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Abstract—Simulating connected vehicles in realistic environ-
ments is a computationally expensive task, particularly when
large numbers of traffic participants are involved. To cope with
exploding hardware requirements it can become indispensable
to tackle such simulations in a divide and conquer manner. A
promising approach breaking down a simulation scenario in a
set of small tasks is the spatial subdivision of the simulated area.
Thereby, each spatial sector is simulated by a dedicated sub-
simulator enabling efficient distribution of the overall simulation
across multiple machines. However, a distributable and easy-
to-use simulation solution providing automated scalability and
hiding the distribution complexity from the simulation engineer
requires a service-based simulator architecture equipped with
interfaces for simulation control, integration, and resource man-
agement. In this work, building upon previous results we propose
a cloud-ready simulation infrastructure providing automotive
engineers with the ability to analyze large scale connected traffic
scenarios without caring about the execution environment. As a
consequence, the proposed solution can be integrated seamlessly
into existing continuous integration environments supporting
agile research and development processes for cooperatively in-
teracting vehicles.

Index Terms—simulation as a service, cooperative vehicles,
model-driven engineering, testing

I. INTRODUCTION

In both research and development of Cyber-Physical Sys-

tems (CPSs), particularly of autonomous vehicles, simulation

has always been an indispensable tool to validate a system’s

behavior before it can be deployed in a real-world scenario.

In the last years, we have been experiencing a continuous

vehicle automation process leading to an increasingly rapid

softwarization of vehicle systems. Consequently, vehicle be-

havior becomes more and more difficult to grasp. The more

intelligence finds its way into our transportation systems, the

more important simulation tasks become in the development

process. Autonomous vehicle functions need to be tested, and

hence simulated, in a vast range of driving scenarios and under

an inexhaustible number of environmental conditions [1]. And

if that wasn’t enough, the next logical step is to leverage

autonomous vehicles to interactively cooperating agents re-

defining our traffic systems as highly-reactive, self-optimizing

cyber-physical networks. The implication is obvious: auto-

mated driving behavior seizes to be an isolated function pro-

vided by the host vehicle and its sensor signals, but suddenly

depends on collaborative decisions. This, in turn, imposes

new kinds of requirements towards simulation technology: a

cooperative vehicle simulator needs to take into account the

decision making of numerous traffic participants, provide a
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meaningful V2X communication infrastructure, and possibly

cover large urban areas, thereby producing an unprecedented

computational load. The latter is a serious issue in many

projects and has led to the need for simulator efficiency

research [1]–[3]. To tame this complexity, we divide com-

putationally expensive simulations into a a set of smaller

simulations. These smaller simulations are executed by a set

of sub-simulators that are combined to carry out a larger

simulation.

The main research question of this work is: how can a

simulation platform satisfying the performance requirements

of the cooperative driving domain be integrated into an agile

engineering (or research) process where resources need to be

provided on demand?

To answer this question we amalgamate our experiences

in agile software engineering processes and simulation tech-

nology. The concept of Continuous Integration (CI) is vital

in agile software development projects. The basic idea is

that whenever a developer commits his or her work, the

continuous integration pipeline assesses the whole updated,

integrated code-base with regard to a set of specified project

requirements. The assessment usually consists of compiling

the project and performing unit and integration tests, but

can also include the evaluation of non-functional metrics.

The point is that developers neither need to know how the

CI pipeline works nor should they be able to alter it. The

only thing they are interested in is to be notified whenever

something’s gone wrong.

The development of cooperative vehicles can be seen as a

specific kind of software projects, too, and its peculiarity is

the need for simulation. Whenever a function or a parameter

of the vehicle software is changed, in addition to the tasks

mentioned above, the CI should automatically re-simulate a

set of pre-defined scenarios, store the results so that they can

be retrieved and evaluated by the developer on-demand or

notify the developer if simulation constraints were violated

(for instance, if a crash was recorded). In the meantime, the

developer must be able to continue working on the project.

The introduction of simulator into a CI workflow poses

multiple challenges, concerning its architecture, interfaces,

and automated resource management. The main contribution

of this paper is a continuous simulation platform providing

scalability at increasing simulation complexity and hiding

the sub-simulator architecture and the resource management

overhead from the simulation engineer.

The remainder of this paper is structured as follows. In

Section II we provide the foundation on which we build our

work. In particular, we introduce the basic concepts of the
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MontiSim simulator, the core simulation engine developed

for small scale cooperative vehicle scenarios. The service

architecture leveraging MontiSim to a cloud-ready simulation

platform by a hook-up of arbitrarily many MontiSim instances

is presented in Section III. To better understand the underlying

communication patterns, we discuss the main interfaces of the

microservice-based architecture in Section V. In Section VI we

present experimental results, showing how large-scale simula-

tions can benefit from a distributed cloud-based solution. In

Section VII we discuss related works before we conclude our

paper in Section VIII.

II. BACKGROUND

MontiSim is an Intelligent Transportation System (ITS)

simulator developed to facilitate the evaluation of model-

driven development techniques for automated vehicles [4].

Particularly, its main focus is Model in the Loop (MiL) and

Software in the Loop (SiL) testing of Component & Connector

(C&C) based autonomous vehicle controllers [5], [6] and

cooperative driving applications [7], [8] in automotive model-

driven systems engineering processes such as SMArDT [9],

[10]. Therefore, MontiSim was designed as an agent-based

simulator similar to MATSim [3] and Matisse [11]. Each

vehicle has its own exchangeable behavior controller making

its own independent decisions based on its own sensing.

Controllers can be integrated into the simulator and exchanged

using the middleware modeling approach [12].

Furthermore, MontiSim provides high flexibility concerning

the simulated scenarios as well as modularity and extensibility

of the vehicle models, technical infrastructure, and the environ-

ment. For instance, the desired simulation scenario specifying

the vehicles involved as well as their goals can be easily set

up using a dedicated Domain Specific Language (DSL) [4]

whereas OpenStreetMap (OSM) support enables the import of

arbitrary real-world maps [13].

However, advancing to the simulation of cooperatively
interacting vehicles leads to a set of new requirements as

mentioned in Section I and elaborated in previous work [14].

To leverage MontiSim to a cooperative driving simulator, using

its co-simulator pattern it was extended by a discrete event net-

work co-simulator providing means for V2X communication.

To tackle the exploding computational complexity in large

simulations, the so-called sectoring approach was proposed,

which will play a central role in this work. The idea is to sub-

divide a large simulation area into small partial regions. Each

region is then simulated by a dedicated simulator instance.

The core engine of each sub-simulator is still driven by the

original non-distributable simulator. Note that we distinguish

between co-simulators and sub-simulators in this work with

co-simulators being parts of an overall simulator providing

additional functionality while sub-simulators all have the same

capabilities but work on different chunks of the simulation

space.

The simulator core is embedded into a sub-simulator shell,

which provides communication services for data exchange

and synchronization between the instances of the simulator

network. Additionally, a master entity is required to govern the

sub-simulator network. Neither automatically scaling architec-

tures, nor the performance gains achieved by the sectoring

approach were covered in previous publications.

In this work, we shift the focus from the sectorization

concept to its architectural and technical implications. In

the course of our research, we have learned that providing

a distributable architecture does not solve the problems of

the simulator user instantly. Instead, new questions arise:

how can an engineer deploy the distributed solution in his

environment? How can he manage the amount of simulation

resources or obtain the required resources on demand? How

can a distributed simulator be integrated into an automated CI

process providing simulation as a service (SimaaS), ensuring

scalability, and allocating the required resources on demand in

a multi-user environment, e.g., a company or research institute

with many engineers?

To answer these questions, the distributable simulator ar-

chitecture needs to be coupled with an appropriate technical

infrastructure. In this work, we elaborate such a symbiosis

relying on sectoring combined with containerization of simu-

lator modules. The result is easily hostable on any container-

based cloud service such as Amazon Web Services (AWS)

or Microsoft Azure. We demonstrate scalability in a series

of experiments. The concepts are applicable to any vehicle

simulator with a decent Application Programming Interface

(API) for simulation control, cf. Section V, e.g., SUMO-

based simulators [15] including TraNS [16], iTETRIS [17],

and Veins [18] using the TraCI API [19].

III. ARCHITECTURE

Traditional ITS simulators are designed for the execution

on a single host machine. Although well-written parallel

simulation code can benefit from multiple processors, e.g.,

MATSim DEQSim [3], the simulation cannot scale beyond

the capabilities of its physical host. When it comes to heavy

tasks involving massive data such as vast maps covering tens,

or hundreds of square kilometers of urban area frequented by

large numbers of traffic participants, it becomes necessary to

be able to distribute the simulation to arbitrarily many worker

machines.

The considerations of this section are not only intended to

provide a specific solution for distributed continuous simu-

lation, but can also be seen as a reference architecture for

new distributable simulators. Additionally, it reveals essential

prerequisites for the retrofitting of existing stand-alone solu-

tions. A distributable simulation solution Sd can be obtained

by enriching a stand-alone simulator Ss with a set of adapters

A as well as distribution functionality D. Furthermore, a set

of interfaces I is crucial for seamless integration of Ss into a

distributable simulation platform. The interfaces I essentially

allow configuring, controlling, and observing the simulation

and are further discussed in Section V. The adapters A are used

to connect the distribution functionality D to the interfaces I ,
e.g., by adding networking capabilities not included in Ss.
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Fig. 1. Overview of the architecture of the distributed simulator.

Our reference architecture consists of a set of heterogeneous

components as depicted in Fig. 1. The architecture mainly con-

sists of four elements: a set of simulators that (unknowingly)

collaborate to execute a common simulation, controllers that

determine the behavior of the simulated vehicles, a registry

used for discovering simulators and controllers, and an API

server that carries out coordination tasks and allows specifying

the simulation.

Each sub-simulator is an instance of the stand-alone simu-

lator Ss (in our evaluation MontiSim) responsible for a partial

area of the overall map, or a so-called sector. MontiSim is

unaware of the fact that it is embedded in a distributed context.

The stand-alone simulator Ss is designed to do the actual

simulation work. Its functionalities include the simulation

of vehicles, pedestrians, traffic lights, etc. To embed Ss in

a simulator ensemble, we need to be able to control the

simulation process from outside. Therefore, Ss is required to

support a set of actions, namely, vehicle initialization, vehicle

removal, map loading/re-loading, simulation data retrieval,

and, most importantly, simulation start, step, pause, and stop.

To make these actions accessible to other components as a

service, they are exposed via the simulator service interface I .
Common solutions for the technical realization of I are RPC,

RESTful and RESTful-RPC hybrid [20, p. 16]. They have their

own advantages and disadvantages: while RPC-style APIs are

great for actions, RESTful services are more resource oriented.

Therefore, an RPC-style interface is the most appropriate for

our distributed architecture.

Controller models represent the software controlling the

complete vehicle behavior, usually designed using the Em-

beddedMontiArc modeling language [5], [6]. In the simulation

process, sensor inputs of a vehicle are forwarded to its respec-

tive controller, the controller makes the driving decision based

on these data and returns the resulting actuator commands

back to the simulator [14]. In our architecture, we introduce

controllers as stand-alone services available to simulators.

The communication between the controller and the simula-

tor is based on an Remote Method Invocation (RMI) interface

provided by the controller service. Decoupling the controller

from the simulator is a central architectural decision. If the

simulator is regarded as a means to validate driving behavior,

e.g., in agile autonomous driving projects, the controller is a

piece of software which is exchanged and updated on a fre-

quent basis. Exchanging the vehicle behavior must, therefore,

be easy and should not affect the simulator. Furthermore, as

is inherent for agent-based systems, we require the possibility

to equip each traffic participant with an individual behavior

configuration. Therefore, whenever a simulator requests a

controller for one of its vehicles, it can specify the concrete

controller type. The controller service then instantiates the

correct controller implementation as well as its parameters.

This enables simulating realistic heterogeneous mixed-traffic

simulations, as well as comparing the performance of compet-

ing solutions against each other. Running control code as an

external process is a common pattern, e.g., used in Gazebo

through a Robot Operating System (ROS) interface [21].

Without an appropriate controller management infrastructure,

this is cumbersome to cope with: the user, among other tasks,

needs to instantiate a controller per vehicle, take care of the

associations to their respective vehicles, and clean up after

usage. These management tasks are provided by the controller

service in our architecture.

Maintaining reliability in such a dynamically extensible

distributed infrastructure requires elaborate service manage-

ment and supervision. In our architecture, this functionality is

provided by the Apache Zookeeper framework [22]. To make

simulation and controller services visible to other components,

we introduce a service registry. In this registry, Zookeeper

organizes the registered services as nodes in a tree structure.

Services publish and keep updating their respective configu-

rations including host addresses, ports, versions, and available

APIs to this registry. Furthermore, a health check mechanism

ensures that only reachable services are published. Other com-

ponents of the system discover available services through this

service registry and monitor their liveness by watching a set of

specific nodes. For instance, if we have a sub-simulator sim1,
it is registered with its hostname, port, and further informa-

tion as a node called /service/simulator/sim1. Other

components can discover all available simulator instances by

querying the children of /service/simulator. The same

holds for controller instances. If the simulator spawns a new

vehicle and needs an appropriate controller instance, it can

look it up using the registry service.

So far, we have only introduced interfaces between system

components. However, to make the architecture useful, we also

need to provide an interface to the outside world. In particular,

this interface must enable the simulator user to set up a

simulation task and output the computed results. We provide

such an interface through the API server. This component

can be seen as a facade pattern [23] dispatching requests to

the respective components and hiding the actual complexity

of the architecture from the user. To set up a simulation, map

and vehicle data including the vehicles’ source and destination
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Fig. 2. Sectorization result of Aachen. Map nodes that belong to the same
sector are marked with the same color.

coordinates must be provided to the simulation through the

API server. This can be done interactively through a web GUI

connected to the simulator [14] or in a headless way, e.g., by

a script in a CI pipeline.

Distributing the simulation among several independent sub-

simulators requires us to synchronize the sub-simulators after

each simulation step. The synchronization phase is carried

out by a module of the API server and deals with tasks

related to handing over vehicles between map sectors and V2X

communication between agents located in different sectors.

Assume we have a vehicle V currently driving through map

sector Seca simulated by sub-simulator Sa. At some point, V
reaches and crosses the boundary of Seca and enters Secb,
simulated by simulator Sb. To implement the handover, we

need to remove V from Sa and initialize a new vehicle V ′ in

Sb where V = V ′, that is, we create a copy of V in Sb and

remove it from Sa.

This process requires some data exchange between the API

server and the simulators and adds overhead to the simulation.

In contrast to [14] where the map is subdivided into equally-

sized rectangles, we reduce vehicle handovers by applying

the parallel graph partitioning algorithm METIS [24] to our

road network. By minimizing the number of edge cuts, it also

minimizes the potential number of trajectories crossing sector

borders. What is more, trajectory planning on a large map

can also benefit a lot from using overlay graphs [25]. We

encapsulate the map service carrying out the sectorization and

routing tasks in a dedicated module. Decoupling it from the

API server facilitates further experimentation on sectorization

and route planning. As an example, we show the sectorization

result in Fig. 2, where we use METIS to sectorize the map of

Aachen into 6 different sectors.

Being a central entity in our architecture, the API server

also plays an important role in resource management. Before

starting a simulation, it decides how to choose concrete

simulator and controller service instances in order to utilize

resources effectively. For example, if the whole simulation

involves n map sectors, it is obviously unwise to reserve more

than n simulator instance at the beginning.

Finally, we employ a set of data services as depicted in

the rightmost box in Fig. 1. Their purpose is the storage of

resources such as map and configuration data as well as data

exchange between functional components. We use a MySQL

database (DB in Fig. 1) to store the path of map files and

the map partition results. Message queues (MQ in Fig. 1)

are used to exchange messages between simulators to support

V2X communication. Storage and management of all map data

can be done locally on the API server or alternatively in a

cloud-based service such as Amazon EFS (Files in Fig. 1)).

IV. CONTINUOUS SIMULATION

Our goal is to provide a solution that integrates seamlessly

into agile self-driving vehicle development processes. Con-

tinuous integration is an important and widely used means

for quality assurance, however seldom adopted in disciplines

beyond classical software engineering. Whenever engineers

commit code changes, a CI server is triggered and performs

a series of tests and other quality assessment tasks. In MiL,

SiL, and Hardware in the Loop (HiL) tests this cannot be done

without a simulator service in the CI toolchain.

Due to our service-based architecture, a simulation can be

triggered in a CI pipeline by interacting with the API server

managing the simulation cluster. Thereby, the API server

expects a simulation description model telling the simulator

what it is expected to simulate [4] as well as a corresponding

OSM map. Once the simulation is finished, simulation results

are returned to the CI server and can be used for automated

evaluation or to generate statistics. For instance, we want to

ensure that our autonomous driving controllers do not produce

vehicle crashes and also keep the vehicle on the road. Simu-

lation results are provided as timed data frames containing all

trajectory and crash information, cf. Fig. 3. This data can be

analyzed automatically, e.g., it can be searched for crashes and

off-road trajectories. For instance, the shown frame contains

the state of the vehicle with the id defined in line 11. Its

position is held in a three-dimensional vector representing the

vehicle’s longitude, latitude, and height information in lines

4-6. The variable totalTime denotes the absolute point

in simulation time at which the frame was captured, while

deltaTime is the simulation time elapsed since the last

frame for this vehicle was recorded. steering contains the

actual steering angle for this vehicle. The Boolean variable

collision is set to true, iff the collision detection observed

a collision for this vehicle during the current time frame.

If the analysis terminates with no findings, the CI pipeline

succeeds. Otherwise, a problem report is generated, e.g.,

mentioning the problem, the corresponding simulation time,

as well as the vehicles involved, causing the CI pipeline to

fail. In the case of a failed pipeline, the engineer is notified

and can analyze the problem. Additionally, the frame data can
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1 "frames": [
2 {
3 "deltaTime": 33, //simulation time since last frame
4 "position": [ //current vehicle position
5 5.8806556, 50.83668824517681, 0.5429999999999999
6 ],
7 "steering": 0.0165, //steering angle in radians
8 "collision": false, //no collision at this sim. step
9 ... //further vehicle information

10 "totalTime": 4059,
11 "vehicleID": "45124cec-120e-11e9-85d6-d2002090b701" //

↪→ unique vehicle id
12 },
13 ... ]

Fig. 3. Excerpt of a vehicle frame serialized using the JSON format.

be used to visualize the simulation helping to understand the

circumstances of the problem [14].

The presented simulation as a service (SimaaS) is a cen-

tral tool to the continuous simulation lifecycle enabling the

developer or the researcher to focus on functionality and

only requiring a human to look at simulation results when

something undesirable happens. Particularly, if the simulation

infrastructure is deployed in a cloud, as CI services mostly

are today, the developer does not have to supervise the

simulation, nor to deal with technical details of its execution,

configuration, or resource management.

The purpose of cloud computing is not just to outsource a

static amount of computational resources to an infrastructure

provider, but rather to provide the required resources on-

demand. This is usually achieved by packaging executables

into so-called containers: a container can be understood as

a lightweight Virtual Machine (VM) simulating the operating

system environment including all of its dependencies and other

resources required to execute the actual job. Working out-

of-the-box as long as the host system is supported, software

encapsulated in a container is easy to ship, deploy, and update.

When the computational load increases or more data needs

to be processed, containers are replicated and executed on

newly allocated resources. When a container is not needed

anymore, it is destroyed and the computational resources

are freed. Docker is the most common containerization tool

to date. Cloud services like AWS are built around Docker

technology thereby providing a systematic way to enable

fast and automated deployment of Linux applications inside

portable containers [26].

Our service-based architecture is tailored to fit the pattern

described above. In Fig. 1, components that are required

to scale frequently are depicted as component stacks: sub-

simulators and controllers are created on-demand, i.e., they are

only needed if a simulation is requested. Moreover, the number

of required sub-simulators depends on the size of the currently

simulated area. Similarly, the number of controller instances

is determined by the number of vehicles we want to control in

the simulation. Therefore, we enable cloud-capability for our

simulator architecture by encapsulating each service instance

in Fig. 1 in a Docker container.

How can this technology be integrated into agile research

and development processes for cooperatively interacting vehi-

cles? Consider a team working on a new module for coop-

erative trajectory planning. To validate behavior correctness,

the module needs to stand several simulations, e.g., without

producing a crash. Whenever new commits are pushed into

the code repository of the module, a new Docker image for

the controller service is automatically built and pushed into

the Docker registry in the cloud by the team’s CI server. A

simulation is triggered using the new version of the cooper-

ative trajectory planning module for some previously defined

scenarios and the results are sent back to the CI server. The

latter can now mark the pipeline as succeeded or failed and

inform the developer in charge. This guarantees that a software

failing to avoid accidents or to fulfill other requirements in the

simulation is automatically rejected by the Q/A as long as the

CI pipeline keeps failing.

Another positive aspect is that the cooperative driving

development team automatically uses the latest available sim-

ulation software. Whenever the simulator vendor releases a

new version, new simulator containers are built and deployed.

Thereby, all old service instances are replaced by new ones

featuring the latest simulator version. The target machines

which the components are running on just need to pull the

latest Docker image and start the new container. We do not

roll out an update to all machines at the same time, which is

also referred to as zero-downtime updating. If a problem is

found and rollback is needed, the worker machines only need

to pull the previous Docker image and replace the problematic

one.

Scaling dockerized software also imposes a series of chal-

lenges: server clusters consist of many machines having dif-

ferent hardware, different network configurations, such as IP

addresses, available ports, etc. How can we schedule and coor-

dinate distributed simulations in such heterogeneous environ-

ments? Container orchestrating solutions are emerging in the

cloud era, with the most popular solutions being Kubernetes,

Mesos, and Docker Swarm. We employed Kubernetes in our

architecture since it is best supported by many cloud providers.

In a Kubernetes cluster, a set of master components provide

the cluster’s control plane. There are also nodes, which are

worker machines and may be either a virtual or a physical

machine. They contain services necessary to run pods and

are managed by the master. The pod is the basic building

block and management unit of Kubernetes. It runs a single

container or a small number of tightly coupled containers. In

our prototype, we deploy each component as a single container

pod. Another essential element of Kubernetes is deployment,
the purpose of which is to keep identical pods running and

upgrade them in a managed way. Kubernetes performs rolling

updates for pods by default. The zero downtime updating

feature is backed by this mechanism. Kubernetes Deployments

can also be used to make the application scalable. It enables

us to scale the components of our simulation architecture. Our

components can be configured to auto-scale based on CPU

utilization and customized metrics, more specifically, on the

number of available controller and simulator instances. For

instance, if all available containers are busy, Kubernetes can
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initialize new ones pre-emptively so that incoming simulation

requests can be handled with lower latencies.

V. INTERFACES

As we have seen in the previous sections, the simulator

needs to be interfaced by CI jobs, GUIs, and other simulator

components. In the following we list some of the most

important requirements regarding the interfaces:

• (R1) Map configuration (upload/partition): the simulator

must offer an interface for map upload/selection by an

external actor (a user or a CI pipeline). Additionally, the

number of sectors the map is separated into also needs to

be configurable, since it affects simulation performance

and resource consumption. More specifically, this number

affects how many simulator instances will be consumed

by the simulation.

• (R2) Vehicles creation/deletion: the simulator needs to of-

fer an interface to define and configure vehicles before the

simulation is started. This action must happens inside the

distributed system. Before simulation starts, the vehicles

are created in their respective sub-simulator instances by

the API server. Furthermore, vehicle creation and deletion

is needed for vehicle handovers between sub-simulator

instances as discussed in Section III.

• (R3) Simulation control (start/step/pause/stop): The in-

terface must offer a way to start the simulation asyn-

chronously after map and vehicles have been configured.

That is, clients such as browsers, or our CI servers

must be able to start the simulation using this interface

and receive a simulation id right away. They can use

this returned id to control (pause/stop) the simulator or

retrieve the results once available. Once the client has

requested a simulation, the API server needs to dispatch

the simulation tasks to selected sub-simulators and to

continue executing single simulation steps followed by

a synchronization phase until the simulation is finished.

• (R4) Data exchange: the simulator needs an interface for

the exchange of simulation data such as configuration,

results, status, etc. Clients can use this interface to retrieve

simulation results for analysis. The API server also needs

this interface to retrieve the vehicles’ status to synchro-

nize data between all sub-simulators. For instance, if a

vehicle approaches a sector boundary, the API server

needs to initiate a handover.

We have presented the distributed simulation solution Sd

as a microservice-based architecture. In this architecture,

components are deployed into a distributed environment. To

implement the required interfaces, we face a new challenge:

communication. In a monolithic software, components invoke

one another by calling language level functions. In a dis-

tributed environment, however, components mostly do not run

on the same machine, let alone in the same process or memory

space. This means the communication between the compo-

nents has to be routed through the cluster network. Thereby,

we must avoid the fallacies of distributed computing [27] in

this approach. For instance, we always assume that the network

is not reliable, hence we deploy multiple instances for each

component on different machines, to ensure that if a machine

is not reachable, there is always a backup instance available.

This is critical for components that are necessary for other

services, such as the registry. We support two strategies for

the instantiation of backup containers: proactive instantiation

spawns more containers than actually needed. This enables fast

failover if a container needs to be replaced. On the other hand,

maintaining idle components is expensive. This strategy should

be employed only if high performance is crucial. Reactive

instantiation, on the other hand spawns backup containers

when they are needed. This is the recommended strategy for

most applications.

Moreover, we take advantage of the deployment component

offered by Kubernetes to ensure that unreachable services are

always restarted or recreated on healthy nodes. Since new

machines could be added to the distributed system, or services

could be redeployed on other machines, the network topology

is volatile. This is solved by the internal DNS service offered

in Kubernetes. From the services’ point of view, an IP and

port are no longer involved to communicate with others, as the

hostname is a sufficient resource locator. If a service changes

its access point (IP, port), the Kubernetes DNS service will

update this information accordingly.

Note that the requirements listed above contain interfaces

used for communication (1) between users and the distributed

simulator Sd and (2) inside of Sd. For (1), they are a set of

public APIs that are exposed to the client. They are simple

and stateless. Hence, we realized them as a set of RESTful

APIs. For this RESTful API, we model resources such as

vehicles and maps according to the simulation description

format as defined in [4]. Since RESTful APIs are resource

oriented, make full use of HTTP 1.1 verbs, and the payload

is represented using the JSON format, it is human readable,

developer friendly, and can be easily integrated with other

software. For example, we define the remote access methods

POST /vehicles to create vehicles, GET /vehicles/:id to

retrieve the vehicle status for a given id, POST /simulations
to set up a simulation, POST /simulations/:id/start to start

it, and GET /simulations/:id to pull the simulation results.

In some use cases, users need to see the visualization of

the simulation on-line, i.e., without having to wait for the

simulation to finish. To enable fast visualization, we integrated

a WebSocket API sending simulation results frame by frame

to the clients as soon as they are available. This is practical

for engineers if they want to use the simulator interactively

receiving immediate feedback on their software.

Interfaces belonging to type (2), on the other hand, are

different. Being a set of internal APIs they are invoked

much more often than type (1) interfaces and generate the

majority of network traffic inside Sd. The main load is thereby

generated by the simulator synchronization as discussed above.

We implemented type (2) interfaces using RPC-style APIs,

since most RPC frameworks provide much better performance

than HTTP 1.1 and RESTful. These frameworks use data

serialization to reduce traffic and provide alternatives to HTTP
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Fig. 4. Computing resource consumptions as the total (blue) and average
(red) CPU time consumption of the sub-simulators.

1.1 such as TCP sockets, HTTP 2, etc., to optimize the

network performance. To be precise, we chose Google’s gRPC

framework due to the following reasons: First, gRPC uses

HTTP/2, which provides long stable connections. This reduces

the (re-)connection overhead during sub-simulator synchro-

nization. Second, gRPC uses protobuf, which is more efficient

than other RPC serialization formats such as XML. This

reduces the amount of transmitted data during synchronization.

VI. EXPERIMENTS

To validate that our distributed simulator scales for an

increasing number of sub-simulators and is hence suitable for

large scale cloud-based simulations, we set up a series of

experiments measuring the resource consumption depending

on the number of sectors. Note that this is not an evaluation

of the core simulator performance, but rather of the scalability

of our distribution concepts.

In the first experiment, we demonstrate that not only the

average resource consumption per sub-simulator but also the

total resource consumption can be tremendously reduced by

distributing the simulation workload. We simulate an OSM

map containing 267784 nodes and covering 32km2 of the

city of Munich spanned by the coordinates (N48.1164000°

E11.5338000°) and (N48.1593000°, E11.6242000°). The map

is separated subsequently into different numbers of sectors,

from 1 (corresponding to no distribution) to 50, and populated

with 500 randomly, spatially uniformly distributed vehicles.

For each sub-simulator, the individual CPU and memory

usage is obtained from its container’s Pseudo-file [28] used by

Docker to log its resource usage statistics. The experiment is

performed on a VM consisting of 100GB RAM, 50 CPU cores

clocked at 2GHz, and Docker 18.09.7. The containers are

based on the OpenJDK 8 image which includes JVM version

8u212; its memory is limited to 8GB; other Docker settings are

set to default. In each simulation, we create completely fresh

containers. Fig. 4 shows the total CPU time consumption of

the simulation (blue) and the sector average consumption (red)

Fig. 5. Memory resource consumptions as the total (blue) and average (red)
maximum memory usage of the sub-simulators.

depending on the number of sectors (which is also the number

of sub-simulators). Note that the vertical axis has a logarithmic

scale due to the wide range of values.

The average CPU consumption decreases by two orders

of magnitude as we increase the number of sectors from

one to five. It decreases drastically mainly because each sub-

simulator computes fewer trajectories as the number of sectors

increases. Intuitively, distributed algorithms should introduce

some overhead, i.e., the total resource consumption should

increase. Interestingly, though, distributing the simulation to

multiple sub-simulators has a positive impact on the total CPU

usage, as well. The most likely reason for this is that if the

host machine is overloaded by the simulation, e.g., because

the map does not fit into the memory, the simulation process

needs to spend more time dealing with resource management,

e.g., memory swapping.

Fig. 4 shows that using five or fewer sub-simulators over-

loads the host hardware, which is denoted by the hatched

area. As we continue to increase the number of sectors, the

reduction of average CPU consumption gets slower. This is

mainly due to the fact that beyond a certain point no tasks

can be distributed anymore. A minimum amount of resources

is needed to keep an idle sub-simulator alive. The overload

region varies depending on the concrete simulation scenario,

particularly on the number of vehicles involved. In summary,

we manage to reduce the average CPU consumption by

99.95%, from 1846821ms with 1 sub-simulator to 931.66ms

with 50 sub-simulators.

Looking at the memory consumption in Fig. 5, we realize

that the average maximum memory consumption per sub-

simulator (red) decreases steadily, almost linearly. The average

memory usage is reduced by 90.59% when the number of

sectors is increased from one to fifty. In contrast to the CPU

plot, we can clearly see the overhead we have to pay for

the distribution as an increase in the total memory usage.

Nevertheless, we think that this increase is justified by the

reduction in CPU time and average memory consumption.
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Fig. 6. Simulation result (dataframe) generating speed when running the same
simulation scenario with 1, 2, 3 and 4 sectors.

To ensure that we have an approximately even memory

distribution among the sub-simulators, the green curve in

Fig. 5 denotes the maximum memory consumption allocated

by a single sub-simulator in the course of the simulation (the

maximum is over all sub-simulators and all points in time). It

is an upper bound on the memory needed per sub-simulator to

perform the simulation. As this curve barely differs from the

average memory curve, we can conclude that the distributed

architecture is really scalable—no sub-simulator has to carry

the majority of the workload.

The goal of our second experiment is to show that our

simulator performs faster when simulating fewer vehicles per

sector. In this experiment, we use a machine with a quad-core

Intel E3-1230 CPU@3.3GHz and 16GB RAM, JVM memory

is limited to 4GB. Other settings remain the same. The

simulation is based on a map of Aachen spanned by the co-

ordinates (N50.7669000°, E6.0762000°) and (N50.7802000°,

E6.0932000°) with 14517 nodes covering an area of 1 km2.

Four vehicles are simulated for approximately 26 seconds of

simulation time using one to four sectors. For each number of

sectors, the vehicles are positioned so that each sector contains

at least one vehicle. After each simulation step of 1023ms of

simulation time, we record the time consumed to compute it.

Fig. 6 depicts the results of this experiment. The gradient of

a curve denotes the real-time/simulated-time ratio α. The less

load a sub-simulator has, the smaller the slope and the faster

the simulation. While we observed α ≈ 2 when no distribution

was applied, we obtained a simulation speed close to real-time

by increasing the number of sub-simulators to four. This is a

significant bound, as real-time simulations can be particularly

important for HiL testing [1] or if instant visualization is

required.

The goal of our third experiment is to analyze the relation

between resource consumption and the number of simulated

vehicles created in the sub-simulators. We simulate the same

map as in the first experiment with 20 sectors. In each sim-

Fig. 7. Resource consumption when simulating with different number of
vehicles.

ulation, we populate the sub-simulators with random, evenly

distributed vehicles.

Fig. 7 shows the results of this evaluation. The blue curve

shows that as we increase the number of simulated vehicles,

the overall memory consumption increases almost linearly.

The process of vehicle creation mainly includes trajectory

planning, loading physical models into memory, and initializ-

ing sensors. Every sub-simulator only needs to load its map

once. Thereafter, it can compute trajectories for all vehicles

in its sector. For this reason, the trajectory planning does not

have a large impact on the overall memory usage. Loading

physical models and initializing sensors, on the other hand,

induces similar overheads for each vehicle. Therefore, the

overall memory consumption increases roughly linearly with

the total number of simulated vehicles.

The curve of total CPU time shown in Fig. 7 differs from

the one representing the total memory usage. Overall, the

total CPU time increases as the number of vehicle increases.

At some segments, e.g., going from 250 to 313, and from

375 to 438 vehicles, however, the total CPU time decreases.

The reason for that is that the time the JVM spends on

resource management is not predictable in our experiment.

More specifically, the CPU cost for garbage collection in the

experiment where we created 250 vehicles is higher than the

cost with 313 simulated vehicles. Besides CPU cost of the

JVM itself, we expect the total CPU time to increase because

the sub-simulators need more CPU resources for trajectory

planning.

Overall, we found out that splitting the simulation task into

several sectors can drastically reduce resource consumption.

However, an optimal setting depends on traffic density, total

map size, and the host hardware. The absolute values shown in

this evaluation strongly depend on the implementation of the

core stand-alone simulator, namely MontiSim. Yet we assume

that integrating another simulator, e.g., Sumo or Veins, would

lead to similar positive effects.
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VII. RELATED WORK

Shekhar et al. offer the SimaaS concept, as well [29]. Sim-

ilar to our approach, the authors propose to subdivide a larger

simulation into multiple sub-simulators running in independent

Docker containers. However, in contrast to our approach, their

work focuses on executing multiple simulations with different

parameters and aggregating the results afterwards. Our system

instead splits up large simulations into multiple jobs that are

synchronized while the simulation is executed. In a case study,

the proposed system carries out a traffic simulation based on

SUMO. In contrast to MontiSim, SUMO is not capable of test-

ing different vehicle controllers. Furthermore, by decoupling

the system-under-test, i.e., the vehicle controller, from the

simulation environment, the system-under-test can be replaced

more efficiently. This is crucial in a CI use case where many

different revisions of the system-under-test need to be tested.

SEMSim [30] also offers an architecture for executing traffic

simulations in the cloud. Similar to our architecture, an API

takes a simulation specification as input. A dispatch server then

assigns the requested simulation to a set of VMs called simula-
tion instances. Compared to our approach, SEMSim provides

more sophisticated data protection mechanisms. However,

SEMSim only parallelizes multiple runs of a simulation, while

our architecture allows distributing single runs of a simulation

across multiple containers. Hence, our architecture is more

scalable as it allows running large simulations that cannot be

executed by a single VM. At the same time, our approach can

parallelize multiple runs of a simulation by sending multiple

requests to the API Server.

The main driver behind our parallelization of a traffic

simulation is the division of the map into several sectors,

where all sectors are simulated in parallel. This strategy has

previously been proposed in other parallel traffic simula-

tors such as the parallel implementation of the TRANSIMS

microsimulation [31]. Similar to our approach, this work

represents the map as a graph and then uses the METIS

graph partitioning algorithm to distribute the workload across

multiple CPUs. The authors show that this strategy enables

an efficient simulation for maps consisting of large numbers

of edges. The core simulator TRANSIMS focuses on high-

level strategic routing decisions of vehicles based on, e.g.,

congestion. In contrast, our simulator focuses on low-level

decisions based on, e.g., sensor data that are necessary to

develop vehicle controllers.

Kiesling and Luthi discuss how to parallelize traffic sim-

ulations by subdividing the simulated time rather than the

map [32]. To do so, a synchronization between time slices

is required. While this parallelization strategy might apply to

comparably simple traffic models such as the Nagel/Schreck-

enberg model [33], the authors remark that their strategy is

ineffective if the simulation relies on complex states. Hence,

their parallelization approach cannot be applied in use cases

targeted by MontiSim, where the vehicle controllers of each

vehicle rely on a large number of parameters such as sensor

inputs.

VIII. CONCLUSION

In this work, we presented an architecture as well as a

reference implementation for distributable agent-based ITS

simulators. The concepts can be applied to any stand-alone

simulator to enable large scale simulations as long as it fulfills

a set of discussed prerequisites. The achieved scalability

is supported by a series of experiments showing that both

workload and memory consumption of each worker can be

reduced substantially by the sectoring approach combined with

containerization. Although the distribution is not for free, as

we pay with increased total memory consumption and network

resources, surprisingly we observed a decrease in total CPU

time when multiple sectors are used.

However, the employed sectoring approach has both advan-

tages and disadvantages. A major drawback of static sectoring

is that some sectors might be deserted while other, highly

frequented sectors are still overloaded. The optimal number

of sectors and their shapes are parameters which need to

be chosen thoroughly and are subject to future research.

Temporarily shutting down simulators assigned to abandoned

sectors could improve the resource consumption.
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