. However, timed I/O

automata are only marked with one message per transition and

composition is defined differently. Further, the timing concept

of I/O automata is more powerful and complicated than the one

of our approach [12]. A game-based extension of the timed I/O

automaton model enabling tool supported refinement checking

has been proposed in [8]. Another approach to automated

refinement checking based on the time synchronous frame of

FOCUS is described in [22], [26]. This approach is based

on a relational semantics domain where the semantics of a

component is given as a relation between the component’s

possible inputs and outputs. In contrast, our approach uses a

more fine grained [24] semantics domain consisting of sets of

functions. Refinement checking in [22], [26] relies on translat-

ing component semantics into WS1S and is implemented using

the model checker Mona [10]. The approach suffers from the

tool’s high computational complexity, which is grounded in

the non-elementary complexity of solving W1S1 problems.

In contrast, we define a translation to Büchi automata and

thereby obtain a PSPACE-complete complexity for refinement

checking. While the relational approach is based on analyzing

the result from composing the semantics of the individual

components of a system, our approach first syntactically

composes the individual components and bases analysis on

the semantics of the compound.

VIII. CONCLUSION

We have presented an implementation of stepwise refine-

ment for ADLs using a subset of the FOCUS semantics for

distributed systems. This subset consists of time-synchronous

stream processing functions, and hence the corresponding

software architecture models, can be translated to a variant

of port automata. Via a transformation from port automata

to Büchi automata, we can reduce component refinement to

language inclusion. As the evaluation has shown, the fully

automated implementation supports checking refinement for

MontiArcAutomaton architecture models in reasonable time.

While this might be improved further, we believe our approach

facilitates continuous architecture modeling.

REFERENCES

[1] RABIT Tool Homepage, 2016. http://http://www.languageinclusion.org/
[accessed 2016-12-31].

[2] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Holı́k,
Chih-Duo Hong, Richard Mayr, and Tomáš Vojnar. Advanced Ramsey-
Based Büchi Automata Inclusion Testing. In International Conference
on Concurrency Theory, CONCUR 2011, 2011.

[3] Manfred Broy. A Logical Basis for Component-Oriented Software and
Systems Engineering. The Computer Journal, 2010.

[4] Manfred Broy and Max Fuchs. The Design of Distributed Systems -
An Introduction to FOCUS. Technical report, TU Munich, 1992.

[5] Manfred Broy and Ketil Stølen. Specification and Development of Inter-
active Systems. Focus on Streams, Interfaces and Refinement. Springer
Verlag Heidelberg, 2001.

[6] Alarico Campetelli, Florian Hölzl, and Philipp Neubeck. User-friendly
Model Checking Integration in Model-based Development. In Interna-
tional Conference on Computer Applications in Industry and Engineer-
ing, 2011.

[7] Everton Cavalcante, Jean Quilbeuf, Louis-Marie Traonouez, Flávio
Oquendo, Thaı́s Batista, and Axel Legay. Statistical Model Checking of
Dynamic Software Architectures. In European Conference on Software
Architecture, 2016.

[8] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and
Andrzej Wasowski. Timed I/O Automata: A Complete Specification
Theory for Real-time Systems. In ACM International Conference on
Hybrid Systems: Computation and Control, 2010.

[9] Vincent Debruyne, Françoise Simonot-Lion, and Yvon Trinquet. EAST-
ADL - An architecture description language. In Architecture Description
Languages. Springer, 2005.

[10] Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x: New
techniques for WS1S and WS2S. In Computer-Aided Verification, 1998.

[11] Peter H. Feiler and David P. Gluch. Model-Based Engineering with
AADL: An Introduction to the SAE Architecture Analysis & Design
Language. Addison-Wesley Professional, 2012.

[12] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata.
Technical report, TU Munich, 1995.

[13] Radu Grosu, Ketil Stølen, and Manfred Broy. A Denotational Model for
Mobile Point-to-Point Data-flow Networks with Channel Sharing, 1997.

[14] Florian Hölzl and Martin Feilkas. AutoFocus 3 - A Scientific Tool Pro-
totype for Model-Based Development of Component-Based, Reactive,
Distributed Systems. In Model-Based Engineering of Embedded Real-
Time Systems, 2007.

[15] Bengt Jonsson. A Fully Abstract Trace Model for Dataflow and
Asynchronous Networks. Distributed Computing, 1994.

[16] Dilsun K. Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W.
Vaandrager. Timed I/O Automata: A Mathematical Framework for
Modeling and Analyzing Real-Time Systems. In IEEE Real-Time
Systems Symposium (RTSS 2003), 2003.

[17] Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore:
Modular Development of Textual Domain Specific Languages. In
Proceedings of Tools Europe, 2008.

[18] Orna Kupferman and Moshe Y. Vardi. Verification of Fair Transition
Systems. In International Conference on Computer Aided Verification,
1996.

[19] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and
Antony Tang. What Industry Needs from Architectural Languages: A
Survey. IEEE Transactions on Software Engineering, 2013.

[20] Nenad Medvidovic and Richard N. Taylor. A Classification and Com-
parison Framework for Software Architecture Description Languages.
IEEE Transactions on Software Engineering, 2000.

[21] Object Management Group. OMG Unified Modeling Language (OMG
UML), Superstructure Version 2.3 (10-05-05), May 2010. http://www.
omg.org/spec/UML/2.3/Superstructure/PDF/ [accessed 2017-01-13].

[22] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component
and Connector Systems. Shaker Verlag, 2014.

[23] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas
Wortmann. Language and Code Generator Composition for Model-
Driven Engineering of Robotics Component & Connector Systems.
Journal of Software Engineering for Robotics (JOSER), 2015.

[24] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams,
Stream Processing Functions, and State-Based Stream Processing. In-
ternational Journal of Software and Informatics, 2011.

[25] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Ar-
chitecture and Behavior Modeling of Cyber-Physical Systems with
MontiArcAutomaton. Shaker Verlag, 2014.

[26] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Model-
Based Specification of Component Behavior with Controlled Under-
specification. In Modellbasierte Entwicklung eingebetteter Systeme
(MBEES’16), 2016.

[27] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektori-
entierter Systeme. Doktorarbeit, TU Munich, 1996.

[28] Christian Schlegel, Andreas Steck, and Alex Lotz. Model-Driven
Software Development in Robotics: Communication Patterns as Key for
a Robotics Component Model. In Introduction to Modern Robotics.
iConcept Press, 2011.

[29] Frank Strobl and Alexander Wisspeintner. Specification of an Elevator
Control System. Technical report, TU Munich, 1999.

[30] Jeffrey J.P. Tsai and Kuang Xu. A comparative study of formal
verification techniques for software architecture specifications. Annals
of Software Engineering, 2000.

[31] Rob Van Ommering, Frank Van Der Linden, Jeff Kramer, and Jeff
Magee. The Koala Component Model for Consumer Electronics Soft-
ware. Computer, 2000.

[32] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, Simon Helsen,
and Krzysztof Czarnecki. Model-Driven Software Development: Tech-
nology, Engineering, Management. Wiley, 2013.

[33] Pengcheng Zhang, Henry Muccini, and Bixin Li. A Classification
and Comparison of Model Checking Software Architecture Techniques.
Journal of Systems and Software, 2010.

