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ABSTRACT

Context: Designing software is an activity in which software devel-

opers think and make design decisions that ultimately shape the

structure and behavior of software products. Currently, designing

software is one of the least understood activities in which software

developers engage. In a collaborative design setting, distances such

as geographic, cultural, or social distance can lead to socio-technical

challenges that potentially affect the way software is designed.

Objective: To contribute to an increased understanding of software

design, we investigate how geographic distance affects collaborative

software design.

Method: To this end, we conducted a multiple-case study exploring

in depth the design thinking of co-located and distributed software

developers in a collaborative design setting.

Results: We find that, compared to co-located developers, distributed

developers practice less problem space exploration and focus in-

stead more on the solution space. This could be related to different

socio-technical challenges caused by distributed collaboration, such

as lack of awareness and common understanding.

Conclusion: Our findings contribute to an increased understanding

as to how software design is affected by geographic distance. De-

velopers engaging in collaborative design need to be aware that

problem space exploration is reduced in a distributed setting, which

would adversely affect the development achievement and therefore

customer satisfaction.

CCS CONCEPTS

• Software and its engineering → Designing software; Col-

laboration in software development; Abstraction, modeling

and modularity; Software system models; • Social and profes-

sional topics → Geographic characteristics; • General and

reference→ Empirical studies; Design.
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1 INTRODUCTION

When designing software, developers together with other stake-

holders explore the interplay of problem and solution space. That is,

they creatively ponder, make, and refine decisions that ultimately

shape the final structure and behavior of the software product [26].

Developers design throughout the software engineering (SE) life-

cycle [41], despite their different roles in a project. For example,

developers do not only elicit requirements, they actually design the

requirements by discussing and shaping these requirements with

the contributing stakeholders. Developers also design their code by

composing, analyzing, and evaluating algorithms, to ensure, e.g.,

an efficient algorithm run-time. Similarly, developers design use

cases, interactions, user interfaces, and test cases.

To handle re-occurring wicked [43] and ill-structured problems

during design, expert developers intuitively practice design thinking

[13]. Design thinking is a cognitive style, a mindset that helps de-

velopers in problem solving. In design thinking, developers explore

the problem and solution spaces separately, and iteratively align

the two. This process happens even if developers are not specially

trained in design thinking.

As globally-distributed projects become the norm in SE [21]

and lead to social, technical, and organizational challenges [15],

it is likely that software design activities are affected as well. In

particular, it is unclear to what extent the iterative cycle of design

thinking is hampered by the distribution of collaborating teams.

While the focus in research has been on technical artifacts of

design (i.e., design notations and tools), there is only little work

investigating design practices and cognition [29]. This focus on

technical aspects of design is problematic, as SE is a socio-technical

endeavour, and further research controlling for human and social

aspects is crucial for ensuring a successful engineering of software
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systems [49]. In fact, Petre and Van Der Hoek [39] argue that de-

signing software is one of the least understood activities in which

software developers engage.

To close this gap, we conducted an exploratory multiple-case

study1, investigating how design thinking takes place during soft-

ware design in co-located and in distributed teams. Based on video

data obtained by Petre and Van der Hoek [39] for the co-located

case, and three distributed teams of professional software develop-

ers designing the architecture of a system at the whiteboard, we

qualitatively analyze how software developers switch between the

problem and solution space of design thinking, and how alignment

takes place. Doing so, we aim to answer the following research

questions.

• RQ1Howdoes distance affect the design thinking of software

developers?

• RQ2What challenges are encountered when collaboratively

designing software at a distance?

Hence, the contributions of this paper are threefold:

(1) We analyze the design thinking process of software devel-

opers, leading to an increased understanding of software

design activities.

(2) We qualitatively compare how design thinking differs be-

tween co-located and distributed setups, leading to an in-

creased understanding of the effects of global SE on design

thinking.

(3) We analyze difficulties to distributed design thinking, thus

exposing areas of improvement in global SE projects.

In summary, we find that distributed teams practice less design

thinking compared to co-located teams. Furthermore, distributed

teams focus more on solution space exploration and less on problem

space exploration. Our results indicate that a lack of awareness and

common understanding between the remote collaborators cause

this change in design thinking.

The remainder of this paper is organized as follows: We discuss

related work in Section 2, followed by a description of the multiple-

case study design in Section 3. We discuss the results in Section 4

and the threats to validity in Section 5. We conclude and outline

future work in Section 6.

2 RELATEDWORK

In this section we discuss related work focusing on Design Thinking

and Global Software Engineering.

2.1 Design Thinking

According to Kimbell [31], design thinking can be described as a

cognitive style [13, 19], a general theory of design [7], or an orga-

nizational resource [36]. One school of thought considers design

thinking as an activity that the subject is aware of, e.g., [17, 40]. In

contrast, several authors understand design thinking as a theory

that explains how subjects practise problem solving during a design

task without necessarily being aware of it, e.g., [7, 13, 19]. In this

study, we consider the latter understanding of design thinking.

Lindberg et al. [34] highlight that design thinking fosters three

main activities (see Figure 1):

1In this paper, we use the same data as in [28], but with different objective and analysis.

Figure 1: Problem solving with design thinking [34]

(1) Exploration of the problem space: by analyzing the problem

space and framing the design problem;

(2) Exploration of the solution space: by creatively devising and

evaluating design solutions; and

(3) Iterative alignment of both spaces: by keeping the problem

space in mind for refining and revising the chosen solutions.

Furthermore, Lindberg et al. [34] indicate that design thinking can

broaden the problem understanding and problem solving capabili-

ties in IT development processes. This is in line with Brooks [6],

who considers design thinking an exciting new paradigm for dealing

with problems in software and IT development.

Similar to Lindberg et al. [34], Dorst and Cross [19] find that

a designer’s understanding of the problem and solution space co-

evolve in an iterative fashion, until the designer finds a bridge that

links concepts in the two spaces.

In [40], Petre et al. consider design as a goal-driven activity

to decide upon a plan for a novel change in a specific context.

This change, when realized, satisfies the contributing stakeholders.

They underline that design thinking is conducted in different social

contexts and at all stages of software development. Moreover, the

authors claim that developers with a ‘design-thinking mindset’

perform contrasting design dialogues between problem and solution

spaces, pragmatism and fitness-for-purpose, and across different

levels of development focus and design cycles such as analysis,

synthesis, and evaluation. Each of these dialogues provides a focus

for design reasoning which helps to understand problems, manage

complexity, and achieve enduring development success.

Dobrigkeit and de Paula [17] investigate how design thinking can

support software development and how itmanifests itself during the

development process. By conducting a case study and interviews in

a global IT company, Dobrigkeit and de Paula find that once trained

in design thinking, developers find various ways to implement

it throughout their projects even applying it to aspects of their

surroundings such as the development process, team spaces and

team work.

While, to the best of our knowledge, there are no studies that

empirically assess the design thinking phenomenon in SE, there are

few studies focusing on the social and cognitive activities of devel-

opers when they collaboratively practice problem-solving activities.

Jolak et al. [28] study how distributed software designers com-

municate and collaboratively make design decisions. They found

that distance affects the quality of communication, and reduces the

amount of design decisions that the developers take during their

distributed collaboration. Our multiple-case study uses the same
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data used in [28]. In contrast, in this study we focus on analyzing

design thinking and challenges to distributed collaboration.

Similarly, Christiaans and Almendra [9] study how developers

take decisions in software design. They find that developers in

general tend to prioritize their previous knowledge in problem

solving, while neglecting a thorough analysis of information in

order to take decisions along their processes.

For understanding the software design process, Baker and Van

der Hoek [2] analyze how developers generate ideas, discuss sub-

jects, and do design cycles (i.e., exploring a design aspect, make

some progress, and then switch to a new design aspect). They ob-

serve that the design process is highly incremental and developers

repeatedly return to previously stated ideas and discussed subjects.

This observation is in line with how expert developers behave when

practicing design thinking, i.e., by exploring the problem space, the

solution space, and then repeatedly jumping back and forth to align

the two spaces.

Razavian et al. [42] consider software design as a problem solving

exercise. They theorize that software design thinking requires two

minds: a reasoning mind that focuses on the process of logical

design reasoning and a reflective thinking mind that challenges

the reasoning mind by asking reflective questions. Razavian et

al. conduct multiple case studies to understand how reflections

on reasoning and judgments influence software design thinking.

They find that reflection improves the quality of software design

discourse which, in turn, is considered as a foundation for a good

design [18].

In summary, design thinking is a cognitive style that fosters

problem and solution space exploration and alignment between

the two spaces. In software design, developers follow a process

that is similar to design thinking, thus making the combination of

the two, software design and design thinking, a relevant topic for

investigation.

2.2 Global Software Engineering

Global software engineering (GSE) is the practice of engineering

software systems across geographical, socio-cultural, and temporal

boundaries [23]. Software organizations opt for globalizing their

projects mainly to maximize business profits by taking advantage

of low development cost and time, achieving a high percentage

of productivity, accessing a skillful workforce and using innova-

tive concepts [37]. However, these organizations often face nu-

merous challenges, including poor quality of globally developed

software [30].

Herbsleb [23] studies the impact of geographic distance on dis-

tributed collaboration. He suggests that co-location facilitates com-

munication since software developers explicitly know who is work-

ing and what is happening in the working place. The suggestion

of Herbsleb is in line with Damian et al. [14], who observe that

geographic distance hampers awareness of remote collaborating

teams participating in GSE.

Besides geographic distances, communication gaps can be caused

by other distances. Bjarnason et al. [3] present a theory on different

distances and their influence on communication and coordination

in software development projects. The authors suggest that some

of these distances can be shortened by following certain practices

such as:

• involving roles from different disciplines to perform an SE

activity.

• reviewing documentation and artifacts.

• performing incremental SE.

Of particular interest to our study are communication gaps

caused by social distances, since these distances are often amplified

by geographic distance and since they cannot easily be mitigated

by technological solutions. For instance, as part of a substantial

body of work on culture, the Hofstede culture distances [24] are a

well-known theory aiming to explain how different cultural back-

grounds developed in families, schools, and organizations introduce

differences in thinking and social actions. Geographic distribution,

e.g., due to outsourcing, often lead to a more diverse mix of cultures

which can give rise to communication gaps. For instance, Lehmann-

Willenbrock et al. [33] observe that culture can introduce differences

in the behaviour of distributed collaborating teams. In addition to

the culture dimension, Bjørn et al. [4] find that geographic distance

raises more social challenges which are considered critical obstacles

for successful remote collaboration.

Overall, we see that more in depth studies of the activities and

behavior of distributed developers are needed [25]. This should

result in a better understanding of how to account for technological

and social challenges caused by geographic distance.

The design assignment that we use in our study is intention-

ally formulated to trigger design thinking and reasoning. Informal

notations and whiteboards are often used during collaborative de-

sign ideation and reasoning to explore problems and externalize

design solutions [8]. Whiteboards do not constrain the modeling

notation that can be used and, thus, support informal modeling

and design thinking. Therefore, in our study we use whiteboards

(standard whiteboards in the co-located case and interactive white-

boards in the distributed case) to better study the design thinking

phenomenon.

Dekel [16] study co-located software design meetings in order

to observe the activities of developers and outline requirements

for tools supporting distributed software design. For distributed

software design, Dekel suggests that the design tools should mainly

support the creation of informal notations to capture ideas while

brainstorming.

There are several tools that support distributed software design

and the creation of informal notations, such as the Software Design

Board [50], Calico [35], Metaglue [22], and OctoUML [27] (a tool

that we developed). In this study, we use interactive whiteboards

with a simplified version of OctoUML to support and explore dis-

tributed software design. More details are provided in the next

section.

3 CASE STUDY DESIGN

The intention of this study is to explore the design thinking of co-

located and distributed software developers. Moreover, we seek

to identify challenges and impediments that could hinder collab-

orative distributed design thinking. We aim to seek insights and

generate hypotheses for future research by observing the process

and outcome of the design thinking phenomenon.

108



Figure 2: Multiple-case study design featuring the two use

cases of co-located and distributed software design

Since it is hard to study design thinking in isolation and sepa-

rate it from its context, we chose a case study design, where the

boundary between the phenomenon and its real-life context can-

not be clearly specified [51]. Our case study is an exploratory and

inductive multiple-case study [44].

3.1 Cases and Units of Analysis

Figure 2 shows the design of our multiple-case study, which serves

to examine two cases:

• Case 1 (Co-location): Collaborative co-located designing of

software architecture using a whiteboard. This is a holistic

case [51] with a single Unit of Analysis (UoA): Design Think-

ing. Here, we analyze the problem-solving cognitive style of

developers.

• Case 2 (Distribution): Collaborative distributed designing of

software architecture using an interactive whiteboard. This

is an embedded case [51] with two UoAs: Design Thinking

and GSE Challenges. In this case, we analyze the challenges

that hinder collaborative distributed designing.

3.2 Theoretical Framework

While our case study is exploratory in nature, even this kind of case

study should have a theoretical foundation consisting of theories, if

possible, and propositions/hypotheses [44, 51]. Next, we detail the

theoretical framework that we employ in this multiple-case study.

In this study, we make use of the design thinking phenomenon

as a means to reason about how individuals solve problems. That

is, we analyze their interactions with respect to the three design

thinking activities described by Lindberg et al. [34]: Exploration of

the problem space, of the solution space, and iterative alignment

between the two. While developers can be explicitly trained in

design thinking, we follow the line of research that assumes that

even untrained developers perform design thinking. The two cases

are selected to predict possible contrasting results on design thinking

by altering one condition: the geographic distance (co-location vs.

distribution).

In addition to the design thinking phenomenon, we analyze our

data with respect to Bjarnason’s theory on distances in SE [3]. Using

these distances, we aim to reason about the differences between the

two cases, as well as the perceived challenges of being distributed

(UoA 2 in Case 2).

The related work on GSE, discussed in Section 2, shows that

remote collaboration can hinder effective communication.We relate

this overall conclusion to our RQs by making the following two

propositions, which then guide our case study design:

• Proposition A: We propose that geographic distance (co-

location vs. distribution) does not affect design thinking. If

the design thinking of the two cases varies considerably, then

this indicates that geographic distance affects design thinking.

This would encourage deeper investigations of the effect of

distance on design thinking.

• PropositionB:We propose, based on the findings in [23, 38],

that poor GSE tool-support and difference imposed by so-

cial factors are the most frequently reported challenges that

affect GSE. If the perceived challenges in our study differ

from those reported in related work, then this indicates that

additional factors in our study setup influence the perceived

challenges. Moreover, this would encourage further investi-

gation of the perceived challenges and confounding factors.

3.3 Context

For both cases, we used the design challenge by [39], which can

be consulted at https://www.ics.uci.edu/design-workshop. In this

challenge, designers are asked to design the signal timing at a road

intersection with the goal that traffic is flowing in a fluid manner

and waiting times are minimized. The designers are asked to create

the architecture of a simulator enabling its users to investigate the

effect of different signal timing on the traffic flow. The challenge

is of realistic size and complexity, and focuses on four functional

requirements:

(1) Users can create a visual map of intersected roads of varying

length.

(2) Users can describe the behavior of the traffic lights at each

of the intersections, such that combinations of individual

signals that would result in crashes are prohibited.

(3) Users can simulate traffic flows on the map, and the resulting

traffic levels are conveyed visually.

(4) Users can change the traffic density per road.

Prior to starting the challenge, developers were informed that:

• their design will be evaluated primarily on the basis of its

elegance and clarity, and

• they should focus on the interaction that the users will have

with the system, including the basic appearance of the pro-

gram, and on the important design decisions that form the

foundation of the implementation.

Developers were given a printed copy of the design challenge

and had a maximum of 2 hours to work on their design. The devel-

opers were given no additional instructions, other than to use the

whiteboard for any writing or drawing that they wished to perform.

After completing their work, the developers were given 10 minutes

to collect their thoughts and briefly explain the design.
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Server instance Client instance

Clients: 1

Figure 3: The main views of the server and client instances of OctoUML

For Case 1, we used the data set provided by [39], who performed

the study with three (co-located) teams of two professional software

developers each. The developers in these teams were considered

expert designers (i.e., their companies would trust them in solving

key software design problems) and had on average 19 years of

experience.

For Case 2, we recruited three teams of two professional soft-

ware developers to work on the same design challenge, but from

two different geographic locations: Aachen, Germany and Gothen-

burg, Sweden. The developers in our study had between three and

seven years of professional software development experience in

automotive and networking domains, and were selected based on

convenience sampling.

Instead of a regular whiteboard, we used interactive whiteboards

with a simplified version of OctoUML2, an open source software

design environment [27] supporting remote collaborative design

sessions between geographically distributed developers. To collabo-

rate remotely, one developer creates a server instance of OctoUML.

Other remote developers can connect as clients using TCP/IP proto-

col. Figure 3 shows the main views of the server and client instances

of OctoUML. Developers can simultaneously sketch on the shared

canvas of OctoUML using special styluses or by using their fingers,

as interactive whiteboards support touch-input. While OctoUML

has some UML capabilities, like creating class shapes, we removed

those in the study to make OctoUML resemble a regular whiteboard

as closely as possible and, thus, mitigate the impact of other factors

than the geographic distance on the UoA 1 (i.e., design thinking) of

the two cases. Similarly, choosing another commercial remote col-

laboration tool might have introduced other collaboration features

that would have changed the experience compared to a regular

whiteboard. Hence, we opted to choose OctoUML since we could

2OctoUML Website: http://rodijolak.com/#octouml

customize it for the study’s purpose. The interactive whiteboards

were connected to computers providing video conferencing (via

Skype3) between the two locations.

Immediately after each distributed design session, we asked the

developers to the evaluate the usability of OctoUML. The reason

is to understand to what extent the usability of OctoUML did im-

pact the work of the distributed developers. In particular, we asked

the developers to answer the System Usability Scale (SUS) ques-

tionnaire. The System Usability Scale is an easy, standard way of

evaluating the usability of a system [5]. It is a form containing ten

statements, and users provide their feedback on a 5-point scale (1

is “strongly disagree” and 5 is “strongly agree”). SUS effectively

differentiates between usable and unusable systems by giving a

measure of the perceived usability of a system. It can be used on

small sample sizes and be fairly confident of getting a good usabil-

ity assessment [47]. Figure 4 shows the results of SUS evaluation.

Overall, we observe that the perceptions regarding the usability

of OctoUML were positive. Regarding the SUS score, OctoUML

received an average SUS score of 74.17 ± 5.63, which can be inter-

preted as a grade of B− (i.e., a good usability score) according to

[45].

3.4 Data Collection and Analysis

In both cases, design sessions were recorded with a video camera

that was positioned to capture the whiteboard and the developers

at work. In Case 2, we recorded two videos per session, one each for

the two geographic locations. We then used verbatim transcriptions

for subsequent analysis (for Case 1, the transcriptions were obtained

from https://www.ics.uci.edu/design-workshop/videos.html).

3Skype Website: https://www.skype.com/en

110



I think that I would like to use this system frequently

I found the system unnecessarily complex

I thought the system was easy to use

I think that I would need the support of a technical person to be able to use this system

I found the various functions in this system were well integrated

I thought there was too much inconsistency in this system

I would imagine that most people would learn to use this system very quickly

I found the system very cumbersome to use

I felt very confident using the system

I needed to learn a lot of things before I could get going with this system

1 2 3 4 5

Figure 4: The perceived usability of OctoUML

3.4.1 Design Thinking. We analyzed the transcriptions of approx-

imately 10 hours of design activity by six pairs of professional

software developers, and performed a manual coding of more than

2000 conversation dialogues. We created a coding schema (see Fig-

ure 5) to capture design decisions from the problem space (traffic

flow) and solution space (SE). This schema is based on the design-

reasoning decisions of Rainer Weinreich et al. [48]. Dialogues in the

transcriptions were then assigned codes (using NVivo4). If multiple

codes were assigned per dialogue, we ordered them by the time

they occurred in the transcription.

Two coders ensured reliability, following the advice given by [32].

We performed two-way mixed Intraclass Correlation Coefficient

(ICC (3,k)) tests with 95% confidence interval on 11% of the data. The

ICC value is 0.84, which is considered a good reliability according to

[32]. After that, the two coders discussed and aligned the differences

in their coding. Finally, the two coders collaboratively continued

to code the rest of the data i.e., 89% of the data.

Based on the frequency of occurring codes and their order, we

derive the design thinking graphs reported and discussed in Section

4. Essentially, we derive the frequency of each design thinking phase

by counting (see Figure 5 as a reference):

• how frequent the developers explored the problem space

(codes 1-5),

• how frequent the developers explored the solution space

(codes 6-16), and

• how frequent the developers iteratively align the two spaces

(subsequent codes changing from problem to solution space,

or vice versa).

3.4.2 Challenges to Distributed Design. In each geographically dis-

tributed site (Sweden/Germany), one supervisor attended the design

sessions to observe the design process and note observed challenges.

4NVivo Website: https://www.qsrinternational.com/nvivo

In addition, after each distributed design session, we asked the de-

velopers to indicate, and elaborate on, eventual challenges to their

distributed collaborative design experience via an online form (self-

evaluations) using the following two open questions:

• Q1. What was challenging in this experience and what was

missing in your opinion?

• Q2. Did you recognize challenges due to being geographically

distributed? If you did, which challenges did you find?

Collecting data on GSE challenges from two sources (perceptions

of the distributed developers and our observations of the design

sessions) allowed us to triangulate the data on the experienced

challenges.

4 RESULTS

In this section we present and discuss the results of this study based

on our two RQs.

4.1 RQ1: Co-located vs. Distributed Design
Thinking

Figures 6 and 7 show the design thinking processes of the co-located

and distributed teams, respectively. The numbers in the figures

represent the absolute and relative frequencies of (i) problem space

exploration, (ii) solution space exploration, and (iii) alignment of

the two spaces, that are practiced by each team in Cases 1 and 2.

Looking at absolute frequencies, we observe a higher number

of design thinking interactions in the co-located teams (CT1: 303,

CT2: 203, CT3: 323 interactions) than in the distributed teams (DT1:

140, DT2: 179, DT3: 122 interactions). Furthermore, we notice that

the teams in Case 1 did more problem space exploration and more

alignment between the problem space and solution space than the

teams in Case 2.

In terms of relative frequency, we see that all teams in Case 2

have a larger percentage of solution space exploration than any of
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Figure 5: Classification schema of design decisions into problem space and solution space decisions (based on [48])

Problem

Solution

89
(29.4%)

93
(30.7%)

61 (20.1%) 60 (19.8%)

(a) CT1

Problem

Solution

89
(43.8%)

51
(25.0%)

32 (15.8%) 31 (15.3%)

(b) CT2

Problem

Solution

86
(26.6%)

110
(34.1%)

64 (19.8%) 63 (19.5%)

(c) CT3

Figure 6: The design thinking of Co-located Teams CT1, CT2, and CT3 (Case 1))

Problem

Solution

45
(32.1%)

52
(37.1%)

22 (15.7%) 21 (15.0%)

(a) DT1

Problem

Solution

15
(8.4%)

113
(63.1%)

26 (14.5%) 25 (14.0%)

(b) DT2

Problem

Solution

21
(17.2%)

45
(36.9%)

28 (23.0%) 28 (23.0%)

(c) DT3

Figure 7: The design thinking of the Distributed Teams DT1, DT2, and DT3 (Case 2)

the teams in Case 1. Specifically, the two developers in DT2 were

more solution oriented (i.e., 63.1% of their design thinking was into

the solution space), and did more solution space exploration than

any other team, co-located or distributed. Focusing only on Case 2,

we notice that all teams explored the problem space (DT1: 32.1%,

DT2: 8.4%, DT3: 17.2%) less than the solution space (DT1: 37.1%,

DT2: 63.1%, DT3: 36.9%).

Overall, the results contradict Proposition A, that design thinking

is not affected by geographic distance. We summarize this result

observation as:

Main Observation: Geographic distance affects de-

sign thinking by reducing problem space exploration,

and alignment between problem and solution space.
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Our results provide a potential explanation as to how design

communication is hampered in geographically-distributed teams,

namely by reducing problem space exploration in favour of a more

solution-oriented communication. Clark et al. [10] state that in a

collaborative setting, individuals keep on discussing and sharing

knowledge until they reach amutual understanding of the discussed

argument. In problem space exploration, developers extensively ex-

change and complement their knowledge of the domain in order to

reach a shared understanding of the problem space [12]. Achieving a

shared understanding of the problem space might therefore be ham-

pered in geographically-distributed teams. This is an interesting

addition to the more general observation that geographic distance

can hamper communication and coordination, e.g., [3, 14, 23].

In summary, we observe that geographic distribution reduces

problem space exploration in collaborative software design tasks

compared to the co-located setting, thus answering RQ1. We believe

that this finding explains in more detail how communication is

affected by geographic distance.

4.2 RQ2: Challenges to Distributed Design

While RQ1 is concerned with how design thinking is affected by

geographic distribution, RQ2 aims to answer why geographic dis-

tance affects design thinking, i.e., what challenges designers perceive

when working in a distributed fashion. In the following, we present

which challenges were perceived by the distributed teams in Case

2, then discuss these results in relation to existing work.

Based on the post-study questionnaire (see results in Figure 8)

and our observations, we find that there are multiple challenges to

designing in a distributed way.

All six participants in Case 2 found that it was challenging to

be aware of the remote individual’s reactions to interactions or

the remote individual’s focus on the joint work. We also clearly

observed this challenge during the design sessions. Gestures or

facial expressions were hard or impossible to recognize. This was

the case despite the provided video-conferencing facilities, e.g.,

when they were moving in front of the interactive whiteboard.

This is a technological challenge known from related work on

distributed work [20]. Configuring the environment with more

video cameras so that facial and hand gestures of developers can

be seen independently of their position could mitigate this issue.

The second challenge mentioned by all participants was a lack

of common understanding. This challenge refers to individuals

not knowing whether they have the same level of knowledge or

understanding of the subjectmatter as their remote counterpart [23].

In the Gap model [3], this challenge relates to cognitive distance.

This issue could be reduced by collaborating with developers from

the same department or school of thought.

Two participants mentioned network problems. Furthermore,

technology contributes strongly to the awareness challenge, and

could additionally contribute to misinterpretations of discussions

(reported by one participant).

The results of the post-study questionnaire confirm Proposition

B (tool support and social factors are themost frequent challenges in

GSE). However, socio-cultural factors might be under-represented,

since participants are likely more aware of technical limitations,

e.g., due to cognitive bias.
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Cultural Differences
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Figure 8: Perceived challenges to distributed design

It is interesting to note that only one participant noted cultural

differences as a perceived challenge. In Case 2, German develop-

ers were partnered with Swedish developers. As the German and

Swedish cultures do have large differences on the Hofstede cul-

ture dimensions [24], especially in masculinity and uncertainty

avoidance, we would have expected a more noticeable influence

of culture. However, as noted above, participants might not have

perceived this challenge strongly.

In addition to socio-technical factors, the Gap model [3] includes

artifact-related distances, e.g., semantic distances between multiple

specifications. In our study, these distances were excluded by design

and therefore do not show up in the perceived challenges. However,

even if they were included, we believe that they would have a

similar influence in both co-located and distributed settings.

In summary, we can answer RQ2 stating that both technical

and social challenges are commonly encountered in collaborative,

distributed software design.

While we cannot directly infer a causal connection between our

results for RQ1 and RQ2, it is likely that the observed challenges

for RQ2 play a major role in how design thinking is affected in Case

2. To be able to efficiently explore problem and solution space, and

to align them iteratively, it is essential to be aware of the current

situation. However, the top two challenges, a lack of awareness

of the remote counterpart and a lack of common understanding,

indicate that this is not sufficiently possible. This can lead to less

overall communication, or lead to more explicit communication,

e.g., by not exploring the problem space sufficiently (as noted in

ourMain Observation). The observed reduction in problem space

exploration could be explained in two ways. First, individuals typ-

ically rely on previous knowledge for problem solving instead of

a thorough analysis [9]. This effect might be amplified by socio-

technical barriers. Secondly, due to different barriers introduced

by geographic distance, developers in Case 2 might do more tacit,

internal design thinking and only present ideas after a number of

internal iterations through the design thinking loop. This could lead

to a lower overall quality of the resulting product, since not all ideas

or solution candidates are discussed by all developers involved in

the collaboration. For example, the distributed developers did not

have a direct face-to-face communication and, therefore, missed

eventual facial expressions and hand gestures, which often give a

hint whether or not an argument is mutually understood.
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Overall, we formulate the causal relation between our findings

for RQ1 and RQ2 as a hypothesis for future work:

Research Hypothesis (R.H.): Lack of awareness of

the remote counterpart and lack of common understand-

ing reduce the amount of problem space exploration in

distributed design thinking.

5 THREATS TO VALIDITY

We identified and grouped the threats to validity in our study ac-

cording to Yin [51]:

5.1 Construct Validity

How well do operational measures represent what we intended them

to represent in the study in question?

First, design thinking is a concrete phenomenon, a natural and

ubiquitous human activity during problem-solving processes [11].

We assessed explicit design thinking, i.e., design thinking expressed

verbally. However, design thinking is a cognitive activity and can

happen also implicitly inside the mind of the thinking developer

(tacit design thinking). Suppose that tacit design thinking happens,

then our expectation is that this happens less in Case 2, as geo-

graphic distances increase the social challenges which might make

the expression of tacit knowledge much harder.

We collected data on challenges to distributed design thinking

by asking the distributed developers to report their perceived chal-

lenges during the design sessions. These challenges are subjective

and may vary from one developer to another. Furthermore, develop-

ers might have forgotten to report some of the challenges that they

experienced during the design session. To mitigate this issue, we

observed the distributed design sessions and noted the encountered

challenges. This allowed us to triangulate the challenges.

5.2 Internal Validity

Are causal relationships and confounding factors identified and alle-

viated?

The level of expertise and experience in software architecture

design might influence the design thinking. Novice and expert de-

signers are observed to have different strategies to solve ill-defined

problems [1, 12]. The results of this study expose and explain the

design thinking of expert developers. To understand the behaviour

of novice developers, we call for replication. However, designers in

Case 1 had substantially more experience than designers in Case 2.

This is a potential confounding factor that explains the differences

in effort spent on problem and solution space exploration.

Different developers might perceive different challenges to their

GSE experience. The reported GSE challenges by the participants

of Case 2 are in line with the challenges reported in GSE literature

and practice. Hence, we do not think that differences in perception

affected our results too much.

The participants in Case 2 used an interactive whiteboard (i.e.,

OctoUML) for their distributed collaboration. This could have af-

fected our comparison of the design thinking. Moreover, using new

tools often causes a learning effort. To mitigate these two issues,

we customized OctoUML to resemble a regular whiteboard as much

as possible. Furthermore, we deployed OctoUML on an interactive

whiteboard and made use of Skype for live-communication. This

allowed the developers to collaboratively communicate and con-

currently sketch and at the same time. In addition, all distributed

developers had a short hands-on experience (i.e., 2-3 minutes) to

test the environment by collaboratively sketching on the shared

canvas of OctoUML. As discussed in Section 3, we measured the

usability of OctoUML through a standard SUS questionnaire [5].

The average SUS score of 74.17 ± 5.63 (good usability according

to [45]) indicates that OctoUML has a reasonable usability and

does not perform significantly worse than a state-of-the-art tool

for distributed collaboration. Hence, the use of OctoUML should

not present a confounding factor in our study.

The design sessions lasted about 90 minutes, i.e., designers fin-

ished the task early even though they had more time. Thus, the

participants might have suffered from fatigue that could have led to

less design thinking. We assume that fatigue would have a similar

effect in both cases, and therefore not affect our comparison.

5.3 External Validity

To which extent can the results of our study be generalized?

By design, case studies have a very limited external validity

stemming from the fact that a topic is studied within its context.

Therefore, we cannot claim that our findings are generalizable, i.e.,

different projects in different domains might have different results.

However, we described the case context as detailed as possible in

order to allow practitioners to decide whether or not the findings

might apply in their own case context.

We asked participants to perform a specific software architecture

design task. In industrial settings, design tasks can vary substan-

tially, e.g., in terms of size, terminology, language, and level of detail.

This also limits the generalizability of the findings.

Finally, designers were selected based on contacts, i.e., through

convenience sample. Since the study’s aim is not to generalize over

a population of actors, we do not consider this a major threat.

5.4 Reliability

To which extent can the operations of our study be repeated by other

researchers, achieving the same results?

The case study design and process is described in detail in Sec-

tion 3. Furthermore, we use the published task description by [39],

whose material can be obtained at https://www.ics.uci.edu/design-

workshop/videos.html. This enables researchers to replicate our

study. To the extent this is feasible in qualitative case studies, this

should enable a reproduction of our results under comparable con-

texts.

6 CONCLUSION

In this paper we reported a multiple-case study exploring the effect

of geographic distance on design thinking (RQ1), and the challenges

perceived by geographically-distributed teams (RQ2). We observed

that distributed developers did less design thinking than the co-

located developers, specifically in problem space exploration and

in the alignment between the problem and solution space (Main

Observation). Participants in the distributed case perceived a lack

of the awareness of the remote counterpart and a lack of common
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understanding as the main challenges in distributed design. We hy-

pothesize (R.H.) that these perceived challenges might be causing

the observed reduction in design thinking.

6.1 Implications to Research

Our study extends the body of knowledge in GSE, since it offers

an explanation how geographic distance affects communication,

namely by reducing problem space exploration. While it is known

that GSE might hamper communication, our findings concretize

this knowledge. This is especially valuable since our analysis of

design thinking does not rely on subjective perceptions, and can

therefore complement data based on participant perceptions. Simi-

lar analyses could be used in future work to measure the effect of

potential solution strategies in distributed settings. Similarly, new

techniques that specifically target problem space exploration can

be proposed. For instance, future work could build on the reminder

cards proposed by Tang et al. [46], suggesting a set of reminder

cards that foster problem space exploration.

Our findings for RQ2 mainly confirm existing work in GSE.

Whether or not there is a causal connection between our find-

ings for RQ1 and RQ2 is as of now hypothetical (R.H.). Specifically,

our findings rely mainly on the perceptions of study participants.

Since social challenges in particular might be implicit and therefore

not visible in a self evaluation, we see the need for studying this

connection in more detail, i.e., how socio-technical barriers, such

as culture or beliefs, affect design thinking in distributed teams.

Increasing the understanding of these factors would contribute to

a more efficient and effective remote collaboration, and thus result

in products of higher quality.

6.2 Implications to Practice

While practitioners might be aware of negative effects of geographic

distribution, our findings can help them understand how this mani-

fests in practice. This knowledge can in turn help them to decide

how to engage in GSE. A potential decision might be to limit tasks

that require substantial problem space exploration to co-located

teams, e.g., when features or products with large uncertainty are

designed. Similarly, in distributed design sessions, practitioners

might decide to counteract the technological challenges observed

in this study, e.g., by adding video conferencing that shows the

faces and gestures of the involved designers. These decisions could

positively affect development achievement and, therefore, product

quality and customer satisfaction.

In addition to technical factors, cultural and other social barriers

might increase due to distribution. Our findings confirm existing

works with respect to the importance of these non-technical factors

and can reinforce practitioners in initiatives that aim to mitigate

these barriers.

6.3 Future Work

In addition to the several directions for future work outlined in

this paper, we plan to extend our study to further SE activities. In

particular, we plan to analyze whether problem space exploration is

reduced in a similar fashion in software modeling and requirements

engineering activities. In addition, we want to further investigate

the socio-cultural dimension in this context, e.g., by controlling for

different national cultures or knowledge gaps between different

geographic sites.
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