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Abstract� This paper introduces a new approach of using automata to
model behaviour of objects� Automata allow to design a software model
on the abstract level of states and transitions� We make precise the mean�
ing of states and transitions in the context of objects and types� This
formal semantics serves as a link between informal and formal software
development methods� Second� we give a formal� but nevertheless intu�
itive de�nition of automata specialization which not only provides a way
for reuse of type de�nitions in subtypes� but also shows how to incre�
mentally design types through re�nement� Third we de�ne the notion of
a role an object takes when viewed from the environment� Then we can
give a formal� but short proof that our de�nitions satisfy the subtype
requirement� that means that an object of the subtype plays the roles of
its supertypes�

� Motivation

Object oriented analysis and design �OOA�OOD� results in software models cap�
turing static and dynamic aspects of a system� Types� consisting of attributes
and operations� and relationships between types� in particular inheritance� con�
stitute the static part� Dynamic aspects are captured in the behaviour of types�
On the level of object oriented programming languages �OOP� the behaviour of
a type is determined through the code of the operations and possibly some syn�
chronization conditions �Fro	
� Mes	��� The latter determine the circumstances
under which the operations are enabled� During the analysis phase the code
is not available� so another behaviour description is neccessary� Many authors
�RBP�	
� MO	�� use some kind of automata as a very intuitive means of describ�
ing operation sequences� However� the relationship between the �labels of the�
automata and the types is not made clear� and similarly the relationship between
the automaton of a type and the automata of its subtypes is not made precise� On
the other hand several formal approaches to the speci�cation of object systems
exist� e�g� �JSHS	
� DDP	�� LW	��� Speci�cations capture behaviour separated
from its implementation� They can be used to give an abstract� but complete
account of the behaviour formulated as the outcome of the analysis phase� Dur�
ing the analysis process� however� one needs to be able to work with incomplete
behaviour descriptions which are easy to extend�
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In this paper we will show that incomplete behaviour descriptions need not be
imprecise� Instead� incompleteness imposes some kind of abstraction� describing
only certain aspects of an information system� Therefore we will enhance au�
tomata by a few formal details leading to the concept of behaviour automata�
Behaviour automata can serve as a link between informal and formal software
design methods� On the one hand they are easy to read and to use informally�
Therefore they are an adequate base for the discussions between software design�
ers and customers in the process of designing the system model� On the other
hand the formal semantics leaves no room for ambiguities� Thus� we can de�ne
a formal notion of re�nement which shows how to safely enhance the system
model� This notion of re�nement coincides with the notion of type specialization
�typesafe inheritance�� This is not surprising� since specialization can be viewed
as a preservation of a re�nement step for reuse�

This paper is structured as follows� First we de�ne behaviour automata as a
means of behaviour description of types� The main contribution of this de�nition
is to make explicit the state space of a type� The state space of a type is the
set of all states an object of that type may occupy in its lifecycle� As usual
an object state is given by the values of its attributes� The labelling of the
states of the behaviour automata induces a partition on the state space of the
type� The transitions of the behaviour automata are labelled by operations �and
possibly conditions�� Behaviour automata allow to grasp quickly the sequence of
operations objects of a given type may perform� and also the important states
these objects may pass�

In the second part we de�ne specialization of behaviour automata� This no�
tion of specialization allows for reduction of the state space� re�ned partition of
the state space and reduction of nondeterminism� First we motivate this de�ni�
tion by discussing several examples of type specialization �inheritance�� We also
show that this specialization relation is transitive� Then we discuss re�nement
steps based on the specialization relation�

In the third part we show that our de�nition of type specialization satis�es
the subtype requirement as formulated in �LW	��� namely that �the subtype�s
objects must behave �the same� as the supertype�s objects as far as anyone using
the supertype�s objects can tell�� The expectations of the using objects are made
explicit in the concept of role which are a special kind of type� The behaviour
automaton of a type has to specialize all the automata of its roles� Because of
transitivity of automata specialization it is trivial to show the above subtype
requirement�

We conclude the paper with a discussion of related work�

� Behaviour Automata

Our work is independent of a speci�c notation for the static aspects of types� In
Figure 
 an example is given for the essential parts of such a notation�

Type Figure describes geometric �gures typically used in graphical editors�
The term �type� is mostly used in the context of speci�cations� while �class� is
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Fig� �� Type Figure

used in OOA and OOP� We use the term �type� to indicate that in our framework
inheritance is behaviour preserving� The type de�nition consists of the name of
the type and a set of attributes and operations� Attributes are de�ned by a name
and an optional value space �another type or an informal description�� Opera�
tions are given by names and a possibly empty list of parameters� Relationships
to other types � other than specialization � are captured by attributes� The at�
tributes in the type de�nition do not have to be implemented as attributes� E�g�
attributes depending on other attributes could be implemented as derived func�
tions �Mey	
�� However� during the analysis phase it is natural to think in terms
of attributes� We distinguish between visible and hidden attributes and opera�
tions� The client �or user� of an object can see only the visible attributes� via
selection operations that do not a�ect the object�s state� Visible operations con�
stitute the interface of the type together with the selection operations� Hidden
attributes and operations describe internal details�

A type de�nes a set of objects� Each object has a unique identity and a
state� The state is de�ned by the values of the attributes� The application of
the operations to the objects depends on the state� The behaviour of an object
is its lifecycle� a unique sequence of states and operation calls� The behaviour
of a type is the set of possible lifecycles of its instances� Note that in OOP the
objects� lifecycles are completely determined through the code of the operations
and the synchronization constraints� This is due to the fact that the state of
an object can only be modi�ed through operations and that the semantics of
the operations is completely determined� The latter is not true for OOA� The
behaviour of an object is incompletely speci�ed� Behaviour automata allow to
restrict lifecycles without having to de�ne them completely� They only de�ne
the minimal behaviour of objects� namely some operations� the states in which
objects are certain to respond to calls of these operations and a rough description
of the e�ect of the operations�

��� Automata States

Automata states partition the set of allowed object states through constraints on
their attributes� As an example consider the type Automatic Teller Machine

of Figure 
�



Type Automatic Teller Machine
Attributes Visible output 
�Insert Card��� �Password��� �What please���

Hiddenpassword
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Fig� �� Type Automatic Teller Machine

Its attributes are password� account number� cash and output� where
only the latter is visible� We abstract from the money given to or from the
teller machine� Possible constraints are password unde�ned� account number de�
�ned� Many methods �RBP�	
� characterize automata states by names instead
of constraints� Introducing a special attribute status ranging over all the possible
names of the states one can model the name X as the constraint status � X�
This way� however� the dependencies between the attributes are not made ex�
plicit� In the automatic teller machine example �Figure 
� the constraint account
number unde�ned� password de�ned is not meaningful� This cannot be expressed
through names�



��� Transitions

The state of an object can only be modi�ed by operations de�ned in the type
description �encapsulation�� Thus only operations can cause transitions between
automata states� Pre� and postconditions of the operations which concern only
attributes are captured by the automata states� Additionally the automata states
show how the operations interact� Preconditions which concern the parameters
are not covered through automata states but through additional constraints
on the transitions� A typical example is checking the password for access to
the automatic teller machine �see Figure 
�� The transition constraint is made
explicit in brackets �� � following the operation name�

The transition relation is not required to be deterministic� Therefore it is
also possible to leave the dependency of the successor state from the parameters
unspeci�ed �e�g� operation get of type Queue in Figure ��� A missing constraint
is equivalent to the constraint true�

Type Queue
Attributes Visible empty 
boolean�

Hidden counter
natural number�
Operations Visible put
element�� get
Behaviour

get 

put

put

get 

empty
counter = 0 counter > 0

not empty

Fig� �� Type Queue

Clearly� operations not only modify the internal state but also invoke oper�
ations on other objects �including operations of self�� This interaction between
types can be captured by listing the invoked operations together with the tran�
sitions �see e�g��GM	���� We will not pursue this topic here�

We close this section with a list of the graphical elements representing be�
haviour automata in Figure ��
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Fig� �� Graphical Representation of Automata

��� Formal De�nition of Behaviour Automata

There are two important restrictions on the labelling of the automata states and
the transitions�

� As noted above automata states induce a partition� Therefore the predicates
labelling the automata states have to be exclusive�

� The transition constraints capture the case analysis on the parameters� This
analysis has to be exhaustive� Because of nondeterminism we allow multi�
ple transitions labelled with the same operation and overlapping transition
constraints�

For readability reasons a constraint common to all automata states can be
factorized as an invariant� All states of all objects of the type have to satisfy this
invariant� For the moment we only allow non�temporal invariants talking about
single states� We expect it to be easy to extend our work to more powerful
invariants as in �LW	�� JSHS	
� DDP	��� The invariant of the automata need
not be maximal in the sense that every condition implied by the labels of all
the automata states is implied by the invariant� The reason is that sometimes it
might be di�cult to check for this implication�

In �gure � the concept of behaviour automaton is made precise�
Because the invariant is not required to be maximal the state space is charac�

terized by I �
W
s�S L�s�� Automata states whose label contradicts the invariant

are possible� however� they do not correspond to any object state�

��� Formal De�nition of Types

Behaviour automata are intended to de�ne the behaviour of a type� This is only
possible� if they satisfy certain syntactic restrictions� In the following de�nition
of a type V ar�x� denotes the set of free variables of the term x � L�



De�nition of Behaviour Automata�

Let L be a �rst�order language� � j� denote validity and OP be a set of names�
Then Lab � ff �p� 	 f � OP � p � Lg is the set of transition constraints�
Let S be a nonempty� but �nite set� � � S � Lab � S a �nite relation� I � L and
L 	 S � L a function� For s � S� f � OP the set

enabled
s� f� � fp � L 	 �
s� f �p�� t� holds for some t � Sg
contains the transition constraints for f in state s� A � 
S���L� I� is called a be�

haviour automaton with automata states S� transition relation �� state labelling L

and invariant I� if

A�� the state labels are exclusive	
for all s� �� s� � S holds j� 
I � L
s�� � L
s���� false�

A�� transition constraints are exhaustive	
for all s � S� f � OP such that enabled
s� f� �� 	 holds
j� 
L
s� � I�


W
enabled
s� f��


Note that a missing transition constraint is per default true��

Fig� 	� De�nition of Behaviour Automata

De�nition of a Type�

Let L be a �rst�order language� V be the set of its free variables� OP be a set
of names�
A type is given by �name�Att� V Att�Op� V Op� par�A� s��� where name is the
name of the type� Att � V are the names of the attributes� V Att � Att denotes
the visible attribute subset� Op � OP are the operation names� V Op � Op

denotes the visible operation subset� par � Op � Set�Par� is a function
associating parameter names Par � V to operations with Att � Par � ��
A � �S���L� I� is a behaviour automaton over L and OP and s� � S is
the initial state such that

T�� state labels and invariants are restrictions on attributes only�
V ar�I� � Att and for all s � S holds V ar�L�s�� � Att�

T�� only operations label the transitions�
for all s� t � S� f �p� � Lab with ��s� f �p�� t� holds f � Op

T�� the transition constraints are restrictions on parameters and attributes�
for all s� t � S� f �p� � Lab with ��s� f �p�� t� holds V ar�p� � Att � par�f�

Note that not every operation of the type has to appear as label of the
automaton� If not� nothing is required of its behaviour� The selection operations
corresponding to visible attributes are not shown in the automaton� since they
cannot modify the state� They are only relevant to the interface of the type�
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Fig� 
� Lifecycles and Automata

The state space of a type is formalized as follows�
Let U be the universe of all values and object identi�ers� including the unde�ned
value �� The state space of a type T � �name�Att� V Att�Op� V Op� par�A� s�� is
characterized by

OS�T � � fos � �Att� U � � � 	� os�Att� � �os j� I �
W
s�S L�s��g�

where os j� p denotes the fact that the predicate p � L is true under the valua�
tion induced by os� A type de�nition T � �name�Att� V Att�Op� V Op� par�A� s��
induces the following requirement on the implementation of an operation f � Op

�see also Figure ���

Let os� � OS�T � be an object state� s � S with os� j� I � L�s�� Let
parg � �par�f� � U � be a parameter valuation� The possible destination states
of f are given by

Df �parg� os�� s� � ft � S � there exists p � L such that parg � os� j� p

and ��s� f �p�� t�g�
If Df �parg� os� s� is not empty� the application of f with parameter valuation
parg in state os� results in state os� � OS�T � such that os� j� I �L�t� for some
t � Df �parg� os�� s��

From this semantics it is easy to see that the behaviour description by au�
tomata is very close to the rely�guarantee�style of behaviour speci�cation �Jon����
Assuming that the environment calls f�parg� in an object state os� satisfying
I � L�s� for an automata state s� the object guarantees the successor state os�
to satisfy I �

W
t�Df �parg�os��s�

L�t��



More formally� for every operation f de�ne the rely�guarantee pair �Rf � Gf�
�written as Rf 
 Gf � as follows�

Rf �os�� � �os� j� deff �� and
Gf �os�� os�� parg� � �os� � apply�f� parg� os��


�s� t � S� p � L� �parg � os� j� p� � �os� j� L�s���
�os� j� L�t�� ���s� f �p�� t���

where deff � I �
W
fL�s� � enabled�s� f� 	� �g�

Then for all f � OP � os�� os� � OS�T �� parg � �par�f�� U � holds

Rf �os��
 Gf �os�� os�� parg��

Note that� since we allow state labels to be contradictory �to the invari�
ant�� the above guarantee condition might not be satis�able for an operation
f � Clearly� this has to be checked for at some point during the development
process� However� incorporating this test into the de�nition above� in our view�
constitutes too strong a restriction to be useful in the analysis process�

Altogether� the semantics of behaviour automata can be summarized as fol�
lows� the automata states together with the invariant characterize the maximal
set of states an object of the type can assume� For every transition a minimal
set of enabling states and a maximal set of successor states to these enabling
states is given�

� Specialization

The specialization relation between types is an important means of structuring
the static aspects of the system� Coming from OOP at �rst specialization allowed
arbitrary reuse of code� In the meantime several specialization relations have
been proposed preserving some kind of behaviour� e�g� �LW	�� Mes	�� Fro	
�� In
the following we introduce the concept of behaviour automata specialization� In
section � we show how it relates to other de�nitions of the specialization relation
between types�

Subtypes inherit all attributes and operations of the supertype as well as the
invariant� Visible attributes and operations remain visible� To motivate further
conditions on the specialization relation we discuss typical instances of special�
ization� Consider the type Figure and its subtypes depicted in Figure � �the
de�nitions of the subtypes exhibit only the additional attributes� operations and
invariants� all attributes and operations are visible��

Addition of an Invariant

This corresponds to a restriction of the state space� See for example the
specialization of type Ellipse to type Circle through the addition of the
invariant xradius�yradius� The operations of the subtype can take ad�
vantage of the additional invariant� e�g� for e�ciency reasons� For example�
the operation rotate will be trivial for type Circle� since by the invariant
xradius � yradius a circle is preserved by rotation�



color

move(new center)

show

hide

select

deselect

center position

visibility(true,false)

outline

selection(true,false)

Figure

magnify(x,y-magnification)

rotate

fill

contents

empty

Two-dimensional figure

rotate

magnify(magnification)

One-dimensional figure Point

yradius

xradius

Ellipse

invariant xradius = yradius

Circle

start(point)

end(point)

Line

Attributes

Type

Operations

inherits from

Fig� �� Typehierarchy for Figure

Addition of one or more Attributes

The state space is constrained through the new attribute�� The addition of
the attribute x can also be considered as the addition of an invariant �x
exists��

In its most simple case the addition is orthogonal preserving the behaviour
of inherited operations� For an example consider the specialization of

� Often addition of an attribute is considered an extension instead of a restriction�
Note� however� that the state space of a type contains all objects with at least the
attributes of the type� Therefore addition of an attribute restricts the state space�



Two�dimensional Figure to Ellipse by addition of the attributes xradius�
yradius�
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get [counter =1]
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Fig� �� Behaviour Automaton of Type Bad Queue

We do not allow arbitrary modi�cation of inherited operations by a treat�
ment of the new attribute� Consider the type Bad Queue adding attribute
lastput to type Queue� Figure � shows the behaviour automaton of type
Bad Queue� The operation get is only activated in Bad Queue� if lastput
is true �that means the last operation was put�� Contrary to type Queue

operation get is not activated in all states satisfying counter � �� This is
considered too strong a modi�cation to be summarized under specialization�

Addition of Operations

The preconditions of the new operations give rise to a re�ned partition of the
state space� An example is type Two�dimensional Figure� where operations
fill und empty have been added� Fill is only activated� if content � false�
Empty is only activated� if content � true� The corresponding behaviour
automaton results from splitting the state visibility � true� selection �
true� Compare Figures 	 and 
�� where we use a Statechart�like notation
�Har�����
Addition of operations induces the restriction that the implementation of
the new operations may not invalidate the inherited invariant�

� Here we use this notation only as a shorthand to cope with the state explosion�
We are not concerned with the real�time semantics underlying the framework of
Statecharts�
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Altogether we have the following characteristics of automata specialization�

� Specialization may restrict the set of possible object states� Every state of
the subautomaton has to re�ne a state of the superautomaton� However� it
is possible that states of the superautomaton have no correspondent in the
subautomaton� It is also possible that the correspondent state in the subau�
tomaton is not satis�able by an object state �e�g� because of strengthening
the invariant��

� Transitions of the superautomaton are preserved� if their enabling states are
preserved� However� reduction of non�determinism is allowed �and also desir�
able�� Since transition constraints correspond to an exhaustive case analysis�
they have to be preserved in any case� Enabledness of an operation can be
restricted and extended� The latter only� if no additional non�determinism is
introduced� The former only� if it is induced by reduction of the state space
in the specialized automaton�

Note the way this spezialization relation re�ects the automata semantics�
Since automata characterize the maximal set of states of a type� this set can
only be reduced in a subtype� Relative to the restricted state space the set of
enabling states of an operation can be extended �the set of enabling states being
minimal�� while the set of successor states of these enabling states can only be
reduced �by maximality of sucessor states��

Now let us give a formal de�nition of behaviour automata specialization�

De�nition of Behaviour Automata Specialization�

Let Ai � �Si��i� Li� Ii�� i � 
� 
 be two behaviour automata� A� specializes A�

�denoted as A� 
 A��� if

Sp�� the invariant is preserved� that means j� I� 
 I��
Sp�� the set of possible object states is not extendend and the partition is

preserved� that means for all s� � S� there exists s� � S� such that
j� �I� � L��s���
 L��s���

Sp�� transitions are preserved� if their enabling states are preserved� that
means for all si � Si� i � 
� 
 such that j� �I� � L��s���
 L��s�� and
	j� �I� � L��s���� false and for all f such that enabled��s�� f� 	� � holds�
Sp�a� enabled��s�� f� 	� �
Sp�b� for all t� � S�� p� � L with ���s�� f �p��� t�� there exists

t� � S�� p� � L with ���s�� f �p��� t�� and
j� �I� � L��s���
 �p� 
 p�� and j� �I� � L��t���
 L��t���

Note that spezialization permits the elimination of invalid states �whose
labels contradicts the invariant� with no incoming transitions� Invalid states
with incoming transitions can only be eliminated through reduction of non�
determinism� Otherwise they indicate a meaningless and therefore not imple�
mentable behaviour model�



Based on automata specialization one can de�ne type specialization� The only
additional requirement is that initial states have to be preserved and visible at�
tributes and operations remain visible��

De�nition of Type Specialization�

Let Ti � �namei� Atti� V Atti� Opi� V Opi� pari�Ai� s�i�� i � 
� 
 be two types�
T� is a subtype of T� �denoted as T� 
 T��� if Att� � Att�� V Att� � V Att��
Op� � Op�� V Op� � V Op�� par� restricted to Op� equals par�� A� 
 A� and
j� �I� � L��s����
 L��s����

We close this section with the proof of transitivity of automata specialization�
The transitivity of type specialization follows trivially�

Theorem �� Transitivity of specialization

Let Ai � �Si��i� Li� Ii�� i � 
� 
� � be three behaviour automata�
Then A� 
 A� and A� 
 A� imply A� 
 A��

Proof�

Sp�� j� I� 
 I� follows trivially from transitivity of implication�
Sp�� Similarly� for s� � S� follows j� �I� � L��s���
 L��s�� for some s� � S��
Sp�a� Now let s� � S�� s� � S�� f � OP such that I� �L��s�� is satis�able and

j� �I� � L��s���
 L��s�� and enabled��s�� f� 	� ��
Since A� 
 A� there exists s� � S� with j� �I� � L��s��� 
 L��s��� There�
fore L��s�� � L��s�� is satis�able� By exclusiveness of state labels of A�

and A� 
 A� follows j� �I� � L��s��� 
 L��s��� Since A� 
 A� follows
enabled��s�� f� 	� � and by A� 
 A� follows enabled��s�� f� 	� ��

Sp�b� Now let ���s�� f �p��� t�� for some t� � S�� p� � L� By A� 
 A� follows
���s�� f �p��� t�� for some t� � S�� p� � L and j� �I� � L��s��� 
 �p� 
 p��
and j� �I� �L��t���
 L��t��� By A� 
 A� follows ���s�� f �p��� t�� for some
t� � S�� p� � L and j� �I� � L��s��� 
 �p� 
 p�� and j� �I� � L��t��� 

L��t��� By transitivity of implication follows j� �I� � L��s��� 
 �p� 
 p��
and j� �I� � L��t���
 L��t��� �

� Re�nement

Re�nement is used to incrementally develop the system model� In our view
type re�nement coincides with type specialization� Typical re�nement steps are
reduction of non�determinism and change of data representation� The former has
already been discussed in the context of type specialization and is re�ected in

� We do not allow addition of parameters to operations through type specialization�
since this violates the subtype requirement�



the de�nition of behaviour automata specialization through condition �Sp��� The
latter can be achieved through addition of a new attribute and a new invariant
relating the new and the old attribute� For example� the type Queue can be
re�ned through addition of an attribute elements of type list to hold the
elements of the queue �see Figure 

��

Type NewQueue
Attributes Visible empty 
boolean�

Hidden counter
natural number�� elements
list�
Operations Visible put
element�� get
Invariant counter � length
elements�
Behaviour

get 

put

empty
length(elements) = 0

put

get 

not empty

length(elements) > 0

Fig� ��� Type NewQueue

The relation to counter is given by the invariant counter �

length�elements� � Often instead of an invariant an abstraction function is
used �e�g� �LW	��� to relate the di�erent representations� Our de�nition of type
specialization can easily be extended such that only the visible attributes and
operations need to be preserved� while hidden attributes and operations can also
be related through abstraction functions�

Note that in our framework it is not possible to specify that put adds ex�
actly one element to the queue� since we are only dealing with �nite state au�
tomata� For �ne grained speci�cation a more expressive formalismhas to be used�
Therefore we suggest to use an algebraic speci�cation language like Spectrum
�BFG�	�� together with our concept of behaviour automata�

We also allow reduction of the state space through re�nement� As an example
consider the type Bounded Queue �see Figure 

��

If we add attributes full and bound in Figure �� type Queue can be seen as
a re�nement of Bounded Queue via the addition of the invariants

counter � bound� bound � 	� not full

to Bounded Queue� It is somewhat unusual to regard a bound as a dynamic
changing value� but bound can be seen as the amount of dynamically allocated
memory to store the elements of the queue�



Type Bounded Queue
Attributes Visible empty�full

Hidden counter� bound
Operations Visible put�get
Invariant bound � �
Behaviour

get 

counter = bound
not empty
full

put

get

put

get

counter < bound
not empty
not full

put

counter > 0
counter = 0
empty
not full

Fig� ��� Type Bounded Queue

It is interesting to compare our notion of re�nement with the re�nement used
for speci�cations in rely�guarantee style �e�g� �SDW	���� A rely�guarantee pair
�R� 
 G�� is a re�nement of �R� 
 G��� if R� 
 R� and �R� �G��
 G��

Taking Rf and Gf as de�ned in section 
 it is straightforward to show that
T� 
 T� implies for all operations f � OP � object states os�� os� � OS�T�� and
arguments parg � �par�f�� U � that

R�
f �os��
 R�

f �os�� and

�R�
f �os�� �G�

f �os�� os�� parg��
 G�
f �os�� os�� parg��

Thus type specialization implies operation re�nement� The opposite is not
true� since type specialization also induces structural re�nement of the automa�
ton which cannot be expressed by operation re�nement�

� Roles

In the preceeding sections we have discussed how to model the behaviour of
a single type and its subtypes� To understand the interaction between several
types it is important to make explicit the expectations the environment has about
the behaviour of a type� These expectations are often called roles of the type
�Ree	
�� A typical example is the Bounded Queue whose environment consists of
a Producer and a Consumer �for the type description see Figure 

��

The Producer expects to be able to invoke some number of put operations
�depending on the bound and the counter�� The Consumer expects to be able to
invoke some number of get operations� The expectations can be made explicit



in the Enqueue and Dequeue role� respectively� These roles are captured by the
behaviour automata depicted in Figure 
�� Note that in roles all attributes and
operations are visible�

Role Enqueue
Attributes full
Operations put
Behaviour

put

full

put

not full

Role Dequeue
Attributes empty
Operations get
Behaviour

get 

empty not empty

get 

Fig� ��� Roles Enqueue and Dequeue

The Producer is only concerned with the attribute full and doesn�t care
about empty� Similarly� the Consumer doesn�t care about full� but only is con�
cerned with empty�

Having made the expectations explicit as roles it is easy to check whether a
type ful�lls its roles� The behaviour automaton of the type has to specialize the
behaviour automata of its roles� In the example above this is straightforward
to show� The only interesting point is the split up of one state of every role
automaton in two states of the type automaton� In the case of Enqueue state s
labelled with not full is split up into s�� s� labelled empty� not full and not

empty� not full respectively� The implications �I�LQueue�si��
 LEnqueue�s�
are straightforward to show� Also condition �Sp�� is straightforward to show�

In general it is important to note that� although the expectations are captured



by automata� nothing is said about sequences of operations the environment of
an object may invoke� The semantic of behaviour automata is only concerned
with states� the enabledness of operations and to some extend their result� Since
we allow a concurrent environment� a user object o cannot expect the used ob�
ject to be modi�ed solely according to the sequence of operations invoked by o�
Therefore single operations invocations are the units of concern�

In the following we give a formal de�nition of roles�

De�nition of Roles�

Let T � �t� Attt� V Attt� Opt� V Opt� part� s��At� be a type description�
R � �r� V Attr� V Opr� parr�Ar� is called a role of T � if r is a name� V Attr �
V Attt are the attributes� V Opr � V Opt are the operations� part is a function
from operations to parameters which restricted to V Opr equals parr and At 

Ar

Note that the only di�erence to the subtype relation is that for roles no
initial states are speci�ed� and that roles do not have hidden� but only visible
attributes and operations�

Now it is easy to show the subtype requirement�

Theorem �� Subtype Requirement for Roles holds

Let T�� T� be two type descriptions and R be a role of T��
If T� 
 T�� then R is also a role of T��

The proof is trivial by transitivity of automata specialization�

� Related Work

In this section we discuss related work� In the framework of �LW	�� the be�
haviour of a type is captured by pre� and postconditions� As mentioned before
our description by predecessor and successor states is more coarse� So for exam�
ple we cannot describe di�erent behaviour for every individual element added to
a Queue by put� More generally� we cannot describe enabledness of operations
which depends on parameters	�

In our framework deff de�nes some sort of precondition� As mentioned in
section � for all os� � OS�T�� holds R�

f �os�� 
 R�
f �os��� This implies that for

all s� � S� holds j� �I� � L��s��� 
 �def�f 
 def�f �� Liskov and Wing require

� The expectations of an object o on another object which was created by o might also
include initial states� This can easily be incorporated in our framework�

� However we can model this situation by totalizing the operation and introducing an
explicit error state�



that pre�f 
 pre�f � Thus our specialization is more general� since we only require

the implication pre�f 
 pre�f for the states the re�ned objects can assume� This
weaker requirement can only be formulated because we have made the state
space of a type explicit� Another di�erence is the treatment of invariants� In
�LW	�� every property of the supertype is preserved� In OOA this is too strong
a requirement� since the speci�cation of the types is not complete� Consider the
example of Fat Sets given in Figure 
��

Type Fat Set
Attributes Hiddenelements
Operations Visible insert� select� size

Type Set
Attributes Hiddenelements
Operations Visible insert� delete� select� size

Fig� ��� Types Set and Fat Set

Fat Sets cannot shrink because the delete operation is missing� Sets can
be seen as a re�nement of Fat Sets by addition of delete� Clearly� the property
not to shrink is lost� Therefore in �LW	�� Sets are not allowed as specialization of
Fat Sets� In our framework the analyst can decide� If the property not to shrink
is important� it can be formulated as an invariant of the behaviour automaton
�
Then no delete operation can be added� If the property is not deemed important
and the invariant not speci�ed� it is not required of subtypes and therefore Set
can be a subtype of Fat Set�

In some sense our de�nition of subtyping can be seen as an integration of the
work of �LW	�� and �Fro	
�� Fr�lund requires the synchronization constraints of
the supertype to be an �upper limit� on the subtypes� In his framework therefore
the subtype requirement can be violated� In our framework the state space of
the supertype is an upper limit for the state space of the subtypes and the
synchronization constraints depend on the state space� Relative to the reduced
state space of the subtype� however� we require the synchronziation constraints
of the supertype to be stronger than the ones of the subtypes �see the discussion
about deff above��

� Note that we have not considered such temporal invariants so far�



Recently� yet another de�nition of type specialization has been given in
�SHJ�	��� which is also based on automata� In that work automata states are
not labelled� therefore only the trace set of the automaton is relevant for the
type semantics� Contrary to our work the trace set� and therefore also the set of
enabling states� is considered to be maximal� Thus that de�nition of automata
specialization allows for reduction of operation enabledness�

� Conclusion

In this paper we have shown how to model the behaviour of types by automata
in a precise way� By labelling the automata states with predicates we make
the state space of a type explicit� These labels partition the state space� The
transitions are labelled by operations� Thus operations are only classi�ed in so
far as they relate di�erent equivalence classes of the state space� In our view this
level of granularity is adequate during the process of OOA� while speci�cation
with pre� and postconditions is too �ne�grained� Behaviour automata allow to
grasp quickly important classes of object states and the e�ect of operations on
them� We have given a precise de�nition of automata specialization� This not
only provides for a new de�nition of the subtype relationship� but also shows how
to safely enhance the system model during the analysis and design process� Thus
we have sketched the use of our specialization mechanism for type re�nement�
Our de�nition of type specialization guarantees the subtype requirement� namely
that as far as the environment is concerned the object of the supertype and the
subtype cannot be distinguished� Using behaviour automata we have de�ned
precisely the expectations of the environment�

In our future work we intend to extend this work to the aggregation hierarchy
and general interaction between types� This requires to make explicit in the
operations of a type invocation of operations on other types� Similar to �SHJ�	��
we plan to give a set of automata transformations which is correct and complete
wrt� our re�nement de�nition�

Since automata are a very intuitive means to model behaviour� it is easy to
use behaviour automata in an informal way� The formal de�nitions guide the
user to the important points where to look at while designing and modifying
the behaviour of types� Thus behaviour automata are an adequate link between
informal and formal software development methods�
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