
Semantics Enhancing Model
Transformation for Automated Constraint

Validation of Palladio Software
Architecture to MontiArc Models

Sebastian Weber1(B) , Jörg Henß1 , Bahareh Taghavi2 , Thomas Weber2 ,
Sebastian Stüber3 , Adrian Marin3 , Bernhard Rumpe3 ,

and Robert Heinrich2

1 FZI Research Center for Information Technology, Karlsruhe, Germany
{sebastian.weber,henss}@fzi.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
{bahareh.taghavi,thomas.weber,robert.heinrich}@kit.edu

3 Software Engineering, RWTH Aachen University, Aachen, Germany
{stueber,marin,rumpe}@se-rwth.de

Abstract. Component-based software architecture allows software
architects to design systems by composing components with syntacti-
cally defined interfaces. These models can be used for the analysis and
prediction of the functional and non-functional properties of the sys-
tem. While tools for the modeling and analysis of such systems, e.g., the
Palladio approach, support the syntactic validation of the composition,
they lack the capability to validate the semantic composition. If, e.g.,
one component requires and one provides an integer value, they can be
composed, independently of whether this composition is actually seman-
tically sound. To support software architects in the semantic validation
of their system models, we propose a model transformation tool, that
allows to transform system models from Palladio models to MontiArc
models, enrich them with semantic constraints and validate these con-
straints with the MontiArc workbench. We present exemplary results
of this transformation and validation applied to a simplified model of a
component-based simulator of the Palladio approach.

Keywords: Semantic Constraint Validation · Software Architecture ·
Model Transformation · Palladio · MontiArc

1 Introduction

Software plays an ever more important role in society and economy. To ensure
it fulfils the requested functionality and quality properties, such as performance
and security, a multitude of different analysis techniques are available. Because
these analysis techniques are designed to evaluate specific questions, they use dif-
ferent modeling formalisms tailored to these questions. The Palladio simulators
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Ampatzoglou et al. (Eds.): ECSA 2024, LNCS 14937, pp. 30–38, 2024.
https://doi.org/10.1007/978-3-031-71246-3_4

[WHT+24] S. Weber, J. Henß, B. Taghavi, T. Weber, S. Stüber, A. Marin, B. Rumpe, R. Heinrich: 
Semantics Enhancing Model Transformation for Automated Constraint Validation 
of Palladio Software Architecture to MontiArc Models. 
In: Software Architecture. ECSA 2024 Tracks and Workshops, A. Ampatzoglou, J. Pérez, B. Buhnova, V. Lenarduzzi, 
C. C. Venters, U. Zdun, K. Drira, L. Rebelo, D. Di Pompeo, M. Tucci, E. Y. Nakagawa, E. Navarro (Eds.), 
Volume 14937, pp. 30-38, LNCS, Springer Nature Switzerland, Cham, Sep. 2024.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71246-3_4&domain=pdf
http://orcid.org/0009-0006-3746-0694
http://orcid.org/0000-0002-4527-211X
http://orcid.org/0009-0005-0031-1938
http://orcid.org/0009-0001-5775-2225
http://orcid.org/0000-0002-6636-9375
http://orcid.org/0009-0006-5740-8439
http://orcid.org/0000-0002-2147-1966
http://orcid.org/0000-0003-0779-9444
https://doi.org/10.1007/978-3-031-71246-3_4


Model Transformation for Automated Constraint Validation 31

[15] and the Palladio Component Model (PCM) [15] are examples and while they
enable the architectural modeling and analysis of component-based software sys-
tems, they do not support the validation of the composition of such components
beyond a syntactic level, i.e., as discussed in [6]. As long as the syntactic inter-
faces between the components match, they can be composed, but it is crucial to
also verify that all the components can work together and communicate properly
by semantic validation. Because Palladio aims at analyzing quality properties of
systems, we do not introduce support for semantic constraints directly in Palla-
dio, but instead we introduce a tool that allows for the transformation from a
PCM model to a MontiArc [4] model. MontiArc supports the textual modeling of
component&connector systems and allows the validation of semantic constraint
specified at the ports of the components, which are connected through the con-
nectors. These constraints are specified in an additional model to avoid adding
more complexity to the PCM and enrich the MontiArc model generated from the
PCM. Our tool is publicly available at Github (https://github.com/FeCoMASS/
Model-Transformation-for-Automated-Constraint-Validation) and an explana-
tory video is available at https://fecomass.github.io/fecomass/videos/.

Contributions: Our first contribution is the transformation of a PCM model to
a MontiArc. The second contribution is the incorporation of constraints within a
MontiArc model and the last contribution is the addition of constraint checking
to MontiArc. Figure 1 shows the transformation and enrichment process our tool
applies to check the semantic validity of the composition of the system modeled
in the PCM.

Fig. 1. Transformation Process and Artifacts

The following Sect. 2 introduces the Palladio approach, its simulators and
the modeling formalism PCM. In addition, the model of a simplified exemplary
system is presented. Section 3 introduces MontiArc and shows how the exemplary
system is modeled there. The next Sect. 4 explains the automatic transformation
between PCM and MontiArc, followed by Sect. 5 introducing how the constraints
in the MontiArc model are checked to validate the modeled system. Section 6
concludes the paper with a discussion about the current state of the tool and an
outlook on future work planned to expand it.

2 Palladio and Running Example

Palladio [15] is an approach for simulating software architecture, aiming to ana-
lyze and predict performance, among other quality properties. The tooling that

https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://fecomass.github.io/fecomass/videos/


32 S. Weber et al.

implements the Palladio approach is known as Palladio-Bench [7]. The Palla-
dio Component Model (PCM) is a domain-specific modeling language and is
composed of multiple sub-models, each targeting a particular developer role.
Component developers contribute by specifying behavioral aspects of their com-
ponents and interfaces in the repository model. Subsequently, system architects
leverage these repositories to assemble concrete component-based software sys-
tems in the assembly model. Meanwhile, system deployers focus on modeling
the resource environment and allocating components across different resources.
Business domain experts are also responsible for providing usage models that
describe critical usage scenarios and outline user behavior. Palladio facilitates
model evaluation through simulation, enabling the prediction of performance
metrics like response times and hardware utilization under specified workloads.

Running Example: We use a simplified model of Slingshot [9], the latest simu-
lator for Palladio based on an event-driven architecture, to showcase the PCM
models our tool requires as depicted in Fig. 2. Slingshot currently comprises
three simulation components: the UsageSimulation, the SystemSimulation, and
the ResourceSimulation component. In order to start a simulation, the Usage-
Simulation component looks up the workload from a usage scenario and begins
interpretation based on its parameters. The connection between the UsageSimu-
lation and SystemSimulation components occurs via user requests, which model
service calls within the system. In addition, the SystemSimulation component
and the ResourceSimulation component are connected by requesting resource
demands.

Fig. 2. Repository Model of Slingshot



Model Transformation for Automated Constraint Validation 33

The components of the repository are instantiated in the assembly model
shown in Fig. 3. These assembly contexts are connected through directed con-
nectors to either delegate from a system role to an assembly context role or
between provided and required assembly context roles.

Fig. 3. Assembly Model of Slingshot

3 MontiArc

MontiArc (https://github.com/MontiCore/montiarc) [4] is a textual modeling
language to describe component&connector systems. The components receive
input messages and sent output messages via typed and directed ports. Only
over these explicitly defined ports, communications is possible. This reduces
hidden links.

MontiArc has a precisely defined semantic foundation in FOCUS [2]. The
textual MontiArc models can be mapped into the mathematical FOCUS space
to understand the semantics of the models [5]. This enables formal verifica-
tion of MontiArc models at design time. The formal proofs are performed using
MontiBelle [11,12] and the interactive theorem prover Isabelle [14]. In [10] this
approach is demonstrated in cooperation with Airbus to verify properties over
an uplink feed of an avionic system.

To leverage of MontiArc’s simulation and verification capabilities we model
Slingshot’s component repository model as seen in Fig. 2 in MontiArc. Listing 1.1
shows an excerpt of the generated MontiArc model with constraints, restricting
the number of users in a usage scenario to a positive number. Slingshot is mod-
eled as the system component which is further decomposed into atomic subcom-
ponents representing simulation components. Each sub-component instantiates
their respective component definitions, which in turn define their ports in accor-
dance to the event-driven data-flow paradigm employed in Slingshot/Palladio.
The sub-components are instantiated and communicate through connections of
their ports.

https://github.com/MontiCore/montiarc


34 S. Weber et al.

1 component Slingshot {

2 port <<condition = "x.numberOfUsers > 0

3 && x.numberOfUsers < 100">>

4 in UsageScenario usageScenario;

5 component UsageSimulation {

6 port <<condition = "x.numberOfUsers > 0">>

7 in UsageScenario usageScenario;

8 }

9 UsageSimulation usageSimulation;

10 usageScenario -> usageSimulation.usageScenario;

11 }

Listing 1.1. Simplified Excerpt of the MontiArc Model with Constraints

4 Transforming PCM to MontiArc

Our transformation uses the repository and assembly model of the PCM as
inputs. The first step of the transformation is the extraction of complex data
types from the PCM repository model. Primitive data types like int or char
can be translated directly while complex data types require their own definition
in a MontiArc class diagram model. In addition to complex data types defined
in the PCM model, method signatures with two or more parameters are also
transformed to MontiArc data types, to be able to specify constraints for them.
The result of this step is the MontiArc class diagram containing all necessary
data types for the description of the PCM system model as a MontiArc model.

In the next step, the PCM system model is transformed. First, the system,
which is the root element of an assembly model, is transformed to the core com-
ponent of the MontiArc model. Afterwards, the assembly contexts, which are
instances of components specified in the repository, are transformed to sub com-
ponents. The MontiArc component a PCM assembly context is transformed to
have MontiArc ports according to the PCM roles of the PCM component this
PCM assembly context encapsulates. The last part of this step is the transfor-
mation of PCM connectors, which connect PCM assembly contexts according
to the roles from the encapsulated component, to MontiArc connectors. As last
step, the generated MontiArc model is enriched with the constraints specified
as Ecore annotations in the additional input model. Each annotation refers to
a directed connector in the PCM assembly model and has two key value pairs,
one describing the guarantee of the component the connector comes from and
the other one describing the assumption of the component the connector goes
to. These constraints are then mapped onto the corresponding MontiArc ports.

5 Constraint Checking

We present a solution to automatically provide consistency analysis to the source
PCM models by checking the constraints produced during the transformation to



Model Transformation for Automated Constraint Validation 35

1 (declare-sort UsageScenario)

2 (declare-fun numberOfUsers (UsageScenario) (Int))

3 (declare-fun x () UsageScenario)

4 (assert (=> (and (< (numberOfUsers x) 100)

5 (> (numberOfUsers x) 0))

6 (> (numberOfUsers x) 0)))

Listing 1.2. Translated Constraints in SMT-Lib

MontiArc. Constraints are embedded into stereotypes over ports of C&C archi-
tectural components. These employ a reduced form of Assumption/Guarantee
formalism [2] implemented through an assertion paradigm similar to the pro-
gramming language Eiffel [13]. The restriction in question is that the constraints
are not expressed through formulas handling potentially infinite port flow his-
tories but only instant values present on ports. This is first done by parsing
the generated model and processing all constraint pairs defined with the condi-
tion stereotype. Processing constraints starts by parsing the constraints into the
MontiCore expression framework [8] and performing a translation from these
to SMT-Lib [1] formulas. Our implementation reuses an OCL to SMT trans-
lator restricted on the set of MontiCore expressions. The variant of the OCL
accepted by the translator is described in [16]. Our restriction of the OCL lan-
guage is introduced to facilitate a simple and decidable set of constraints that
can be reliably solved by conventional SMT solvers, in addition to only han-
dling quantifier-free constraints. Furthermore, complex objects transmitted on
ports also require their datatypes to be represented and translated to SMT. Our
approach uses implementation focused class diagrams and objects diagrams as
presented in [16]. Microsoft’s Z3 SMT solver [3] checks the SMT-Lib formulas.
To formulate checkable constraints we build implications over the assumptions
and the guarantee obligations. As port datatypes are instances of classes we
introduce a SMT sort for each class. Listing 1.2 introduces the declaration of
the UsageScenario sort and corresponding function numberOfUsers introduced
for its attribute its attribute, all in accordance to the class diagram generated
for the PCM model in Fig. 2. The return type of the function is represented by
the SMT-Lib built-in Int sort.

The translation of the constraints takes place by introducing a variable x and
and declaring it in the respective sort of the port’s type, i.e., the sort generated
for the class, here UsageScenario. The implications and logical operators used
in constraints are then 1-to-1 mapped to SMT-Lib. The result of the checker is
then constructed with a classic approach, i.e., to check validity we negate the
implication and check for unsatisfiability. The result is then produced to the
standard output with a statement about the validity of the implication and the
the attributed ports. Listing 1.3 presents an output of the constraint checker
for the valid Slingshot model, referencing the connected ports in question. If the
negated implication is satisfiable, then the implication is not valid. Listing 1.4
presents the output of the constraint checker if we modify the target constraint



36 S. Weber et al.

1 Constraint of Port usageScenario in Component Slingshot

guarantees constraint of Port usageScenario in

Component UsageSimulation

Listing 1.3. Output of the Constraint Checker for the Constraint-Enriched Model

1 [ERROR] Found error in port -constraint. Constraint of Port

usageScenario in Component UsageSimulation does not

follow from constraint of usageScenario in Component

Slingshot.

2 Counterexample: objectdiagram x {

3 usageScenario_0:UsageScenario {

4 int numberOfUsers =1;

5 };

6 }

Listing 1.4. Output of the Constraint Checker for a Negative Result in the Model

in listing 1.1 to require a positive number of users. The tool errors but not before
processing all implications. The tool presents a counterexample in the form of
an object diagram, performing a retranslation of the SMT-Lib model to the
object-oriented representation.

6 Conclusion

We presented a tool for the automatic translation of software architecture models
from the Palladio approach and the PCM to the architecture description lan-
guage of MontiArc to support the validation of semantic constraints specified as
annotations of model elements from the PCM. We believe this tool benefits the
software architecture community by bridging the gap between both the PCM
and MontiArc modeling and analysis approaches to support thorough system
analysis without the need for repeated modeling of the same system in differ-
ent formalisms. While the basic concepts shown in this paper can already be
transformed from PCM to MontiArc, our tool currently does not support the
full expressiveness of concepts that could be transformed. Furthermore, our tool
does not support a retranslation of the result from MontiArc into the PCM.
We currently only support a single method per interface, because we specify
constraints only referencing connectors corresponding to an interface and not a
method. In addition to supporting this, we plan to expand our tool to not only
allow for the transformation and validation of PCM models but also the PCM
metamodel and the simulator presented as an example in this paper. This allows
for the validation of composition on the three different levels of model instance,
metamodel, and analysis based on these models.



Model Transformation for Automated Constraint Validation 37

Acknowledgments. This work was funded by the DFG (German Research Foun-
dation) – project number 499241390 (FeCoMASS), supported by the Collaborative
Research Center “Convide” - SFB 1608 - 501798263 and supported by funding from
the topic Engineering Secure Systems, KASTEL Security Research Labs funded by the
Helmholtz Association (HGF).

References

1. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-lib standard: version 2.0. In:
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(Edinburgh, UK), vol. 13, p. 14 (2010)

2. Broy, M., Stølen, K.: Specification and Development of Interactive Systems. Focus
on Streams, Interfaces and Refinement. Springer, Heidelberg (2001). https://doi.
org/10.1007/978-1-4613-0091-5

3. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

4. Haber, A.: MontiArc - Architectural Modeling and Simulation of Interactive Dis-
tributed Systems. Aachener Informatik-Berichte, Software Engineering, Band 24,
Shaker Verlag (2016)

5. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of “semantics”?
IEEE Comput. J. 37(10), 64–72 (2004)

6. Heinrich, R., Strittmatter, M., Reussner, R.H.: A layered reference architecture for
metamodels to tailor quality modeling and analysis. IEEE Trans. Software Eng.
47(4), 775–800 (2021)

7. Heinrich, R., et al.: The palladio-bench for modeling and simulating software archi-
tectures. In: Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceedings, pp. 37–40 (2018)

8. Hölldobler, K., Kautz, O., Rumpe, B.: MontiCore Language Workbench and
Library Handbook: Edition 2021. Aachener Informatik-Berichte, Software Engi-
neering, Band 48, Shaker Verlag (2021)

9. Katić, J., Klinaku, F., Becker, S.: The slingshot simulator: an extensible event-
driven PCM simulator (poster) (2021)

10. Kausch, H., Pfeiffer, M., Raco, D., Rath, A., Rumpe, B., Schweiger, A.: A theory
for event-driven specifications using focus and MontiArc on the example of a data
link uplink feed system. In: Groher, I., Vogel, T. (eds.) Software Engineering 2023
Workshops, pp. 169–188. Gesellschaft für Informatik e.V. (2023)

11. Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B.: An approach for logic-based knowl-
edge representation and automated reasoning over underspecification and refine-
ment in safety-critical cyber-physical systems. In: Hebig, R., Heinrich, R. (eds.)
Combined Proceedings of the Workshops at Software Engineering 2020, vol. 2581.
CEUR Workshop Proceedings (2020)

12. Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B.: MontiBelle - toolbox for a model-
based development and verification of distributed critical systems for compliance
with functional safety. In: AIAA Scitech 2020 Forum. American Institute of Aero-
nautics and Astronautics (2020)

13. Meyer, B.: Lessons from the design of the eiffel libraries. Commun. ACM 33(9),
68–88 (1990)

https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-3-540-78800-3_24


38 S. Weber et al.

14. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Lecture Notes in Artificial Intelligence, vol. 2283. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

15. Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A.: Modeling and
Simulating Software Architectures: The Palladio Approach. MIT Press, Cambridge
(2016)

16. Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33933-7

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-33933-7

	Semantics Enhancing Model Transformation for Automated Constraint Validation of Palladio Software Architecture to MontiArc Models
	1 Introduction
	2 Palladio and Running Example
	3 MontiArc
	4 Transforming PCM to MontiArc
	5 Constraint Checking
	6 Conclusion
	References




