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Abstract—This paper describes the first results on a sensor
floor, which can be integrated in home environments to assist
old and frail persons living independently at home. The sensor
floor works with a dense array of piezo elements. Its purpose
is not only to monitor the inhabitant’s position within the room
but also to analyze impact patterns for later activation of stable
rescue procedures in case of fall or other emergency events.
Algorithms were developed to gain information on steps of
persons in the room from the piezo impulses. The sensors are
invisibly integrated in the room’s floor, which is part of a living
lab (the Future Care Lab) developed and built within the eHealth
project at RWTH Aachen University.

Index Terms—indoor localization; pervasive health; sensor
floor; human tracking; ubiquitous localization; intelligent build-
ings; ambient assisted living; step detection; gait analysis; move-
ment analysis

I. INTRODUCTION

Electronic health technologies will play an increasingly
important role in the coming years, as more and more older
people will require medical care and support [1]–[3]. Elec-
tronic healthcare (ehealth) technologies support the interaction
between patients and health service providers, institution-to-
institution transmission of data, and peer-to-peer communica-
tion between patients and health professionals [4], [5]. The
spectrum of emerging technical applications covers a broad
variety of developments, reaching from internal technologies
(implants for monitoring physiological signals) over devices
integrated into clothes (wearable technologies) to healthcare
robots or smart home technologies, which support older people
in keeping up their independent live at home [6], [7]. These
innovative smart care technologies promise to deliver signifi-
cant improvements in access to care, quality of care, and the
efficiency and productivity of the health sector [8], [9].

Given the increased life expectancy and considering short-
comings in the care sector as well as bottlenecks within the
health insurance funds, it is a basic question how older and
frail people can stay in their private home keeping up mobility
and independence for a longer time. For a successful scenario
in which both patients and health care institutions profit from
home care solutions, the technology has to be unobtrusive,
affordable and reliable. Patients have to be and feel as safe as
in a hospital combined with the comfort and the privacy of

his regular home environment.
The Future Care Lab, being part of the European Network

of Living Labs (ENoLL), serves as a test environment for
user centered design of Ambient Assisted Living (AAL)
technologies. To examine how patients communicate with
smart homecare environments, how they deal with invisible
technology, and how the information is to be delivered such
that it meets the requirements of timeliness, data protection,
dignity as well as medical demands, an experimental space is
necessary, which enables to study patients life at home.

While a multi-touch wall shifts the primary function of the
wall as a room component towards an active, graphical in-
and output device for human-computer interaction, the floor
functionality has a more concealed role in the room [10].
The unobtrusive monitoring of old and frail persons’ move-
ment behaviors is the key application of this room compo-
nent. A dense network of piezo-electric sensors records each
pressure application to the floor followed by a mathematical
analysis of pressure events. The goal is to detect characteristic
walking patterns, fall events or other abnormal movement
behaviors that would indicate an emergency situation. In
case that such an emergency situation is detected the system
may contact a professional medical personnel. Thus, users
do not have to carry an emergency button and to activate
the emergency call, which in a lot of cases is not possible,
for example when the person is immobile or lost conscience.
Meeting requirements of invisible technology, a parquet floor
hides this technology.

II. RELATED WORK

Many approaches aim at gaining indoor localization and
movement information. They range from wearable sensors like
accelerometers and pressure sensors [11], [12], contact free
methods using acoustic (microphone) [13] or visual (video
camera) [14], [15] sensors to solutions, measuring the contact
forces applied to the ground by the user’s feet [16], [17].
Each approach offers both, advantages and drawbacks in
certain scenarios. Wearable sensors are mobile and can be
used in various locations, however they are not invisible and
require a high amount of care and maintenance of the user.
Acoustic and visual sensors provide very reliable information
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but require visible obtrusive technology that may bring up
privacy and intimacy concerns. which may help to increase
the acceptance of the devices.

Passive infrared sensors [18] as found in in motion detectors
are widely spread in both private homes and in professional en-
vironments. They mainly serve security and amenity purposes
and are not designed to provide detailed location information.

Wearing devices featuring Wifi technology and a unique
ID (like MAC addresses), can be another method to locate
users [19]. However, the possible precision is rather low and
it depends on devices to be worn.

The EU-Project EMERGE proposes a method that uses ultra
wideband technology. Here, too, devices need to be worn by
all tracked persons. Compared to Wifi based localization, a
much higher precision of under 1 meter can be reached [20].

RFID tags can be used to locate and identify persons [21].
The RFID tag again requires to be worn, which is difficult to
ensure or control and which will be perceived as a disturbance
of one’s privacy. Localization via ultrasonic sound needs an
active device at the person and an additional RF channel to
synchronize the elapsed times. An assessment of the measured
data leads to a high accuracy [22].

The works of Klingbeil and Wark [23] examine localization
in wireless sensor networks and their combination with inte-
grated acceleration sensors. Here, larger devices are necessary
up to now, which also must be kept at the tracked person’s
body. Woodman and Harle [24] follow a similar approach.
They use acceleration sensors integrated in shoes which are
permanently re-calibrated via WLAN. Doing so, they combine
the high relative accuracy of the acceleration sensors with the
rougher, but absolute localization of WLAN based methods.

Image based localization systems that use cameras [25]
profoundly intrude into peoples privacy. Furthermore, the
technical setup is relatively complex as are the necessary
computer vision algorithms that process the image material
and locate or even distinguish people on the images.

Anne et al. investigated on the combination of WLAN
or RFID technology with cameras [26]. The integration of
different systems that, on their own, are widely spread, led
to good results, especially in a heterogeneous field of users.
However, the above mentioned privacy issues remain.

Orr et al. created and validated a system for biometric user
identification based on footstep profiles [16]. Here, the ground
reaction force of the users foot is measured by load cells and
analyzed in order to generate user identification profiles.

Valtonen et al. [27] suggest to use capacitive measurement
built into floor tiles to locate humans. This is a passive
system with no need for devices on the person. The product
’SensFloor’ by the Future Shape GmbH, Germany, localizes
persons via proximity sensors that are integrated into a floor
mat [17]. The technology also approximates the shape of the
object or person on the floor, thus allowing for fall detection.

III. RESEARCH GOAL AND APPROACH

The goal of this research is to develop an intelligent floor
that eventually detects characteristics from impact patterns,

both in time and space, like fall events or other unusual
movement behaviors indicating an emergency situation for the
user. Possible features could be velocity, impact power, impact
frequency or impact location.
The approach presented in this paper tries to process data
measured by piezoelectric sensors to an interpretable form.
These data patterns will then be analyzed to detect impacts
made by footsteps and subsequently paths of movement on
the floor.

IV. TECHNICAL REALIZATION

The Future Care Floor is built using 64 wooden tiles (600
x 600 x 40 mm and 300 x 600 x 40 mm) mounted on a
solid steel frame to achieve space for wiring and controller
devices beneath. To monitor impact data on the floor, each
tile’s corner is equipped with a piezoelectric sensor covered
in a perpex support structure [28].
After analog preprocessing to limit the voltage to a -2,5
- 2,5 V range and additionally shift the voltage to be all
positive in operation amplifiers, the piezoelectric output is
quantized using the 10 bit A/D-converters of ATmega1280
microcontrollers on 15 Arduino Mega boards. The sampled
data will be transferred to a host computer by a serial protocol
wrapped in USB packets.
To interpret the visualized sensor data presented in this paper,
it is important to understand the special signal response a
piezoelectric sensor gives. While natural understanding of
sensors often implies a measurement of weight, a piezoelectric
sensor responds to an applied force. For example, when putting
a weight on a piezoelectric sensor and leaving it, the reponse of
a piezoelectric sensor will be an impulse. When removing the
weight, the piezoelectric sensor will show an opposite impulse.
Because of this behaviour, only moving objects will be rec-
ognized by the sensors. This means, no further efforts have
to be made to remove static objects like furniture from the
generated model of the room.

The software for the Future Care Floor needs to be divided
into two general parts:

1) The software running on the arduino microcontroller
board is responsible to sample sensor data and transfer
it to the host computer. It is written in C.

2) The raw sensor data is processed and analyzed by
software implemented in Java on the host computer.

To achieve the goal of detecting human movement on the
floor, multiple steps of processing the raw sensor data need to
be performed.

A. Data acquisition at microcontroller boards

As already noted in the previous section, each arduino is
sampling data of up to 16 piezoelectric sensors with 10 bit pre-
cision and then sends the digital values of all enabled sensors
to the host computer in a batch packet, starting with two sync
bytes to resynchronize after transfer failures. Additionally, the
packet contains meta information about which ports are sent.
To maintain data integrity, a CRC checksum is appended to
the packet.



Fig. 1. Overview of floor architecture

For an arduino with all ports enabled, each packet will contain
36 Bytes.

An important aspect of data reliability is the temporal
comparibility of sensor data. To achieve a uniform pattern,
we decided to enumerate all samples from all sensors. On
the host computer, all serial reader threads are synchronized
after receiving the batch packet, so it can be assumed that all
batches are read defacto in parallel.
After being received by the host computer, all values within a
batch packet are assigned the same timestamp. Since digitizing
16 analog values on the arduino takes 1,6ms and at the host
computer we achieve a data rate of up to 125 batches/s,
resulting in a time interval ∆(tn) = tn+1−tn ≥ 8ms between
two batch packets, with tn being the time the n-th sample was
taken, we think this assumption is sufficiently precise.

B. Data reading and processing

On the host computer it is advisable to reflect the hardware
setup, so for each arduino board there is a distinct processing

chain running in parallel threads. For the sake of simplicity,
we will only describe one instance of these parallel chains.

For data reading and initial processing, three consecutive
FIFO queues are operated. During software design we found,
it is crucial to decouple these queues to grant unblocking data
retrieval. Thus, for each step we established an autonomous
processor thread forwarding the processed data to the next
queue.

While the first step is taken by the SerialReader, reponsible
for opening the serial connection and data transfer from and
to an arduino board, the second step SerialDataProcessor
decodes the raw packet into separate Value objects.
Another feature of the second step is to filter the individual
values. Three relevant filters are applied in order:

1) Calibration: Each sensor shows some value offset in
neutral state. This is corrected by using a static lookup
table.

2) Low pass: High frequency components are eliminated
from the sensor data by applying a Hanning window
function.

3) Relevance checking: To eliminate noise, values below a
absolute certain threshold are filtered out.

See figure 2 for signal comparison before and after filtering.
As SerialValueListeners can register to receive data, the

third decoupled queue SerialDataForwarder will forward fil-
tered Values to the listeners.

Fig. 2. Comparison between unfiltered (left) and filtered (right) signal of
single sensor

C. Transposition into spatial context

While most implemented SerialValueListeners are used for
graphical display and debugging purposes, the TileValueAggre-
gator, itself being a SerialValueListener, takes a central role in
our system by resolving the spatial distribution of the samples.
It does so by mapping discrete sensor samples to their position
on the floor, combining them into the tile structure of the floor.

To help data analysis, the TileValueAggregator provides
many functional operators at floor tile level, amongst which
building an aggregated value of all sensors of a tile is the most



important one.
The main purpose of the aggregated signal is to eliminate
irrelevant signals from the set of observed values and to
simplify the detection of the desired signal. One central
problem while analyzing sensor signals of a walking human,
was the mechanical interference of directly triggered floor tiles
with the respective neighbor sensors either by vibration of the
steel framing or friction of the wooden tiles.
Experiments have shown severe differences in the value pattern
of directly and indirectly actuated tile sensors: Under most
circumstances, all sensors of a directly operated tile show a
similar directed value pattern. In comparison only one or two
sensors of incidentally influenced tiles were showing values
above the filtered threshold.
To compute the aggregation, two different functions have been
evaluated: The average

Savg(t, r, c) =

n∑
i=1

si(t, r, c)

n
(1)

where n is the number of the sensors of the tile and si(t, r, c)
is the i-th sensor value of the sensors of tile at position [r, c]
and time t, and the median

Smedian(t, r, c) =

{
sn+1

2
(t, r, c) if neven

sn
2
(t,r,c)+sn

2
+1(t,r,c)

2 if nodd
(2)

where n is the number of the sensors of the tile and si(t, r, c)
is the i-th sensor value in the sorted set of the sensor values
of the tile at position [r, c] and time t.

Fig. 3. Graphical comparison between aggregated tile values (Savg left,
Smedian right). Signal of actuated tile plotted grey, adjacent tiles plotted in
black

By looking at the graphical analysis of the aggregation
functions (see figure 3) the advantages of Smedian already
became obvious. While there is nearly no difference on the
features of the signal between both functions, the median
function shows less noise.
To find a measure for evaluation of the aggregation function,
we specified the Signal-Noise-Ratio (SNR)

TABLE I
COMPARISON OF SNR OF AGGREGATION FUNCTIONS

Run SNR Savg [dB] SNR Smedian [dB] SNR Smedian
SNR Savg

1 1.0002 1.6177 1.6173
2 1.6269 2.4611 1.5128
3 1.0596 1.5279 1.4420
4 1.0754 1.5221 1.4154

averaged 1.1905 1.7822 1.4969

SNR = log



∑
r,c

S(t, r, c) if tile[r, c] actuated
0 else

# actuated tiles

∑
r,c

S(t, r, c) if tile[r, c] influenced
0 else

# influenced tiles


(3)

Using this definition, we were able to compare the signal
quality of Smedian and Savg .
While, due to limited time resources, we were only able to
evaluate a small amount of test runs, we are convinced of the
superiority of Smedian over Savg . See table I for results.

For all subsequent results the median function is used, while
being denoted as S.

An additional feature of the TileValueAggregator is to
locate the position of an impact within a tile.
For this purpose, a vectorial representation was implemented.
Each sensor was assigned a vectorial position of
~s(t, r, c) = [±1,±1] · |s(t, r, c)| · α, i.e. the sensor value
expresses the vector length, the position of the sensor specifies
the sign (for example, the upper left sensor of a tile as a
unit vector of [1,−1], the upper right [−1,−1]). To detect,
whether a vector belongs to an impact or a release, the sign
of the single sensor value s(t, r, c) must be evaluated. In our
case, we were only interested in position of impacts, which
would be a negative sensor value. Finally, an amplification
factor α needs to be applied, to normalize the result. This
will cause to achieve the maximum amplitude on full sensor
impact, even when the actuator will not provide an impact
hard enough.
Because of the physical mounting of the sensors directly
under the corner tiles without any lever, an impact always
influences all sensors of a tile in the same direction. That
is, there are no sensors expected to produce a reverse signal
of the orthogonal located counterparts. Thus, an approach of
highest value was chosen.
To compute the tile vector for an impact, we only took sensor
values into account which are within a given range ∆ of the
smallest value of all sensors of the tile ŝ(t, r, c).

~S(t, r, c) =
∑
i

{
~si(t, r, c) if si(t, r, c) ≤ ŝ(t, r, c) + ∆

0 else
(4)

This technique helped us to improve the resolution of impact
location detection from tile level (an area of 3600mm2) to the



four quarters of a tile (900mm2) and an additional circular
center area. The validity of these results will need to be
asserted in further test runs.

D. Step detection

Fig. 4. Plot data of a single step on one tile with respective picture of human
step process. Temporal direction is right to left. Aggregated sensor values are
plotted bold.

For detecting human steps on the Future Care Floor, we
decided to follow a relatively simple approach. As visible in
figure 4, there are three feature curves in the plot of aggregated
sensor signals:

1) A dominant impact curve resulting from the force of the
initial contact phase.

2) A second, minor impact curve resulting from the weight
transition during the mid stance phase.

3) A release curve resulting from the negative force while
pre-swing phase.

While ignoring the mid stance curve, we detect initial contact
and pre-swing using the trailing edge of their respective curves.
That is, the detect an element in the set of impacts Ω it must
be below a certain threshold δ and the derivative must be the
first derivative greater than ε after a local minimum:

Ω = {(t, r, c)|S(t, r, c) < δ

∧ S′(t, r, c) > ε

∧ S′(s, r, c) ≤ ε
∀s < t, s > p̂, p̂ = max(p),

S′(p, r, c) = 0} (5)

For release detection we use an inverted form of formula 5
with matching δ and ε.
It is obvious, that the situation becomes increasingly compli-
cated, when, while walking, the person’s second foot is also
impacting the same tile. Because of the special signal delivered
by piezoelectric sensors, the leading edge of the second foot’s
initial contact signal will superposition the trailing edge of the
first initial contact signal. Additionally, the pre-swing phase
of the first foot, being temporally very close to the first foot’s

TABLE II
STEP DETECTION RATE OF SEVERAL RUNS (DIFFERENT SUBJECTS)

Person Person Steps Steps Sucess
(different subjects) weight performed detected Rate

A 100 78 71 91%
A 100 46 31 67%
B 58 103 69 67%
B 58 59 30 51%
C 80 50 44 88%
C 80 65 41 64%
C 80 70 50 71%
D 85 74 59 80%

overall 545 395 72%

initial contact phase [29], will also mix into the impact signal.
During impact detection, this behaviour results in an inter-
pretable wave, this is not true for release detection. Only the
release of the second foot can be detected.
Thus, we only depend on the spatial and temporal sequence
of impacts for further evaluation.

V. RESULTS

To measure the results of the step detection, we performed
several test runs while recording the runs on video. The
subjects were asked to walk as natural as possible. The videos
were evaluated visually in slow-motion by counting the steps
seen on the screen. As the analyzing computer played an
audio signal each time a step was detected, these signals were
counted as well. The resulting success rates for some test runs
are presented in table II.
As can be concluded from these results, the detection rate of
steps from different persons is dependent on the individual
walking and body characteristics (like weight) of the perform-
ing subject. While the test runs were all performed using the
same variable properties (e.g. δ and ε in formula 5), which
were specified using sample data from subject A, the weight
of the subject seems to have a big impact on detection quality.
Further tests will be needed to examine the success rate with
customized settings. Furthermore, there are plans to evaluate
normalization of sensor data to improve the detection rate.
An additional factor for suboptimal results is the use of an
automated memory model of the implementation language
Java. While the live analysis produces lots of data, there are
pauses for garbage collection necessary, during which no data
gathering and analysis is possible. While efforts in this field
have already shown potential for improvement, this also needs
to be evaluated more thoroughly.
For the above reasons, the preliminary results are presented
as a proof of concept, while there still is plenty of room for
further improvements.

VI. CONCLUSION AND FUTURE WORK

The presented work provides an unobtrusive way to monitor
people’s movement within their personal living space. While
the extraction of impact sequences for the purpose of identi-
fying emergency situation was our primary goal, many more
applications are possible. In case of the multitouch wall in the



Future Care Lab, for instance, virtual sports programs could
be created to maintain fitness for older or frail people. Another
benefit is to motivate users to participate in interactive games
on top of the Future Care Floor.

So, in future projects we will be evaluating systems to
automatically process the gathered movement data, allowing
us to detect dangerous situations by identifying exceptional
paths or special events like downfalls. Possible technologies
would, for example, be supervised machine learning algo-
rithms. Additionally it could help if the Future Care Floor
was integrated with further sensors to improve reliability, for
example by integration with a context-aware assisted-living
system like OpenAAL [30].

Within such a smart approach, also cautionary aspects
need to be carefully considered. The omnipresence of in-
formation and communication technology may be perceived
as a violation of personal intimacy limits, raising concerns
about privacy, and loss of control [5], [31]. So far, we have
only limited knowledge about the fragile limits between the
different poles: the wish to live independently at home and
to feel safe, secure, and fully cared on the one hand and
the feeling of loss of control and the disliking of intrusion
in private spheres on the other. In conclusion, to develop and
design a user-centered device in the medical sector further user
studies must be run to detect their requirements. Especially,
the needs of the elderly, and the chronically ill have to be
considered because they represent the major target groups of
such devices.
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