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Abstract. Fundamental building blocks for managing and understand-
ing software evolution in the context of model-driven engineering are dif-
ferencing operators one can use for model comparisons. Semantic model
differencing deals with the definition and computation of semantic diff
operators for model comparison, operators whose input consists of two
models and whose output is a set of diff witnesses, instances of one model
that are not instances of the other. However, in many cases the complete
set of diff witnesses is too large to be efficiently computed and effectively
presented. Moreover, many of the witnesses are very similar and hence
not interesting. Thus, an important challenge of semantic differencing
relates to witness selection and presentation.
In this paper we propose to address this challenge using a summarization
technique, based on a notion of equivalence that partitions the set of diff
witnesses. The result of the computation is a summary set, consisting of
a single representative witness from each equivalence class. We demon-
strate our ideas using two concrete diff operators, for class diagrams
and for activity diagrams, where the computation of the summary set is
efficient and does not require the enumeration of all witnesses.

1 Introduction

Differencing operators used for model comparisons are fundamental building
blocks for managing and understanding software evolution in model-driven en-
gineering. Semantic model differencing [12] deals with the definition and compu-
tation of semantic diff operators, whose input consists of two models, e.g., two
versions along the history of a model, and whose output is a set of diff witnesses,
instances of one model that are not instances of the other. Each witness serves
as a concrete proof for the difference between the two models and its meaning.

However, the complete set of diff witnesses is in many cases too large to be
efficiently computed and effectively presented. Moreover, many of the witnesses
are very similar and hence not interesting. Thus, an important challenge of
semantic differencing relates to witness computation, selection, and presentation.

In this paper we propose to address this challenge using the definition of a
summarization technique, based on a notion of equivalence that partitions the
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set of diff witnesses. The result of the summarization is a summary set, consisting
of a single representative witness from each equivalence class.

In recent work we have presented two concrete semantic diff operators, cddiff
[11] for class diagrams (CDs) and addiff [9] for activity diagrams (ADs), along
with the algorithms to compute them and with an initial evaluation of their
performance and the usefulness of their results. Here we demonstrate the ap-
plication of the summarization technique to these two concrete diff operators.
Moreover, the computation of the summary set is efficient and does not require
the enumeration of all witnesses.

It is important to note that we do not look for a difference summary in the
form of a succinct mathematical representation of all differences between the two
models, e.g., in the case of activity diagrams, a state machine accepting exactly
all those traces accepted by one model and not by the other. Rather, we believe
that in order to make semantic differencing useful and attractive to engineers,
one needs to take a constructive and concrete approach: to compute and present
concrete, specific, and thus easy to understand witnesses for the difference (e.g.,
in the case of activity diagrams, concrete execution traces).

Sect. 2 presents examples to motivate the need for summarization. Sect. 3
presents a formal, language independent overview of our approach and continues
with its specializations for CDs and ADs. Sect. 4 briefly describes the algorithms
used to compute the summarized sets of witnesses. Initial evaluation and discus-
sion appear in Sect. 5. Related work is discussed in Sect. 6 and Sect. 7 concludes.

2 Examples

Example I. Consider cd.v1 of Fig. 1, describing a first version of a model for
(part of) a company structure with employees, managers, and tasks. A design
review with a domain expert has revealed three bugs in this model: (1) the
number of tasks per employee should not be limited to two; (2) managers are
also employees, and they can handle tasks too; (3) an employee must have exactly
one manager. These bugs have been addressed in the second version cd.v2.

Diff witnesses for the semantic difference between cd.v2 and cd.v1 are object
models that are in the semantics of cd.v2 and not in the semantics of cd.v1. Fig. 2
shows two such diff witnesses: om1, consisting of an employee with three tasks,
who is managed by a manager; and om2, consisting of a manager that manages
herself, without any tasks. However, these are only examples. Many more diff
witnesses exist, e.g., those that are similar to om1 but include additional tasks,
or those that consist of duplicates of om1 and/or om2 etc.
Example II. Consider the ADs of Fig. 3, describing three versions of a ticket
reservation process. Witnesses for the semantic difference between two ADs are
execution traces that are allowed by one AD and are not allowed by the other.

For example, traces of ad.v2 that are not in ad.v1 include (1) a trace with
tickets = 3 where the action accounts comes before the action reserve, and (2)
a trace with tickets = 10 (where ad.v2 executes actions register and welcome

msg). Traces of ad.v3 that are not in ad.v2 are all traces with tickets < 12.
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Fig. 1. Two versions of a CD, cd.v1 and cd.v2.
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Fig. 2. Two diff witnesses from cddiff (cd.v2, cd.v1).

Overall, there are many diff traces, due to the possible values of the input tickets
and the partial order between reserve, accounts, and updates.

Given the large number of diff witnesses, for both cddiff and addiff , the
challenge we address in this paper relates to the computation, selection, and
presentation of a summarized set of witnesses.

3 Definitions

Consider a modeling language ML = 〈Syn, Sem, sem〉 where Syn is the set of all
syntactically correct expressions (models) according to some syntax definition,
Sem is a semantic domain, and sem : Syn → P(Sem) is a function mapping
each expression e ∈ Syn to a set of elements from Sem (see [5]).

The semantic diff operator diff : Syn× Syn→ P(Sem) maps two syntacti-
cally correct expressions e1 and e2 to the (possibly infinite) set of all s ∈ Sem
that are in the semantics of e1 and not in the semantics of e2. Formally:

Definition 1. diff(e1, e2) = {s ∈ Sem| s ∈ sem(e1) ∧ s /∈ sem(e2)}.



tickets < 8

ad.v1register

update

tickets >= 8

VIPprocess
welcome msg

accounts

reserve

process

payment

tickets < 12

ad.v2register

update

tickets >= 12

VIPprocess
welcome msg

accounts

reserve

process

payment

tickets < 12

ad.v3register

update

tickets >= 12

VIPprocess
welcome msg

accounts

reserve

process

payment

report

Fig. 3. Three versions of an AD for a ticket reservation process. The input variable
tickets ranges from 0 to 15.

The elements in diff (e1, e2) are called diff witnesses. When e1 and e2 are fixed,
we use diff for the set diff (e1, e2).

Let Q = {Q1, Q2, . . .} be a partition of diff , that is, diff =
⋃
Qi, ∀i : Qi 6= ∅

and ∀i 6= j : Qi ∩Qj = ∅. We define a partition function part : diff → Q, which
maps every diff witness dw ∈ diff to an element Qi of the partition Q such that
dw ∈ Qi. Note that Q, diff , and part all depend on fixed e1 and e2.

A summary of the set diff according to a partition Q, diff Q, is a subset of
diff consisting of a representative diff witness from each element in Q. Formally:

Definition 2. Given a set of diff witnesses diff = diff(e1, e2) and a partition Q,
a summary of diff is a set diffQ ⊆ diff s.t.

1. ∀dw1, dw2 ∈ diffQ, dw1 6= dw2 ⇒ part(dw1) 6= part(dw2)
2. ∀Qi ∈ Q, ∃dw ∈ diffQ s.t. part(dw) = Qi.

3.1 Specialization for class diagrams

In previous work we have defined cddiff , a specializations of diff for CDs [11].
We now present a related specialization of diff Q.

Our semantics of CDs is based on [4] and is given in terms of sets of objects
and their relationships. Thus, the elements of cddiff are object models (and they
are presented to the engineer using object diagrams). To define cddiff Q, we define
a partition of the set of all object models cddiff ⊆ OM into equivalence classes
based on the set of classes instantiated in each object model. More formally:

Definition 3 (class-equivalent partition for object models). The class-
equivalent partition maps every object model om1 ∈ cddiff to the set of all object
models in cddiff whose set of instantiated classes is equal to the set of classes
instantiated in om1: part(om1) = {om| classes(om) = classes(om1)}.



For example, consider the CDs shown in Sect. 2. A summary of the semantic
difference cddiff (cd.v2, cd.v1), according to the class equivalence partition, will
include exactly four object models: one consisting only of managers (an exam-
ple representative is a single manager managing herself, with no tasks and no
employees that are not managers), another one consisting of only managers and
employees (an example representative is a manager who manages an employee
with no tasks), another one with only managers and tasks (an example repre-
sentative is a manager managing herself and having several tasks), and, finally,
one consisting of managers, employees, and tasks (an example representative is
a model consisting of a manager managing an employee with several tasks).

3.2 Specialization for activity diagrams

In previous work we have defined addiff , a specializations of diff for ADs [9].
We now present related specializations of diff Q.

We use UML2 Activity Diagrams for the syntax of our ADs. In addition to
action nodes, pseudo nodes (fork, decision, etc.), the language includes input
and local variables (over finite domains), transition guards, and assignments.
Roughly, the semantics of an AD is made of a set of finite action traces starting
from an initial node, considering interleaving execution of fork branches, the
guards on decision nodes etc. (a formal and complete semantics of our ADs is
given in [10]). The elements of addiff are execution traces of one AD that are
not possible in the other AD; we call them diff traces. Note that we do not
require that the traces end in a final node; the diff trace stops as soon as one AD
reaches an action that cannot be matched by an action in the other AD. The
set addiff does not include traces that have a prefix that is by itself a diff trace.
In addition, in [9] we limit the results to one shortest diff trace per initial state.

Diff traces can be considered a special kind of model-based traces [8]. Each diff
trace is presented to the engineer both textually and visually, by enumerating
and highlighting the nodes participating in the trace on top of the concrete
syntax of the input ADs themselves (see [9]).

To define a summary of addiff , we define Ql, which partitions the set of all
diff traces based on the list of actions (action names) appearing in each trace;
i.e., traces that differ in terms of input or internal variable values but agree on
the list of actions to be executed are considered equivalent. More formally:

Definition 4 (action-list-equivalence partition for traces). The action-
list-equivalent partition maps every trace tr1 to the set of all traces whose list
of executed actions is equal to the list of executed actions in tr1: part(tr1) =
{tr| tr|action = tr1|action}.

For example, considering the ADs shown in Sect. 2, addiff Ql
of traces in

ad.v2 that are not possible in ad.v1 will include (1) a trace with tickets < 8
where accounts comes immediately after welcome msg, and (2) one trace with
8 ≤ tickets < 12 ending with welcome msg. That is, the summary will include
only 2 traces, each consisting of a different list of actions. However, addiff Ql



of traces in ad.v3 that are not possible in ad.v2 will include 6 traces, all with
tickets < 12 and ending with the action report, due to the 6 possible orderings
of the actions inside the fork/join (reserve, accounts, update).

Thus, we suggest also an alternative partition Qs, where two traces are con-
sidered equivalent iff the sets of actions included in them are identical. This
induces a coarser partition, as it abstracts away the order of actions in the
traces. More formally:

Definition 5 (action-set-equivalence partition for traces). The action-
set-equivalent partition maps every trace tr1 to the set of all traces whose set
of executed actions is equal to the set of executed actions in tr1: part(tr1) =
{tr| actions(tr) = actions(tr1)}.

Applying this coarser partition to our example, the summary for traces in
ad.v3 that are not in ad.v2 includes only a single trace, where tickets < 12.

Finally, it is important to note that in addition to the concrete representa-
tives, as part of the results of the computation for addiff Ql

and addiff Qs
(see

below), we have symbolic representations of the initial states related to each
equivalence class. These can be presented to the engineer together with the con-
crete traces, as part of the summary.

4 Computing Summaries

A naive approach to compute diff Q would first compute and enumerate all diff
witnesses in diff and then group them into equivalence classes according to the
given partition and choose one witness from each class. This approach, however,
is inefficient, as the total number of witnesses is typically an order of magnitude
larger than the number of equivalence classes in the partition. Thus, a more
efficient approach should be taken. We give an overview of our approach to
compute diff Q, for cddiff and addiff , given the partitions suggested above.

4.1 Computing summaries for cddiff

In [11] we showed how cddiff can be computed (in a bounded, user-defined scope)
using a translation to Alloy. Roughly, the translation takes two CDs as input
and outputs an Alloy module whose instances, if any, represent object models in
the semantics of one CD that are not in the semantics of the other. Computing
another witness is done by asking Alloy for another instance of the module
(technically, by constraining the SAT solver further to not allow the instances
that were already found).

To compute cddiff Q, when a diff witness is found, rather than simply asking
Alloy for another witness, we generalize the instance that was found to its set of
classes, and create a new predicate that specifies that it should not be the case
that this set of classes consists of exactly the classes appearing in an instance
of the Alloy module. We then rerun Alloy on a revised module, strengthened by
the new predicate. This guarantees that a new instance, if any is found, would



be a diff witness from a different equivalence class. We iterate until no more new
diff witnesses are found.

The above technique is guaranteed to provide a single representative from
each equivalence class without the need to enumerate all witnesses first. However,
like all other analysis done with Alloy, it is bounded by a user-defined scope. Also,
its performance may not scale well for large CDs. Addressing these limitations
may require the use of a completely different solution, i.e., not using Alloy, and
is left for future work.

4.2 Computing summaries for addiff

In [9] we showed how addiff can be efficiently computed using a symbolic fixpoint
algorithm, based on BDDs and the technologies of symbolic model-checking [2].
The algorithm starts with a representation of all non-corresponding states. It
then moves ‘backward’, and adds to the current set of states, states from which
there exists a successor in one AD such that for all successors in the other AD,
the resulting successor pair is in the current set of states. The steps ‘backward’
continue until reaching a least fixpoint, i.e., until no more states are added. When
the fixpoint is reached, the algorithm checks whether the fixpoint set includes
initial states. For each such initial state, if any, the algorithm uses the sets of
states computed during the backward steps to move forward (from the minimal
position it can start from) and construct shortest diff traces.

To compute addiff Ql
we start with the first phase of the original algorithm

and symbolically compute the set of all initial states from which a diff trace
may start and all sets of states included in all diff traces. Then, rather then
enumerating all concrete diff traces by computing a concrete diff trace starting
in each initial state, we start with the set of all initial states and symbolically
move forward to the set of all next states. If two or more actions are possible
in the next step, we split the set of next states according to their action and
continue, symbolically, for each of the sets in the split. We iterate this until
reaching the differentiating actions, i.e., until no corresponding next state exists.
Finally, for each symbolic trace we now have, we choose one initial state and
compute a concrete trace that starts from it. We symbolically represent the set
of initial states that share the list of actions in the trace (e.g., with ranges of
input variables).

Computing a summary with our coarser partition,addiff Qs
, is similar. When

we are done with computing the symbolic traces of the action-list partition,
before choosing concrete representatives, we iterate over the set of symbolic
traces and eliminate any symbolic trace whose set of actions already appeared
(in another order) in a previous trace. For each of the remaining symbolic traces,
we choose one initial state and compute a concrete diff trace that starts from it.

5 Initial Evaluation and Discussion

We have applied the above summarization strategies for cddiff and addiff to
the examples of Sect. 2. Table 1 lists the results in terms of the number of diff
witnesses (object models, traces) found, with and without summarization.



For cddiff , all our examples have 20 or more diff witnesses without summa-
rization (we computed cddiff with a scope of 10 and stopped after finding 20
witnesses). The number of witnesses found with summarization was only 3 or 4.
The results show the effectiveness of the summarization approach in significantly
reducing the number of diff witnesses presented to the engineer while keeping
the set as diverse as possible. Also, note that finding only 3 witnesses means that
the SAT solver was executed only 4 times (in the last execution, no diff witness
was found). This shows the efficiency of our approach.

For addiff , the number of diff traces found without summarization varied: for
some examples there are only few diff traces, while for others the number of diff
traces found was much higher, up to 72. Applying summarization to the examples
with a small number of witnesses does not make much difference. However,
applying summarization to the examples with the many witnesses results in
significantly smaller sets of witnesses, up to at most 6 representative traces
for each example. For the action-list partition, significant reduction is observed
when the ADs state space is large due to many possible inputs (many variables
or variables with large domains like our tickets variable). For the action-set
partition, further reduction is observed when the ADs’ state space is large and
where differences occur after some fork/join blocks with much partial order.

In the general case, summarization may entail information loss: one cannot
always use the summary to enumerate all witnesses. Yet, in some cases, it is pos-
sible to keep an efficient symbolic representation of each equivalence class within
the summary, so that diff can be easily computed from diff Q. For example, the
computation of addiff Ql

, based on the action-list partition, includes a symbolic
representation of all input states where diff traces may start. Given initial states
and the list of actions that characterize each of the partitions, all diff traces can
be reconstructed. For addiff Qs

, based on the action-set partition, however, this
is not the case; once the order of actions is abstracted away, one cannot use an
initial state to generate a trace that is guaranteed to be a diff trace.

Finally, we consider the following alternatives for semantic differencing sum-
marization. First, one may suggest a partition based on syntactic differences,

Name # Wit. found # Wit. found with summarization

cd.v1 vs. cd.v2 20 3
cd.v2 vs. cd.v1 20 4

ad.v1 vs. ad.v2 4 1/1
ad.v2 vs. ad.v1 20 3/3
ad.v2 vs. ad.v3 72 6/1
ad.v3 vs. ad.v2 72 6/1
ad.v1 vs. ad.v3 28 4/2
ad.v3 vs. ad.v1 36 5/4

Table 1. Results of applying the summarization strategies to the examples from Sect. 2. We com-
puted CDDiff with scope 10 and stopped after 20 witnesses were found. For ADDiff summarization
we show the number of witnesses according to the action-list partition / action-set partition.



i.e., such that witnesses are classified according to the syntactic differences they
‘cover’. Second, in addition to partitioning, one may be interested in defining a
(partial) order, such that the summarization method chooses a representative
that is also minimal within its equivalence class. For example, in the case of
cddiff , a partial order may be defined based on diff witness size, i.e., the number
of objects in the object model. In the case of addiff , a partial order may be
defined based on diff traces length. It seems that smaller diff witnesses would
be easier to present and understand. More generally, rather than ordering wit-
nesses locally, within each equivalence class, one may suggest a pre-order on all
diff witnesses and look for global minimal ones.

Formalizing and evaluating these alternatives is left for future work.

6 Related Work

The problem of summarizing semantic differences is close to the problem of
effective design space exploration [7], where the goal is to quickly visit a diverse
set of solutions across a design space. The approach in [7] takes a user-defined
notion of equivalence as input, and generates symmetry breaking predicates,
which ensure that the underlying exploration engine does not sample multiple
equivalent design candidates. In addition, the work employs randomization to
incrementally construct a diverse set of non-isomorphic solutions, ideally making
the solver ‘jump around’ various parts of the design space, sampling a wide
variety of solutions. The work is integrated in a tool called FORMULA, which
uses an SMT solver.

In [6], the authors present a technique to summarize all counterexamples of an
LTL model-checking problem. They generalize concrete examples found by the
SMV model-checker into equivalence classes, describe these with LTL formulas,
and re-run the model-checker on a revised formula where examples that are
equivalent to previously found ones are not considered. The work suggests four
specific kinds of equivalence, at different levels of abstraction.

Our work is similar, in that we use class equivalence as a criteria for results
selection and presentation. It is also very different, as it is specifically applied
to the problem of semantic differencing for several modeling languages, and
thus the criteria for ‘symmetry breaking’ and the technologies used (Alloy/SAT,
BDD-based algorithms) are specific and very different than the ones in [6, 7].

Many works present syntactic approaches to differencing (e.g., [1, 13, ?]).
Some related tools support hierarchical presentation of differences where the
hierarchy is defined by the abstract syntax tree (AST) [3]. All differences are
computed but the presentation in the AST can encapsulate them under col-
lapsed sub-trees. This may be viewed as a form of presentation summarization.
Note that our summarization technique is not limited to the presentation but
is applied already as part of the computation: we show how to compute the
summary set without the enumeration of all witnesses during the computation.

We are not aware of other work in the domain of software evolution that is
directly related to differences summarization.



7 Conclusion

We have presented summarization techniques for semantic model differencing.
We motivated the challenge of summarization and suggested ways to address it
in the context of CD and AD semantic differencing. We demonstrated the utility
of our summarization approach in providing a small yet informative set of diff
witnesses and discussed alternatives and future challenges.

Future work includes the integration of the techniques presented here into the
prototype implementations presented in [9] and [11]. Moreover, as we extend se-
mantic differencing to additional languages, e.g., feature models and statecharts,
we will be looking for summarization techniques for these languages too.
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